Pieter Moree

Irregular behaviour of class numbers and Euler-Kronecker constants of cyclotomic fields: the $\log \log \log$ devil at play

Written by Pietro Sgobba

We study two invariants for cyclotomic number fields $\mathbb{Q}\left(\zeta_{q}\right)$, where q is a prime, namely the first factor of the class number and the EulerKronecker constant. In particular, we consider the connection between a conjecture by Kummer on the asymptotic behaviour of the former and a conjecture by Ihara on the positivity of the latter.

1 The Euler-Kronecker constant

The Euler-Mascheroni constant γ is defined as

$$
\gamma=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\log n\right)=0.577 \ldots
$$

and in general we define the Stieltjes constants as

$$
\gamma_{r}=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{\log ^{r} k}{k}-\frac{\log ^{r+1} n}{r+1}\right)
$$

for $r \geq 0$, which arise as the coefficients of the Laurent series expansion of the Riemann zeta function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{s-1}+\sum_{r=0}^{\infty} \frac{(-1)^{r}}{r!} \gamma_{r}(s-1)^{r} .
$$

In particular, we have

$$
\zeta(s)=\frac{1}{s-1}+\gamma+O(s-1) .
$$

Recall that the Dedekind-zeta function of a number field K is defined as

$$
\zeta_{K}(s)=\sum_{\mathfrak{a}} \frac{1}{(N \mathfrak{a})^{s}}, \quad \operatorname{Re}(s)>1,
$$

where \mathfrak{a} runs over all integral ideals of K. The Laurent series of ζ_{K} is such that

$$
\zeta_{K}(s)=\frac{c_{-1}}{s-1}+c_{0}+O(s-1) .
$$

The Euler-Kronecker constant of K, introduced by Ihara, is then defined as $\mathcal{E} \mathcal{K}_{K}:=c_{0} / c_{-1}$, which is the constant term in the logarithmic derivative of $\zeta_{K}(s)$ at $s=1$:

$$
\lim _{s \rightarrow 1}\left(\frac{\zeta_{K}^{\prime}(s)}{\zeta_{K}(s)}+\frac{1}{s-1}\right)=\mathcal{E} \mathcal{K}_{K} .
$$

For example, we have $\mathcal{E} \mathcal{K}_{\mathbb{Q}}=\gamma$. The Euler-Kronecker constant satisfies

$$
\mathcal{E} \mathcal{K}_{K}=\lim _{x \rightarrow \infty}\left(\log x-\sum_{N \mathfrak{p} \leq x} \frac{\log N \mathfrak{p}}{N \mathfrak{p}-1}\right),
$$

where \mathfrak{p} runs over the primes of K, so that for cyclotomic fields $\mathbb{Q}\left(\zeta_{q}\right)$, setting $\gamma_{q}:=\mathcal{E} \mathcal{K}_{\mathbb{Q}\left(\zeta_{q}\right)}$, the main contribution is given by the rational primes p which split completely in $\mathbb{Q}\left(\zeta_{q}\right)$:

$$
\gamma_{q}=\lim _{x \rightarrow \infty}\left(\log x-(q-1) \cdot \sum_{\substack{p \leq x \\ p \equiv 1 \bmod q}} \frac{\log p}{p-1}\right)+\text { smaller order terms } .
$$

Under the assumption of the Extended Riemann Hypothesis (ERH), Ihara, and by different methods, Ford, Luca and Moree showed the following approximation:

$$
\begin{equation*}
\gamma_{q}=\log \left(q^{2}\right)-q \cdot \sum_{\substack{p \leq q^{2} \\ p \equiv 1 \bmod q}} \frac{\log p}{p-1}+O(\log \log q) . \tag{1}
\end{equation*}
$$

Unconditionally this estimate holds for all $C>0$ and for all but $O\left(\pi(u) /(\log u)^{C}\right)$ primes $q \leq u$. Assuming the Elliot-Halberstam conjecture (Conj. 1) we may replace q^{2} by $q^{1+\epsilon}$ in (1).

2 Ihara's conjectures

We first introduce two standard conjectures.
Conjecture 1 (Elliot-Halberstam (EH)). For every $\epsilon>0$ and $A>0$ we have

$$
\sum_{q \leq x^{1-\epsilon}}\left|\pi(x ; q, a)-\frac{\operatorname{li}(x)}{\varphi(q)}\right|<_{A, \epsilon} \frac{x}{\log ^{A} x}
$$

where $\pi(x ; q, a)$ denotes the number of primes p less than x with $p \equiv$ $a \bmod q$, and φ is Euler's totient function.

We say that a set $\left\{b_{1}, \ldots, b_{k}\right\}$ of positive integers is admissible if the congruence $n \prod_{i=1}^{k}\left(b_{i} n+1\right) \equiv 0 \bmod p$ has $<p$ solutions for every prime p.

Conjecture 2 (Hardy-Littlewood (HL)). If $\left\{b_{1}, \ldots, b_{k}\right\}$ is admissible, then the number of primes $n \leq x$ for which the integers $b_{i} n+1$ are all prime is

$$
\gg \frac{x}{\log ^{k+1} x} .
$$

Ihara's conjecture concerns the positivity of the constants γ_{q}, and it gives bounds for the ratio $\gamma_{q} / \log q$. In fact, it is known unconditionally
that for a density 1 set of primes q there exists a constant $c>0$ such that

$$
-c \log \log q \leq \frac{\gamma_{q}}{\log q} \leq 2+\epsilon
$$

Assuming ERH, this property is true for all sufficiently large primes q.
Conjecture 3 (Ihara, 2009). Let $q \geq 3$ be a prime. We have:
(i) $\gamma_{q}>0$ ('very likely');
(ii) for fixed $\epsilon>0$ and q sufficiently large

$$
\frac{1}{2}-\epsilon \leq \frac{\gamma_{q}}{\log q} \leq \frac{3}{2}+\epsilon
$$

However γ_{q} can be negative [1]:

$$
\gamma_{964477901}=-0.1823 \ldots,
$$

and furthermore, assuming HL, one can prove that this happens infinitely often:

Theorem 1. On a quantitative version of the HL conjecture we have

$$
\liminf _{q \rightarrow \infty} \frac{\gamma_{q}}{\log q}=-\infty
$$

In favour of Ihara's conjecture we have:
Theorem 2. Under the EH conjecture, for a density 1 sequence of primes q we have

$$
1-\epsilon<\frac{\gamma_{q}}{\log q}<1+\epsilon
$$

(that is, γ_{q} has normal order $\log q$).

Sketch of proof of Theorem 1. Assume ERH and the HL conjecture. We need to find b_{1}, \ldots, b_{s} such that the integers $n, 1+b_{1} n, 1+b_{2} n, \ldots$ satisfy the conditions of the HL conjecture and

$$
\sum_{i=1}^{s} \frac{1}{b_{i}}>2
$$

We may take $\left\{b_{i}\right\}$ to be the sequence of greedy prime offsets, namely $\{2,6,8,12,18,20,26, \ldots\}$, and $s=2088$. Then by the HL conjecture $q, 1+b_{1} q, 1+b_{2} q, \ldots, 1+b_{s} q$ are infinitely often all prime with $1+b_{s} q \leq$ q^{2}, and so we have

$$
q \sum_{\substack{p \leq q^{2} \\ p \equiv 1 \bmod q}} \frac{\log p}{p-1}>q \log q \sum_{i=1}^{s} \frac{1}{b_{i} q}>\log q \sum_{i=1}^{s} \frac{1}{b_{i}}>\left(2+\epsilon_{0}\right) \log q .
$$

The proof is now concluded on invoking estimate (1).
The measure of an admissible set S is defined as

$$
m(S)=\sum_{s \in S} \frac{1}{s} .
$$

Theorem 1 is a consequence of the fact that there exists an admissible set S with $m(S)>2$. Ford, Luca and Moree gave a short proof of this fact based on a result by Erdös from 1961. However, the divergence result is due to Granville and it confirmed a conjecture of Erdös from 1988:

Theorem 3 (Granville [2]). There is a sequence of admissible sets S_{1}, S_{2}, \ldots such that $\lim _{i \rightarrow \infty} m\left(S_{i}\right)=\infty$.

Proposition 1 (Granville [2]). There is an admissible set S with elements $\leq x$, such that $m(S) \geq(1+o(1)) \log \log x$. For any admissible set we have $m(S) \leq 2 \log \log x$.

3 Analogy with Kummer's Conjecture

Kummer conjectured in 1851 that

$$
h_{1}(q)=\frac{h(q)}{h_{2}(q)} \sim G(q):=2 q\left(\frac{q}{4 \pi^{2}}\right)^{\frac{q-1}{4}},
$$

where $h(q)$ and $h_{2}(q)$ are the class numbers of $\mathbb{Q}\left(\zeta_{q}\right)$ and of its maximal real subfield $\mathbb{Q}\left(\zeta_{q}\right)^{+}:=\mathbb{Q}\left(\zeta_{q}+\zeta_{q}^{-1}\right)$, respectively. Define the Kummer's ratio as $r(q):=h_{1}(q) / G(q)$. Then the conjecture amounts to

$$
r(q) \sim 1
$$

Masley and Montgomery (1976) showed that $|\log r(q)|<7 \log q$ for $q>200$ and used this result to determine all cyclotomic fields of class number 1. Ram Murty and Petridis (2001) showed that there exists a constant $c>1$ such that for a density 1 set of primes q we have $1 / c \leq r(q) \leq c$.

Both γ_{q} and $h_{1}(q)$ are related to special values of Dirichlet L-series. Hasse (1952) showed that

$$
r(q)=\prod_{\chi(-1)=-1} L(1, \chi),
$$

where χ runs over all the odd characters modulo q. Furthermore, using the definition of the Euler-Kronecker constant, one can find the Taylor series expansion around $s=1$:

$$
\frac{\zeta_{\mathbb{Q}\left(\zeta_{q}\right)}(s)}{\zeta_{\mathbb{Q}\left(\zeta_{q}\right)^{+}}+(s)}=r(q)\left(1+\left(\gamma_{q}-\gamma_{q}^{+}\right)(s-1)+O_{q}\left((s-1)^{2}\right)\right),
$$

where $\gamma_{q}^{+}:=\mathcal{E} \mathcal{K}_{\mathbb{Q}\left(\zeta_{q}\right)^{+}}$, which involves both γ_{q} and $h_{1}(q)$.
Both quantities $\log r(q)$ and $\left(\gamma_{q}-\gamma_{q}^{+}\right) / \log q$ are related to the distribution of primes $p \equiv \pm 1 \bmod q$. In fact, they are analytically similar in the following way

$$
\begin{equation*}
\frac{\gamma_{q}-\gamma_{q}^{+}}{\log q} \approx \frac{(q-1)}{2}\left(\sum_{\substack{p \leq q(\log q)^{A} \\ p \equiv 1 \bmod q}} \frac{1}{p}-\sum_{\substack{p \leq q(\log q)^{4} \\ p=-1 \bmod q}} \frac{1}{p}\right) \approx \log r(q) . \tag{2}
\end{equation*}
$$

If we assume HL and EH, then Kummer's conjecture is false. We have the following result:

Theorem 4 (Granville [2]). Assume both the HL and the EH conjecture. Then $r(q)$ has $[0, \infty]$ as set of limit points.

Similarly, in view of (2), we have that, assuming both HL and EH, the sequence $\left(\gamma_{q}-\gamma_{q}^{+}\right) / \log q$ can be shown to be dense in $(-\infty, \infty)$ (see [3]). In the same way, exploiting the analytic similarity of $\gamma_{q} / \log q$ with $1-2|\log r(q)|$, the sequence $\gamma_{q} / \log q$ is dense in $(-\infty, 1]$ (see [1]).

Exploiting these results, we obtain the following speculations, where the $\log \log \log$ 'devil' appears:

1. (Granville [2]) the Kummer's ratio $r(q)$ asymptotically satisfies

$$
(-1+o(1)) \log \log \log q \leq 2 \log r(q) \leq(1+o(1)) \log \log \log q ;
$$

2. (Languasco, Moree, Saad Eddin, Sedunova [3])

$$
(-1+o(1)) \log \log \log q \leq 2 \frac{\left(\gamma_{q}-\gamma_{q}^{+}\right)}{\log q} \leq(1+o(1)) \log \log \log q ;
$$

3. (Ford, Luca, Moree [1])

$$
\frac{\gamma_{q}}{\log q} \geq(-1+o(1)) \log \log \log q
$$

These bounds are best possible in the sense that there exist infinite sequences of primes q for which all the indicated bounds are attained.

References

[1] K. Ford, F. Luca, P. Moree, Values of the Euler ϕ-function not divisible by a given odd prime, and the distribution of EulerKronecker constants for cyclotomic fields. Math. Comp. 83 (2014), 1447-1476.
[2] A. Granville, On the size of the first factor of the class number of a cyclotomic field. Inv. Math. 100 (1990), 321-338.
[3] A. Languasco, P. Moree, S. Saad Eddin, A. Sedunova, working paper.

Pietro Sgobba
Mathematics Research Unit
University of Luxembourg
6, Avenue de la Fonte
4364 Esch-sur-Alzette, Luxembourg.
email: pietro.sgobba@uni.lu - pietrosgobba1@gmail.com

