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We study two invariants for cyclotomic number fields Q(¢,), where
q is a prime, namely the first factor of the class number and the Euler-
Kronecker constant. In particular, we consider the connection between
a conjecture by Kummer on the asymptotic behaviour of the former and
a conjecture by Thara on the positivity of the latter.

1 The Euler-Kronecker constant

The Euler-Mascheroni constant vy is defined as
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and in general we define the Stieltjes constants as
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for r > 0, which arise as the coefficients of the Laurent series expansion
of the Riemann zeta function:
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In particular, we have

{(s):s_%+y+0(s—1).

Recall that the Dedekind-zeta function of a number field K is defined
as
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where a runs over all integral ideals of K. The Laurent series of { is
such that c
i (s) = ;11+c0+0(s—1).
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The Euler-Kronecker constant of K, introduced by Ihara, is then defined
as &Kk := co/c-1, which is the constant term in the logarithmic
derivative of Jx(s) at s = 1:
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For example, we have &K = y. The Euler-Kronecker constant satis-
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where p runs over the primes of K, so that for cyclotomic fields Q(¢y),
setting v, := EKq(g,), the main contribution is given by the rational
primes p which split completely in Q(¢,):
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Under the assumption of the Extended Riemann Hypothesis (ERH),
Ihara, and by different methods, Ford, Luca and Moree showed the
following approximation:
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Unconditionally this estimate holds for all C > 0 and for all but
O(r(u)/(log u)€) primes g < u. Assuming the Elliot-Halberstam con-
jecture (Conj. 1) we may replace g> by ¢'*€ in (1).

2 lhara’s conjectures

We first introduce two standard conjectures.

Conjecture 1 (Elliot-Halberstam (EH)). For every € > 0 and A > 0
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where nt(x; g, a) denotes the number of primes p less than x with p =
a mod g, and ¢ is Euler’s totient function.

We say that a set {by, ..., br} of positive integers is admissible if
the congruence n Hle(bin + 1) = 0 mod p has < p solutions for every
prime p.

Conjecture 2 (Hardy-Littlewood (HL)). If {by, ..., by} is admissible,
then the number of primes n < x for which the integers bin + 1 are all
prime is

Ihara’s conjecture concerns the positivity of the constants y,, and it
gives bounds for the ratio y, /log g. In fact, it is known unconditionally



that for a density 1 set of primes ¢ there exists a constant ¢ > 0 such

that
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Assuming ERH, this property is true for all sufficiently large primes q.
Conjecture 3 (Ihara, 2009). Let g > 3 be a prime. We have:

(i) yq > 0 (‘very likely’);

(ii) for fixed € > 0 and g sufficiently large
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However y, can be negative [1]:
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and furthermore, assuming HL, one can prove that this happens in-
finitely often:

Theorem 1. On a quantitative version of the HL conjecture we have
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In favour of Thara’s conjecture we have:

Theorem 2. Under the EH conjecture, for a density 1 sequence of

primes q we have
Vaq

log g
(that is, y4 has normal order log q).
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Sketch of proof of Theorem 1. Assume ERH and the HL conjecture.
We need to find by, . . ., by such that the integers n, 1 + bin, 1 + byn, . . .
satisfy the conditions of the HL conjecture and
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We may take {b;} to be the sequence of greedy prime offsets, namely
{2,6,8,12,18,20,26, ...}, and s = 2088. Then by the HL conjecture
q,1+b1q, 1+byq, ..., 1+bsq are infinitely often all prime with 1+b5q <
g%, and so we have
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The proof is now concluded on invoking estimate (1). O

The measure of an admissible set S is defined as
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Theorem 1 is a consequence of the fact that there exists an admissible
set S with m(S) > 2. Ford, Luca and Moree gave a short proof of this
fact based on a result by Erdos from 1961. However, the divergence
result is due to Granville and it confirmed a conjecture of Erdos from
1988:

Theorem 3 (Granville [2]). There is a sequence of admissible sets
S1, 82, . .. such that lim; _,o, m(S;) = oo

Proposition 1 (Granville [2]). There is an admissible set S with ele-
ments < x, such that m(S) > (1 + o(1))loglog x. For any admissible
set we have m(S) < 2loglog x.



3 Analogy with Kummer’s Conjecture

Kummer conjectured in 1851 that
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where h(g) and hy(q) are the class numbers of Q(¢,) and of its maximal
real subfield Q(£,)" := Q({y +¢, 1), respectively. Define the Kummer’s
ratio as r(q) := h1(q)/G(g). Then the conjecture amounts to

r(g) ~ 1.

Masley and Montgomery (1976) showed that |[logr(g)| < 7logq for
g > 200 and used this result to determine all cyclotomic fields of class
number 1. Ram Murty and Petridis (2001) showed that there exists
a constant ¢ > 1 such that for a density 1 set of primes ¢ we have
1/c <r(g) < c.

Both y, and hi(g) are related to special values of Dirichlet L-series.
Hasse (1952) showed that
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where y runs over all the odd characters modulo ¢g. Furthermore, using
the definition of the Euler-Kronecker constant, one can find the Taylor
series expansion around s = 1:
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where y; := EKq(¢,)+» which involves both y, and h;(g).
Both quantities log (¢) and (y, — y,)/log q are related to the distri-
bution of primes p = =1 mod ¢q. In fact, they are analytically similar
in the following way
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If we assume HL and EH, then Kummer’s conjecture is false. We
have the following result:

Theorem 4 (Granville [2]). Assume both the HL and the EH conjecture.
Then r(q) has [0, oo] as set of limit points.

Similarly, in view of (2), we have that, assuming both HL. and EH,
the sequence (y, — y;) /1og g can be shown to be dense in (—oo, 00) (see
[3]). In the same way, exploiting the analytic similarity of y,/log g
with 1 —2[log r(g)|, the sequence y, /log g is dense in (—oo, 1] (see [1]).

Exploiting these results, we obtain the following speculations, where
the log log log ‘devil” appears:

1. (Granville [2]) the Kummer’s ratio r(¢) asymptotically satisfies

(-1 +o0(1))logloglogg < 2logr(g) < (1 +o(1))logloglogq;

2. (Languasco, Moree, Saad Eddin, Sedunova [3])

(vq - 7’;)

(=1+0(1))logloglogg < 2 logq

< (1+o0(1))logloglogg;

3. (Ford, Luca, Moree [1])

Yq
log g

> (=1 +o(1))loglogloggq .

These bounds are best possible in the sense that there exist infinite
sequences of primes g for which all the indicated bounds are attained.
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