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@ History and definitions

@ (Ir)regular Bernoulli-primes

@ (Irregular Gennochi-primes

@ Counting G-irregular primes

@ Counting G-irregular primes in AP

@ Denominator of Bernoulli polynomials

@ Kellner’'s denominator conjectures

@ Kellner-Erdds-Moser conjecture (if time permits!)




Middle

For natural numbers m, k > 1 consider the power sum
Si(m) =1k 42K+ 4 (m - 1)K

We have Si(m) =m(m—1)/2.

Likewise, Sp(m) = (m—1)m(2m —1)/6.

Further, S3(m) = m?(m — 1)2/4 = S;(m)2.

Theorem 1580-1635)

If 2 1 k, then Sx(m) = Fx(S1(m)), deg(Fx) = (k +1)/2.
It 2| k, then S(m) = S(m)Gi(S1(m)), deg(Gx) = (k — 2)/2.
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We have
K k+1
Sk(m) 1 Z< > k+1 /
j=0

with

t _°°Btk
7= 2 B
k=0

The B are called Bernoulli-Seki numbers.
By=1, By =-1/2

Boky1 =0

B, =1/6,By=—-1/30,Bs = 1/42,Bg = —1/30,
Bip = 5/66, Bi, = —691/2730



Jakob

. Alque si porro ad altiores gradatim potestates pergere, levique ne-

gotio sequentem adornare laterculum licet
Summac Potestatum

fn=24nn+in
fan = tnd4dnn+tIn
fnd=tnt+In?+ tnn
fnt = 4nd 4+ Int 4+ 2In3 -
fn% = Iné 4 InS 4+ Snt — Lnn
fne=1In7 4+ Inf+in®—Ind4 bn

fn7 = tn® 4 In7 4 Gn€— Znt £ hun
f‘“s In? + In8 + In? =n> + in’ Jon

v z 3 T k4 30
fn? = om0 5 4n® 4 dn® = fn® + dn?  pnn

fn0 = 11 110 509 7 5_1,.3
%=yt +gn'% +2n n” +1n "+ 2

Quin imo qui legem progressionis inibi attentuis ensperexit, eundem eti-
Sumta enim

am continuare poterit absque his ratiociniorum ambabimu:

cujuslibet exponente, fit summa omnium n® seu

e+l ey e —1-¢

" AR S ¥ 1
—2.c—3.c—4_ .

3456 e
c—2-c—3.c—4-c—5-c— . .
33456738 Dn & ita deinceps,

exponentem potestatis ipsius n continué minuendo binario, quosque per-
veniatur ad n vel nn. Literae capitales A, B, C, D & <. ordine denotant
coéfficientes ultimorum terminorum pro fnn, [nt, /n®, /n®, & c
nempe




 Jakob Bernoulli: charming words::.

With the help of this table it took me less than half of a quarter
of an hour to find that the tenth powers of the first 1000
numbers being added together will yield the sum

91,409, 924,241,424,243,424,241,924,242,500

From this it will become clear how useless was the work of
Ismael Boulliau spent on the compilation of his voluminous
Arithmetica Infinitorum in which he did nothing more than
compute with immense labour the sums of the first six powers,
which is only a part of what we have accomplished in the space
of a single page.”

ISMAELIS BULLIALDI
OPVS NOVIM
AD
ARITHMETICAM

INFINITORUM
Libms foxe sumpenfics,
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(Ir)

Let p > 2 be a prime. Write
hp = class number of Q((p)
hj = class number of Q(¢p + ¢, ')
Kummer showed that

hy = hp/h} €N

An odd prime p is regular if and only if p 1 hy ..
Irregular: 37, 59, 67, 101, 103, 131, 149, 157, 233, 257, ...

Ernst Eduard
Kummer
(1810-1893)




Kummer’s goal was to prove Fermat’s Last Theorem.

If p is regular, then xP + yP = zP has only trivial solutions.

Write Bk = Uk/Vk with (Uk7 Vk) =1.

The prime p is irregular if p | Ux for some k € {2,4,...,p— 3}.
The pair (k, p) is said to be an irreqular pair.

If¢ =k #0 (mod p— 1), then B = B« (mod p).

v




It is not known whether there are infinitely many regular primes!

There are infinitely many primes p = 5 (mod 6) that are
irregular.

Best result in this spirit to this date:
Metsankyla, 1976

Given an integer m > 2, let H be a proper subgroup of Z,.
Then there exist infinitely many irregular primes not lying in the
residue classes in H.

Put mg(x) = #{p < x : p isirregular}.

Luca, Pizarro-Madariaga and Pomerance (2015)

log log x
logloglog x°

mB(X) > (1+0(1))




Heuristic of Siegel, 1954

We should have

The reasoning behind this conjecture is as follows. We assume
that Us, the numerator of By, is not divisible by p with
probability 1 — 1/p. Therefore, on assuming independence of
divisibility by distinct primes, we expect that p is regular with
probability

N
(1-5) "

which, with increasing p, tends to e—/2.



@ K number field

@ S=finite set of places, including all the infinite ones
@ Og =ring of S-integers

® (s(8) = Xacos(Na)™®

@ T finite set of places disjoint from S

® (s.7(8) = [Iver(1 = Nv=2)(s(9)

° (s1(s)= LJ STsM (mod s™1), n=#S — 1



° Ko =Q¢p), K = QG+ ¢ )

@ Sp, Sf = set of all infinite places of Kp, respectively K
e T, T, = finite set of places above 2

@ hpo = the (Sp, Tp)-refined class number

® fhj, =the (Sy, T, )-refined class number

® hop=hpa/hl, €N

If p is Gennochi-irregular (G-irregular), then p | hyo.
If 2°=1 # 1 (mod p?), then the converse is also true.




Genoc

Angelo Gennochi
(1817-1889)

y 1
The Genocchi numbers have the generating series

_ k
et+1 ZGkkl’ Gk = 2(1 — 29)Bx.
A prime pis G-regularif p{ GGy - - - Gp_3.

The first few G-irregular ones are:

17,31,37,41,43,59,67,73,89,97,101,103,109, . ..

Su Hu, Min-Soo Kim, M. and Min Sha

Irregular primes with respect to Gennochi numbers and Artin’s
primitive root conjecture

Journal of Number Theory 205 (2019), 59-80.



Observation

An odd prime p is G-regular iff it is B-regular and satisfies
ordp(4) = (p—1)/2.

ordp(a) = min{k > 1: 8" =1 (mod p)}.
Note that ord,(4) | (p—1)/2.
5,7,11,13,19,37,47,53,59,61,67,71,79,83,101,103, . ..

Are there infinitely many primes p such that
ordy(4) = (p - 1)/2?

This is an Artin primitive root type conjecture




Countin

Put P(g,t) = {p: p=1(mod t), ordp(g) = (p — 1)/t}.

Theorem [Wagstaff (1982), method of Hooley (1967)]
Under GRH, we have

P(g, 1)(x) = (Jg(t) + o(1))@.

Unconditionally we have, for all x large enough,

P9, 1)(X) < (55(t) + €) —

log x°




Making t

We have
Z [Q(¢n t,g””’ ) : Q]
with
og(t)/A€Q
explicit, and
A= H( — 1)) ~ .3739558136192022880547 . ..
the Artin constant.




Our ca

We have

e p(n)
2(2) = 2 [Q(Cen.27/7) Q]

Note that v/2 € Q(¢p) iff 8 | m.
Assume 4 { n. We have

[Q(¢an, V2 : Q] = 250(2n).

[Q(&2n, 2V/™) : Q] = nyp(2n).
We find that

)= 3" 1N 35 un) 3,

— o(2m)n ~ 4 2= p(n)n ~ 2




Asymptotically we have

ma(x) > (1 - gA - e)W(X) > 0.439 - 7(x).

Asymptotically we have

_sA
2/e

ra(X) ~ (1 )w(x) ~ 0.66 - 7(x).




G-irreg
An odd prime p is G-regular iff it is B-regular and satisfies
ordp(4) = (p—1)/2.

Observation
Primes p satisfying p = 1 (mod 8) are G-irregular.

17,31,37,41,43,59,67,73,89,97,101,103,109, .

Does each primitive residue class contain infinitely many
G-irregular primes?




This density, under GRH, was first explicitly determined by the
speaker (around 1998). For Genocchi we need a simple
variation:

Q(d,a)(x)={p>2:p=a(modd), ordy(4)=(p—1)/2}
Unconditionally

(6(d,a)+¢) x
o(d)  logx’

Q(d,a)(x) <

with 6(d, a)/A € Q and explicit.
Under GRH, we have

Q(d, a)(x) =

o(d) log x~



Table: The ratio Q(d, a)(x)/=(x; d, a) for x =5 - 108

| p=a(modd) | experimental | 4(d,a) |

p=1(mod3) | 0449049 | 0.448746
p=2(mod5) | 0589614 | 0.590456
p=1(modd4) | 0374664 | 0.373955

p=9(mod20) | 0.395498 | 0.393637

p=11(mod 12) | 0.898284 | 0.897493

p=19 (mod 20) | 0.789316 | 0.787275
p=7(mod8) | 0.747300 | 0.747911

p =13 (mod 24) | 0.598815 | 0.598329




For all x sufficiently large,

ra(d,a)(x) > (1 — 6(d, a) — e)n(x; d, a).

Asymptotically we have

ra(d, a)(x) ~ (1~




The Bernoulli polynomials have the generating series

e & tk
— =D BX)y
k=0

We have N
_ n n—k
Ba(X) =) < k) Bk X
k=0
., By(N) — By Bn(N)
:n—1 _ Pn —Pn  DPn



Sp(n) = sum of the base b digits of n

Bo= ] oo Bi= [[ P Bo=%Bs

p prime p>+/n
sp(n)>p sp(M)>p

Kellner (2017)

PnBn(X) € Z[X]

v

Example

Bs(X) = Bs(X) = X® — §x* + 5x° - 1x

sp(1.4+1) =2,83(1.83+2) =3,85(1.5) = 1,8,5(5) = 1
Ps =6




Keliner's conjectures
Conjecture (Kellner, 2017)

a) For n > 192 we have P(B;)) > v/n.

b) There is some absolute constant x > 0 such that

vn

Ki?
log n

Theorem (BLMS, 2018)

a) For n > ng we have P(3;) > n?%/37,

w(PBh) ~

n— oo

b) Asymptotically
vn

w(Py) ~ 2@-

c) log(P7) ~ vn

A




Consecutive denominators

O.Bordelles, F. Luca, P. Moree and I.E. Shparlinski,
Denominators of Bernoulli polynomials,
Mathematika 64 (2018), 519-541.

Behaviour of consecutive denominators

For any x > 3 we have:
@ the divisibility 33,.1 | P, holds for all except maybe at most
o(x) positive integers n < x

@ the divisibility B, 1 | P, and the inequality 3, > B4 hold
simultaneously for at least (log2 + o(1))x positive integers
n<xasx — oo;

@ the equality P4 = B4,1 holds for all except maybe at most
o(m(x)) primes q < x




Small pri

All primes p < (1/2 — €) loglog n/ log log log n, with at most one
exception, divide 3, for all n large enough.

As 2 { o0, the exceptional prime sometimes exists.

Theorem (Stewart, 1980)
For n > 25 we have

loglog n B
logloglogn+ C(a, b)

Sa(n) + sp(n) >

Y

for some constant C(a, b).

We made C(a, b) explicit.



Kellner-

Conjecture (Bernd Kellner, 2011)

If m and k are positive integers with m > 3 then the ratio
Sk(m+1)/Sk(m) is an integer iff (m, k) € {(3,1),(3,3)}.

Since Sx(m + 1) = Sk(m) + m*, we have

K
SkmA1) g M

Se(m) Se(m) <7

Kellner-Erdés-Moser Conjecture

For positive integers a, k, m with m > 3,

aSk(m) = m" < (a,k,m) € {(1,1,3),(3,3,3)}




The cas

Conijecture (P. Erdds, 1950)
The equation 1% +-2K + ...+ (m — 1)k = m* has only1 +2 =3
as a solution. )

Theorem (L. Moser, 1953)
If (m, k) is a solution with k > 2, then m > 101%°.

Can be sharpened to m > 1091%°.

W
L/ R
Theorem (Y. Gallot, M., W. Zudilin, 2011)
If (m, k) is a solution with k > 2, then m > 101%°.




Results

Theorem (l. Baoulina and M., 2015)
Suppose that (m, k) is a nontrivial solution of aSx(m) = mX and
p is a prime dividing m. Then

@ p is anirreqular prime;

o p? | Uk,

@ k=r (mod p— 1) for some irregular pair (r, p).

Generalizes case a =1 [M., te Riele and Urbanowicz (1994)].

If a has a regular prime divisor, then the equation aSix(m) = m¥
has no nontrivial solutions.




(Inregular Bernoulli primes, 11

Let 7 be the set of integers composed solely of irregular primes.

Suppose that0 < § < 1. If

me(x) < (1 — 5)@, X — 00,

then Z(x) < x(log x)~? and, in particular, T has natural density
0.

<

(Thatis Z(x)/x — 0 as x — o0.)

Under the above assumption on wg(x) we have that the set of
possible integer ratios of consecutive power sums is of density
zero.




THANK YOU!

...and thank you, Bernd Kellner!
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