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Also webpage available

Programs and numerical results for the paper
“Landau and R tjan approximations for divisor sums
and coefficients of cusp forms"
by A. Ciolan, A. Languasco and P. Moree

T his page we include descibed In th .
Veor he definition of the quanttees 1., ¥ qa. T, T, 404 Sira) we reber 1o [1],
1 the following the acronym " LyR" siands for the Landau versus Ramssujan problem as staied in Section 123 of [1]

ParilGp and Pythan seripts

panmak g I e, Th pamma_Kigh, g2, prec),

hpul ql.al, pee. ihupmmwu.m

Output: cematants g, w7y, of the <ych subliehds K, sl Ky, for every £l g 12, 181 8 6; wi-mqnuollpﬂmem_bﬂmnqlmdq}
T dligits. I usos the algorithim deveboged in 12).(] fox computing the Huler-K

5 i Section & »rlllumnhumwmu-nmm;.umw
“The aute s saved i one 1k o cach |75 for futher eliboraions neoded 1 sody the YR problen e the Python s below.
T the folder youlll peefoemed with gl = J; g2 = 000 and prec = 30, Each le containg the resulis mecording the values of r, | €1 2 6.

Siralb- g ParifCip seript, It can be used via gpdc, The fussction to be rem is: Srall(r), 12, q1, 42, Phound, pres),
Tsput: ¢1,¢2,q1, g2, Phound, peec: six positive integers.

Chatput: i compuies =S(e,q) (phease remark the change of sign), with | 71572 r2 56 g1 = q = §2; q Is 8 odd prise, by sums in Is the

imemal decimal precision used

Thee ot is saved in one fie for each | 5 1 5 6 for further elsborations needed 1o study the LyB problem, see the Python script below.

s the folder Se-yalucs:seslts veasT find the pesul of ith | %6, Phownd can be 10%, 10" or 10" (with prec = 19); sce Section 9 af [1]. The results

ware first computes with Phound = 10%; the anes not having a suffickenily pood accuracy wore rocomputed with Phowsd = 10, the ones not having (yet) a sefficiently good accuracy were
recomputed with Phound = 10", All these nesults wene then merged in the files mentioned before,

I Python script. nd L] aten | and wpper bounds finr g and 'y g: then it decides on the LyR problom, see Theorem 4 and
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@ Historical background
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Historical background

In his first letter (Jan. 16, 1913) to Hardy, Ramanujan made several
claims, one of which reads:

1,2,4,5,8,9,10,13,16,17,18, ... are numbers which are either themselves
squares or which can be expressed as the sum of two squares. The number
of such numbers greater than A and less than B equals

B dx
K 0

where K = 0.764 ... and 0(x) is very small compared with the previous
integral. K and 6(x) have been exactly found, though complicated...

Note: 6(x) = 60(B)
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Sums of two squares
Let B(x) = #{n<x:n=a%+b? abeN}.
Landau (1908) proved:

X
Blx)= Y = 1~K—.
n<x, n=a2+b? lOgX

Ramanujan (1913) claimed:

X dt X
B(X)_K/2 Iog;z‘—+_o<|og’x>7

where r > 0 is arbitrary.

Recall: Gauss' approximation li(x fX k;% is a much better estimate for

7(x), the number of primes up to x, than is

X
log x*

Pieter Moree (MPIM) ICCGNFRT-2021 Kerala 6/69



Landau vs. Ramanujan

Kx . . . X dt 2
Is the Landau Togx O the Ramanujan approximation Kf2 Tlogt better?

A

.\r. a

P
i *
)

Hardy had his PhD student Gertrude Stanley (1928) work this out. Her
conclusion: Landau approximation is better.

Shanks (1964): Ramanujan approximation is better.
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More precise...

It can be further shown that B(x) has a Poincaré asymptotic expansion:

B(x) = Iogx (1 i Z |0gJ <|°g1r X>>

for every r > 2, with G, ..., C, constants.

If correct, Ramanujan’s integral approximation claim would imply, by
partial integration,

Kx ! C! 1
B(x) = 1 _J 6] ith C, = 1/2.
(x) ng< +j2;logjlx - <|Og,x>) with €} =1/

Shanks (1964) computed C, = 0.5819486. .., disproving the claim. In
addition he computed K = 0.764223654 . . ..
Now known with 30000 (Languasco), respectively 125000 decimals.
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Digression: binary cyclotomic forms

We consider the homogenized cyclotomic polynomial
dn(X,Y) = Yo, (X/Y)
Let
Ax) ={m<x:m=®p(a,b), n >3, max{l|al,|b|} > 2}.

We have

__X Bo 1 B1 1
A(X)_\/IogX<a0 Iog1/4X+|0gX<a1 Iog1/4x>+.”—i_o<|08§rx>>7

with ag, By of Landau-Ramanujan constant type.

@ E. Fouvry, C. Levesque and M. Waldschmidt, Representation of integers
by cyclotomic binary forms, Acta Arith. 184 (2018), no. 1, 67-86.
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Ramanujan’s “unpublished” manuscript

Along with his final letter (Jan. 12, 1920) to Hardy, Ramanujan seems to
have included a manuscript on congruence properties of 7(n) and p(n).

B. Berndt and K. Ono, Ramanujan’s unpublished manuscript on the
partition and tau functions with proofs and commentary. The Andrews
Festschrift (Maratea, 1998). Sém. Lothar. Combin. 42 (1999), 63 pp.
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Ramanujan’s 7 function

» If zc Hand g, = >,

00
A(z) =™ _q1H1*q1 = 7(n)
n=1
is the modular discriminant.
» It is a cusp form of weight 12 on SLy(Z).
» Its Fourier coefficients 7(n) are the values of the Ramanujan 7 function.

» Ramanujan realized that 7(n) has interesting arithmetic properties.

» In his “unpublished” manuscript, he discovered a few congruences for
modulo g€ for g € {2,3,5,7,23,691}.
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Congruences for 7

» Ramanujan showed that 2 1 7(n) < n is an odd square.
» Wilton's congruences:

1(mod 23) if p =23,
») 0 (mod 23) if () = —1,
T =
P 2 (mod 23) if p= U? +23V2 with U %0,
)

—1(mod 23) for all other p.

» Further, he stated the following congruences:

7(n) = no1(n) (mod 3),
7(n) = no1(n) (mod 5),
7(n) = nos(n) (mod 7),
7(n) = o11(n) (mod 691).
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Some claims of Ramanujan

For the primes g above, namely (3,5,7,23,691), Ramanujan made claims
of B(x)-type for

Srq(x)=#{n<x:qt7(n)}.
Defining t, = 1 if g 1 7(n) and t, = 0 otherwise, he typically writes:

It is easy to prove by quite elementary methods that > ,_; tx = o(n).
It can be shown by transcendental methods that

>h

Iog‘;q n

n n

dx n
Ztk:cq/l a +o(lopn),
—1 1 log"? x g

where p is any positive number.

and

Pieter Moree (MPIM) ICCGNFRT-2021 Kerala 13 /69



...in handwritten form...
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Some claims of Ramanujan

Serre (1981) proved that Frobenian multiplicative functions admit
Poincaré expansions like B(x). In particular,

C,x Co c1 Ci—1 1
Srq(x) = —F— 1+ - +ot L=+ 0 — ).
ma(X) log® x < logx  log?x log/ x log/*! x

The integral claim implies particular values for the c;.

Classical Theorem 1
Rankin (1988): For g € {3,5,7,23,691} the asymptotic claim is true, with

g | 3 5 7 23 691
5 | 1/2 1/4 1/2 1/2 1/690

Moree (2004): Computed ¢y for these g and showed they differ from
Ramanujan’s prediction.
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© Euler-Kronecker constants
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The Euler-Mascheroni constant

The Euler-Mascheroni constant +y is defined as

n

1
v = lim (Z - —log n) — 0.57721566490153286 . . .

n—o0o
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The Euler-Kronecker constant of a number field

» Attached to a number field K we have the Dedekind zeta function
1
= E ——— (R 1
CK(S) - (Nﬂ)s ( e(s) > )a

where a runs over the non-zero ideals in the ring of integers Ok.

> If K=Q we get (g(s) = >_,>1 n°, the Riemann zeta function.
» (k(s) can be analytically continued to C\ {1}, simple pole at s = 1.

» Unique factorization over Ok gives the Euler product identity

() =T =y (Rels) > 1),
p

where p runs over the prime ideals in Ok.
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The Euler-Kronecker constant of a number field

» Laurent series: .
C(s) = - :11 +co+O0(s—1)

» Euler-Kronecker constant of K:
o)
TK = —
c1

» Around s =1 we have

gﬁg; = —sil + 9k + O(s — 1),

which can be continued in terms of Stieltjes constants etc.

» Equivalently,

Cﬁ<(S)Jr 1 )

K= sir% (CK(S) s—1

» Example: 9 =7v/1=v=0.577...
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The Euler-Kronecker constant of a number field

» Alternative formula given by:

. log Np

» The existence of (many) prime ideals in Ok of small norm has a
decreasing effect on ~yk.

» For K = Q we obtain the well-known formula

|ogp>

p<x
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The Euler-Kronecker constant of a multiplicative set

We say that S C N is multiplicative if the following holds:

If (m,n)=1,then mmeS< mneSs.
Alternatively: The indicator function 1s is multiplicative.
Example 1: {n € N:n=a?+ b? a,bec N}

Example 2: {n: q{f(n)} with g prime and f multiplicative

Let
Ls(s) := Z n”®.

L'<(s) e
=i S
7= I <L5(s) * s — 1>

If the limit

exists for some « # 0, the set S admits an Euler-Kronecker constant ~s.
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The Euler-Kronecker constant of a multiplicative set

The second order behavior of S(x) is determined by the Euler-Kronecker
constant vs.

Classical Theorem 2

Let S be a multiplicative set. If there are p > 0 and 0 < 6 < 1 such that

Condition A: Z Z 1+ O<Iog2+"’ )
p<x, pES p<x
holds true, then ~ys exists and, as x — oo,

sto= 3 1= (1+ 5 R0 ey,

n<x, neS Iog X

with ¢g > 0.
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The Euler-Kronecker constant of a multiplicative set

Classical Theorem 2 (continued)

If the primes in S are, with finitely many exceptions, precisely those in a
finite union of arithmetic progressions, for any j > 1 we have

Co X C1 () G 1
S(x) = 1+ + tot —— 40 <>>
() log® x < logx  log? x log/ x 5 log/ Tt x

with g, ..., ¢j constants, g > 0 and ¢; = (1 — 75)0.
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Landau vs. Ramanujan

We call

X X dt
QO —75 and ¢ 5
log® x o log®t

the Landau, respectively the Ramanujan approximation to S(x).

If for every x sufficiently large we have

X dt
<5x—c/ ,
‘ )~ 2 |0g6t’

we say that the Landau approximation is better than the Ramanujan one
(and the other way around if the reverse inequality holds).

X

EOR

log? x

Partial integration gives us

X dt co X ) 1
co/I = 5 <1+| +O< 5 ))
2 log’t log®x og X log= x
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Landau vs. Ramanujan

Suppose that condition A is satisfied.

Ramanujan: ¢; = 4.
Landau: ¢; = 0.
Truth: ¢; = (1 — 7s)9d.

Criterion 1

If S is a multiplicative set satisfying Condition A, the associated
Euler-Kronecker constant g exists.

If vs < 1/2, then Ramanujan’s approximation is better than Landau’s
(and the other way around if v > 1/2).

Note: A Ramanujan-type claim, if true, implies v = 0.
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Landau vs. Ramanujan for ¢(n)

Ford, Luca & Moree (2014) were the first to tackle the “Landau vs.
Ramanujan problem” for infinitely many primes g by studying ¢(n).

Theorem 1 (Ford-Luca-Moree, 2014)

Put Sq :={n:q1{e(n)}.

For g < 67 we have s, < 1/2 and Ramanujan’s approximation is better.
For g > 67 we have vs, > 1/2 and Landau’s approximation is better.
Furthermore, limg o vs, = v and

a) vs, =7+ O(%), effective constant.

b) vs, =7 + Oc(q° 1), ineffective constant.

A crucial role in the analysis is played by the Euler-Kronecker constant 74
of the cyclotomic field Q((q).
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Overview of Euler-Kronecker constants discussed so far

] set \ Vset winner \ author ‘

n=a’+ b’ | —0.1638... | Ramanujan | Shanks
3¢7 +0.5349. .. Landau Moree

5¢1 +0.3995... | Ramanujan | Moree

7T +0.2316... | Ramanujan | Moree
2341 +0.2166... | Ramanujan | Moree
69117 +0.5717.... Landau Moree
gte, <67 | <0.4977 | Ramanujan | FLM
gte, g>71| > 0.5023 Landau FLM
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Intermezzo: The Euler-Kronecker constant of Q(¢,)

lhara (2009) conjectured that 74 > 0 and that, for g sufficiently large,

1 Yq 3
S _e< T <24
2 “Siogqg -2 "€
Badzyan (2010): Under GRH we have |y,4| = O((log q) log log q).

Fouvry (2013): The dyadic average of 4 is log g :
1

3 Z vq = log Q@ + O(log log Q).

Q<q=2Q
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Intermezzo: The Euler-Kronecker constant of Q(¢,)

Recall oz N
i o\ logNp
vk = Jim] (logx > Np — 1)'
Np<x
lhara conjecture (2009): ~v4 > 0.
Ford-Luca-Moree (2014): Y964477901 — —0.1823...
La nguasco (2020): ¥9109334831 — —0.2487. .. 7 7Y9854964401 — —0.0964 ...
Languasco-Righi (2021): 750040955631 = —0.1659. ..

Ford-Luca-Moree (2014): On Hardy-Littlewood conjecture we have

lim inf o _ —00.

g—oo log g
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Yq
log q

for g < 107 - histogram

Yq/log g

35000 A

30000 1

25000 A

20000 1

15000 A

10000 A

5000 A

0 T ? T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
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Analogy with Kummer's Conjecture

Kummer conjectured in 1851 that

q o1
h1(q) qu(m) a,

with hy(q) the ratio of the class number of Q(¢4) and Q(¢q + Cq_l)
Put r(g) = hi(q)/RHS. Conjecture thus states that

r(q) ~ 1.

Masley and Montgomery (1976):

|logr(q)] < 7logqg, ¢q > 200.

Used this to determine all cyclotomic fields of class number 1.
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Connection with L(1, x) and L'(1, x)

We have
Cate)(s) = ¢(s) T Lls.x).
X7X0
Gyt () =¢s) JI LGsx)
X(-1)=1
L'(1,x)
3 >
X#X0 L x(*1)=*1 LX)
Hasse (1952): r(q) = H L(1,x).
x(-1)=-1
Caey)(9)
2T = (@)L + (g —78)(s — 1) + Oq((s — 1)?)).
Caco)(5)
Pieter Moree (MPIM) ICCGNFRT-2021 Ker:
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Yq
log q
Granville (1990): If Kummer's conjecture is true then

analytically similar to 1 — 2| log r(q)|.

1 1 1
DD DI}
p<qltd p<qltd P a
p=1(mod q) p=—1(mod q)

for every § > 0, for all but at most 2x/ log® x exceptions g < x. We have

v (g-1) . log p log p
Te7 e T X'L’Eo( > p—1 )3 p—1)‘

p<x p<x
p=1 (mod q) p=—1(mod q)

Assume Hardy-Littlewood conjecture and Elliott-Halberstam conjecture.
Granville: r(q) has [0, 00] as set of limit points.
FLM: ~4/ log g has (—o0, 1] as set of limit points.
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© Exceptional Fourier coefficient congruences
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So who are the exceptional prime suspects?

The Anatomy of Integers
and Permutations

Illustrated by Robert J. Lewis
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Exceptional primes g

Due to the work of Deligne, Serre and Swinnerton-Dyer we now know that
the primes g € {2,3,5,7,23,691} for which Ramanujan proved
congruences are part of a larger (finite) list of exceptional primes modulo
which congruences hold for the coefficients 7,,(n) of the six cusp forms:

Weight w | 12 16 18 20 22 26
Fom | A QA RA QA QRA Q°RA

with

Q3 _ R2
= ]_ n pr— —_— n = -
Q=1+240) o3(n)g], R=1-504> os(n)qf, A 728
n>1 n>1
Remark 1: @ = E4 and R = E;.

Remark 2: the weights w € {12,16,18,20,22,26} are precisely those for
which the associated spaces of cusp forms on SLy(Z) are 1-dimensional.
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Classical properties

For w € {12,16,18,20,22,26} the following properties hold:

Classical Theorem 2
1) 7y is integer valued.

2) Tw is multiplicative: 7,,(mn) = 7, (m)7,(n) whenever (m, n) = 1.

4) We have
[e'S)
Z TW(n H 1
— 5 1— Tw -S4+ pW—l—S

5) |7w(p)| < 2p(=1/2.

Far reaching consequences in number theory!!
M.R. Murty and V.K. Murty, The mathematical legacy of Srinivasa

Ramanujan, Springer, New Delhi, 2013.
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Special congruences mod g

Deligne, Haberland, Serre and Swinnerton-Dyer classified all primes g
modulo which certain congruences hold for 7, :

(i) Tw(n) Yow—1-2+(n) (mod q) for all (n,q) =1, with v € {0,1,2}.
(i) 7w(n)=0 (mod q) if and only if (2) = —1.

(i) p*~"7r2(p) =0,1,2 or 4 (mod q) for all primes p # q.

Type (i) congruences = q 1 n%oy(n)
Remark: gt oi(n) < g1 U(£7q_1)(n)
For simplicity: If g | a(n) < q | b(n), write a(n) = b(n) (mod q)

Example 1: If a > 1, then n?cy(n) = noy(n) (mod q)
Example 2: a4(n) = o(y,q—1)(n) (mod q)
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Type (i): Exceptional primes with g > w

It turns out that v =0 and

Tw(n) = ow—1(n) = o.(n) (mod q),

with r = (w — 1,q — 1) as in the table:

w 12 16 18 20 22 26

Form | A QA RA Q%A QRA Q’RA
q 691 3617 43867 283, 617 131, 593 657931
r 1 1 1 1,1 1,1 5

Computational fact: 7,,(g) = 1 (mod q)
(and so 7,(g%) = 1 (mod q))
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Type (i): Exceptional primes with g < w

If g < w is exceptional, then 7, (n) = no,(n) (mod q) with r given in the
table:

Form w |g=2 3 5 7 11 13 17 19 23
A 12 1 1 1 3 No

QA 16 1 1 1 1 1 No

RA 18 1 113 5 3 No

Q*A 20 1 1 1 3 1 1 No No
QRA 22 1 1 1 1 No 1 1 No

Q*RA 26 1 11 3 1 No 1 1 No

Computational fact: g | 7,,(q)
(and so q | Tw(q®))
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@ Main results with Ciolan and Languasco
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Goal

» study how often for g ncy(n) with a€ {0,1} and £ | g —1

» apply the results to all the exceptional primes g and the coefficients 7,
of the associated weight w cusp forms

» put the work of Moree (2004) into a general framework

» solve the “Landau versus Ramanujan problem” for fixed ¢ and all
primes g = 1 (mod /)

P. Moree, On some claims in Ramanujan’s “unpublished” manuscript on
the partition and tau functions, Ramanujan J. 8 (2004), 317-330.
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Non-divisibility of ox(n) — Set up
» Given a divisor m of ¢ — 1, let K, be the unique subfield of K = Q((q)
of degree [K : Kiy] = (g — 1)/m.

Examples: K1 = K =Q((q), Kq-1=Q
Ky = Q(¢q + (q_l) = Q(cos(27/q)) is the maximal real subfield of K

» Put r = (k,q — 1) and assume that h = (g — 1)/r is even.

» Let f, = ordg(p) and g, = ordq(p")
(b5 = 1(mod q), p = 1 (mod ))

> Let Sxq={n€N:qgtok(n)}and S , ={ne€N:qfnok(n)}, with
Yk,q and 7} , the associated Euler-Kronecker constants.

» The associated counting functions are

Ska)= > 1, S .0= > L

n<x, q*o-k(n) n<x, anok(n)
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Non-divisibility of ox(n) — Set up

» Define

, (g—1)logp qlog p
S(r’q)':_zipql_l +qu_1
gp=1 gp=1

. Z |0gP n gplogp
pgp el 1 pgp -1
8p>3 gp>3

|og p log p
MDDt B D a2
gp=2 2lep

gp>2

» Compare with

Pieter Moree (MPIM) ICCGNFRT-2021
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Non-divisibility of o4(n) — Main result

» Rankin (1961) determined the asymptotic behavior of Sy 4(x) for
general k and primes q.

» Scourfield (1964) established asymptotics in the case where a
prescribed prime power is required to exactly divide o(n).

Theorem 2 (Ciolan-Languasco-M., 2021)

For any odd prime q, there is a Poincaré asymptotic expansion for Sy q(x)
with 0 = 1/h. In particular, there is a constant Cy 4 > 0 such that

Ck q X 1-— Yk q 1
= Y ]_ 2 -
Skia(¥) Iogl/h X ( * hlog x + Okq log? x ’

1 log q
= —_— 2 _— S — .
Tia =7 = 1 (20 = 1K) h(q — 1) 5(r,q)

with
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Non-divisibility of o4(n) — Main result

Theorem 2 (continued)

Similarly, we have

Cllmq X < 1- VL,q

Skiq(X) = hlog x

Iogl/h X

with

1
Crg= (1 — q> Chqg and Viq=Thkq+

1

o

log? x

)

log q
qg—1

» Recall: If 7, 4 < 1/2, Ramanujan's approximation is better than

Landau’s (the other way around if 7 g > 1/2). The same for 7 .

» A Ramanujan-type claim would imply 7, 4 = 0.

» Suffices to study 7, 4.
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Landau vs. Ramanujan for Sy, and S,

Theorem 3 (Ciolan-Languasco—-M., 2021)

There exists an absolute constant ci such that for every positive integer r,
every prime q > e?r(lgrtloglogr+a) satisfying g = 1 (mod 2r) and every
positive integer k satisfying (k,q — 1) = r, the Landau approximation is
better than the Ramanujan approximation for both Sy 4(x) and S ,(x).

Theorem 4 (Ciolan-Languasco—-M., 2021)

Let k > 1 be an integer and q an odd prime such that (k,q —1) =1. The
Landau approximation for Sy q(x) is better than the Ramanujan one for all
primes q other than q € {3,5,7,11,13,17,23,29,37,41, 43,47, 53,59, 73},
in which cases the Ramanujan approximation is better. The Landau
approximation for S,’Qq(x) is better than the Ramanujan one for all primes
q other than g = 5.
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Ramanujan’s claims repeated

Ramanujan, in the unpublished manuscript:

It is easy to prove by quite elementary methods that y ,_; ty = o(n).

It can be shown by transcendental methods that

> b

Iog

Ztk =G / log® (Iognpn>’ (2)

where p is any positive number.

and
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Main cusp form result

Theorem 5 (Ciolan—-Languasco—-M., 2021)

Let f =3 ,~1Tw(n)qf be any of the six cusp forms and let q be any odd
exceptional prime of type (i) or (ii). If

. 0 ifqg|1w(n),
"1 ifqtTu(n),

then the claim (1) holds for some positive numbers Cq and d,.However,
the Ramanujan-type claim (2) is false for any p > 1+ 6q.Ramanujan’s
approximation is better than Landau'’s if one of the following is satisfied:
a) q=25;

b) g=7 and f € {A, Q?>A, Q°RA};

c) f=RA and g > 5.

In all remaining cases, Landau’s approximation is better. For primes of

type (i) we have 65 = r/(q — 1). For type (ii) we have 64 = 1/2.
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Euler-Kronecker constants for g > w

’ form ‘ w ‘ r ‘ q ‘ Yr.q
A 12[1] 691 [ 0571714...
QA |16 | 1] 3617 | 0.574566...
RA |18 | 1] 43867 | 0.57669....
Q?A [ 20 1] 283 [ 0.552571...
Q?A [20]1] 617 | 0.567565...
QRA [ 22 1] 131 | 0.532695...
QRA |22 1] 593 | 0.568078...
Q°RA | 26 | 5| 657931 | 0.57701....

» Computation of final entry took 6.5 days!
» E-K constants of involved fields very fast; bottle neck S(r, q)
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Euler-Kronecker constants for g < w

rlal g

1] 2 | —-0.677823...
1] 3 0.534921...
1] 5 0.399547 . ..
1] 7 0.712434 . ..
317 0.231640...
111 0.522413...
5111 0.044497 . ..
1113 0.614357...
3113 0.194544 . ..
1]17 0.518971...
1119 0.720414. ..

» Moree (2004) values (in red) were confirmed and computed with higher

precision
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© Outline of the proofs
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Proof ingredients

Computation of vy 4

» Determining the associated Dirichlet series T (s)
» Splitting of primes in K, and K,
» [-series factorization of T(s) via (k,(s) and (k,,(s)

» Algorithms for numerical evaluation of L'/L

Behavior of v 4 for fixed k and large q
» Upper estimates of the form S(r,q) < cq~ /"

» Explicit zero free regions for Dirichlet L-series
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Proof — preliminaries

» By the multiplicativity of

, :{o if g | ox(n),
"1 ifgtor(n),

the associated Dirichlet series T(s) admits an Euler product:

0 t, 0 to
T(S)_Zlm_H_Zo;s'
n= p j=

» The problem comes down to studying
ok(p?) = 0 (mod q).

» Assume p # q, since ox(q°) =1 (mod q).
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Proof preliminaries

» We have
pk(a+l) -1
O'k(pa) = ﬁ <— a=-1 (mOd /,Lp)
with
_Ja if gp =1,
Hp g ifgp>1.

» q| ok(p) & p splits completely in Ka,, but not in the larger field K.

» We compute

1 1— p(mp=1)s
Ry St
p#q
1 1 1— p(ke=1)s
:17 sz]_i 725H 1—p=S)(1— p—Hprs)’
g gl o, (L= pme) (L= pries)
Challenge: Express T(s) in terms of Dirichlet L-series.
Pieter Moree (MPIM) ICCGNFRT-2021 Kerala

56 /69



Dedekind zeta function factorizations of K,,

Given a divisor m of g — 1, let Ky, be the unique subfield of K = Q({q) of
degree [K : K] = (g —1)/m.
Recall the Euler product identity

Ck(s) = Hl—ll\lp—s (Re(s) > 1).
P
If m|(q—1)/2, then

q—1
1

S () "m0 I s

p#q x€Xm\{xo}

Logarithmic differentiation yields

Ck(5) =

L'(1,x
R
XEXm\{xo0}
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The Euler-Kronecker constant 4

» In terms of Dedekind zeta functions,
T(s)" = (1= q %) ()" H(s)" ¢k, (5)kan (5) 2,
where H(s) is a regular function as s — 17 and

H (1)
2H(1)

= _5(r7 q)‘

» Some L-series manipulation and logarithmic differentiation yield

p
qg—1

lo
(27K2r _A/Kr+ gq) _S(raq)a r= (kaq_l)

This expression is highly suitable for numerical evaluation, not for
determining its asymptotic behavior for g — oo
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v(k, q) for large q

» For our application we mostly have r = 1.
» For fixed r it can be shown that v, 4 — 7.

» There thus exists qo(r) such that v, 4 > 1/2 for ¢ > qo and Landau
wins.

» In particular, we can hope to determine all g for which Ramanujan wins
for small r.

Aim: determine this qo(r)

» Earlier vy 4 expression is not useful for this, look for another one.
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v(k, q) for large q

With r = (k,q — 1) we have

Vig =Y — ngngo(log);— > A(n))—S(r,q),

q n<x n
n=a; (mod q)
with ai, ..., a,, with 0 < a; < g, the solutions of x" = —1 (mod q).

» Summand in limit can be estimated using zero free region of Dirichlet
L-series (technical, we skip this)

» For fixed r we have S(r,q) — 0 as g =1 (mod r) and tends to infinity.
> S(r,q) < (logq)*q~/".
It follows that there exist C;, C; > 0 such that

rlog? q 6 log? q
\/a 1/!‘
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v(k, q) for large q

» Recall that there exist Cq, G, such that
rlog? q C log? q
va g

» By taking c large enough we can ensure that F,(q) < 0.077 for any
q > e?rllogr+loglogr+c) satisfying g = 1 (mod 2r), hence 7y , > 1/2.

Yhg =7 — G =7 - F(q).

» Conclusion: For any fixed r > 1, Landau’s approximation is better for
any such (large enough) q.

> Using the fact that v} . = 7k q +l0g ¢/(q — 1) > 7,4, We obtain the
same conclusion for ~} g

» For r =1 we can determine all the (finitely many) g such that
Ramanujan wins. They satisfy g < 73.
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HAPPY 75 and > 75!
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On the numerical computations

» Evaluation of 7 4 splits in two parts: the pair (7k,,Vk,,) and S(r, q)

L'(1,x)
Ve =T+ D T
X€Xm\{x0}
for m = r and m = 2r can be evaluated with the same computational

cost as in the case m =1

» Implemented in Pari/Gp, with a precision of 30 decimal digits for
g < 3000, using an approach developed by Languasco & Righi (2020)
to compute vk, (= 74) and 7k, for g < 107

» FFT algorithm for g > 3000 for m=1

» The slow decay of certain summands in S(r, q) prevents us from
getting a good enough accuracy for r > 2
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Special cases

» g =2: We have 7,,(n) = noi(n) (mod 2) and

d 1= *f + 0(1).
2f7w(n)
» Haberland (1983) proved that the case w = 16, g = 59 is the only one
of type (iii) using Galois cohomological methods, establishing a
conjecture of Swinnerton-Dyer.

The relevant algebraic field is non-abelian with a non-solvable Galois
group and thus a factorization of T(s) solely in terms of Dirichlet
L-series and a regular factor is not expected to exist.
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Special cases

» Type (ii) congruences ~» m = (q — 1)/2, K, = Q(\/g*) is quadratic,

with ¢* = (_Tl)q

» Two cases: w =12, g =23 and w =16, g =31

> If w=(g+1)/2, we have

mod g

mod g

1( )
_ ) o )
w(p) = 2 (mod q)
—1 (mod q)

for any g € {23,31}.

if p=gq,

(P —

if (q) = -1,

if p=U?+ qV2 with U #0,
for all other p

> (i) can be computed in terms of Vot g etc.
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Landau vs. Ramanujan for 5y 4 and S,

Conjecture 1 (Ciolan-Languasco-M., 2021)

If r = 3, the Landau approximation for Sy 4(x) is better than the
Ramanujan one for all primes g other than

g € {7,13,19,31,37,61,67, 79,97, 103, 109, 127, 181},

in which cases the Ramanujan approximation is better. The Landau
approximation for S; (x) is better than the Ramanujan one for all primes
g other than

g € {7,13,19,31,61, 67,97, 109}.
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Landau vs. Ramanujan for Sy, and S,

Conjecture 2 (Ciolan—-Languasco-M., 2021)

If r =5, the Landau approximation for Sy 4(x) is better than the
Ramanujan one for all primes g other than

g € {11,31,41, 71,101, 131, 241, 271, 311},

in which cases the Ramanujan approximation is better. The Landau

approximation for S; (x) is better than the Ramanujan one for all primes
g other than

g € {11,31,71,131,241,311}.
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