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Overview of the talk

I Euler-Kronecker constants in general

P. Moree Counting numbers in multiplicative sets: Landau
versus Ramanujan, Mathematics Newsletter 21, no. 3 (2011),
73–81.

I Euler-Kronecker constants for cyclotomic number fields
I Similarities with Kummer’s conjecture

P. Moree Irregular behaviour of class numbers and
Euler-Kronecker constants of cyclotomic fields: the log log log
devil at play, in (see picture), Springer, 2018, 143–163.



Euler-Mascheroni constant

The Euler-Mascheroni constant γ is defined as

γ = lim
n→∞

( n∑
k=1

1
k
− log n

)
= 0.57721566490153286 . . .



Some generalizations

Generalization: Stieltjes constants

γr = lim
n→∞

( n∑
k=1

logr k
k
− logr+1 n

r + 1

)
Arise as Laurent series coefficients of Riemann zeta function:

ζ(s) =
∞∑

n=1

1
ns =

1
s − 1

+
∞∑

r=0

(−1)r

r !
γr (s − 1)r

In particular,

ζ(s) =
1

s − 1
+ γ + O(s − 1)



Definition of Euler-Kronecker constant

Let K be a number field, define its Dedekind-zeta function as

ζK (s) =
∑
a

1
(Na)s , Re(s) > 1.

Laurent series:

ζK (s) =
c−1

s − 1
+ c0 + O(s − 1).

Euler-Kronecker constant of K : EKK := c0
c−1

lim
s→1

(ζ ′K (s)

ζK (s)
+

1
s − 1

)
= EKK ,

EKK is constant in logarithmic derivative of ζK (s) at s = 1.

Example. EKQ = γ/1 = γ = 0.577 . . .



Historical background

Sums of two squares

Landau (1908) proved:

B(x) =
∑

n≤x , n=a2+b2

1 ∼ K
x√
log x

.

Ramanujan (1913) claimed:

B(x) = K
∫ x

2

dt√
log t

+ O
( x

logr x

)
,

where r > 0 is arbitrary.

K = 0.764223653 . . . : Landau-Ramanujan constant.

Shanks (1964): Ramanujan’s claim is false for every r > 3/2.



Non-divisibility of Ramanujan’s τ

∆ := η24 = q
∞∏

m=1

(1− qm)24 =
∞∑

n=1

τ(n)qn.

After setting q = e2πiz , the function ∆(z) is the unique
normalized cusp form of weight 12 for the full modular group
SL2(Z).

Fix a prime q ∈ {3,5,7,23,691}.

For these primes τ(n) satisfies an easy congruence, e.g.:

τ(n) ≡
∑
d |n

d11 (mod 691).

Put tn = 1 if q - τ(n) and tn = 0 otherwise.



Some further claims of Ramanujan

Ramanujan in last letter to Hardy (1920):

“It is easy to prove by quite elementary methods that∑n
k=1 tk = o(n).

It can be shown by transcendental methods that

n∑
k=1

tk ∼
Cqn

logδq n
; (1)

and
n∑

k=1

tk = Cq

∫ n

2

dx
logδq x

+ O
( n

logr n

)
, (2)

where r is any positive number”.

Rushforth, Rankin: Estimate (1) holds true.

Moree (2004): All estimates (2) are false for r > 1 + δq.



Euler-Kronecker constants of a multiplicative set

We say that S is multiplicative if m and n are coprime integers
then mn is in S iff both m and n are in S

Common example is where S is a multiplicative semigroup
generated by qi , i = 1,2, . . . , with every qi a prime power and
(qi ,qj) = 1

Example I n = X 2 + Y 2

Example II If q is a prime and f a multiplicative function, then

{n : q - f (n)}

is multiplicative

If (m,n) = 1, then

q - f (mn) ⇐⇒ q - f (m)f (n) ⇐⇒ q - f (n) and q - f (m)



Euler-Kronecker constant of a multiplicative set

Assumption. There are some fixed δ, ρ > 0 such that
asymptotically

πS(x) = δπ(x) + O
( x

log2+ρ x

)
.

We put

LS(s) :=
∞∑

n=1, n∈S

n−s.

Can show that, Euler-Kronecker constant

γS := lim
s→1+0

(L′S(s)

LS(s)
+

δ

s − 1

)
exists.



Counting the elements in S

If the assumption holds, then

S(x) ∼ C0(S)x logδ−1 x

We say that the Landau approximation is better than the
Ramanujan approximation if for every x sufficiently large we
have∣∣∣S(x)− C0(S)x logδ−1 x

∣∣∣ < ∣∣∣S(x)− C0(S)

∫ x

2
logδ−1 tdt

∣∣∣.
Question: Given S, is the Landau or the Ramanujan

approximation better?



The second order term and γS

We have

S(x) = C0(S)x logδ−1 x
(

1+(1+o(1))
C1(S)

log x

)
, as x →∞,

where C1(S) = (1− δ)(1− γS).

Theorem. Suppose that δ < 1. If γS < 1/2, the Ramanujan
approximation is asymptotically better than the Landau one. If
γS > 1/2 it is the other way around.

Follows on noting that by partial integration we have∫ x

2
logδ−1 dt = x logδ−1 x

(
1 +

1− δ
log x

+ O
( 1

log2 x

))
.

A Ramanujan type claim, if true, implies γS = 0.



Landau versus Ramanujan for q - ϕ

Put Sq := {n : q - ϕ(n)} and γϕ,q = γSq .

Theorem. (Moree, 2006, unpublished). Assume ERH.
For q ≤ 67 we have γϕ;q < 1/2 and Ramanujan’s
approximation is better.
For q > 67 we have γϕ;q > 1/2.
Further, we have limq→∞ γϕ;q = γ.

Theorem. (Ford-Luca-Moree, 2014). Unconditionally true!

Theorem. We have
I γϕ;q = γ + O( log2 q√

q ), effective constant.

I γϕ;q = γ + Oε(qε−1), ineffective constant.

I γϕ;q = γ + O( log2 q
q ), no Siegel zero.

I γϕ;q = γ + O( log q(log log q)
q ), on ERH for L-functions mod q.



Table: Overview of Euler-Kronecker constants discussed

set γset winner author
Z≥1 +0.5772 . . . Euler

n = a2 + b2 −0.1638 . . . Ramanujan Shanks
3 - τ +0.5349 . . . Landau M.
5 - τ +0.3995 . . . Ramanujan M.
7 - τ +0.2316 . . . Ramanujan M.

23 - τ +0.2166 . . . Ramanujan M.
691 - τ +0.5717 . . . Landau M.

q - ϕ, q ≤ 67 < 0.4977 Ramanujan FLM
q - ϕ, q ≥ 71 > 0.5023 Landau FLM



Connection with γq := EKQ(ζq)

Put fp = |〈p (mod q)〉| and

S(q) :=
∑

p 6=q, fp≥2

log p
pfp − 1

,

We have

γϕ;q = γ − (3− q) log q
(q − 1)2(q + 1)

− S(q)−
EKQ(ζq)

q − 1
.

Given ε > 0 we have S(q) < ε/q for a subset of primes of

natural density 1, and S(q) < 45/q for every q.

Conclusion:

γϕ;q ≈ γ −
EKQ(ζq)

q − 1



EKQ(ζq) = γq

EKK = lim
x→∞

(
log x −

∑
Np≤x

log Np

Np− 1

)
gives

γq

q − 1
= − log q

(q − 1)2 − S(q)− lim
x→∞

( log x
q − 1

−
∑
p≤x

p≡1 (mod q)

log p
p − 1

)
On ERH we have (Ihara, FLM)

γq = 2 log q − q
∑
p≤q2

p≡1 (mod q)

log p
p − 1

+ O(log log q)

Unconditionally also true with error OC(log log q) for all but at
most O(π(u)/(log u)C) primes q ≤ u.

On further assuming the Elliott-Halberstam conjecture we can
replace 2 by 1 + ε.



Two standard conjectures

Elliott-Halberstam Conjecture. For every ε > 0 and A > 0 we
have ∑

q≤x1−ε

∣∣π(x ; q,a)− li(x)

ϕ(q)

∣∣�A,ε
x

logA x

Let {b1, . . . ,bk} be a set of positive integers. We say it is
admissible if the collection of forms n and bin + 1, 1 ≤ i ≤ k ,
has no fixed prime factor.

Hardy-Littlewood Conjecture. If {b1, . . . ,bk} is admissible,
then the number of primes n ≤ x for which the numbers bin + 1
are all prime, is

� x
logk+1 x



Ihara’s conjectures

Badzyan (2010). On GRH, we have |γq| = O((log q) log log q)

Ihara (2009).
(i) γq > 0 (‘very likely’)
(ii) Conjectures that

1
2
− ε ≤

γq

log q
≤ 3

2
+ ε

for q sufficiently large



γq

log q for q ≤ 50.000
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A. Languasco (March 2019): Extended to q ≤ 100.000



Results of Ford-Luca-M. on γq

We have γ964477901 = −0.1823 . . .

Theorem. On a quantitative version of the HL conjecture we
have

lim inf
q→∞

γq

log q
= −∞

Conjecture. For density 1 sequence of primes we have

1− ε <
γq

log q
< 1 + ε

(That is, γq has normal order log q)

Fouvry (2013) Dyadic average of γq is log q:

1
Q

∑
Q<q≤2Q

γq = log Q + O(log log Q).



Sketch of proof of theorem

γq = 2 log q − q
∑
p≤q2

p≡1 (mod q)

log p
p − 1

+ O(log log q)

Construct infinite sequence bi , i = 1,2, . . . such that
n,1 + 2b1n,1 + 2b2n, . . . satisfies conditions of the HL
conjecture AND

s∑
i=1

1
bi
→∞

Take {bi} = {2,6,8,12,18,20,26, . . .} sequence of greedy
prime offsets and s = 2088 so that sum is > 4.

By HL conjecture q,1 + 2b1q,1 + 2b2q, . . . ,1 + 2bsq are
infinitely often ALL prime with 1 + 2bsq ≤ q2. Then

q
∑
p≤q2

p≡1 (mod q)

log p
p − 1

> q log q
s∑

i=1

1
2biq

> (2 + ε0) log q



Analogy with Kummer’s Conjecture

Kummer conjectured in 1851 that

h1(q) =
h(q)

h2(q)
∼ G(q) := 2q(

q
4π2 )

q−1
4

Ratio of the class number of Q(ζq), respectively Q(ζq + ζ−1
q )

Put r(q) = h1(q)/G(q)

Ankeny and Chowla (1949):

log r(q) = o(log q) ⇒ log h1(q) ∼ q(log q)/4

Masley and Montgomery (1976):

| log r(q)| < 7 log q, q > 200.

Used this to determine all cyclotomic fields of class number 1.



Connection with L(1, χ) and L′(1, χ)

ζQ(ζq)(s) = ζ(s)
∏
χ 6=χ0

L(s, χ) = ζQ(ζq)+(s)
∏

χ(−1)=−1

L(s, χ)

γq = γ +
∑
χ 6=χ0

L′(1, χ)

L(1, χ)
= γ+q +

∑
χ(−1)=−1

L′(1, χ)

L(1, χ)

Hasse (1952): r(q) =
∏

χ(−1)=−1

L(1, χ).

ζQ(ζq)(s)

ζQ(ζq)+(s)
= r(q)(1 + (γq − γ+q )(s − 1) + Oq((s − 1)2)).



γq

log q
analytically similar to 1− 2| log r(q)|.

Granville (1990): If Kummer’s conjecture is true then

∑
p≤q1+δ

p≡1 (mod q)

1
p
−

∑
p≤q1+δ

p≡−1 (mod q)

1
p

= o(
1
q

),

for every δ > 0, for all but at most 2x/ log3 x exceptions q ≤ x .

γq − γ+q =
(q − 1)

2
lim

x→∞

( ∑
p≤x

p≡1 (mod q)

log p
p − 1

−
∑
p≤x

p≡−1 (mod q)

log p
p − 1

)
.

Assume Hardy-Littlewood conjecture and Elliott-Halberstam
conjecture.

Granville: r(q) has [0,∞] as set of limit points.

FLM: γq/ log q has (−∞,1] as set of limit points.



The log log log devil makes its appearance...

Granville (1990): Kummer’s ratio asymptotically satisfies

(−1 + o(1)) log log log q ≤ 2 log r(q) ≤ (1 + o(1)) log log log q.

These bounds are best possible in the sense that there exist
two infinite sequences of primes q for which the lower,
respectively upper bound are attained.

(Moree, 2018) Euler-Kronecker analogue:
γq

log q
≥ (−1 + o(1)) log log log q.

The bound is best possible in the sense that there exists an
infinite sequence of primes q for which the bound is attained.



The log log log devil

γq ≈ log q − q
∑

2q+1≤p≤q(log q)A
p≡1 (mod q)

log p
p − 1

γq

log q
≈ 1− q

∑
2q+1≤p≤q(log q)A

p≡1 (mod q)

1
p

Brun-Titchmarsh (with c = 2)

π(x ; q,1) ≤ c
x

(q − 1) log(x/q)
.

Get
γq

log q
≈ −c(log log(q logA q)− log log(2q + 1)),

so
γq

log q
≈ −c log log log q

Conjecturally: c = 1



log log (?) devil

The speculations imply that

lim inf
q→∞

γq

(log log log q) log q
= 2 lim inf

q→∞

log r(q)

log log log q
= −1.

Weaker version:

There exists a function g(q) such that

lim inf
q→∞

γq

g(q) log q
= 2 lim inf

q→∞

log r(q)

g(q)
< 0.

Badzyan (2010): We have g(q) = O(log log q)



DEVIL ?



TEACHER!



THANK YOU!


