Euler-Kronecker constants and the log log log
devil

Pieter Moree (MPIM, Bonn)

Ernst E. Kummer Yasutaka |hara
(1810-1893) b. 1938

RIKEN, Wako Campus, Saitama
March 23, 2019
ZetaValue meeting



(Partly) joint work with

Florian Luca (Wits, Johannesburg)

Kevin Ford (Urbana-Champaign, lllinois)

Values of the Euler phi-function not divisible by a given odd prime,
and the distribution of Euler-Kronecker constants for cyclotomic fields,
Math. Comp. 83 (2014), 1447-1476.



Overview of the talk

» Euler-Kronecker constants in general
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» Euler-Kronecker constants for cyclotomic number fields
» Similarities with Kummer’s conjecture

P. Moree Irregular behaviour of class numbers and

Euler-Kronecker constants of cyclotomic fields: the log log log
devil at play, in (see picture), Springer, 2018, 143-163.



Euler-Mascheroni constant

The Euler-Mascheroni constant « is defined as

n
~ = lim (Z % ~log n) — 0.57721566490153286 . ..

n—oo




Some generalizations

Generalization: Stieltjes constants

n

. log"k log*'n
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Arise as Laurent series coefficients of Riemann zeta function:
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Definition of Euler-Kronecker constant
Let K be a number field, define its Dedekind-zeta function as
1
(k(s) = Za: (NaJ®" Re(s) > 1.

Laurent series:

C_1
s—1

Ck(s) = +co+O(s—1).

Euler-Kronecker constant of K: EKy = C%

. Ck(s) 1
s!l—rﬂ (CK(S) * s—1

) = &K,

EKk is constant in logarithmic derivative of (x(s) at s = 1.
Example. ELg =~v/1 =~v=0.577...



Historical background

Sums of two squares
Landau (1908) proved:

Bx)= > 1~K\/I;(@.

n<x, n=a2+b?

Ramanujan (1913) claimed:

X dt X
B(x) = K/ —— 40—,
( ) P 1/|ogt (|Ong)
where r > 0 is arbitrary.
K = 0.764223653 . .. : Landau-Ramanujan constant.

Shanks (1964): Ramanujan’s claim is false for every r > 3/2.



Non-divisibility of Ramanujan’s 7

o0 o0

A=p=q[[(1-qM* =3 7(ng".

m=1 n=1

After setting g = €72, the function A(z) is the unique

normalized cusp form of weight 12 for the full modular group
SLx>(Z).

Fix a prime q € {3,5,7,23,691}.
For these primes 7(n) satisfies an easy congruence, e.g.:
7(n)=> _d"" (mod 691).
dn

Put t, =1if gt 7(n) and t, = 0 otherwise.



Some further claims of Ramanujan

Ramanujan in last letter to Hardy (1920):
“It is easy to prove by quite elementary methods that

S k1 tk = o(n).

It can be shown by transcendental methods that

ka |Ogaq - (1)

and

ax n
Z b= Cq/z log% x * O(Iogrn>7 @

where r is any positive number”.
Rushforth, Rankin: Estimate (1) holds true.

Moree (2004): All estimates (2) are false for r > 1 + 4.



Euler-Kronecker constants of a multiplicative set

We say that S is multiplicative if m and n are coprime integers
then mnisin Siff both mand narein S

Common example is where S is a multiplicative semigroup
generated by q;, i = 1,2,..., with every g; a prime power and
(i, q5) =1

Example | n = X2 + Y?

Example Il If g is a prime and f a multiplicative function, then

{n:qtf(n)}
is multiplicative
If (m,n) =1, then

qtf(mn) <= qtf(m)f(n) <= qtf(n)andqff(m)



Euler-Kronecker constant of a multiplicative set

Assumption. There are some fixed 4, p > 0 such that
asymptotically

rs(X) = om(x) + o(logz’ipx).

We put

Can show that, Euler-Kronecker constant

o L'o(s) 0
s = s—1+0 <L§(S) Si)

exists.



Counting the elements in S

If the assumption holds, then
S(x) ~ Co(S)xlog®~ ' x

We say that the Landau approximation is better than the
Ramanujan approximation if for every x sufficiently large we
have

S(x) ~ Co(S)xlog’ " x| < |S(x) ~ Co(S) /: log’ " tot].

Question: Given S, is the Landau or the Ramanujan

approximation better?



The second order term and s

We have

S(x) = Co(S)xlog’~" x(1 +(1 +o(1))(|’;;é‘i)>, as X — oo,

where C(S) = (1 —0)(1 —~s).

Theorem. Suppose that§ < 1. Ifyg < 1/2, the Ramanujan
approximation is asymptotically better than the Landau one. If
vs > 1/2 it is the other way around.

Follows on noting that by partial integration we have

/: log®~" dt = xlog’~" X<1 + :O;j + O(Iog12x>)'

A Ramanujan type claim, if true, implies vs = 0.




Landau versus Ramanujan for g 1 ¢

Put Sq:={n: qf¢(n)}andv,q = s,

Theorem. (Moree, 2006, unpublished). Assume ERH.
For q < 67 we have ~,.q < 1/2 and Ramanujan’s
approximation is better.

For q > 67 we have v,,q > 1/2.

Further, we have limg_,o vy, = 7-

Theorem. (Ford-Luca-Moree, 2014). Unconditionally true!

Theorem. We have
> Ypg =7 + O( '°92q) effective constant.

> Vg =7+ O(q "), ineffective constant.
log

> Yoqg =7+ O( ) no Siegel zero.

> Yoiqg =77+ O(w), on ERH for L-functions mod g.



Table: Overview of Euler-Kronecker constants discussed

| set \ Yset [ winner | author |
Zi>1 +0.5772. .. Euler
n=a +b° | —0.1638... | Ramanujan || Shanks
317 +0.5349... Landau M.
5¢1 +0.3995... | Ramanujan M.
71T +0.2316... | Ramanujan M.
23+ 7 +0.2166... | Ramanujan M.
691t 7 +0.5717. .. Landau M.
gte, Q<67 | <0.4977 | Ramanujan FLM
qgte,q>T71 > 0.5023 Landau FLM




Connection with 74 := EKg(c,)

Put f, = |(p (mod q))| and

Sig) = 3 o9P

pr—1’
pP#q, [r>2

We have

(3-q)logq Ea(c)
a=7- ~ 8(q) - —=2,
RN ) R R

Given e > 0 we have 5(q) < ¢/q for a subset of primes of
natural density 1, and S(q) < 45/q for every q.

Conclusion:
oy~ R
©:.q q-— 1



o log Np
EKk —XI|_>moo<Iogx— > Ny _1)
Np<x
gives
g _  logg o logx log p
g—1  (g—1)2 5(a) XIL>moo<q—1 ; p—1)
p=1(mod q)

On ERH we have (lhara, FLM)

lo

g": + O(loglog q)

vg=2logg—q

p<q?
p=1(mod q)

Unconditionally also true with error O¢(log log q) for all but at
most O(x(u)/(log u)®) primes g < u.

On further assuming the Elliott-Halberstam conjecture we can
replace 2 by 1 + ¢.



Two standard conjectures

Elliott-Halberstam Conjecture. Foreverye > 0 and A > 0 we

have
li(x) X

m(x;q,8) — — | <ae —5—
q;e v(q) log” x
Let {by,..., bk} be a set of positive integers. We say it is

admissible if the collection of forms nand bjn+ 1,1 < i <k,
has no fixed prime factor.

Hardy-Littlewood Conjecture. If {by,..., bi} is admissible,
then the number of primes n < x for which the numbers b;n + 1

are all prime, is
X

logh*1 x

>



Ihara’s conjectures

Badzyan (2010). On GRH, we have |y4| = O((log g) log log q)

Ihara (2009).
(i) vq > 0 (‘very likely’)
(i) Conjectures that
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for g sufficiently large
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A. Languasco (March 2019): Extended to g < 100.000



Results of Ford-Luca-M. on 4

We have vgg4477901 = —0.1823.. ..

Theorem. On a quantitative version of the HL conjecture we
have
lim inf 9 =
g—oo log q

Conjecture. For density 1 sequence of primes we have

Yaq

<1+e
log g

1—¢e<

(That is, 4 has normal order log q)

Fouvry (2013) Dyadic average of 4 is log q:

22 > g =1log Q+ O(loglog Q).
Q<g<2Q



Sketch of proof of theorem

lo
vg=2logg—-q > pgp+O(IogIogq)

p=1 (mod q)
Construct infinite sequence b, i = 1,2,... such that
n,1+2bin,1 + 2bon, ... satisfies conditions of the HL
conjecture AND
1
>op

Take {b;} = {2,6,8,12,18,20, 26, ...} sequence of greedy
prime offsets and s = 2088 so that sum is > 4.

By HL conjecture q,1 + 2b1q,1 + 2b2q, ..., 1+ 2bsq are
infinitely often ALL prime with 1 4+ 2bsg < g?. Then

lo
q > pgp>qogq22b > (2+¢€0)logq

p<q?
p=1 (mod q)



Analogy with Kummer’s Conjecture

Kummer conjectured in 1851 that

q—1

h(a) = A G(q) = 29,0

Ratio of the class number of Q((q), respectively Q(¢q + 451)

Put r(q) = h(q)/G(q)
Ankeny and Chowla (1949):

logr(q) = o(logq) = loghi(q) ~ q(log q)/4

Masley and Montgomery (1976):

logr(q)| <7logqg, g > 200.

Used this to determine all cyclotomic fields of class number 1.



Connection with L(1, ) and L'(1, x)

Caeg)(8) = H L(s,x) = Co(cq)+(8) H L(s,x)
X7X0 x(=1)=-1
L'(1,x) - L'(1,x)
a=7+ 2 L(1,x) RS L(1,x)
XFX0 x(=1)=-1

Hasse (1952): r(gq)= [ L(1.x)
x(—1)=-1
Gy (8)

Ca-(8) r(@)(1 + (g — g )(s = 1) + Oq((s — 1)?)).



Tq

log q
Granville (1990): If Kummer’s conjecture is true then

1 1 1
D )
p<ql+d p<qite p q

p=1(mod q) p=—1(mod q)

analytically similar to 1 — 2| log r(q)|-

for every § > 0, for all but at most 2x/ log® x exceptions g < x.

4+ _(g=1) ., logp log p
Ta— Y = 2 X“—>moo( Z; p—1 EX p—1)
p51p(aod q) pz—?(mod q)

Assume Hardy-Littlewood conjecture and Elliott-Halberstam
conjecture.

Granville: r(q) has [0, o] as set of limit points.

FLM: ~4/ log q has (—oo, 1] as set of limit points.



The log log log devil makes its appearance...

Granville (1990): Kummer’s ratio asymptotically satisfies

(=1 +o0(1))logloglogg < 2logr(q) < (1+ o(1))logloglog q.

These bounds are best possible in the sense that there exist
two infinite sequences of primes g for which the lower,
respectively upper bound are attained.

(Moree, 2018) Euler-Kronecker analogue:
Vg >
logg —

The bound is best possible in the sense that there exists an
infinite sequence of primes q for which the bound is attained.

(=1 + o(1))logloglog g.



The log log log devil

lo
Ygrlogg-—q > ?‘j

2q+1<p<q(log )
p=1(mod q)

Tq

1
ogg = ¢ 2 p

2q+1<p<q(log g)A

p=1(mod q)
Brun-Titchmarsh (with ¢ = 2)
X
: < )
X0 1) = S 15 Ay log(x/q)
Get
Ja . _ Aqg) —
09 c(loglog(glog™ q) — loglog(2q + 1)),
SO Y
o
09 g clogloglog g

Conjecturally: ¢ = 1



log log (?) devil

The speculations imply that

Yq L log r(q)

lim inf =2lim inf ——M—~— = —1.

q—o (logloglog q)log q g— logloglog q
Weaker version:

There exists a function g(q) such that

im inf —9_ — 2jim inf 1297(@) _ 4
g— g(q)logq g—  g(q)

Badzyan (2010): We have g(q) = O(loglog q)
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