Euler-Kronecker constants and the log log log devil

Pieter Moree (MPIM, Bonn)

RIKEN, Wako Campus, Saitama March 23, 2019
ZetaValue meeting

(Partly) joint work with

Florian Luca (Wits, Johannesburg)

Kevin Ford (Urbana-Champaign, Illinois)

Values of the Euler phi-function not divisible by a given odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields, Math. Comp. 83 (2014), 1447-1476.

Overview of the talk

- Euler-Kronecker constants in general
P. Moree Counting numbers in multiplicative sets: Landau versus Ramanujan, Mathematics Newsletter 21, no. 3 (2011), 73-81.

- Euler-Kronecker constants for cyclotomic number fields
- Similarities with Kummer's conjecture
P. Moree Irregular behaviour of class numbers and

Euler-Kronecker constants of cyclotomic fields: the log log log devil at play, in (see picture), Springer, 2018, 143-163.

Euler-Mascheroni constant

The Euler-Mascheroni constant γ is defined as

$$
\gamma=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\log n\right)=0.57721566490153286 \ldots
$$

Some generalizations

Generalization: Stieltjes constants

$$
\gamma_{r}=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{\log ^{r} k}{k}-\frac{\log ^{r+1} n}{r+1}\right)
$$

Arise as Laurent series coefficients of Riemann zeta function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{s-1}+\sum_{r=0}^{\infty} \frac{(-1)^{r}}{r!} \gamma_{r}(s-1)^{r}
$$

In particular,

$$
\zeta(s)=\frac{1}{s-1}+\gamma+O(s-1)
$$

Definition of Euler-Kronecker constant

Let K be a number field, define its Dedekind-zeta function as

$$
\zeta_{K}(s)=\sum_{\mathfrak{a}} \frac{1}{(N \mathfrak{a})^{s}}, \operatorname{Re}(s)>1 .
$$

Laurent series:

$$
\zeta_{K}(s)=\frac{c_{-1}}{s-1}+c_{0}+O(s-1) .
$$

Euler-Kronecker constant of $K: \mathcal{E} \mathcal{K}_{K}:=\frac{c_{0}}{c_{-1}}$

$$
\lim _{s \rightarrow 1}\left(\frac{\zeta_{K}^{\prime}(s)}{\zeta_{K}(s)}+\frac{1}{s-1}\right)=\mathcal{E} \mathcal{K}_{K},
$$

$\mathcal{E} \mathcal{K}_{K}$ is constant in logarithmic derivative of $\zeta_{K}(s)$ at $s=1$.
Example. $\mathcal{E} \mathcal{K}_{\mathbb{Q}}=\gamma / 1=\gamma=0.577 \ldots$

Historical background

Sums of two squares

Landau (1908) proved:

$$
B(x)=\sum_{n \leq x, n=a^{2}+b^{2}} 1 \sim K \frac{x}{\sqrt{\log x}} .
$$

Ramanujan (1913) claimed:

$$
B(x)=K \int_{2}^{x} \frac{d t}{\sqrt{\log t}}+O\left(\frac{x}{\log ^{r} x}\right)
$$

where $r>0$ is arbitrary.
$K=0.764223653 \ldots$. . Landau-Ramanujan constant.
Shanks (1964): Ramanujan's claim is false for every $r>3 / 2$.

Non-divisibility of Ramanujan's τ

$$
\Delta:=\eta^{24}=q \prod_{m=1}^{\infty}\left(1-q^{m}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) q^{n}
$$

After setting $q=e^{2 \pi i z}$, the function $\Delta(z)$ is the unique normalized cusp form of weight 12 for the full modular group $\mathrm{SL}_{2}(\mathbb{Z})$.

Fix a prime $q \in\{3,5,7,23,691\}$.
For these primes $\tau(n)$ satisfies an easy congruence, e.g.:

$$
\tau(n) \equiv \sum_{d \mid n} d^{11}(\bmod 691)
$$

Put $t_{n}=1$ if $q \nmid \tau(n)$ and $t_{n}=0$ otherwise.

Some further claims of Ramanujan

Ramanujan in last letter to Hardy (1920):
"It is easy to prove by quite elementary methods that $\sum_{k=1}^{n} t_{k}=O(n)$.
It can be shown by transcendental methods that

$$
\begin{equation*}
\sum_{k=1}^{n} t_{k} \sim \frac{C_{q} n}{\log ^{\delta_{q}} n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n} t_{k}=C_{q} \int_{2}^{n} \frac{d x}{\log ^{\delta_{q} x}}+O\left(\frac{n}{\log ^{r} n}\right) \tag{2}
\end{equation*}
$$

where r is any positive number".
Rushforth, Rankin: Estimate (1) holds true.
Moree (2004): All estimates (2) are false for $r>1+\delta_{q}$.

Euler-Kronecker constants of a multiplicative set

We say that S is multiplicative if m and n are coprime integers then $m n$ is in S iff both m and n are in S

Common example is where S is a multiplicative semigroup generated by $q_{i}, i=1,2, \ldots$, with every q_{i} a prime power and $\left(q_{i}, q_{j}\right)=1$
Example I $n=X^{2}+Y^{2}$
Example II If q is a prime and f a multiplicative function, then

$$
\{n: q \nmid f(n)\}
$$

is multiplicative
If $(m, n)=1$, then

$$
q \nmid f(m n) \Longleftrightarrow q \nmid f(m) f(n) \Longleftrightarrow q \nmid f(n) \text { and } q \nmid f(m)
$$

Euler-Kronecker constant of a multiplicative set

Assumption. There are some fixed $\delta, \rho>0$ such that asymptotically

$$
\pi_{S}(x)=\delta \pi(x)+O\left(\frac{x}{\log ^{2+\rho} x}\right)
$$

We put

$$
L_{S}(s):=\sum_{n=1, n \in S}^{\infty} n^{-s}
$$

Can show that, Euler-Kronecker constant

$$
\gamma_{S}:=\lim _{s \rightarrow 1+0}\left(\frac{L_{S}^{\prime}(s)}{L_{S}(s)}+\frac{\delta}{s-1}\right)
$$

exists.

Counting the elements in S

If the assumption holds, then

$$
S(x) \sim C_{0}(S) x \log ^{\delta-1} x
$$

We say that the Landau approximation is better than the Ramanujan approximation if for every x sufficiently large we have

$$
\left|S(x)-C_{0}(S) x \log ^{\delta-1} x\right|<\left|S(x)-C_{0}(S) \int_{2}^{x} \log ^{\delta-1} t d t\right|
$$

Question: Given S, is the Landau or the Ramanujan approximation better?

The second order term and γ_{s}

We have
$S(x)=C_{0}(S) x \log ^{\delta-1} x\left(1+(1+o(1)) \frac{C_{1}(S)}{\log x}\right), \quad$ as $\quad x \rightarrow \infty$,
where $C_{1}(S)=(1-\delta)\left(1-\gamma_{S}\right)$.
Theorem. Suppose that $\delta<1$. If $\gamma_{S}<1 / 2$, the Ramanujan approximation is asymptotically better than the Landau one. If $\gamma_{S}>1 / 2$ it is the other way around.

Follows on noting that by partial integration we have

$$
\int_{2}^{x} \log ^{\delta-1} d t=x \log ^{\delta-1} x\left(1+\frac{1-\delta}{\log x}+O\left(\frac{1}{\log ^{2} x}\right)\right)
$$

A Ramanujan type claim, if true, implies $\gamma_{S}=0$.

Landau versus Ramanujan for $q \nmid \varphi$

Put $S_{q}:=\{n: q \nmid \varphi(n)\}$ and $\gamma_{\varphi, q}=\gamma_{S_{q}}$.
Theorem. (Moree, 2006, unpublished). Assume ERH.
For $q \leq 67$ we have $\gamma_{\varphi ; q}<1 / 2$ and Ramanujan's approximation is better.
For $q>67$ we have $\gamma_{\varphi ; q}>1 / 2$.
Further, we have $\lim _{q \rightarrow \infty} \gamma_{\varphi ; q}=\gamma$.
Theorem. (Ford-Luca-Moree, 2014). Unconditionally true!
Theorem. We have

- $\gamma_{\varphi ; q}=\gamma+O\left(\frac{\log ^{2} q}{\sqrt{q}}\right)$, effective constant.
- $\gamma_{\varphi ; q}=\gamma+O_{\epsilon}\left(q^{\epsilon-1}\right)$, ineffective constant.
- $\gamma_{\varphi ; q}=\gamma+O\left(\frac{\log ^{2} q}{q}\right)$, no Siegel zero.
- $\gamma_{\varphi ; q}=\gamma+O\left(\frac{(\log q(\log \log q)}{q}\right)$, on ERH for L-functions $\bmod q$.

Table: Overview of Euler-Kronecker constants discussed

set	$\gamma_{\text {set }}$	winner	author
$\mathbb{Z}_{\geq 1}$	$+0.5772 \ldots$		Euler
$n=a^{2}+b^{2}$	$-0.1638 \ldots$	Ramanujan	Shanks
$3 \nmid \tau$	$+0.5349 \ldots$	Landau	M.
$5 \nmid \tau$	$+0.3995 \ldots$	Ramanujan	M.
$7 \nmid \tau$	$+0.2316 \ldots$	Ramanujan	M.
$23 \nmid \tau$	$+0.2166 \ldots$	Ramanujan	M.
$691 \nmid \tau$	$+0.5717 \ldots$	Landau	M.
$q \nmid \varphi, q \leq 67$	<0.4977	Ramanujan	FLM
$q \nmid \varphi, q \geq 71$	>0.5023	Landau	FLM

Connection with $\gamma_{q}:=\mathcal{E} \mathcal{K}_{\mathbb{Q}\left(\zeta_{q}\right)}$

Put $f_{p}=|\langle p(\bmod q)\rangle|$ and

$$
S(q):=\sum_{p \neq q, f_{p} \geq 2} \frac{\log p}{p^{t_{p}}-1},
$$

We have

$$
\gamma_{\varphi ; q}=\gamma-\frac{(3-q) \log q}{(q-1)^{2}(q+1)}-S(q)-\frac{\mathcal{E} \mathcal{K}_{\mathbb{Q}\left(\zeta_{q}\right)}}{q-1}
$$

Given $\epsilon>0$ we have $S(q)<\epsilon / q$ for a subset of primes of natural density 1 , and $S(q)<45 / q$ for every q.
Conclusion:

$$
\gamma_{\varphi ; q} \approx \gamma-\frac{\mathcal{E} \mathcal{K}_{\mathbb{Q}\left(\zeta_{q}\right)}}{q-1}
$$

$$
\mathcal{E} \mathcal{K}_{\mathbb{Q}\left(\zeta_{q}\right)}=\gamma_{q}
$$

$$
\mathcal{E} \mathcal{K}_{K}=\lim _{x \rightarrow \infty}\left(\log x-\sum_{N \mathfrak{p} \leq x} \frac{\log N \mathfrak{p}}{N \mathfrak{p}-1}\right)
$$

gives

$$
\frac{\gamma_{q}}{q-1}=-\frac{\log q}{(q-1)^{2}}-S(q)-\lim _{x \rightarrow \infty}\left(\frac{\log x}{q-1}-\sum_{\substack{p \leq x \\ p \equiv 1(\bmod q)}} \frac{\log p}{p-1}\right)
$$

On ERH we have (Ihara, FLM)

$$
\gamma_{q}=2 \log q-q \sum_{\substack{p \leq q^{2} \\ p \equiv 1(\bmod q)}} \frac{\log p}{p-1}+O(\log \log q)
$$

Unconditionally also true with error $O_{C}(\log \log q)$ for all but at most $O\left(\pi(u) /(\log u)^{C}\right)$ primes $q \leq u$.
On further assuming the Elliott-Halberstam conjecture we can replace 2 by $1+\epsilon$.

Two standard conjectures

Elliott-Halberstam Conjecture. For every $\epsilon>0$ and $A>0$ we have

$$
\sum_{q \leq x^{1-\epsilon}}\left|\pi(x ; q, a)-\frac{\mathrm{li}(x)}{\varphi(q)}\right| \lll A, \epsilon \frac{x}{\log ^{A} x}
$$

Let $\left\{b_{1}, \ldots, b_{k}\right\}$ be a set of positive integers. We say it is admissible if the collection of forms n and $b_{i} n+1,1 \leq i \leq k$, has no fixed prime factor.

Hardy-Littlewood Conjecture. If $\left\{b_{1}, \ldots, b_{k}\right\}$ is admissible, then the number of primes $n \leq x$ for which the numbers $b_{i} n+1$ are all prime, is

$$
\gg \frac{x}{\log ^{k+1} x}
$$

Ihara's conjectures

Badzyan (2010). On GRH, we have $\left|\gamma_{q}\right|=O((\log q) \log \log q)$
Ihara (2009).
(i) $\gamma_{q}>0$ ('very likely')
(ii) Conjectures that

$$
\frac{1}{2}-\epsilon \leq \frac{\gamma_{q}}{\log q} \leq \frac{3}{2}+\epsilon
$$

for q sufficiently large

$\frac{\gamma_{q}}{\log q}$ for $q \leq 50.000$

A. Languasco (March 2019): Extended to $q \leq 100.000$

Results of Ford-Luca-M. on γ_{q}

We have $\gamma_{964477901}=-0.1823 \ldots$
Theorem. On a quantitative version of the HL conjecture we have

$$
\lim _{\inf _{q \rightarrow \infty}} \frac{\gamma_{q}}{\log q}=-\infty
$$

Conjecture. For density 1 sequence of primes we have

$$
1-\epsilon<\frac{\gamma_{q}}{\log q}<1+\epsilon
$$

(That is, γ_{q} has normal order $\log q$)
Fouvry (2013) Dyadic average of γ_{q} is $\log q$:

$$
\frac{1}{Q} \sum_{Q<q \leq 2 Q} \gamma_{q}=\log Q+O(\log \log Q)
$$

Sketch of proof of theorem

$$
\gamma_{q}=2 \log q-q \sum_{\substack{p \leq q^{2} \\ p \equiv 1(\bmod q)}} \frac{\log p}{p-1}+O(\log \log q)
$$

Construct infinite sequence $b_{i}, i=1,2, \ldots$ such that $n, 1+2 b_{1} n, 1+2 b_{2} n, \ldots$ satisfies conditions of the HL conjecture AND

$$
\sum_{i=1}^{s} \frac{1}{b_{i}} \rightarrow \infty
$$

Take $\left\{b_{i}\right\}=\{2,6,8,12,18,20,26, \ldots\}$ sequence of greedy prime offsets and $s=2088$ so that sum is >4.
By HL conjecture $q, 1+2 b_{1} q, 1+2 b_{2} q, \ldots, 1+2 b_{s} q$ are infinitely often ALL prime with $1+2 b_{s} q \leq q^{2}$. Then

$$
q \sum_{\substack{p \leq q^{2} \\ p=1(\bmod q)}} \frac{\log p}{p-1}>q \log q \sum_{i=1}^{s} \frac{1}{2 b_{i} q}>\left(2+\epsilon_{0}\right) \log q
$$

Analogy with Kummer's Conjecture

Kummer conjectured in 1851 that

$$
h_{1}(q)=\frac{h(q)}{h_{2}(q)} \sim G(q):=2 q\left(\frac{q}{4 \pi^{2}}\right)^{\frac{q-1}{4}}
$$

Ratio of the class number of $\mathbb{Q}\left(\zeta_{q}\right)$, respectively $\mathbb{Q}\left(\zeta_{q}+\zeta_{q}^{-1}\right)$
Put $r(q)=h_{1}(q) / G(q)$
Ankeny and Chowla (1949):

$$
\log r(q)=o(\log q) \Rightarrow \log h_{1}(q) \sim q(\log q) / 4
$$

Masley and Montgomery (1976):

$$
|\log r(q)|<7 \log q, \quad q>200 .
$$

Used this to determine all cyclotomic fields of class number 1.

Connection with $L(1, \chi)$ and $L^{\prime}(1, \chi)$

$$
\begin{gathered}
\zeta_{\mathbb{Q}\left(\zeta_{q}\right)}(s)=\zeta(s) \prod_{\chi \neq \chi_{0}} L(s, \chi)=\zeta_{\mathbb{Q}\left(\zeta_{q}\right)^{+}}(s) \prod_{\chi(-1)=-1} L(s, \chi) \\
\gamma_{q}=\gamma+\sum_{\chi \neq \chi_{0}} \frac{L^{\prime}(1, \chi)}{L(1, \chi)}=\gamma_{q}^{+}+\sum_{\chi(-1)=-1} \frac{L^{\prime}(1, \chi)}{L(1, \chi)}
\end{gathered}
$$

Hasse (1952): $\quad r(q)=\prod_{\chi(-1)=-1} L(1, \chi)$.

$$
\frac{\zeta_{\mathbb{Q}\left(\zeta_{q}\right)}(s)}{\zeta_{\mathbb{Q}\left(\zeta_{q}\right)+}+(s)}=r(q)\left(1+\left(\gamma_{q}-\gamma_{q}^{+}\right)(s-1)+O_{q}\left((s-1)^{2}\right)\right) .
$$

$$
\frac{\gamma_{q}}{\log q} \text { analytically similar to } 1-2|\log r(q)|
$$

Granville (1990): If Kummer's conjecture is true then

$$
\sum_{\substack{p \leq q^{1}+\delta \\ p \equiv 1(\bmod q)}} \frac{1}{p}-\sum_{\substack{p \leq q^{1+\delta} \\ p \equiv-1(\bmod q)}} \frac{1}{p}=o\left(\frac{1}{q}\right)
$$

for every $\delta>0$, for all but at most $2 x / \log ^{3} x$ exceptions $q \leq x$.

$$
\gamma_{q}-\gamma_{q}^{+}=\frac{(q-1)}{2} \lim _{x \rightarrow \infty}\left(\sum_{\substack{p \leq x \\ p \equiv 1(\bmod q)}} \frac{\log p}{p-1}-\sum_{\substack{p \leq x \\ p \equiv-1(\bmod q)}} \frac{\log p}{p-1}\right) .
$$

Assume Hardy-Littlewood conjecture and Elliott-Halberstam conjecture.

Granville: $r(q)$ has $[0, \infty]$ as set of limit points.
FLM: $\gamma_{q} / \log q$ has $(-\infty, 1]$ as set of limit points.

The log log log devil makes its appearance...

Granville (1990): Kummer's ratio asymptotically satisfies

$$
(-1+o(1)) \log \log \log q \leq 2 \log r(q) \leq(1+o(1)) \log \log \log q .
$$

These bounds are best possible in the sense that there exist two infinite sequences of primes q for which the lower, respectively upper bound are attained.
(Moree, 2018) Euler-Kronecker analogue:

$$
\frac{\gamma_{q}}{\log q} \geq(-1+o(1)) \log \log \log q .
$$

The bound is best possible in the sense that there exists an infinite sequence of primes q for which the bound is attained.

The log log log devil

$$
\begin{gathered}
\gamma_{q} \approx \log q-q \sum_{\substack{2 q+1 \leq p \leq q(\log g)^{A} \\
p \equiv 1(\bmod q)^{A}}} \frac{\log p}{p-1} \\
\frac{\gamma_{q}}{\log q} \approx 1-q \sum_{\substack{2 q+1 \leq p \leq q(\log q)^{A} \\
p \equiv 1(\bmod q)}} \frac{1}{p}
\end{gathered}
$$

Brun-Titchmarsh (with $c=2$)

$$
\pi(x ; q, 1) \leq c \frac{x}{(q-1) \log (x / q)}
$$

Get

$$
\frac{\gamma_{q}}{\log q} \approx-c\left(\log \log \left(q \log ^{A} q\right)-\log \log (2 q+1)\right)
$$

so

$$
\frac{\gamma_{q}}{\log q} \approx-c \log \log \log q
$$

Conjecturally: $c=1$

$\log \log (?)$ devil

The speculations imply that

$$
\lim \inf _{q \rightarrow \infty} \frac{\gamma_{q}}{(\log \log \log q) \log q}=2 \lim \inf _{q \rightarrow \infty} \frac{\log r(q)}{\log \log \log q}=-1
$$

Weaker version:
There exists a function $g(q)$ such that

$$
\lim \inf _{q \rightarrow \infty} \frac{\gamma_{q}}{g(q) \log q}=2 \lim _{\inf _{q \rightarrow \infty}} \frac{\log r(q)}{g(q)}<0
$$

Badzyan (2010): We have $g(q)=O(\log \log q)$

DEVIL?

TEACHER!

F

