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Kummer’s class number conjecture

A. Granville, On the size of the first factor of the class number
of a cyclotomic field, Invent. Math. (1990), 321–338.



Euler-Mascheroni constant

The Euler-Mascheroni constant γ is defined as

γ = lim
n→∞

( n∑
k=1

1
k
− log n

)
= 0.57721566490153286 . . .



Some generalizations

Generalization: Stieltjes constants

γr = lim
n→∞

( n∑
k=1

logr k
k
− logr+1 n

r + 1

)
Arise as Laurent series coefficients of Riemann zeta function:

ζ(s) =
∞∑

n=1

1
ns =

1
s − 1

+
∞∑

r=0

(−1)r

r !
γr (s − 1)r

In particular,

ζ(s) =
1

s − 1
+ γ + O(s − 1)



Definition of Euler-Kronecker constant

Let K be a number field, define its Dedekind-zeta function as

ζK (s) =
∑
a

1
(Na)s , Re(s) > 1.

Laurent series:

ζK (s) =
c−1

s − 1
+ c0 + O(s − 1).

Euler-Kronecker constant of K : EKK := c0
c−1

lim
s→1

(ζ ′K (s)

ζK (s)
+

1
s − 1

)
= EKK ,

EKK is constant in logarithmic derivative of ζK (s) at s = 1.

Example. EKQ = γ/1 = γ = 0.577 . . .



γq := EKQ(ζq)

We have
EKK = lim

x→∞

(
log x −

∑
Np≤x

log Np

Np− 1

)
,

resulting in

γq = lim
x→∞

(
log x−(q−1)

∑
p≤x

p≡1 (mod q)

log p
p − 1

)
+smaller order terms

On ERH we have (Ihara, FLM)

γq = log(q2)− q
∑
p≤q2

p≡1 (mod q)

log p
p − 1

+ O(log log q)

Unconditionally this estimate holds for all C > 0 and for all but
O(π(u)/(log u)C) primes q ≤ u.

On further assuming Elliott-Halberstam conjecture we can
replace q2 by q1+ε.



Two standard conjectures

Elliott-Halberstam Conjecture. For every ε > 0 and A > 0 we
have ∑

q≤x1−ε

∣∣π(x ; q,a)− li(x)

ϕ(q)

∣∣�A,ε
x

logA x

Let {b1, . . . ,bk} be a set of positive integers. We say the set is
admissible if n

∏k
i=1(bin + 1) ≡ 0 (mod p) has < p solutions for

every prime p.

Hardy-Littlewood Conjecture. If {b1, . . . ,bk} is admissible,
then the number of primes n ≤ x for which the numbers bin + 1
are all prime, is

� x
logk+1 x



Ihara’s conjectures

For a density 1 set of primes q there exists c > 0 such that

−c log log q ≤
γq

log q
≤ 2 + ε

On ERH true for all q sufficiently large.

Ihara (2009).
(i) γq > 0 (‘very likely’)
(ii) Conjectures that

1
2
− ε ≤

γq

log q
≤ 3

2
+ ε

for q sufficiently large
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A. Languasco (March 2019): Extended to q ≤ 100000



Ihara’s conjectures. II

(FLM, 2014): We have γ964477901 = −0.1823 . . .

Theorem (FLM, 2014). On a quantitative version of the HL
conjecture we have

lim inf
q→∞

γq

log q
= −∞

Theorem (FLM, 2014). Under the EH conjecture we have for
density 1 sequence of primes

1− ε <
γq

log q
< 1 + ε

(That is, γq has normal order log q)

Fouvry (2013) Dyadic average of γq is log q:

1
Q

∑
Q<q≤2Q

γq = log Q + O(log log Q).



Sketch that γq < 0 infinitely often und ERH,HL

γq = 2 log q − q
∑
p≤q2

p≡1 (mod q)

log p
p − 1

+ O(log log q)

Find bi , i = 1,2, . . . s such that n,1 + b1n,1 + b2n, . . . satisfies
conditions of the HL conjecture AND

s∑
i=1

1
bi
> 2

Take {bi} = {2,6,8,12,18,20,26, . . .} sequence of greedy
prime offsets and s = 2088 so that sum is > 2.

By HL conjecture q,1 + b1q,1 + b2q, . . . ,1 + bsq are infinitely
often ALL prime with 1 + bsq ≤ q2 and so

q
∑
p≤q2

p≡1 (mod q)

log p
p − 1

> q log q
s∑

i=1

1
biq

> log q
s∑

i=1

1
bi
> (2 + ε0) log q



Admissible sets

The measure of an admissible set S is defined as

m(S) =
∑
s∈S

1
s
.

The theorem is a consequence of the fact that m(S)→∞.

FLM gave a 5 line proof of this based on a 1961 result of Erdős.
However... The divergence result is due to Granville and
answered a 1988 conjecture of ... Erdős in the positive.

Theorem (G, 1990). There is a sequence of admissible sets
S1,S2, . . . such that limi→∞m(Si) =∞.
Proposition (G, 1990). There is an admissible set S with
elements ≤ x , such that m(S) ≥ (1 + o(1)) log log x . For any
admissable set m(S) ≤ 2 log log x .



Analogy with Kummer’s Conjecture

Kummer conjectured in 1851 that

h1(q) =
h(q)

h2(q)
∼ G(q) := 2q

( q
4π2

) q−1
4

Ratio of the class number of Q(ζq), respectively Q(ζq + ζ−1
q )

Put r(q) = h1(q)/G(q). Conjecture thus states that

r(q) ∼ 1.

Masley and Montgomery (1976): | log r(q)| < 7 log q, q > 200.

Used this to determine all cyclotomic fields of class number 1.

Ram Murty and Petridis (2001): There exists c > 1 such that for
a density 1 set of primes q we have 1/c ≤ r(q) ≤ c.
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Current max: r(6766811) = 1.709 . . .



Connection with L(1, χ) and L′(1, χ)

ζQ(ζq)(s) = ζ(s)
∏
χ 6=χ0

L(s, χ) = ζQ(ζq)+(s)
∏

χ(−1)=−1

L(s, χ)

γq = γ +
∑
χ 6=χ0

L′(1, χ)

L(1, χ)
= γ+q +

∑
χ(−1)=−1

L′(1, χ)

L(1, χ)

Hasse (1952): r(q) =
∏

χ(−1)=−1

L(1, χ).

L(s) :=
ζQ(ζq)(s)

ζQ(ζq)+(s)
= r(q)(1 + (γq − γ+q )(s − 1) + Oq((s − 1)2)).
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r(q) and distribution of primes p ≡ ±1 (mod q)

We have
r(q) =

∏
χ(−1)=−1

L(1, χ).

Can be written using orthogonality of characters as

r(q) = exp
((q − 1)

2
lim

x→∞

(∑
m≥1

1
m

( ∑
pm≤x

pm≡1 (mod q)

1
pm−

∑
pm≤x

pm≡−1 (mod q)

1
pm

)))

Ignoring the m ≥ 2 contributions and taking logarithm:

log r(q) ≈ (q − 1)

2
lim

x→∞

( ∑
p≤x

p≡1 (mod q)

1
p
−

∑
p≤x

p≡−1 (mod q)

1
p

)
.



(γq − γ+
q )/log q analytically similar to r(q)

γq − γ+q =
(q − 1)

2
lim

x→∞

( ∑
p≤x

p≡1 (mod q)

log p
p − 1

−
∑
p≤x

p≡−1 (mod q)

log p
p − 1

)
.

γq − γ+q
log q

≈ (q − 1)

2

( ∑
p≤q(log q)A
p≡1 (mod q)

1
p − 1

−
∑

p≤q(log q)A
p≡−1 (mod q)

1
p − 1

)
.

γq − γ+q
log q

≈ (q − 1)

2

( ∑
p≤q(log q)A
p≡1 (mod q)

1
p
−

∑
p≤q(log q)A

p≡−1 (mod q)

1
p

)
≈ log r(q).



Exploiting the similarity

Assume Hardy-Littlewood conjecture and Elliott-Halberstam
conjecture.

Granville: r(q) has [0,∞] as set of limit points.

Analytic similarity of (γq − γ+q )/log q with log r(q) yields:

LMSS: (γq − γ+q )/log q is dense in (−∞,∞).

Analytic similarity of γq/ log q with 1− 2| log r(q)| yields:

FLM, 2014: γq/ log q is dense in (−∞,1].



The log log log devil makes its appearance...

Granville (1990): Kummer’s ratio asymptotically satisfies

(−1 + o(1)) log log log q ≤ 2 log r(q) ≤ (1 + o(1)) log log log q.

(LMSS, 2019) Euler-Kronecker analogue:

(−1 + o(1)) log log log q ≤ 2
(γq − γ+q )

log q
≤ (1 + o(1)) log log log q.

(FLM, 2014) Euler-Kronecker analogue:

γq

log q
≥ (−1 + o(1)) log log log q.

These bounds are best possible in the sense that there exist
infinite sequences of primes q for which all the indicated
bounds are attained.



log log (?) devil

Badzyan (2010): Under GRH we have

|γq| = O((log q) log log q)



DEVIL ?



TEACHER!



THANK YOU!



Euler-Kronecker constant in general

Given an L-series L(s), one can define the associated
Euler-Kronecker constant as the constant in the logarithmic
derivative of L(s).

This can be used for example to disprove some conjectures of
Ramanujan in which case L(s) raised to an appropriate power
is a product of Dirichlet L-series and the Euler-Kronecker
constant can be rigorously computed.



Some claims of Ramanujan

Ramanujan (1913) claimed:∑
n≤x , n=a2+b2

1 = K
∫ x

2

dt√
log t

+ O
( x

logr x

)
,

where r > 0 is arbitrary.

Further, ∑
n≤x , 5-τ(n)

1 = C
∫ x

2

dt
(log t)1/4 + O

( x
logr x

)
,

where r > 0 is arbitrary.







Kronecker limit formula

Let E(τ, s) be the real analytic Eisenstein series, given by

E(τ, s) =
∑

(m,n) 6=(0,0)

ys

|mτ + n|2s .

Then

E(τ, s) =
π

s − 1
+ 2π(γ − log(2)− log(

√
y |η(τ)|2)) + O(s − 1),

where
η(τ) = q1/24

∏
n≥1

(1− qn), q = e2πit

denotes the Dedekind eta function.
So the Eisenstein series has a pole at s = 1 of residue π, and
the (first) Kronecker limit formula gives the constant term of the
Laurent series at this pole.



EKK

EKK = lim
x→∞

(
log x −

∑
Np≤x

log Np

Np− 1

)
ζ̃K (s) = ζ̃K (1− s)

ζ̃K (s) = ζ̃K (0)eβK s
∏
ρ

(
1− s

ρ

)
es/ρ

−βK =
∑
ρ

1
ρ

−βK = EKK − (r1 + r2) log 2 +
log |DK |

2
− [K : Q]

2
(γ + logπ) + 1

Theorem. (Ihara, 2006). Under GRH we have

−c1 log |DK | ≤ EKK ≤ c2 log log |DK |



Expository accounts

P. Moree Counting numbers in multiplicative sets: Landau
versus Ramanujan, Mathematics Newsletter 21, no. 3 (2011),
73–81.

P. Moree Irregular behaviour of class numbers and
Euler-Kronecker constants of cyclotomic fields: the log log log
devil at play, in (see picture), Springer, 2018, 143–163.



Non-divisibility of Ramanujan’s τ

∆ := η24 = q
∞∏

m=1

(1− qm)24 =
∞∑

n=1

τ(n)qn.

After setting q = e2πiz , the function ∆(z) is the unique
normalized cusp form of weight 12 for the full modular group
SL2(Z).

Fix a prime q ∈ {3,5,7,23,691}.

For these primes τ(n) satisfies an easy congruence, e.g.:

τ(n) ≡
∑
d |n

d11 (mod 691).

Put tn = 1 if q - τ(n) and tn = 0 otherwise.



Some further claims of Ramanujan

Ramanujan in last letter to Hardy (1920):

“It is easy to prove by quite elementary methods that∑n
k=1 tk = o(n).

It can be shown by transcendental methods that

n∑
k=1

tk ∼
Cqn

logδq n
; (1)

and
n∑

k=1

tk = Cq

∫ n

2

dx
logδq x

+ O
( n

logr n

)
, (2)

where r is any positive number”.

Rushforth, Rankin: Estimate (1) holds true.

Moree (2004): All estimates (2) are false for r > 1 + δq.


