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What is a space ?

Seems to be very trivial, but is it ?

Functional Analyst: Topological Space

Algebraic Geometer: Locale

Category Theorist: Compactly Generated Hausdorff Spaces

Algebraic Topologist: CW-complex

Classical Homotopy Theorist: Simplicial Set

Modern Homotopy Theorist: ∞-Groupoid
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Example:

Let us see where this question has been answered successfully:
R -Modules

An R-Module:

Z is an R-module.

R-Modules (Bottom-Up approach):

An abelian group M with a ring homomorphism
ϕ : R → Hom(M,M)

R-Modules (Top-Down approach):

An object in a small abelian category

This is the Freyd-Mitchell Embedding Theorem. (Sec. 1.6 [We94])
I want to tackle the question from the second angle.
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Fundamental Question

What is a space ? More precisely:

Fundamental Question:

Which collection is worthy of being called a collection of spaces ?
What conditions should this collection satisfy ?
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Fundamental Question: Precise Version

History has shown that the correct notion of collection of spaces is
the notion of higher category.
So, the correct question should be:

Precise Fundamental Question:

Which conditions should we impose on a higher category so that
we can reasonably call it a higher category of spaces?

This is the question I want to answer.
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Fundamental Question: Precise Version (Explicit Form)

Let us make the question more explicit.

The goal is to find
conditions we can impose on a higher category without using the
word space. For example,

The category is complete.

Throughout this talk we will see recent advancements which will
help us phrase other conditions which we will try to combine.
In order to achieve this goal, the first step will be to define a more
general higher category, which we call a Higher Elementary Topos
(for reasons which will be mentioned). Then, we will try to figure
out the right restrictions to make it a category of spaces.
So, let’s concentrate on the first step for now.
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The Case from Set Theory
Two Important Recent Advancements

Set Theory

Let us see how a very similar question has been answered in set
theory.

The notion of set was axiomatized in 1908 by Ernst Zermelo
[Ze08] and completed by Abraham Fraenkel in 1922 [Fr22] and
along with the axiom of choice is now known as ZFC.
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The Case from Set Theory
Two Important Recent Advancements

Categories

The correct notion of collection of sets was made possible after
Saunder MacLane and Samuel Eilenberg introduced the notion of
category in 1945 [EM45].

Based on this new notion the question was phrased as follows:

Fundamental Question, Set-Theoretic Version:

Which conditions do we have to impose on a category in order to
be a category of sets in the sense of ZFC.
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The Case from Set Theory
Two Important Recent Advancements

Elementary Topos

Building on the work of Grothendieck [AGV72], William Lavwere
[La65] and Myles Tierney [Ti72] answered this question by
introducing the notion of an elementary topos.

Elementary Topos Definition (a) (Def Page 163 [MM92]):

An Elementary Topos is a category (NOT enriched or in any way
related to sets), with finite limits, a subobject classifier and power
objects.

Elementary Topos Definition (b) (Def Page 167 [MM92]):

Alternatively, accepting the notion of a set, we can define it as a
cartesian closed category with equalizer and a subobject classifier.
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The Case from Set Theory
Two Important Recent Advancements

Subobject classifier (a)

Subobject classifier Definition (a) (Def Page 163 [MM92])

In a category C an object Ω and a map u : 1→ Ω is called a
subobject classifier if for every object C and mono i : D → C there
exists a map f : C → Ω such that the following square is a
pullback square:

D 1

C Ω

!D

i

p
u

∃! f
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The Case from Set Theory
Two Important Recent Advancements

Subobject classifier (b)

Subobject classifier Definition (b) (Page 161 [MM92])

Alternatively, accepting the notion of set, let us define Sub(X) to
be equivalence classes of subobjects of X. Then 1→ Ω is a
subobject classifier, if the natural map

Hom(X ,Ω)→ Sub(X )

coming from the pullback is an isomorphism.
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The Case from Set Theory
Two Important Recent Advancements

Power object (a)

Power object Definition (a) (Def Page 163 [MM92])

Let C be a category and A and object. The power object is a an
object PA and map e : A× PA→ Ω such that it satisfies following
condition:
For every object B in C and every map f : B → PA, there exists a
unique map f̂ : A× B → Ω, such that the following diagram
commutes:

A× B

A× PA Ω

1A×f ∃!f̂

e
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The Case from Set Theory
Two Important Recent Advancements

Power object (b)

Power object Definition (b) (Def Page 161 [MM92])

Alternatively, accepting the notion of a set, we can say that a
power object of A is an object PA plus a map e : A×PA→ Ω such
that for every B, we get an adjunction:

Hom(A× B,Ω) ∼= Hom(B,PA)
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The Case from Set Theory
Two Important Recent Advancements

Classic Example: Category of Sets

The classic category of sets is an elementary topos. In this
category Ω = {0, 1}. Note that there is a bijection between
subsets of a set A and characteristic maps χ : A→ Ω. Also, the
power object is the just the power set i.e. the set of all subsets.
The map e : A× PA→ Ω = {0, 1} is the map which takes a ∈ A
and B ⊂ A to 0 if a 6∈ B and 1 if a ∈ B
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The Case from Set Theory
Two Important Recent Advancements

Classification of all models of Set theory

With this notion of elementary topos, Lavwere and Tierney proved
the following (originally from [La65]):

Classification of Set Theories (Sec. VI.10 [MM92]):

A category satisfies ZFC (i.e. the axioms of ZFC can be
interpreted in the category in a way such that its objects and
morphisms satisfy those interpretations) if and only if the category
is a well-pointed elementary topos with a natural number object
and satisfying the choice condition.
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The Case from Set Theory
Two Important Recent Advancements

Explanation of Theorem

Well-Pointedness (Page 236 [MM92])

A category with final object in which the final object is a generator

Natural Number Object (Page 268 [MM92])

An object N along with two maps 0 : 1→ N and s : N→ N
satisfying suitable diagrams.

Choice Condition (Page 342 [MM92])

Satisfying following senctence:
∀y(∀x ∈ y(x 6= ∅)→ ∃f : y → ∪y(∀x ∈ y(f (x) ∈ x)))
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Classification of all models of Set theory

With this notion of elementary topos, Lavwere and Tierney proved
the following (originally from [La65]):

Classification of Set Theories (Sec. VI.10 [MM92]):

A category satisfies ZFC (i.e. the axioms of ZFC can be
interpreted in the category in a way such that its objects and
morphisms satisfy those interpretations) if and only if the category
is a well-pointed elementary topos with a natural number object
and satisfying the choice condition.
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The Quest to find Higher Elementary Topos

The notion we are looking for should be a higher categorical
analogue of an elementary topos. Therefore, we call it Higher
Elementary Topos.

So, how can we tackle this question ? There have been 2
advancements in the recent decade which will make this quest
possible:

1 Higher Topos Theory

2 Homotopy Type theory
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The Case from Set Theory
Two Important Recent Advancements

Grothendieck Topos

Presentable Category (Def. 1.17 [AR94])

A presentable category is a category with small colimits and a set
of λ-presentable objects such that every object is a λ-directed
colimit of those presentable objects (for some regular cardinal λ).
More concretely, a presentable category is a localization of PSh(C)
of some small category C.

Grothendieck Topos (Def III.4.3 and Prop App.4 [MM92])

A Grothendieck Topos is a presentable elementary topos. More
concretely, a Grothendieck topos is a left-exact localization of
PSh(C) of some small category C. Alternatively, it is of the form
Shv(C, J), where J is a Grothendieck site on some small category
C.
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Two Important Recent Advancements

∞-Categories

Several people have generalized this definition from classical
category theory to higher category theory. I will mention three of
those in the context of ∞-categories, in the sense of Joyal and
Lurie. Let me first give the definition:

∞-Category (Def 1.2.2.4 [Lu09]):

An ∞-category is a simplicial set S such that for every n ≥ 2 and
0 < i < n the following diagram has a lift.

Λn
i S

∆n

f

i
∃f̂
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∞-Topos (Lurie)

Now, we can define an ∞-topos in the sense of Lurie and Rezk:

First, the definition of Lurie:

∞-Topos (Def 6.1.0.4 [Lu09]):

An ∞-topos is a left-exact accessible localization of PSh(C), the
category of presheaves into spaces, where C is a small ∞-category.

The definition of Lurie is highly dependent on the notion of
presentability and as such is not very useful from my point of view.
Rezk’s definition might be much more suitable in this regard.
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∞-Topos (Rezk-Descent Version):

∞-Topos (Theorem 6.9 [Re05]):

A presentable ∞-category is an ∞-topos if it satisfies descent.

Descent (informal definition) (6.5 [Re05]):

Let C be a complete ∞-category and let Cat∞ be the (large)
∞-category of ∞-categories. Then, we have a functor
F : C→ Cat∞, defined by F(U) = C/U . Now, C satisfies descent if
F carries colimits to limits.
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∞-Topos (Rezk-Object classifier Version):

Rezk’s second definition relies on the notion of an object classifier.

∞-Topos (Theorem 6.1.6.8 [Lu09]):

A presentable ∞-category C is an ∞-topos if colimits in C are
universal and for a sufficiently large cardinal κ there exists a object
classifier for all relatively κ-presentable object i.e. there exists Ωκ

∞
such that for every κ-presentable object C ∈ C there is an
equivalence of ∞-categories Cκ/C ' HomC(C ,Ωκ

∞)

Universal Colimit (Page 527 [Lu09]):

A complete ∞-category C has universal colimits if for every
morphism f : T → S the pullback functor f ∗ : C/S → C/T
preserves colimits.
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∞-Topos (Rezk-Object classifier Version):

Rezk’s second definition relies on the notion of an object classifier.

∞-Topos (Theorem 6.1.6.8 [Lu09]):

A presentable ∞-category C is an ∞-topos if colimits in C are
universal and for a sufficiently large cardinal κ there exists a object
classifier for all relatively κ-presentable object i.e. there exists Ωκ

∞
such that for every κ-presentable object C ∈ C there is an
equivalence of ∞-categories Cκ/C ' HomC(C ,Ωκ

∞)

Bounded Local Classes (Conditions in Prop 6.1.6.3 [Lu09]):

The mentioned collections of suitable objects (of κ-presentable
objects) are called bounded local classes. The collection of all of
them form a poset with inclusion.
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Two Important Recent Advancements

Homotopy Type Theory

Type Theory is a alternative foundation to mathematics and can
be thought of as an extension of set theory.
Homotopy type theory is a type theory which was introduced by
Vladimir Voevodsky [Vo10] and separately by Steve Awodey and
Michael Warren [AW09] as a foundation more suitable to homotopy
theory, because it treats equality and homotopy in a similar way,
which is exactly what homotopy theorists would expect.
Introducing homotopy type theory will take us too far astray from
our current discussion. The important part I am concerned with, is
the notion of univalence introduced by Voevodsky which seems to
have unexpected connections to higher topoi.
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Two Important Recent Advancements

Univalent Fibrations

Voevodsky, Kapulkin and Lumsdaine introduced the notion of a
univalent fibration (Def 3.2.10 [KLV12]).
This notion has lead other mathematician to work on stronger
relations between higher topos theory and homotopy type theory.
We will focus on Gepner and Kock’s work in [GK12].
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Elementary Topos Theory
Homotopy Type Theory
Combination of Approaches

3 Approaches

Based on all these, I am suggesting 4 interdependent approaches
on how to find an answer to the question:

1 Higher Topos Theory

2 Elementary Topos Theory

3 Homotopy Type Theory

4 Combined Approach
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Higher Topos Theory
Elementary Topos Theory
Homotopy Type Theory
Combination of Approaches

First Approach: Higher Topos Theory

Higher topos theory generalizes Grothendieck topoi.

Higher Topos Theory Conjecture:

For any reasonable definition of a higher elementary topos, a
presentable higher elementary topos is a higher topos

This conjecture suggests the following approach:

∞-Topos Approach:

Study ∞-categories which satisfy descent and/or the object
classifier condition.
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Higher Topos Theory
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Homotopy Type Theory
Combination of Approaches

Concrete Questions:

Concretely, we can propose the following questions:

HT Question 1 (∞-category object classifier)

Propose a definition for an object-classifying ∞-category object in
an ∞-category C. This should be simplicial object Ω• ∈ C∆

satisfying the right lifting conditions in the category, such that for
every object X , C/X ' MapC(X ,Ω•). Then prove that a
presentable ∞-category is an ∞-topos if and only if it has
object-classifying ∞-category objects for suitable classes of maps.
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Generalization

I would consider this a first generalization of the theorem we
already mentioned:

∞-Topos (Theorem 6.1.6.8 [Lu09]):

A presentable ∞-category C is an ∞-topos if colimits in C are
universal and for a sufficiently large cardinal κ there exists a object
classifier for κ-presentable object i.e. there exists Ωκ

∞ such that for
every κ-presentable object C ∈ C there is an equivalence of
∞-categories C/C ' HomC(C ,Ωκ

∞)
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Second Approach: Elementary Topos Theory

Under any reasonable notion of space, 0-types and sets should be
equivalent notions.

Elementary Topos Theory Conjecture:

For any reasonable definition of a higher elementary topos, the
0-truncation of a higher elementary topos is an elementary topos.

This conjecture suggests the following approach:

Elementary Topos Approach:

Find a homotopical definition of an elementary topos and then try
to generalize it.

Nima Rasekh - UIUC What are Spaces - A topos-theoretic approach 33 / 64



Introduction
Background Material

Where to go from here?
Conclusion and Applications

Higher Topos Theory
Elementary Topos Theory
Homotopy Type Theory
Combination of Approaches

Second Approach: Elementary Topos Theory

Under any reasonable notion of space, 0-types and sets should be
equivalent notions.

Elementary Topos Theory Conjecture:

For any reasonable definition of a higher elementary topos, the
0-truncation of a higher elementary topos is an elementary topos.

This conjecture suggests the following approach:

Elementary Topos Approach:

Find a homotopical definition of an elementary topos and then try
to generalize it.

Nima Rasekh - UIUC What are Spaces - A topos-theoretic approach 33 / 64



Introduction
Background Material

Where to go from here?
Conclusion and Applications

Higher Topos Theory
Elementary Topos Theory
Homotopy Type Theory
Combination of Approaches

Second Approach: Elementary Topos Theory

Under any reasonable notion of space, 0-types and sets should be
equivalent notions.

Elementary Topos Theory Conjecture:

For any reasonable definition of a higher elementary topos, the
0-truncation of a higher elementary topos is an elementary topos.

This conjecture suggests the following approach:

Elementary Topos Approach:

Find a homotopical definition of an elementary topos and then try
to generalize it.

Nima Rasekh - UIUC What are Spaces - A topos-theoretic approach 33 / 64



Introduction
Background Material

Where to go from here?
Conclusion and Applications

Higher Topos Theory
Elementary Topos Theory
Homotopy Type Theory
Combination of Approaches

Second Approach: Elementary Topos Theory

Under any reasonable notion of space, 0-types and sets should be
equivalent notions.

Elementary Topos Theory Conjecture:

For any reasonable definition of a higher elementary topos, the
0-truncation of a higher elementary topos is an elementary topos.

This conjecture suggests the following approach:

Elementary Topos Approach:

Find a homotopical definition of an elementary topos and then try
to generalize it.

Nima Rasekh - UIUC What are Spaces - A topos-theoretic approach 33 / 64



Introduction
Background Material

Where to go from here?
Conclusion and Applications

Higher Topos Theory
Elementary Topos Theory
Homotopy Type Theory
Combination of Approaches

Second Approach: Elementary Topos Theory

Under any reasonable notion of space, 0-types and sets should be
equivalent notions.

Elementary Topos Theory Conjecture:

For any reasonable definition of a higher elementary topos, the
0-truncation of a higher elementary topos is an elementary topos.

This conjecture suggests the following approach:

Elementary Topos Approach:

Find a homotopical definition of an elementary topos and then try
to generalize it.

Nima Rasekh - UIUC What are Spaces - A topos-theoretic approach 33 / 64



Introduction
Background Material

Where to go from here?
Conclusion and Applications

Higher Topos Theory
Elementary Topos Theory
Homotopy Type Theory
Combination of Approaches

Concrete Question:

Remember that an elementary topos involves three components:
limits, subobject classifier and power objects. Limits already
generalize and for subobject classifier we will see that they might
have a connection to univalent maps, which leaves power objects.

Concretely, this leads us to the following question:

ET Question 1: Power Objects from the homotopical perspective

It is easy to see that for any topos E, we have following
isomorphism of posets:

τ−1(E/C ) ∼= HomE(1,PC )

However, we cannot define power objects this way as the
adjunction of power sets does not follow. Add a precise, correct
condition to get the other side.
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Univalent Maps

We go to the third approach.
Based on the work of Kapulkin, Lumsdaine and Voevodsky
[KLV12], Gepner and Kock proposed the following definition:

Univalent Maps (2.4 [GK12])

Let C be an ∞-category. Then for every p : X → S we have the
following two sheaves of spaces on the ∞-category C/S×S . The
first takes (f , g) : C → S × S to HomC/S×S

((f , g), (1S , 1S)) and
the second takes (f , g) : C → S × S to Eq/C (f ∗X , g∗X ) (the
subspace of equivalences), where f ∗X and g∗X are the pullbacks.
p is univalent if the natural map from
HomC/S×S

((f , g), (1S , 1S))→ Eq/C (f ∗X , g∗X ) is a weak
equivalence.
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Univalent Maps (Explanation)

This means that this map has to be an equivalence:

HomC/S×S
((f , g), (1S , 1S)) −→ Eq/C (f ∗X , g∗X )

C S

S × S

h

(f ,g) (1S ,1S )=∆
−→

f ∗X g∗X

C

∼=
ĥ
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Univalent maps and Bounded Local Classes

Using this definition, Gepner and Kock proved the following:

Univalent Maps and Bounded Local Classes (Prop 2.9 [GK12])

In a presentable ∞-category with universal colimits, there is an
isomorphism of posets between the poset of univalent maps and
the poset of bounded local classes.

Note that for p : C → D and q : A→ B univalent, q ≤ p if we
have following diagram:

A C

B D

∃!f

q

p
p

∃!g
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Univalent Maps and Topoi

This suggests an interesting possible connection between topoi and
univalent maps, as we already showed that ∞-topoi classify all
bounded local classes. So, it seems worthwhile to understand
univalent maps in different context and maybe even classify them.
Based on this observation, I started to study univalent maps in a
framework more familiar and with many known results:

1− Categories
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Univalence in 1-Categories

Let restrict our attention to 1-Categories. From the following
diagram:

B C

A

h

(f ,g) (1S ,1S )=∆

We have the following:

HomC/S×S
((f , g), (1S , 1S)) = ∅ if and only if f 6= g

and

HomC/S×S
((f , g), (1S , 1S)) = {∗} if and only if f = g
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Univalence in 1-Catgories

If p is univalent this implies the following (for f 6= g):

Eq/C (f ∗X , g∗X ) = ∅

and
Eq/C (f ∗X , f ∗X ) = {1f ∗X}
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Simple Proposition

Based on this result we can prove the following:

Basic Proposition

In a complete 1-category with subobject-classifier Ω , there is a
bijection between the poset of mono univalent maps and the poset
of subobjects of the subobject-classifier (Hom(Ω,Ω) ∼= P(Ω)).
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Simple Proposition

Based on this result we can prove the following:

Basic Proposition

In a complete 1-category with subobject-classifier Ω , there is a
bijection between the poset of mono univalent maps and the poset
of subobjects of the subobject-classifier (Hom(Ω,Ω) ∼= P(Ω)).

Proof.

Proof of the Proposition .
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Concrete Questions 1

Based on this we can phrase the following concrete questions:

HoTT Question 1

We know that in any topos there is a correspondence between
left-exact localizations and a specific subset of Hom(Ω,Ω) (see
Chapter VII Cor. 7 of [MM92]). In light of the previous result,
characterize univalent maps which correspond to left-exact
localizations. Then generalize that characterization to the higher
categorical setting. The hope is that it could help understand
left-exact localizations of higher topoi.
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Possible Way of Solving HoTT Question 1

Proposed Solution to HoTT Question 1

One reasonable way to solve this question is to phrase the three
conditions for a subobject of Ω to correspond to a left-exact
localization purely in the language of the poset structure. Then we
translate those conditions back to the world of univalent maps.

The actually interesting step would be to see whether a univalent
map in a higher category satisfying those conditions has a
connection to left-exact localizations of higher categories or not.
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Concrete Question 2

HoTT Question 2

Prove that all univalent maps in 1-categories are mono.
In case this conjecture is wrong, try to find a characterization of
non-mono univalent maps. This would require more than the
subobject classifier and could help construct new invariants of
topoi.
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Possible Way of Solving HoTT Question 2

Proposed Solution to HoTT Question 2

It is not hard to show that if u is univalent and u=ip is any
factorization such that i is mono then i is univalent as well.

Proof.

Proof of the Lemma
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Possible Way of Solving HoTT Question 2

Proposed Solution to HoTT Question 2

Combining the lemma above with the fact that every topos has a
epi-mono factorization we get the following (for a map u : A→ B
with image I):

A

I 1

B Ω

p

!

i

p
t

f
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Possible Way of Solving HoTT Question 2

Proposed Solution to HoTT Question 2

The hope is that we can prove p is iso, which seems to be true in
some easy cases, but turns out to be rather tricky for the general
case.
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Concrete Question 3

HoTT Question 3

One special special corollary of mentioned proposition is that in
any category with subobject classifier the map 1→ Ω is univalent.
Find the right conditions on a univalent map of the form 1→ A in
a category, such that A is a subobject classifier.
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Possible Way of Solving HoTT Question 3

Proposed Solution to HoTT Question 3

This goes back to the poset structure. The map 1→ Ω is the
maximal mono univalent map as every other such map is its
pullback. So, this suggests asking this question: Assume that the
poset of univalent maps in a category has a maximum element.
Prove this is the subobject-classifier.
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Combined Questions

The three separate approaches mentioned lead to some combined
questions:

The first question goes back to part 1 and 3. Assuming we can
prove HT Question 1 (∞-category object classifier), this would
open the way towards a better connection with univalent maps.
Concretely, we can pose the following question:
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Combined Question 1

Combined Question 1

The result of Gepner and Kock could be improved in two ways:

1 Gepner and Kock assume colimits are universal. A positive
answer to HT question 1 would allow us to remove this
condition and prove the result for more general categories.

2 Gepner and Kock construct an isomorphism of posets.
However, now our objects are simplicial (the collection of
object-classifying ∞-category objects) and so it is very
reasonable to assume that it has higher structure. The next
step would then be to understand this higher structure and
extend the isomorphism of posets to an isomorphism of
simplicial sets.
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Combined Question 2

With the newfound definitions of power objects and subobject
classifier, we can define topoi in a completely homotopical
language. Now, generalize this definition to the higher categorical
level and study the resulting object. In particular, show that if we
add presentability we get an ∞-topos.
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Applications

Conditions on an Elementary Higher Topos

1 It is finitely complete and cocomplete

2 Any higher topos should be an elementary higher topos

3 On the other side any presentable higher elementary topos is a
higher topos

4 The zero truncation of every higher elementary topos is an
elementary topos

5 Any model of the category of spaces should be a higher
elementary topos generated by the final object (which exists
by 1)
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What to do after that ?

The next step would be to study the newfound definition and its
connection to other already known results.

1 First and foremost, having a definition, we can start finding
the right condition to get a reasonable definition for a
category of spaces, which was the main aim of the talk. One
conditions should be generation by the final object. However,
there are probably more and the next step would be to find
those in a precise manner.

2 We can also study the higher category of higher elementary
topoi and study its different properties, in particular if it is
(co)complete. We can also study embeddings and surjections
as they already have been very nicely characterized in the
category of elementary topoi (Page 366 [MM92]).
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What to do after that ?

3 There has been considerable effort in showing that every ∞
-topos is a model for the axioms of homotopy type theory (see
[AW09], [GK12] and [KLV12]). We can try to build on that by
showing that every elementary higher topos is a model for
homotopy type theory.

4 More interestingly, we can work on the opposite question: Is
every model of homotopy type theory an elementary higher
topos and, if not, how different are they. In that regard we
can again draw an analogy to elementary topoi. John Bell
constructs a type theory which he names Local Set Theory
and proves that every model of this type theory is an
elementary topos (Theorem 3.37 [Be88]) so our effort would
be a generalization of that.

Nima Rasekh - UIUC What are Spaces - A topos-theoretic approach 56 / 64



Introduction
Background Material

Where to go from here?
Conclusion and Applications

Conclusion
Applications

What to do after that ?

3 There has been considerable effort in showing that every ∞
-topos is a model for the axioms of homotopy type theory (see
[AW09], [GK12] and [KLV12]). We can try to build on that by
showing that every elementary higher topos is a model for
homotopy type theory.

4 More interestingly, we can work on the opposite question: Is
every model of homotopy type theory an elementary higher
topos and, if not, how different are they. In that regard we
can again draw an analogy to elementary topoi. John Bell
constructs a type theory which he names Local Set Theory
and proves that every model of this type theory is an
elementary topos (Theorem 3.37 [Be88]) so our effort would
be a generalization of that.

Nima Rasekh - UIUC What are Spaces - A topos-theoretic approach 56 / 64



Introduction
Background Material

Where to go from here?
Conclusion and Applications

Conclusion
Applications

Applications

Finally, we should see why it is a good idea to think about higher
elementary topoi:

1 This result would be theoretically very satisfying as it gives a
classification of all models of spaces. It would settle questions
about what can be proven in homotopy theory and what the
main object of study in homotopy theory is.

2 It might help us construct new models for the category of
spaces, which could help us get a better understanding of
homotopy theory. It might also lead to the construction of
non-standard models which have unexpected properties, as
suggested by Shulman ([Sh12]).
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3 One other step to go from here is to get a more axiomatic
approach to higher category theory. Currently, there are
several models of higher category theory relying on some
notion of space. A theory of spaces could help us get a clear
theory of higher categories.
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Thank you note

Thank You for your time.

I also thank Charles Rezk and Matt Ando for all their help and
support.
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Proof of Proposition

Basic Proposition

In a complete 1-category with subobject-classifier Ω , there is a
bijection between the poset of mono univalent maps and the poset
of subobjects of the subobject-classifier (Hom(Ω,Ω) ∼= P(Ω)).

In order to prove we first have to prove two lemmas:
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Lemma 1

Lemma 1

Let us have to following pullback square:

A C

B D

q

p
p

i

Then we have the following two facts:

1 If q is univalent then i is mono

2 If p is univalent and i is mono then q is univalent.
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Proof of Lemma 1 (Part 1)

Proof

1 Let q be univalent. Also, let f , g : E → B such that if=ig.
This gives us the following diagrams:

f ∗A A C

E B D

p
q

p
p

f i

and
g∗A A C

E B D

p
q

p
p

g i
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Proof of Lemma 1 (Part 1)

Proof

1 But composition of a pullbacks is a pullback and so we get:

f ∗A C

E D

p
p

if

g∗A C

E D

p
p

ig

But if=ig and so f ∗A ∼= g∗A.
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Proof of Lemma 1 (Part 1)

Proof.

1 So, we have the following pullbacks:

f ∗A A

E B

p
q

f

g∗A A

E B

p
q

g

Now q is univalent and f ∗A ∼= g∗A and so f = g and we are
done.
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Proof of Lemma 1 (Part 2)

Proof

2 Let us assume p is univalent and i is mono. We show that q
satisfies:

i For any f , g : E → B, f ∗A ∼= g∗A implies f = g
ii For any f : E → B

Eq/E (f ∗A, f ∗A) = {1f ∗A}

So, we will show both separately. Note, that for the second
part we don’t even need i to be mono.
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Proof of Lemma 1 (Part 2)

Proof

2 Let f , g : E → B, then we have the following pullback squares:

f ∗A A C

E B D

p
q

p
p

f i

and
g∗A A C

E B D

p
q

p
p

g i
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Proof of Lemma 1 (Part 2)

Proof

2 Now assume f ∗A ∼= g∗A. After composing we get the
following pullback squares:

f ∗A C

E D

p
p

if

g∗A C

E D

p
p

ig

But p is univalent and so if = ig .
But i is mono and so f = g .
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Proof of Lemma 1 (Part 2)

Proof

2 Now we show the second part.

Let f : E → B. Then we have following pullback squares:

f ∗A A C

E B D

p
q

p
p

f i
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Proof of Lemma 1 (Part 2)

Proof.

2 After composing we get following pullback square:

f ∗A C

E D

p
p

if

But p is univalent and so Eq/E (f ∗A, f ∗A) = {1f ∗A}.
And so we are done
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Corollary

Note that we get the following corollary:

Corollary

If p is univalent, then q is univalent if and only if i is mono.
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Lemma 2

Lemma 2

If C is a complete category with subobject classifier t : 1→ Ω then
t is univalent
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Proof of Lemma 2

Proof

Note that by definition the natural transformation from
Hom(−,Ω)→ Sub(−) taking a map f : X → Ω to the mono map
i : f ∗1→ X is an natural equivalence of presheaves of sets. Note
that Sub(X) is the set of equivalence classes of subobjects of X.

The fact that the natural equivalence is injective implies that if
f ∗1 ∼= g∗1 then f = g , which shows one part.
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Proof of Lemma 2

Proof.

Next, 1→ Ω is mono and so the pullback is also mono. Now, if
h ∈ Eq/X (f ∗1, f ∗1), then we have the following diagram:

f ∗1 f ∗1

X

h

j j

And so we have jh = j = j1f ∗1, but j is mono and so h = 1f ∗1 and
so we proved that t is univalent.
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Proposition

Finally, we can state and prove the proposition

Basic Proposition

In a complete 1-category with subobject-classifier Ω , there is a
bijection between the poset of mono univalent maps and the poset
of subobjects of the subobject-classifier (Hom(Ω,Ω) ∼= P(Ω)).
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Proof of Proposition

Proof

First, let us mention the poset structure of P(Ω) and U (which we
take to be the poset of univalent mono maps).

If i : A→ Ω and j : B → Ω are two subobjects of Ω then A ≤ B if
there is a mono map k : A→ B such that jk = i : A→ B.

A B

Ω

k

i j
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Proof of Proposition

Proof

If p : C → D and q : A→ B are univalent then q ≤ p if there are
maps f : B → D and g : A→ C such that the following square is
a pullback square:

A C

B D

g

q

p
p

f

Note that based on Lemma 1, f and g will be necessarily mono.
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Proof of Proposition

Proof

Let me remind you that U is actually a poset. Let f , f ′ : B → D
be two maps such that we have the following pullback squares:

A C

B D

g

q

p
p

f

A C

B D

g ′

q

p
p

f ′

But p is univalent and A ∼= A, and so f = f ′.
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Proof of Proposition

Proof

Now, we prove the proposition.

Let p : A→ B be univalent and
mono. Based on the definition of the subobject classifier, there is a
map f : B → Ω such that we have this diagram:

A 1

B Ω

!

p

p
t

f

But p and t are univalent and so f is mono and so B → Ω is a
subobject.
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Proof of Proposition

Proof

This map is order preserving.

Let q ≤ p (where p : C → D and
q : A→ B) then we have the following diagram:

A C 1

B D Ω

g

q

p

!

p

p
t

f h
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Proof of Proposition

Proof

This gives me the following diagram:

B D

Ω

f

h◦f h

and so we get an order preserving morphism.
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Proof of Proposition

Proof.

Now we show that this map has an inverse.

Let f : B → Ω be a subobject (i.e. f is mono) and let us have this
diagram:

A 1

B Ω

!

p

p
t

f

Now f is mono and t is univalent and so p is univalent. This map is
exactly the inverse of the first one described. So, we get an
isormorphism of posets.
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Conclusion of Proof

We effectively proved that the poset P(Ω) and U of univalent
mono maps are the same.

Back to the Basic Proposition
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Proof of Lemma

Proof

Assume u : A→ B is univalent and u=ip where i : I → B is mono.
Note that any pullback of i is mono. Let f : X → B, if
h ∈ Eq/X (f ∗I , f ∗I ), then we have the following diagram:

f ∗I f ∗I

X

h

j j

And so we have jh = j = j1f ∗X , but j is mono and so h = 1f ∗X
and so we proved that i satisfies the first condition.
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Proof of Lemma

Proof

For the second part, let f , g : X → B such that f ∗I ∼= g∗I . We
can pull it back another time to get these diagrams:

f ∗A A

f ∗I I

X B

p
p

p
i

f

g∗A A

g∗I I

X B

p
p

p
i

g
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Proof of Lemma

Proof.

From f ∗I ∼= g∗I we get that the top squares are isomorphic and so
we in the following isomorphic diagrams:

f ∗A A

X B

p
u

f

g∗A A

X B

p
u

g

we have f ∗A ∼= g∗A. But u is univalent and so f = g and so we
are done.
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Conclusion of Lemma

We proved that if u is univalent and u = ip where i is mono then i
is univalent.

Back to the Lemma
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