
ε-δ Proofs

See http://www.maths.dur.ac.uk/users/steven.charlton/analysis1_1314 for updates.

When you first meet them, ε-δ proofs are conceptually quite difficult. It usually takes a lot of
time and effort thinking over the ideas before the concept finally ‘clicks’, makes sense and seems
natural.

Firstly recall the definition:

Definition (ε-δ limit definition). We say limx→c f(x) = L if:

Given any real ε > 0, we can find some real δ > 0 such that
0 < |x− c| < δ =⇒ |f(x)− L| < ε

J In this definition L and c are real numbers (or complex numbers), in particular L and c are
finite. Limits as x→∞, or limits which equal infinity require different definitions. K

So let’s say that you claim some function f(x) has limit L at c. Then if I pick any ε, you
should be able to give me the corresponding δ: I tell you how close to L I want the output of f
to be (within ε), then you me how close to c I need to look (within δ).

1 Numerical Example
Say we’re looking at f(x) = 3x− 1. You claim f(x) has limit L = 5 at c = 2.

I want ε = 1. We find |3x− 1− 5| < 1 ⇐⇒ |3(x− 2)| < 1 ⇐⇒ |x− 2| < 1/3. So you can
tell me to take δ = 1/3. That is, if I plug in any x from the interval (2− 1/3, 2 + 1/3), the output
I get from f(x) is in the interval (5− 1, 5 + 1).

Now I want ε = 1/7. Similarly we find |3x− 1− 5| < 1/7 ⇐⇒ |3(x− 2)| < 1/7 ⇐⇒
|x− 2| < 1/21. So you will tell me to take δ = 1/21.

We can do this over and over again (and not just with rational numbers), and make a table
like

Given ε Found δ
1 1/3

1/7 1/21
6/101 2/101

0.60335 . . . 0.20111 . . .
0.035516 . . . 0.011838 . . .

When dealing with a particular function, the δ you give back to me can only possibly depend
on the ε I give to you. That is, δ is a function of ε only. The expression you finally write down
for δ = · · · can only contain ε, it can’t contain x or anything else.

2 Example ε-δ Proofs
In this section don’t worry (too much) about why I choose a particular values for δ in the proof.
Just concentrate on the structure of the proof itself, unencumbered by the working which you
would have to do beforehand to find the value to use.
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This will make it clearer what is the ε-δ proof, and what is the working out we need to do
alongside.

Problem: Give an ε-δ proof that limx→2(3x− 1) = 5.

Solution: Given ε > 0, let δ = ε/3. If |x− 2| < δ then

|3x− 1− 5| = |3(x− 2)| = 3 |x− 2|︸ ︷︷ ︸
<δ

< 3δ = 3 · ε/3 = ε .

So the ε-δ definition holds, and limx→2(3x− 1) = 5, as required.

Problem: Give an ε-δ proof that limx→4 x
2 = 16.

Solution: Given ε > 0, let δ = min{1, ε/9}. Note this means δ < 1 and δ < ε/9.
If |x− 4| < δ then

|x− 4| < 1 =⇒ −1 < x− 4 < 1 =⇒ 7 < x+ 4 < 9 =⇒ |x+ 4| < 9 ,

and ∣∣x2 − 16
∣∣ = |x+ 4|︸ ︷︷ ︸

<9

|x− 4| < 9 |x− 4|︸ ︷︷ ︸
<δ

< 9δ < 9 · ε/9 = ε .

So the ε-δ definition holds, and limx→4 x
2 = 16, as required.

Problem: Given an ε-δ proof that limx→3
x+3

(x+1)(x−2) = 3
2 .

Solution: Given ε > 0, let δ = min{ 1
2 ,

ε
5}. Note this means δ < 1

2 and δ < ε
5 .

Firstly if |x− 3| < 1
2 , then

− 1
2 < x− 3 < 1

2 =⇒ 5
2 < x < 7

2 .

So
7
2 < x+ 1 < 9

2 =⇒ 1
|x+1| = 1

x+1 <
2
7 ,

and
1
2 < x− 2 < 3

2 =⇒ 1
|x−2| = 1

x−2 < 2 ,

and
23
2 < 3x+ 4 < 29

2 =⇒ |3x+ 4| < 29
2

Now if |x− 3| < δ, then |x− 3| < 1
2 , and∣∣∣∣ x+ 3

(x+ 1)(x− 2) −
3
2

∣∣∣∣ = |3x+ 4| |x− 3|
2 |x+ 1| |x− 2| <

29
2 · δ ·

1
2 ·

2
7 · 2 = 29

7 δ <
29
7
ε

5 = 29
35ε < ε

So the ε-δ definition holds, and limx→3
x+3

(x+1)(x−2) = 3
2 , as required.
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3 Writing Your Own ε-δ Proofs
Now you should be wondering how I came up with the particular values for δ in the above proofs?
This time I’ll include the working out needed beforehand.

Problem: Give an ε-δ proof that limx→3 x
2 + 2x− 1 = 14.

Solution: Firstly:

|f(x)− L| =
∣∣x2 + 2x− 1− 14

∣∣ =
∣∣x2 + 2x− 15

∣∣ = |x− 3| |x+ 5|

Now we have a term |x− 3| which we know will be < δ in the proof. But how can we deal
with the other term |x+ 5|? Can we say anything about it? Well, we have: |x− 3| < δ =⇒
−δ < x− 3 < δ =⇒ 8− δ < x+ 5 < 8 + δ, so |x+ 5| < 8 + δ.

We could make this work, but why deal with arbitrary δ, and quadratic equations in δ? The
limit only cares what goes on close to x = 3, so we can take (arbitrarily) δ ≤ 1. If δ = 1 works
for ε = 1/2, then it also works for ε = 50; if it gives |f(x)− 14| < 1/2, then obviously we also
have |f(x)− 14| < 50 since 1/2 < 50.

If we assume δ ≤ 1, the we have |x+ 5| < 9, so we get:

|x− 3| |x+ 5| < 9δ .

We can make |x− 3| |x+ 5| < ε by making 9δ ≤ ε, so by taking δ ≤ ε/9.
So we must have δ ≤ 1, and ≤ ε/9, i.e. δ ≤ min{1, ε/9}. Therefore let’s take δ = min{1, ε/9}.

We’ve now finished the working out, and so we can start the proof proper. The above does work
as a proof, as long as you make sure all the implications are in the right direction, but it’s good
to see directly this works:

Given ε > 0, let δ = min{1, ε/9}. Note δ ≤ 1 and ≤ ε/9. Then:

|x− 3| < δ =⇒ |x− 3| < 1 =⇒ |x+ 5| < 9 .

So, if |x− 3| < δ, then:

|f(x)− L| = |x+ 5|︸ ︷︷ ︸
<9

|x− 3|︸ ︷︷ ︸
<δ

< 9δ < 9 · ε/9 = ε .

So the ε-δ definition holds, and limx→3
x+3

(x+1)(x−2) = 3
2 , as required.

Problem: Give an ε-δ proof that limx→4
1

x−3 = 1.

Solution: Firstly:

|f(x)− L| =
∣∣∣∣ 1
x− 3 − 1

∣∣∣∣ = |x− 4|
|x− 3| .

We have the |x− 4| bit which we know is < δ. Can we find an upper bound on 1
|x−3| after

restricting δ a bit? Let’s assume δ ≤ 1. Then |x− 4| < δ =⇒ |x− 4| < 1 =⇒ −1 < x− 4 <
1 =⇒ 0 < x− 3 < 2. And all this says is 1

|x−3| = 1
|x−3| > 1/2, which is no good.

To fix this we need to restrict δ even more. The problem is the vertical asymptote x = 3
which is only 1 unit away from the limit point at x = 4. Taking anything < 1 means we don’t
reach all the way to the asymptote, and so there are no problems.
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So assume δ ≤ 1/2. Then |x− 4| < 1/2 =⇒ 1/2 < x− 3 < 3/2 =⇒ 1
|x−3| < 2. So we get

|f(x)− L| = |x− 4|
|x− 3| < 2δ ,

and we can make it < ε by taking δ ≤ ε/2.
So taking δ = min{1/2, ε/2} gives us the ε-δ proof.

4 General Strategy for Rational Functions
Suppose we have to give an ε-δ proof that limx→c

a(x)
b(x) = L. Do the following:

Step 1: Compute
∣∣∣a(x)
b(x) − L

∣∣∣
Step 2: Write it in the form |x− c| |p(x)|

|q(x)| , where p(x) and q(x) are polynomials, and q(c) 6= 0. You
will be able to do this. J First cancel all factors of (x− c) on top and bottom, so you can
evaluate the limit by substituting in x = c. There can’t be a factor of (x− c) on the bottom
since the limit exits, so q(c) 6= 0. And there has to be a factor of (x− c) on the top since at
x = c, we get L. K

Step 3: Find the nearest asymptote (root of q(x)) to the point x = c. Pick any D less than this
distance. Assume δ ≤ D.

Step 4: Use |x− c| < D to say c−D < x < c+D, and use this to find an upper bound P on p(x).
So get |x− c| < δ =⇒ |p(x)| < P .

Step 5: Also use this to find a lower bound Q on q(x). So get |x− c| < δ =⇒ 1
|q(x)| <

1
Q .

Step 6: Using these we get ∣∣∣∣a(x)
b(x) − L

∣∣∣∣ = |x− c| |p(x)|
|q(x)| < δ

P

Q
,

so we can make it < ε, by taking δ < Q
P ε as well.

Take δ = min{D, QP ε}, then |x− c| < δ =⇒
∣∣∣a(x)
b(x) − L

∣∣∣ < ε. Hence we get an ε-δ proof that

limx→c
a(x)
b(x) = L.
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