Primes - Problem Sheet 2 - Solutions

Elementary proofs for Fermat’s claims

Setup

Q1) Find a generalisation of the identity

\[(x^2 + y^2)(z^2 + w^2) = (xz \pm yw)^2 + (xw \mp yz)^2\]

to

\[(x^2 + ny^2)(z^2 + nw^2) = (\ldots)^2 + n(\ldots)^2,\]

and

\[(ax^2 + cy^2)(az^2 + cw^2) = (\ldots)^2 + ac(\ldots)^2.\]

Solution: A nice ‘trick’ to find these identities comes from factoring over \(\mathbb{C}\). We have

\[x^2 + y^2 = (x + iy)(x - iy) = (x + iy)(x + iy).\]

So

\[(x^2 + y^2)(w^2 + z^2) = (x + iy)(w + iz)(x + iy)(w + iz)\]

\[= ((xw - yz) + i(xz + yw))((xw - yz) + i(xz + yw))\]

\[= (xw - yz)^2 + (xz + yw)^2\]

(The other sign comes from grouping \((x + iy)(w - iz)\) instead.)

So we obtain

\[(x^2 + ny^2)(w^2 + nz^2) = (xw \pm nyz)^2 + n(xz \mp yw)^2.\]

Then we can write

\[ax^2 + cy^2 = a(x^2 + \frac{c}{a}y^2),\]

and use the above to get

\[(ax^2 + cy^2)(az^2 + cw^2) = (axw \pm cyz)^2 + ac(xz \mp yw)^2\]

Recall the following lemma

Lemma 1. Suppose \(N = a^2 + b^2\) is a sum of two relative prime squares \(\gcd(a, b) = 1\).

If \(q = x^2 + y^2\) is a prime divisor of \(N\), then \(N/q\) is also a sum of two relatively prime squares.

Q2) Formulate a version of the above lemma when a prime \(q = x^2 + ny^2\) divides \(N = a^2 + nb^2\), with \(n\) a positive integer. Show also the statement holds when \(q = 4\) and \(n = 3\).

Solution: The ‘obvious’ candidate generalisation should be: Suppose \(N = a^2 + nb^2\), \(\gcd(a, b) = 1\). If \(q = x^2 + ny^2\), \(\gcd(x, y)\) is a prime divisor of \(N\), then \(N/q = c^2 + nd^2\), for some \(\gcd(c, d) = 1\).

The proof starts in the same way as for Lemma 2.5. We see that

\[q \mid x^2N - a^2q = n(xb - ay)(xb + ay).\]
If \(q \mid xb - ay \) or \(q \mid xb + ay \), then without loss of generality, we can change \(a \leftrightarrow -a \). So assume \(q \mid xb - ay \), and continue as before. But it might be that \(q \mid n \), for example \(5 \mid 30 = 5^2 + 5 \times 1^2 \). In this case, we obtain

\[
q = x^2 + ny^2 \mid n,
\]

so write \(n = \alpha q \), with \(\alpha \geq 1 \). There is no solution with \(y = 0 \), so \(y \geq 1 \), and

\[
q = x^2 + ny^2 \geq ny^2 \geq n \geq \alpha q.
\]

Thus all \(\geq \) are \(= \), meaning \(\alpha = 1 \), and \(q = n \).

Now if we have \(N = a^2 + nb^2 = a^2 + qb^2 \), then \(q \mid N \) implies \(q \mid a^2 \) implies \(q \mid a \). So

\[
N/q = b^2 + q(a/q)^2
\]

where \(a/q \in \mathbb{Z} \).

If we take \(q = 4 \) (not prime!), and \(n = 3 \), we get to \(4 \mid 3(xb - ay)(xb + ay) \). But since \(4 = x^2 + 3y^2 \), \(\gcd(x, y) \) implies \(x = y = 1 \), we get \(4 \mid 3(b - a)(b + a) \).

The key step is to show that \(4 \mid b - a \) or \(4 \mid b + a \). But this must happen, else \(2 \mid b - a \) and \(4 \nmid b - a \) and \(2 \mid b + a \) and \(4 \nmid b + a \). So \(a - b = 2k, a + b = 2l \), with \(k, l \) odd. Then \(a = k + l, b = k - l \) which gives \(\gcd(a, b) \geq 2 \).

Q3) Suppose a prime \(p \) divides \(N = a^2 + nb^2 \), \(\gcd(a, b) = 1 \). Is it true that \(p = x^2 + ny^2 \), for some \(\gcd(x, y) = 1 \)? Give a proof or a counterexample.

What does this say about our ability to complete the Descent step in general?

Solution: It is not true: \(p = 2 \) divides \(6 = 1^2 + 5 \times 1^2 \), yet \(2 \nmid x^2 + 5y^2 \). So the descent step fails in general.

Fermat’s \(x^2 + 2y^2 \) claim

In the following exercises you will prove Fermat’s theorem for primes \(p = x^2 + 2y^2 \).

Q4) Suppose that prime \(p = x^2 + 2y^2 \). By reducing modulo 8, show that \(p = 2 \) or \(p \equiv 1, 3 \pmod{8} \).

Solution: The squares modulo 8 are \(0^2, (\pm 1)^2, (\pm 2)^2, (\pm 3)^2, (\pm 4)^2 \equiv 0, 1, 4 \pmod{8} \).

So

\[
\begin{array}{c|ccc}
 p = x^2 + 2y^2 \pmod{8} \\
 y = 0 & 0 & 1 & 4 \\
 1 & 2 & 3 & 6 \\
 4 & 0 & 1 & 4 \\
\end{array}
\]

So \(p \equiv 0, 1, 2, 3, 4, 6 \pmod{8} \). The only prime which can be \(2, 4, 6 \pmod{8} \) is \(p = 2 \). So we get

\[
p = 2 \text{ or } p \equiv 1, 3 \pmod{8}.
\]

Q5) (Descent for \(x^2 + 2y^2 \)) Suppose prime \(p \) divides \(x^2 + 2y^2 \), with \(\gcd(x, y) = 1 \). Adapt the proof of Fermat’s two-squares theorem (Theorem 2.4) to show that \(p = a^2 + 2b^2 \). Hint: Q2 might be useful.

Solution:
Setup: Suppose that \(p \mid a^2 + 2b^2 \) is an odd prime dividing \(N = a^2 + 2b^2 \), \(\gcd(a, b) = 1 \). We can assume \(\mid a \mid, \mid b \mid < \frac{1}{2}p \) by changing \(a \rightarrow a' = a + pk \) and \(b \rightarrow b' = b + pl \). Then divide by \(d = \gcd(a', b') > 1 \). Certainly \(p \nmid d^2 \), otherwise \(p \mid \mid a \mid, \mid b \mid < \frac{1}{2}p \) giving \(a = b = 0 \).

This means we can assume \(p \mid N = a^2 + 2b^2 \) with \(\gcd(a, b) = 1 \) and \(N \leq \frac{1}{2}p^2 + \frac{2}{3}p^2 = \frac{3}{6}p^2 \).

Any prime divisor \(q \neq p \) of \(N \) is \(< p \). Otherwise it is \(> p \), and \(N > pq > p^2 \), contradicting the bound. Also \(p^2 \nmid N \), so \(p \) only appears with exponent 1.

Descent: Suppose all such \(q_i \mid N \) can be written as \(x_i^2 + 2y_i^2 \). Repeatedly apply \(\text{Q2} \) to write \(p = N/\prod q_i^{n_i} \) as \(x^2 + 2y^2 \).

So if \(p \) is not \(x^2 + 2y^2 \), then we can produce a smaller counter example \(q < p \). This leads to an infinite decreasing sequence of prime numbers, which is a contradiction. Thus \(p = x^2 + 2y^2 \).

Q6) (Reciprocity for \(x^2 + 2y^2 \)) Suppose prime \(p \equiv 1, 3 \pmod{8} \). Show that \(p \mid x^2 + 2y^2 \), for some \(\gcd(x, y) = 1 \), by completing the following steps.

i) For \(p \equiv 1 \pmod{8} \), make use of the identity:

\[
x^{8k} - 1 = (x^{4k} - 1)[(x^{2k} - 1)^2 + 2x^{2k}]
\]

Solution: If \(p = 8k + 1 \), then \((\mathbb{Z}/p\mathbb{Z})^*\) has order \(8k \), and so every element \(\beta \in (\mathbb{Z}/p\mathbb{Z})^* \) solves the above equation. The first factor can only have \(4 \) solutions, so the second factor must have a solution. Let \(\beta \) be a solution to

\[
(x^{2k} - 1)^2 + 2x^{2k}
\]

Choose \(b \equiv b \pmod{p} \), with \(b > 0 \). Then \(p \mid (b^{2k} - 1)^2 + 2(b^k)^2 \). We also have that \(\gcd(b^{2k} - 1, b^k) = \gcd(-1, b^k) = 1 \).

ii) For \(p \equiv 3 \pmod{8} \), argue as follows.

a) \(\text{(Optional)} \) Show descent works for \(x^2 - 2y^2 \).

Solution:

Setup: Suppose \(p \) is an odd prime dividing \(N = a^2 - 2b^2 \). We can assume \(\mid a \mid, \mid b \mid \leq \frac{1}{2}p \). Dividing by \(\gcd(a, b) \) means we can assume

\[
p \nmid N = a^2 - 2b^2
\]

where \(\mid N \mid \leq \frac{1}{2}p^2 + \frac{2}{3}p^2 = \frac{3}{6}p^2 \).

Any prime divisor \(q \neq p \) of \(\mid N \) is \(< p \). Otherwise it is \(> p \), and then \(\mid N \mid \geq pq > p^2 \), contradicting the bound. Similarly \(p^2 \nmid N \), so \(p \) appears with exponent 1.

Descent: Suppose that all \(q_i \mid N \) can be written as \(x_i^2 - 2y_i^2 \). One can check that the proof of \(\text{item Q2} \) goes through since \(n = 2 \) is prime. So repeatedly apply this to write \(p = N/\prod q_i^{n_i} \) as \(x^2 - 2y^2 \).

So if \(p \) is not \(x^2 - 2y^2 \), we can produce a smaller counter example \(q < p \). This leads to an infinite decreasing sequence of primes numbers, which is a contradiction. Thus \(p = x^2 - 2y^2 \).

b) Use descent for \(x^2 - 2y^2 \), to show \(p \) does not divide any \(N = x^2 - 2y^2 \). Conclude that \(2 \equiv a^2 \pmod{p} \).
Solution: Assuming descent works for \(x^2 - 2y^2 \), and that \(p \mid N = x^2 - 2y^2 \), we conclude that \(p = x^2 - 2y^2 \) implies \(p \equiv 1 \pmod{8} \). This contradicts the assumption that \(p \equiv 3 \pmod{8} \). If \(2 \equiv a^2 \pmod{p} \), then we can write \(p \mid a^2 - 2 \times 1^2 \), which we have just shown is not possible. Hence \(2 \not\equiv 0 \pmod{p} \).

c) Show \(p \) does not divide any \(N = x^2 + y^2 \).

Solution: From Fermat, we know \(p \mid x^2 + y^2 \) implies \(p = x^2 + y^2 \) implies \(p \equiv 1 \pmod{4} \). So \(p \equiv 1, 5 \pmod{8} \). But we assumed \(p \equiv 3 \pmod{8} \).

d) Write \(p = 2m + 1 \), and show that no two of the following are congruence, modulo \(p \)

\[1^2, 2^2, \ldots, m^2, -1^2, -2^2, \ldots, -m^2. \]

Hence conclude exactly one of \(-a \) and \(a \) is a square, modulo \(p \). In particular, show \(-2 \) is a square, modulo \(p \).

Solution: If \(a^2 \equiv b^2 \pmod{p} \), \(a \not\equiv b \), then \(a \equiv \pm b \pmod{p} \). But \(a \equiv -b \pmod{p} \) implies \(a + b \equiv 0 \pmod{p} \) which is not possible since \(1 \leq a, b \leq m \). On the other hand if \(a \equiv b \), then we get \(a = b \), since \(1 \leq a, b \leq m \) and \(p = 2m + 1 \). So \(a, b \) are not distinct. Same words for \(-a^2 \) and \(-b^2 \).

Now if \(a^2 \equiv -b^2 \), then we get \(p \mid a^2 + b^2 \). Write \(d = \gcd(a, b) \), then \(p \mid d^2 (a_0^2 + b_0^2) \). We can’t have \(p \mid d \), as \(p \nmid a \). So \(p \mid a_0^2 + b_0^2 \), with \(\gcd(a_0, b_0) = 1 \). We showed above this is impossible.

So the set \(\pm 1^2, \pm 2^2, \ldots, \pm m^2 \) is exactly \(1, 2, \ldots, 2m \), all non-zero residues modulo \(p \). So \(\pm a \) matches with \(\pm n^2 \), some \(n \). If \(a \not\equiv n^2 \), then \(-a = n^2 \).

So one of \(\pm a \) is a square.

From earlier we know \(2 \) is no a square modulo \(p \). Hence \(-2 \) must be a square modulo \(p \).

e) Show that \(p \mid x^2 + 2y^2 \), with some \(\gcd(x, y) = 1 \). \(\text{(Take } x = 1. \text{)} \)

Solution: Write \(-2 = a^2 \pmod{p} \), then \(p \mid a^2 + 2 \cdot 1^2 \).

f) (Optional/research) Is it possible to more directly show \(p \equiv 3 \pmod{8} \) divides some \(x^2 + 2y^2 \), \(\gcd(x, y) = 1 \)? For example, by using a polynomial identity like above?

Conclude that Fermat’s claim about \(p = x^2 + 2y^2 \) holds.

Q7 Find (with proof!) a condition on when a positive integer \(N \) can be written in the form \(N = x^2 + 2y^2 \), \(x, y \in \mathbb{Z} \).

Solution: The proof is essentially the same as for \(N = x^2 + y^2 \). We obtain

\[N = x^2 + 2y^2 \]

if and only if the primes \(3, 7 \pmod{8} \) dividing \(N \) appear with even exponent.

Fermat’s \(x^2 + 3y^2 \) claim

In the following exercises you will prove Fermat’s theorem for primes \(p = x^2 + 3y^2 \).

Q8 Suppose that prime \(p = x^2 + 3y^2 \). By reducing modulo 3, show that \(p = 3 \), or \(p \equiv 1 \pmod{3} \).
Solution: The squares modulo 3 are $0^2, (±1)^2 = 0, 1 \pmod{3}$. So $p \equiv x^2 \equiv 0, 1 \pmod{3}$. The only prime which can be $≡ 0 \pmod{3}$ is 3. So $p = 3$ or $p ≡ 1 \pmod{3}$.

Q9) (Descent for $x^2 + 3y^2$) Suppose prime p divides $x^2 + 3y^2$, with gcd(x, y) = 1. Show that $p = a^2 + 3b^2$. Warning: the descent step doesn’t work for $p = 2$, so if $p \neq a^2 + 3b^2$ you need to produce an odd prime $q < p$ not of this form.

Solution:

Setup: Suppose p is an odd prime dividing $N = a^2 + 3b^2$. Can assume $|a|, |b| < \frac{1}{2}p$, so $N < \frac{1}{2}p^2 + \frac{3}{2}p^2 = p^2$.

Any prime divisor $q \neq p$ of N is $< p$, else $N > pq \geq p^2$, contradicting the bound. Also $p^2 \nmid p$, since $N < p^2$.

Descent: Notice that $2 | 1^2 + 3 \times 1^2$, but $2 \neq x^2 + 3y^2$, so the descent step fails here. So if descent fails for p, we must produce an odd prime $q < p$ for which is also fails.

I claim that if $2 | a^2 + 3b^2$, gcd(a, b) = 1 then actually $4 | a^2 + 3b^2$. We have $a^2 + b^2 = (a + b)^2 = 0 \pmod{2}$. So $a \equiv b \pmod{2}$. Now, a, b cannot both be even, so they must both be odd. Reduce modulo 4, and we see $a^2 + 3b^2 \equiv a^2 - b^2 = 1^2 - 1^2 = 0 \pmod{4}$. So in $a^2 + 3b^2$, 2 must appear to even power: we can repeatedly divide out 4 using ???. This only stops when the result is odd.

Suppose that all odd primes $q_i < p$ are of the form $x_i^2 + 3y_i^2$. Then by repeatedly applying [item Q2] including the case $q = 4$, we can write

$$p = N/(4^n \prod q_i^{n_i})$$

as $x^2 + 3y^2$. So if $p \neq x^2 + 3y^2$, one of the primes odd primes $q_i < p$ is a smaller counter example. This leads to an infinite decreasing sequence of odd primes, a contradiction. Hence $p = x^2 + 3y^2$.

Q10) (Reciprocity for $x^2 + 3y^2$) Suppose prime $p \equiv 1 \pmod{3}$. Show that $p | x^2 + 3y^2$, for some gcd(x, y) = 1. Hint:

$$4(x^{3k} - 1) = (x^k - 1)(2x^k + 1)^2 + 3] .$$

Solution: For $p = 3k + 1$, then ($\mathbb{Z}/p\mathbb{Z}$)* has order $3k$, so every element $β ∈ (\mathbb{Z}/p\mathbb{Z})^\ast$ is a solution to the equation. (Notice that $p \nmid 4$, so $4 \not\equiv 0 \pmod{p}$. The first factor has k solutions, so the second factor must have $2k$ solutions. Let $β$ be a solution. Then

$$p | (2β^k + 1)^2 + 3 \cdot 1^2$$

and we have gcd$(2β^k + 1, 1) = 1$.

Conclude that Fermat’s claim about $p = x^2 + 3y^2$ holds.

Q11) Find (with proof!) a condition on when a positive integer N can be written in the form $N = x^2 + 3y^2$, $x, y ∈ \mathbb{Z}$.

Solution: The proof is essentially the same as for $N = x^2 + y^2$. We obtain

$$N = x^2 + 3y^2$$
if and only if the primes \(p \equiv 2 \pmod{3} \) (including \(p = 2 \)) dividing \(N \) appear with even exponent.