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Abstract
For a compact 3-manifold M with arbitrary (possibly empty) boundary, we give a
parameterization of the set of conjugacy classes of boundary-unipotent representa-
tions of �1.M/ into SL.n;C/. Our parameterization uses Ptolemy coordinates, which
are inspired by coordinates on higher Teichmüller spaces due to Fock and Goncharov.
We show that a boundary-unipotent representation determines an element in Neu-
mann’s extended Bloch group bB.C/, and we use this to obtain an efficient formula
for the Cheeger–Chern–Simons invariant, and, in particular, for the volume. Com-
putations for the census manifolds show that boundary-unipotent representations are
abundant, and numerical comparisons with census volumes suggest that the volume
of a representation is an integral linear combination of volumes of hyperbolic 3-
manifolds. This is in agreement with a conjecture of Walter Neumann, stating that
the Bloch group is generated by hyperbolic manifolds.
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1. Introduction
For a closed 3-manifold M , the Cheeger–Chern–Simons invariant (see [5], [6]) of a
representation � of �1.M/ in SL.n;C/ is given by the Chern–Simons integral

bc.�/D 1

2

Z
M

s�
�

Tr
�
A^ dAC

2

3
A^A^A

��
2C=4�2Z; (1.1)

where A is the flat connection in the flat SL.n;C/-bundle E� with holonomy �, and
s W M ! E� is a section of E�. Since SL.n;C/ is 2-connected, a section always
exists, and a different choice of section changes the value of the integral by a multiple
of 4�2.

When nD 2, the imaginary part of the Cheeger–Chern–Simons invariant equals
the hyperbolic volume of �. More precisely, if D W fM ! H3 is a developing map
for � and �H3 is the hyperbolic volume form, Im.bc.�// equals the integral of D�.��/
over a fundamental domain for M . In particular, if M DH3=� is a hyperbolic man-
ifold, and � is a lift to SL.2;C/ of the geometric representation �geo W �1.M/!

PSL.2;C/, then the imaginary part equals the volume of M . In fact, in this case we
have

bc.�/D i�Vol.M/C i CS.M/
�
; (1.2)

where CS.M/ is the Chern–Simons invariant of M (with the Riemannian connec-
tion). The invariant Vol.M/C i CS.M/ is often referred to as complex volume. Moti-
vated by this, we define the complex volume VolC of a representation � W �1.M/!

SL.n;C/ by

bc.�/D i VolC.�/; (1.3)

and define the volume of � to be the real part of the complex volume, that is, the
imaginary part of the Cheeger–Chern–Simons invariant. Surprisingly, as we shall see,
the relationship to hyperbolic volume seems to persist even when n > 2.

The set of SL.n;C/-representations is a complex variety with finitely many com-
ponents, and the complex volume is constant on components. This follows from the
fact that representations in the same component have cohomologous Chern–Simons
forms. Hence, for any M , the set of complex volumes is a finite set.

We show that the definition of the Cheeger–Chern–Simons invariant naturally
extends to compact manifolds with boundary, and representations � W �1.M/ !

SL.n;C/ that are boundary-unipotent, that is, take peripheral subgroups to a con-
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jugate of the unipotent group N of upper triangular matrices with 1’s on the diagonal.
We formulate all our results in this more general setup.

The main result of the paper is a concrete algorithm for computing the set of com-
plex volumes. The idea is that the set of (conjugacy classes of) boundary-unipotent
representations can be parameterized by a variety, called the Ptolemy variety, which
is defined by homogeneous polynomials of degree 2. The Ptolemy variety depends on
a choice of triangulation, but if the triangulation is sufficiently fine, then every repre-
sentation is detected by the Ptolemy variety. We show that a point c in the Ptolemy
variety naturally determines an element �.c/ in Neumann’s extended Bloch groupbB.C/, such that if � is the representation corresponding to c, we have

R
�
�.c/

�
D i VolC.�/; (1.4)

where R W bB.C/!C=4�2Z is a Rogers dilogarithm.
There is a canonical group homomorphism

�n W SL.2;C/! SL.n;C/ (1.5)

defined by taking a matrix A to its .n � 1/th symmetric power (see Section 11). The
map �n preserves unipotent elements, and we show that composing a boundary-
unipotent representation in SL.2;C/with �n multiplies the complex volume by

�
nC1
3

�
.

If M D H3=� is a hyperbolic 3-manifold, then the geometric representation �geo

always lifts to a representation in SL.2;C/; but if M has cusps, then lifts are not
necessarily boundary-unipotent. In fact, by a result of Calegari [4], if M has a single
cusp, then any lift of the geometric representation takes a longitude to an element with
trace �2. When n is even, we shall thus, more generally, be interested in boundary-
unipotent representations in

p SL.n;C/D SL.n;C/=h˙I i: (1.6)

Such representations have a complex volume defined modulo �2i , and our algorithm
computes these as well. By studying representations in p SL.n;C/, we make sure
that when M is hyperbolic, there is always at least one representation with nontrivial
complex volume, namely, �n ı �geo.

Walter Neumann has conjectured that every element in the Bloch group B.C/ is
an integral linear combination of Bloch group elements of hyperbolic 3-manifolds.
Since the extended Bloch group equals the Bloch group up to torsion, Neumann’s
conjecture would imply that all complex volumes are, up to rational multiples of
i�2, integral linear combinations of complex volumes of hyperbolic 3-manifolds.
In particular, the volumes should all be integral linear combinations of volumes of
hyperbolic manifolds.
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Our algorithm has been implemented by Matthias Goerner. The algorithm uses
Magma [3] to compute a primary decomposition of the Ptolemy variety and then uses
(1.4) to compute the complex volumes. For nD 2, we have computed primary decom-
positions of the Ptolemy varieties for all census manifolds with at most 8 simplices
(these usually finish within a fraction of a second) and all link complements with at
most 16 simplices in the SnapPy census [7] of knots with up to 11 crossings and links
with up to 10 crossings. When there are more than 16 simplices, some of the com-
putations do not terminate. For nD 3, computations are feasible for many manifolds
with up to four simplices, but, for nD 4, the computations run out of memory for all
manifolds with more than two simplices. It would be interesting to perform numerical
calculations for n� 4. Our computations have revealed numerous (numerical) exam-
ples of linear combinations as predicted by Neumann’s conjecture. To the best of our
knowledge, our examples are the first concrete computations (the first of which were
carried out in 2009) of the Cheeger–Chern–Simons invariant (complex volume) for
n > 2.

1.1. Statement of our results
This section gives a brief summary of our main results. More details can be found in
the paper.

1.1.1. The Ptolemy variety
Let M be a compact, oriented 3-manifold with (possibly empty) boundary, and let
K be a closed 3-cycle (triangulated complex; see Definition 4.1) homeomorphic to
the space obtained from M by collapsing each boundary component to a point. We
identify each of the simplices of K with a standard simplex:

�3n D
®
.x0; x1; x2; x3/ 2R

4
ˇ̌
0� xi � n;x0C x1C x2C x3 D n

¯
: (1.7)

Let �3n.Z/ be the set of points in �3n with integral coordinates, and let P�3n.Z/ be
�3n.Z/ with the four vertex points removed.

Definition 1.1
A Ptolemy assignment on �3n is an assignment P�3n.Z/! C�, t 7! ct , of a nonzero
complex number ct to each (nonvertex) integral point t of �3n such that for each
˛ 2�3n�2.Z/, the Ptolemy relation

c˛03c˛12 C c˛01c˛23 D c˛02c˛13 (1.8)

is satisfied (see Figure 2). Here, ˛ij denotes the integral point ˛C ei C ej . A Ptolemy
assignment on K is a Ptolemy assignment ci on each simplex �i of K such that the
Ptolemy coordinates agree on identified faces.
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Figure 1. A quadrilateral is inscribed in a circle if and only if abC cd D ef .

Figure 2. Ptolemy assignment for nD 3. The Ptolemy relation for ˛D 1000 is
c2001c1110C c2100c1011 D c2010c1101.

Remark 1.2
The name is inspired by the resemblance of (1.8) with the Ptolemy relation between
the lengths of the sides and diagonals of an inscribed quadrilateral (see Figure 1).
In the work of Fock and Goncharov [13], the Ptolemy relations appear as relations
between coordinates on the higher Teichmüller space when the triangulation of a sur-
face is changed by a flip.

It follows immediately from the definition that the set of Ptolemy assignments on
K is an algebraic set Pn.K/, which we shall refer to as the Ptolemy variety.

The extended pre-Bloch group bP .C/ is generated by tuples .u; v/ 2 C2 with
eu C ev D 1, and the extended Bloch group bB.C/� bP .C/ is the kernel of the mapbP .C/!^2.C/ taking .u; v/ to u^v. We refer to Section 3 for a review. Using (1.8),
we obtain that a Ptolemy assignment c on �3n gives rise to an element
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�.c/D
X

˛2�3.n�2/

.ec˛03 Cec˛12 �ec˛02 �ec˛13 ; ec˛01 Cec˛23 �ec˛02 �ec˛13/
2 bP .C/; (1.9)

where the tilde denotes a branch of logarithm (the particular choice is inessential). We
thus have a map

� W Pn.K/! bP .C/; c 7!
X
i

	i�.c
i /; (1.10)

where the sum is over the simplices of K . Let RSL.n;C/;N .M/ denote the set of con-
jugacy classes of boundary-unipotent representations �1.M/! SL.n;C/. The fol-
lowing theorem (as well as Theorem 1.12 below) gives an efficient algorithm for
computing complex volumes. See Section 10 for examples.

THEOREM 1.3 (Proof in Section 9.5)
A Ptolemy assignment c uniquely determines a boundary-unipotent representation
R.c/ 2RSL.n;C/;N .M/. The map � has image in bB.C/, and we have a commutative
diagram

Pn.K/
�

R

bB.C/
R

RSL.n;C/;N .M/
i VolC

C=4�2Z

(1.11)

Moreover, if the triangulation is sufficiently fine (a single barycentric subdivision suf-
fices), then the map R is surjective.

Remark 1.4
We show in Section 9 that there is a one-to-one correspondence between points in
Pn.K/ and generically decorated (see Section 5) boundary-unipotent SL.n;C/-
representations. Under this correspondence, the map R is just the forgetful map
ignoring the decoration. Note that Pn.K/ depends on the triangulation and may be
empty.

Let H � SL.n;C/ denote the group of diagonal matrices, and let h denote the
number of boundary components of M . In Section 4.1, we define an action of Hh on
Pn.K/. We denote the quotient by Pn.K/red. The action only changes the decoration,
and so R factors through Pn.K/red.
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Definition 1.5
A boundary-unipotent representation � W �1.M/ ! SL.n;C/ is peripherally well
behaved if the image of each peripheral subgroup is either trivial or contains an ele-
ment with a maximal Jordan block. If the latter condition holds for each peripheral
subgroup, then we say that � is peripherally nondegenerate.

Remark 1.6
When nD 2, all representations are peripherally well behaved.

THEOREM 1.7 (Proof in Section 9.5)
The image of R W Pn.K/red! RSL.n;C/;N .M/ consists of the set of representations
admitting a generic decoration (see Definition 5.2). If such a representation � is
peripherally nondegenerate, then the preimage in Pn.K/red is a single point; that
is, any two decorations of � differ by the diagonal action. If � is peripherally well
behaved, then any two preimages of R have the same image in bB.C/.
COROLLARY 1.8
A peripherally well-behaved boundary-unipotent representation � in SL.n;C/ deter-
mines an element Œ�
 2 bB.C/ such that R.Œ�
/D i VolC.�/.

Remark 1.9
In general, the preimage of a representation under R can have large dimension.

1.1.2. Hyperbolic manifolds and p SL.n;C/-representations
Let �n W SL.2;C/! SL.n;C/ denote the canonical irreducible representation. Note
that when n is odd, �n factors through PSL.2;C/. If a representation � is in the image
of Pn.K/!RSL.n;C/;N .M/, then we say that Pn.K/ detects �.

THEOREM 1.10 (Proof in Section 11.1)
Suppose that M DH3=� is an oriented, hyperbolic manifold with finite volume and
geometric representation �geo W �1.M/! PSL.2;C/. If the triangulation of K has
no nonessential edges, and if n is odd, then Pn.K/ is nonempty and detects �n ı �geo.

When n is even, �n ı �geo is only a representation in p SL.n;C/ D SL.n;C/=
h˙I i.

Definition 1.11
Let � 2Z2.�3nIZ=2Z/ be a cocycle. A p SL.n;C/-Ptolemy assignment on �3n with
obstruction cocycle � is an assignment of Ptolemy coordinates to the integral points
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of �3n such that

�2�3c˛03c˛12 C �0�3c˛01c˛23 D c˛02c˛13 : (1.12)

Here, �i 2 Z=2ZD h˙1i is the value of � on the face opposite the i th vertex of �3n.
A p SL.n;C/-Ptolemy assignment on K with obstruction cocycle � 2Z2.KIZ=2Z/
is a collection of p SL.n;C/-Ptolemy assignments ci on �i with obstruction class
��i such that the Ptolemy coordinates agree on common faces.

The set of p SL.n;C/-Ptolemy assignments on K with obstruction cocycle � is
an algebraic set P �n .K/, which, up to canonical isomorphism, only depends on the
cohomology class of � . The obstruction class to lifting a boundary-unipotent repre-
sentation in p SL.n;C/ to a boundary-unipotent representation in SL.n;C/ is a class
inH 2.M;@M IZ=2Z/DH 2.KIZ=2Z/. For � 2H 2.KIZ=2Z/, letR�

p SL.n;C/;N .M/

denote the set of (conjugacy classes of) boundary-unipotent representations in
p SL.n;C/ with obstruction class � . If M is hyperbolic, we let �geo 2H

2.KIZ=2Z/

denote the obstruction class of the geometric representation.

THEOREM 1.12 (Proof in Section 9.5)
Let n be even. For each � 2 H 2.KIZ=2Z/, we have a commutative diagram
(bB.C/PSL is defined in Section 3.2)

P �n .K/
�

R

bB.C/PSL

R

R�
p SL.n;C/;N .M/

i VolC
C=�2Z

(1.13)

If the triangulation of K is sufficiently fine, then R is surjective. If M D H3=� is
hyperbolic, and if K has no nonessential edges, then P

�geo
n .K/ detects �n ı �geo.

Remark 1.13
The analogue of Theorem 1.7 also holds, except that the preimage of a peripherally
well-behaved representation is now parameterized byZ1.KIZ=2Z/ (see Section 9.4).

Remark 1.14
If the triangulation has a nonessential edge, all Ptolemy varieties are empty. Hence,
if P �2 .K/ is nonempty for some � , and if M is hyperbolic, then the Ptolemy variety
P �geo.K/ will detect the geometric representation.
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THEOREM 1.15 (Proof in Section 11)
Let � be a peripherally well-behaved representation in SL.2;C/ or PSL.2;C/. The
extended Bloch group element of �n ı � is

�
nC1
3

�
times that of �. In particular, com-

position with �n multiplies complex volume by
�
nC1
3

�
.

1.1.3. The Cheeger–Chern–Simons class
The Cheeger–Chern–Simons invariant can be viewed as a characteristic class
H3.SL.n;C//! C=4�2Z, and the result underlying the proof of commutativity of
(1.11) is Theorem 1.16 below, giving an explicit cocycle formula for the Cheeger–
Chern–Simons class. The formula generalizes the formula in [16] for nD 2. Recall
that a homology class can be represented by a formal sum of tuples .g0; : : : ; g3/. To
such a tuple, we can assign a Ptolemy assignment c.g0; : : : ; g3/ defined by

c.g0; : : : ; g3/t D det
�
¹g0ºt0 [ � � � [ ¹g3ºt3

�
; t D .t0; : : : ; t3/; (1.14)

where ¹giºti denotes the ordered set consisting of the first ti column vectors of gi .
One can always represent a homology class by tuples, such that all the determinants
in (1.14) are nonzero.

THEOREM 1.16 (Proof in Section 8)
The Cheeger–Chern–Simons classbc factors as

H3
�
SL.n;C/

� �
�! bB.C/ R

�!C=4�2Z; (1.15)

where � is induced by the map taking a tuple .g0; : : : ; g3/ to �.c.g0; : : : ; g3// 2bP .C/.
1.1.4. Thurston’s gluing equations
When n D 2, Thurston’s gluing equation variety V.K/ is another variety, which is
often used to compute volume. It is given by an equation for each edge of K and an
equation for each generator of the fundamental groups of the boundary components
of M (see Section 12).

THEOREM 1.17 (Proof in Section 12)
Suppose that M has h boundary components. There is a surjective regular mapa

�2H2.KIZ=2Z/

P �2 .K/! V.K/ (1.16)

with fibers that are disjoint copies of .C�/h.
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Remark 1.18
The Ptolemy variety seems to offer significant computational advantage over the glu-
ing equations, but according to Fabrice Rouillier (private communications) one can
manipulate the gluing equations to mitigate this.

1.2. Neumann’s conjecture
The fact that (1.10) has an image in bB.C/ as opposed to bP .C/ has very interesting
conjectural consequences. It is well known (see, e.g., [25]) that the Bloch group B.C/

is a Q-vector space, and Walter Neumann has conjectured that it is generated by
Bloch invariants of hyperbolic manifolds. More generally, Neumann has proposed
the following stronger conjecture (see [20, Question 2.8]).

CONJECTURE 1.19
Let F � C be a concrete number field which is not in R. The Bloch group B.F / is
generated (integrally) modulo torsion by hyperbolic manifolds with an invariant trace
field contained in F .

Using Theorems 1.3 and 1.12, Conjecture 1.19 implies the following (see Sec-
tion 10, for example).

CONJECTURE 1.20
Let � be a boundary-unipotent representation of �1.M/ in SL.n;C/ or p SL.n;C/.
There exist hyperbolic 3-manifolds M1; : : : ;Mk and integers r1; : : : ; rk such that

VolC.�/D
X

ri VolC.Mi / 2C=i�
2Q: (1.17)

In particular, Vol.�/D
P
ri Vol.Mi / 2R.

Remark 1.21
The Ptolemy coordinates may be considered as a 3-dimensional analogue of Fock
and Goncharov’s A-coordinates (see [13]). They were defined for 3-manifolds in [29]
(under the name ideal cochain) and have subsequently been studied by several other
authors. These include Bergeron, Falbel, and Guilloux [2]; Garoufalidis, Goerner,
and Zickert [14]; and Dimofte, Gabella, and Goncharov [8]. Shape coordinates for
PGL.3;C/-representations have also been used by Falbel [11] and Falbel–Wang [12]
in connection with spherical CR-structures.

1.3. Overview of the paper
Section 2 reviews the Cheeger–Chern–Simons classes for flat bundles. Section 3 gives
a brief review of the two variants of the extended Bloch group, and Section 4 reviews
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the theory, introduced in Zickert [27], of decorated representations and relative funda-
mental classes. In Section 5, we introduce the notion of generic decorations and define
the Ptolemy variety Pn.K/. In Section 6, we construct a chain complex of Ptolemy
assignments and use it to construct a map from H3.SL.n;C/;N / to bB.C/ commut-
ing with stabilization. This shows that a decorated boundary-unipotent representation
determines an element in the extended Bloch group, which is given explicitly in terms
of the Ptolemy coordinates. In Section 7, we show that the extended Bloch group ele-
ment of a decorated, peripherally well-behaved representation is independent of the
decoration, and, in Section 8, we show that the Cheeger–Chern–Simons class is given
as in Theorem 1.16. In Section 9, we show that the Ptolemy variety parameterizes
generically decorated representations, and we give an explicit formula for recovering
a representation from its Ptolemy coordinates. In Section 10, we give some exam-
ples of computations, and we list some interesting findings. Section 11 discusses the
irreducible representations of SL.2;C/, and Section 12 discusses the relationship to
Thurston’s gluing equations when nD 2.

2. The Cheeger–Chern–Simons classes
The Cheeger–Chern–Simons classes (see [5], [6]) are characteristic classes of princi-
pal bundles with connection. For general bundles, the characteristic classes are differ-
ential characters (see [5]), but for flat bundles they reduce to ordinary (singular) coho-
mology classes. In this paper we will focus exclusively on flat bundles. Let F denote
either R or C, and let ƒ be a proper subring of F. Let G be a Lie group over F with
finitely many components. There is a characteristic class SP;u for each pair .P;u/
consisting of an invariant polynomial P 2 I k.GIF/ and a class u 2 H 2k.BGIƒ/,
whose image in H 2k.BGIF/ equals W.P /, where W is the Chern–Weil homomor-
phism

W W I k.GIF/!H 2k.BGIF/: (2.1)

The characteristic class SP;u associates to each flat G-bundle E!M a cohomology
class SP;u.E/ 2H 2k�1.M IF=ƒ/.

2.1. Simply connected, simple Lie groups
If G is simply connected and simple, H 1.GIZ/ and H 2.GIZ/ are trivial, and
H 3.GIZ/Š Z. Hence, by the Serre spectral sequence for the universal bundle, we
have an isomorphism

S W H 4.BGIZ/ŠH 3.GIZ/Š Z (2.2)

called the suspension. The Killing form on G defines an invariant polynomial B 2
I 2.GIF/, and since B is real on the maximal compact subgroup K of G, W.B/ is a
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real class. Hence, there exists a unique positive real number ˛ such that W.˛B/ is a
generator of H 4.BGI4�2Z/.

Definition 2.1
The Cheeger–Chern–Simons class for G is the characteristic class of flat G bundles
defined by S˛B;W.˛B/. We denote it bybc.

2.2. Complex groups and volume
Recall that there is a one-to-one correspondence between flat G-bundles over M and
representations �1.M/!G up to conjugation. This correspondence takes a flat bun-
dle to its holonomy representation. If � W �1.M/! G is a representation, then we
let E� denote the corresponding flat bundle. In the following, G denotes a simply
connected, simple, complex Lie group, and M denotes a closed, oriented 3-manifold.
The following definition is motivated by (1.2).

Definition 2.2
The complex volume VolC.�/ of a representation � W �1.M/!G is defined by

bc.E�/�ŒM 

�
D i VolC.�/ 2C=4�

2Z: (2.3)

The volume Vol.�/ of � is the real part of VolC.�/.

2.3. The universal classes and group cohomology
The Cheeger–Chern–Simons classes are also defined for the universal flat bundle
EGı ! BGı . For an explicit construction, we refer to [10] or [9]. In particular, we
have a class bc 2 H 3.BGı IC=4�2Z/. If � W �1.M/! G is a representation, with
classifying map B� W M !BGı , then we thus have

bc�B���ŒM 

��
D i VolC.�/: (2.4)

It is well known that the homology of BGı is the homology of the chain complex
C� ˝ZŒG� Z, where C� is any free ZŒG
-resolution of Z. A convenient choice of free
resolution is the complex C�, generated in degree n by tuples .g0; : : : ; gn/, and with
boundary map given by

@.g0; : : : ; gn/D
X

.�1/i .g0; : : : ;bgi ; : : : ; gn/: (2.5)

The homology of C� ˝ZŒG� Z is denoted by H�.G/, and so H�.G/ D H�.BGı/.
Theorem 1.16 gives a concrete cocycle formula forbc W H3.SL.n;C//!C=4�2Z.
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2.4. Compact manifolds with boundary
In Section 6.1 below, we construct a natural extension of bc W H3.SL.n;C// !
C=4�2Z to a homomorphism

bc W H3�SL.n;C/;N
�
!C=4�2Z; (2.6)

where N is the subgroup of upper triangular matrices with 1’s on the diagonal.

Definition 2.3
Let � W �1.M/! SL.n;C/ be a boundary-unipotent representation. The complex vol-
ume of � is defined by

bc�B���ŒM;@M

��
D i VolC.�/; (2.7)

where B� W .M;@M/! .B SL.n;C/ı ;BN ı/ is a classifying map for �.

Remark 2.4
Unlike when M is closed, the classifying map is not uniquely determined by �; it
depends on a choice of decoration (see Section 4). The complex volume, however, is
independent of this choice (see Remark 8.5).

2.5. Central elements of order 2
For any simple complex Lie group G, there is a canonical homomorphism (defined
up to conjugation)

�G W SL.2;C/!G: (2.8)

The element sG D �G.�I / is a central element of G of order dividing 2 and equals
.�I /nC1 if G D SL.n;C/ (see, e.g., [13, Corollary 2.1]). Let

pG DG=hsGi: (2.9)

Note that �G descends to a homomorphism PSL.2;C/! pG. The next proposition
and its corollary follow easily from the Serre spectral sequence.

PROPOSITION 2.5
Suppose that sG has order 2. The canonical map p� W H 4.BpGIZ/!H 4.BGIZ/

is surjective with kernel of order dividing 4.

COROLLARY 2.6
There is a canonical characteristic classbc W H3.pG/!C=�2Z.
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Proof
By Proposition 2.5, there exists a canonical class u 2 H 4.BpGI�2Z/ such that
p�.u/DW.P / 2H 4.BGI�2Z/. Definebc D SP;u.

In Section 6.3, we construct a homomorphism

bc W H3�p SL.n;C/;N
�
!C=�2Z; (2.10)

which extends bc to a characteristic class of bundles with boundary-unipotent holon-
omy. The complex volume of a representation in p SL.n;C/ is defined as in Defini-
tion 2.3.

3. The extended Bloch group
We use the conventions of [28]; the original reference is [19].

Definition 3.1
The pre-Bloch group P .C/ is the free abelian group on Cn¹0; 1ºmodulo the five-term
relation

x � y C
y

x
�
1� x�1

1� y�1
C
1� x

1� y
D 0; for x ¤ y 2C n ¹0; 1º: (3.1)

The Bloch group is the kernel of the map � W P .C/!^2.C�/ taking z to z^ .1� z/.

Definition 3.2
The extended pre-Bloch group bP .C/ is the free abelian group on the set

bCD ®.e; f / 2C2 ˇ̌ exp.e/C exp.f /D 1
¯

(3.2)

modulo the lifted five-term relation

.e0; f0/� .e1; f1/C .e2; f2/� .e3; f3/C .e4; f4/D 0 (3.3)

if the equations

e2 D e1 � e0; e3 D e1 � e0 � f1C f0; f3 D f2 � f1;
(3.4)

e4 D f0 � f1; f4 D f2 � f1C e0

are satisfied. The extended Bloch group is the kernel of the mapb� W bP .C/!^2.C/
taking .e; f / to e ^ f .

An element .e; f / 2bC with exp.e/D z is called a flattening with cross-ratio z.
Letting �C denote the roots of unity in C�, we have a commutative diagram:
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0 0 0

0 �C

2 log

�

C=4�iZ

�

C�=�C 0

0 bB.C/
�

bP .C/ b	

�

^2.C/ K2.C/ 0

0 B.C/ P .C/
	

^2.C�/ K2.C/ 0

0 0 0 0

(3.5)

The map � is induced by the map taking a flattening to its cross-ratio, and 
 is the
map taking e 2C=4�iZ to .e; f C 2�i/� .e; f /, where f 2C is any element such
that .e; f / 2bC.

3.1. The regulator
By fixing a branch of logarithm, we may write a flattening with cross-ratio z as
ŒzIp;q
D .log.z/Cp�i; log.1� z/Cq�i/, where p;q 2 Z are even integers. There
is a well-defined regulator map

R W bP .C/! C=4�2Z;
(3.6)

ŒzIp;q
 7! Li2.z/C
1

2

�
log.z/C p�i

��
log.1� z/� q�i

�
� �2=6:

3.2. The PSL.2;C/-variant of the extended Bloch group
There is another variant of the extended Bloch group using flattenings ŒzIp;q
, where
p and q are allowed to be odd. This group is defined as above using the set

bCodd D
®
.e; f / 2C2

ˇ̌
˙ exp.e/˙ exp.f /D 1

¯
(3.7)

and fits in a diagram similar to (3.5). We use the subscript PSL to denote the variant
allowing odd flattenings. We have an exact sequence

0! Z=4Z! bB.C/! bB.C/PSL! 0: (3.8)

For odd flattenings, the regulator (3.6) is well defined modulo �2Z.



2114 GAROUFALIDIS, THURSTON, and ZICKERT

THEOREM 3.3 (see [16], [19])
There are natural isomorphisms

H3
�
PSL.2;C/

�
Š bB.C/PSL; H3

�
SL.2;C/

�
Š bB.C/ (3.9)

such that the Cheeger–Chern–Simons classes agree with the regulators.

The following result is needed in Section 7. The first part is proved in [28,
Lemma 3.16], and the second has a similar proof, which we leave to the reader.

LEMMA 3.4
For .e; f / 2bC and p;q 2 Z, we have

.eC 2�ip;f C 2�iq/� .e; f /D 
.qe � pf C 2pq�i/ 2 bP .C/; (3.10)

.eC �ip;f C �iq/� .e; f /D 
.qe � pf C pq�i/ 2 bP .C/PSL: (3.11)

4. Decorations of representations
In this section, we review the notion of decorated representations introduced in [27].
Throughout the section,G denotes an arbitrary group, not necessarily a Lie group. Let
H be subgroup of G. An ordered simplex is a simplex with a fixed vertex ordering.

Definition 4.1
A closed 3-cycle is a cell complex K obtained from a finite collection of ordered
3-simplices �i by gluing together pairs of faces using order-preserving simplicial
attaching maps. We assume that all faces have been glued and that the space M.K/,
obtained by truncating the �i ’s before gluing, is an oriented 3-manifold with bound-
ary. Let 	i be a sign indicating whether or not the orientation of�i given by the vertex
ordering agrees with the orientation of M.K/.

Note that up to removing disjoint balls (which does not effect the fundamental
group), the manifold M.K/ depends only on the underlying topological space of K
and not on the choice of 3-cycle structure. Also note that, for any compact, oriented
3-manifold M with (possibly empty) boundary, the space cM obtained from M by
collapsing each boundary component to a point has a structure of a closed 3-cycle K
such that M DM.K/.

Let K be a closed 3-cycle, and let M DM.K/. Let L denote the space obtained
from the universal cover fM of M by collapsing each boundary component to a point.
The 3-cycle structure of K induces a triangulation of L and also a triangulation of M
by truncated simplices. The covering map extends to a map L!K , and the action of
�1.M/ on fM by deck transformations extends to an action on L, which is determined
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by fixing, once and for all, a base point in M together with one of its lifts. Note that
the stabilizer of each 0-cell is a peripheral subgroup of �1.M/, that is, a subgroup
induced by inclusion of a boundary component.

Definition 4.2
Let H be a subgroup of G. A representation � W �1.M/ ! G is a .G;H/-
representation if the image of each peripheral subgroup lies in a conjugate of H .

Definition 4.3
Let � be a .G;H/-representation. A decoration (on K) of � is a �-equivariant map

D W L.0/!G=H; (4.1)

where L.0/ is the 0-skeleton of L.

Note that if D.e/D gH , then we have g�1�.Stab.e//g �H , where Stab.e/ is
the stabilizer of e. SinceD is �-equivariant, it follows thatD determines subgroup of
H for each boundary component which is well defined up to conjugation in H .

Definition 4.4
Two decorations of � are equivalent for each boundary component of M , and the
corresponding subgroups of H are conjugate (in H ).

Remark 4.5
If D is a decoration of �, then gD is a decoration of g�g�1. Since we are only
interested in representations up to conjugation, we consider such two decorations to
be equal.

PROPOSITION 4.6
Let E be a flat G-bundle over M whose holonomy representation is a .G;H/-
representation �. There is a one-to-one correspondence between decorations of �
up to equivalence and reductions of E@M to an H -bundle over @M .

Proof
For each boundary component Si of M , choose a base point in Si and a path to the
base point ofM . This determines a lift ei in L of the vertex ofK corresponding to Si
and an identification of �1.Si / with Stab.ei /� �1.M/. If F is a reduction of E@M ,
then the holonomy representations �i W �1.Si /!H of FSi are conjugate to �, and
so there exist gi 2 G such that g�1i �gi D �i . Assigning the coset giH to ei yields
a decoration, which, up to equivalence, is independent of the choice of gi ’s. On the
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other hand, a decoration assigns cosets giH to ei such that g�1i �.Stab.ei //gi �H .
Hence, gi defines an isomorphism of ESi with an H -bundle, which, up to isomor-
phism, depends only on the equivalence class of the decoration.

4.1. The diagonal action
Let NG.H/ denote the normalizer of H in G, and let h denote the number of bound-
ary components of M . There is an action of .NG.H/=H/h on the set of equivalence
classes of decorations given by right multiplication. More precisely, .x1; : : : ; xh/ acts
by taking a decoration D to the decoration D0 defined as follows: If D takes a lift
v of the i th boundary component to gH , then D0 takes v to gxiH . If H D N and
G D SL.n;C/, then NG.H/=H is the group of diagonal matrices. We thus refer to
the action as the diagonal action.

PROPOSITION 4.7
If a boundary-unipotent representation � is peripherally well behaved, then the diag-
onal action on the set of equivalence classes of decorations of � is transitive.

Proof
It is enough to prove this is the case where there is only one boundary component. In
this case, the image of the peripheral subgroup is either trivial or contains an element
with a maximal Jordan block. In the first case, all decorations are equivalent; and in
the second case, the result follows from the fact that, if a subgroup A of N contains
an element with a maximal Jordan form, then the normalizer of A in SL.n;C/ equals
the normalizer of N .

4.2. The fundamental class of a decorated representation
A flat G-bundle over M determines a classifying map M ! BGı , where the ı indi-
cates that G is regarded as a discrete group. It thus follows from Proposition 4.6 that
a decorated representation � W �1.M/!G determines a map

B� W .M;@M/! .BGı ;BH ı/: (4.2)

In particular, � gives rise to a fundamental class

Œ�
DB��
�
ŒM;@M


�
2H3.G;H/; (4.3)

where, by definition, H�.G;H/DH�.BGı ;BH ı/. Note that the fundamental class
is independent of the particular 3-cycle structure on K .

Recall that M is triangulated by truncated simplices. By restriction, a .G;H/-
cocycle on M determines a .G;H/-cocycle on each truncated simplex �i . Let
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B�.G;H/ denote the chain complex generated in degree n by .G;H/-cocycles on a
truncated n-simplex. As proved in [27, Section 3], B�.G;H/ computes the homology
groups H3.G;H/. Note that a .G;H/-cocycle on M determines (up to conjugation)
a decorated .G;H/-representation.

PROPOSITION 4.8 ([27, Proposition 5.10])
Let � be a .G;H/-cocycle on M representing a decorated .G;H/-representation �.
The cycle X

	i��i 2B3.G;H/ (4.4)

represents the fundamental class of �.

5. Generic decorations and Ptolemy coordinates
In all of the following, G D SL.n;C/, and N is the subgroup of upper triangular
matrices with 1’s on the diagonal. A .G;N /-representation � W �1.M/!G is called
boundary-unipotent. For a matrix g 2G and a positive integer i � n 2N, let ¹gºi be
the ordered set consisting of the first i column vectors of g.

Definition 5.1
A tuple .g0N; : : : ; gkN/ of N -cosets is generic if, for each tuple t D .t0; : : : ; tk/ of
nonnegative integers with sum n, we have

ct WD det
� k[
iD0

¹giºti

�
¤ 0; (5.1)

where the determinant is viewed as a function on ordered sets of n vectors in Cn. The
numbers ct are called Ptolemy coordinates.

Definition 5.2
A decoration of a boundary-unipotent representation is generic if, for each simplex�
of L, the tuple of cosets assigned to the vertices of � is generic.

For a set X , let C�.X/ be the acyclic chain complex generated in degree k by
tuples .x0; : : : ; xk/. If X is a G-set, then the diagonal G-action makes C�.X/ into a
complex of ZŒG
-modules. Let C gen

� .G=N/ be the subcomplex of C�.G=N/ gener-
ated by generic tuples.

PROPOSITION 5.3
The complex C gen

� .G=N/˝ZŒG�Z computes the relative homology. If � W �1.M/!G
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is a generically decorated representation, then the fundamental class of � is repre-
sented by X

	i .g
i
0N;g

i
1N;g

i
2N;g

i
3N/ 2 C

gen
3 .G=N/; (5.2)

where .gi0N; : : : ; g
i
3N/ are the cosets assigned to lifts e�i of the �i ’s.

Proposition 5.3 is proved in Section 9. The idea is that a generic tuple canonically
determines a .G;N /-cocycle on a truncated simplex. Hence, C gen

� .G=N/˝ZŒG� Z is
isomorphic to a subcomplex of B3.G;N /, and the representation (5.2) of the funda-
mental class is then an immediate consequence of (4.4).

PROPOSITION 5.4
After a single barycentric subdivision ofK , every decoration of a boundary-unipotent
representation � W �1.M/!G is equivalent to a generic one.

Proof
After a barycentric subdivision ofK , every simplex� ofK has distinct vertices and at
least three vertices of � are interior (link is a sphere). Fix lifts ei 2L of each interior
vertex of K . Since the stabilizer of a lift of an interior vertex is trivial, assigning
any coset giH to ei yields an equivalent decoration. Since the gi ’s can be chosen
arbitrarily, the result follows.

5.1. The geometry of the Ptolemy coordinates
We canonically identify each ordered k-simplex with a standard simplex

�kn D
°
.x0; : : : ; xk/ 2R

kC1
ˇ̌̌
0� xi � n;

kX
iD0

xi D n
±
: (5.3)

Recall that a tuple .g0N; : : : ; gkN/ has a Ptolemy coordinate for each tuple of
k C 1 nonnegative integers summing to n. In other words, there is a Ptolemy coor-
dinate for each integral point of �kn. We denote the set of integral points in �kn by
�kn.Z/.

Definition 5.5
A Ptolemy assignment on �kn is an assignment of a nonzero complex number ct to
each integral point t of�kn such that the ct ’s are the Ptolemy coordinates of some tuple
.g0N; : : : ; gkN/ 2 C

gen
k
.G=N/. A Ptolemy assignment onK is a Ptolemy assignment

on each simplex �i of K such that the Ptolemy coordinates agree on identified faces.
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Figure 3. The integral points on �3n for nD 2, 3, and 4. The indicated subsimplices correspond
to ˛D .0; 1; 0; 0/ and ˛D .0; 1; 1; 0/.

Note that a generically decorated boundary-unipotent representation determines
a Ptolemy assignment on K . In Section 9, we show that every Ptolemy assignment is
induced by a unique decorated representation.

LEMMA 5.6
The number of elements in �k

l
.Z/ is

�
lCk
k

�
.

Proof
The map .a0; : : : ; ak/ 7! ¹a0 C 1; a0 C a1 C 2; : : : ; a0 C � � � C ak�1 C kº gives a
bijection between �k

l
.Z/ and subsets of ¹1; : : : ; l C kº with k elements.

Let ei , 0 � i � k, be the i th standard basis vector of ZkC1. For each ˛ 2

�kn�2.Z/, the points ˛ C 2ei in �kn span a simplex �k.˛/, whose integral points
are the points ˛ij WD ˛ C ei C ej (see Figure 3). We refer to �k.˛/ as a subsimplex
of �kn . By Lemma 5.6, �3n has

�
nC3
3

�
integral points and

�
nC1
3

�
subsimplices.

PROPOSITION 5.7 ([13, Lemma 10.3])
The Ptolemy coordinates of a generic tuple .g0N;g1N;g2N;g3N/ satisfy the
Ptolemy relations

c˛03c˛12 C c˛01c˛23 D c˛02c˛13 ; ˛ 2�3n�2.Z/: (5.4)

Proof
Let ˛ D .a0; a1; a2; a3/ 2�3n�2.Z/. By performing row operations, we may assume
that the first n� 2 rows of the n� .n� 2/ matrix�

¹g0ºa0 ; ¹g1ºa1 ; ¹g2ºa2 ; ¹g3ºa3
�

(5.5)

are the standard basis vectors. Letting xi and yi denote the last two entries of
.gi /aiC1, the Ptolemy relation for ˛ is then equivalent to the (Plücker) relation
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det

�
x0 x3

y0 y3

�
det

�
x1 x2

y1 y2

�
C det

�
x0 x1

y0 y1

�
det

�
x2 x3

y2 y3

�

D det

�
x0 x2

y0 y2

�
det

�
x1 x3

y1 y3

�
; (5.6)

which is easily verified.

Note that the Ptolemy coordinate assigned to the i th vertex of�kn is det.¹giºn/D
det.gi /D 1. We shall thus often ignore the vertex points. Let P�kn.Z/ denote the non-
vertex integral points of �kn . The following is proved in Section 9.

PROPOSITION 5.8
For every assignment c W P�3n.Z/!C�, t 7! ct satisfying the Ptolemy relations (5.4),
there is a unique Ptolemy assignment on �3n whose Ptolemy coordinates are ct .

COROLLARY 5.9
The set of Ptolemy assignments on K is an algebraic set Pn.K/ called the Ptolemy
variety. Its ideal is generated by the Ptolemy relations (5.4) (together with an extra
equation, making sure that all Ptolemy coordinates are nonzero).

Remark 5.10
It thus follows that Definition 5.5 agrees with Definition 1.1 when k D 3. When k > 3
and n > 2 there are further relations among the Ptolemy coordinates. We shall not
need these here.

5.2. The diagonal action and the reduced Ptolemy variety
If d0; : : : ; d3 are diagonal matrices with di D diag.di0; : : : ; di;n�1/, then it follows
from (5.1) that if the Ptolemy coordinates of a tuple .g0N; : : : ; g3N/ are ct , then the
Ptolemy coordinates c0t of the tuple .g0d0N; : : : ; g3d3N/ are given by

c0t D ct

t0Y
kD0

d0k

t1Y
kD0

d1k

t2Y
kD0

d2k

t3Y
kD0

d3k : (5.7)

We therefore have an action of Hh on Pn.K/, which agrees with the action in Sec-
tion 4.1. The quotient Pn.K/red is called the reduced Ptolemy variety.

5.3. p SL.n;C/-Ptolemy coordinates
When n is even, a p SL.n;C/-Ptolemy assignment on �kn may be defined as in Def-
inition 5.5. Note, however, that the Ptolemy coordinates are now defined only up to
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a sign. Since we are mostly interested in 3-cycles, the following definition is more
useful.

Definition 5.11
Let�D�3n, and let � 2Z2.�IZ=2Z/ be a cellular 2-cocycle. A p SL.n;C/-Ptolemy
assignment on � with obstruction cocycle � is an assignment c W P�3n.Z/!C� satis-
fying the p SL.n;C/-Ptolemy relations

�2�3c˛03c˛12 C �0�3c˛01c˛23 D c˛02c˛13 : (5.8)

Here, �i 2 Z=2ZD h˙1i is the value of � on the face opposite the i th vertex of �.
A p SL.n;C/-Ptolemy assignment on K with obstruction cocycle � 2Z2.KIZ=2Z/
is a p SL.n;C/-Ptolemy assignment ci on each simplex �i of K such that the
Ptolemy coordinates agree on identified faces, and such that the obstruction cocycle
of ci is ��i .

Note that, for each � 2 Z2.KIZ=2Z/, the set of p SL.n;C/-Ptolemy assign-
ments on K form a variety P �n .K/. We show in Section 9 that this variety depends
only on the cohomology class of � in H 2.KIZ=2Z/DH 2.M;@M IZ=2Z/ and that
the Ptolemy variety parameterizes generically decorated boundary-unipotent
p SL.n;C/-representations whose obstruction class to lifting to a boundary-unipotent
SL.n;C/-representation is � . The diagonal action (5.7) is defined on P �n .K/ as well,
and the quotient is denoted by P �n .K/red. Note that when � is the trivial cocycle
taking all 2-cells to 1, P � .K/D P.K/.

5.4. Cross-ratios and flattenings
For x 2 Cn¹0º, let ex D log.x/, where log is some fixed (set theoretic) section of the
exponential map.

Given a Ptolemy assignment c on �3nD2, we endow �3nD2 with the shape of an
ideal simplex with cross-ratio z D c03c12

c02c13
and a flattening

�.c/D .ec03Cec12 �ec02 �ec13;ec01Cec23 �ec02 �ec13/ 2 bP .C/: (5.9)

By Propositions 5.7 and 5.8, a Ptolemy assignment on �3n induces a Ptolemy
assignment c˛ on each subsimplex �3.˛/. We thus have a map

� W Pn.K/! bP .C/; c 7!
X
i

	i
X

˛2�3
n�2

.Z/

�.ci˛/: (5.10)

Similarly, we have a map P �n .K/! bP .C/PSL defined by the same formula. We next
prove that these maps have image in the respective extended Bloch groups.
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Remark 5.12
The shapes associated to a Ptolemy assignment satisfy equations resembling
Thurston’s gluing equations. This is studied in [14].

6. A chain complex of Ptolemy assignments
LetP tn

k
be the free abelian group on Ptolemy assignments on�kn. The usual boundary

map induces a boundary map P tn
k
! P tn

k�1
, and the natural map C gen

� .G=N/! P tn�
taking a tuple .g0N; : : : ; gkN/ to its Ptolemy assignment is a chain map. The result
below is proved in Section 9.

PROPOSITION 6.1
A generic tuple is determined up to the diagonalG-action by its Ptolemy coordinates.

COROLLARY 6.2
The natural map induces an isomorphism

C
gen
� .G=N/˝ZŒG� ZŠ P t

n
� : (6.1)

In particular, H�.G;N /DH�.P tn� /.

LEMMA 6.3
Let c 2 P tn

k
be a Ptolemy assignment, and let ˛ 2�kn�2.Z/. The Ptolemy coordinates

c˛ij , i ¤ j are the Ptolemy coordinates of a unique Ptolemy assignment c˛ on the
subsimplex �k.˛/.

Proof
For 1 � k � 3, this follows from Proposition 5.8. For k > 3, the result follows by
induction, using the fact that 5 Ptolemy coordinates on �32 determine the last.

A Ptolemy assignment c on �kn thus induces a Ptolemy assignment c˛ on each
subsimplex. We thus have maps

J nk W P t
n
k ! P t2k ; c 7!

X
˛2�k

n�2
.Z/

c˛: (6.2)

For a Ptolemy assignment c 2 P tn
k

, let ci 2 P tnk�1 be the induced Ptolemy

assignment on the i th face of �kn; that is, we have @.c/D
Pk
iD0.�1/

ici . Note that

.ci /.a0;:::;ak�1/ D c.a0;:::;ai�1;0;ai ;:::;ak�1/i 2 P t
2
k�1: (6.3)
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Figure 4. The dotted lines in the left figure indicate cˇ0 , cˇ1 , and cˇ2 for k D 2. The triangle in
the right figure indicates cˇ0 for k D 3. Here, nD 3 and ˇD 0.

For ˇ 2�kn�3.Z/, let cˇ i D c.ˇCei /i 2 P t
2
k�1

, and define @ˇ .c/ 2 P t2k�1 by

@ˇ .c/D

kX
iD0

.�1/icˇ i 2 P t
2
k�1: (6.4)

The geometry is explained in Figure 4.

PROPOSITION 6.4
Let c 2 P tn

k
. We have

@
�
J nk .c/

�
� J nk�1

�
@.c/

�
D

X
ˇ2�k

n�3
.Z/

@ˇ .c/ 2 P t
2
k�1: (6.5)

Proof
By (6.3), we have

@
�
J nk .c/

�
� J nk�1

�
@.c/

�
D

kX
iD0

.�1/i
X

˛2�k
n�2

.Z/

c˛i �

kX
iD0

.�1/i
X

˛2�k
n�2

.Z/

aiD0

c˛i

D

kX
iD0

.�1/i
X

˛2�k
n�2

.Z/

ai>0

c˛i

D
X

ˇ2�k
n�3

.Z/

kX
iD0

.�1/ic.ˇCei /i

D
X

ˇ2�k
n�3

.Z/

@ˇ .c/ (6.6)

as desired.
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6.1. The map to the extended Bloch group
We wish to define a map

� W H3
�
SL.n;C/;N

�
! bB.C/: (6.7)

Lettingex denote a logarithm of x, we consider the maps

� W P t23 ! ZŒbC
; c 7! .ec03Cec12 �ec02 �ec13;ec01Cec23 �ec02 �ec13/ (6.8)

� W P t22 !^
2.C/; c 7! �ec01 ^ec02Cec01 ^ec12 �ec02 ^ec12Cec02 ^ec02: (6.9)

Remark 6.5
The termec02 ^ec02 vanishes in ^2.C/, but over general fields this term is needed.

LEMMA 6.6 ([28, Lemma 6.9])
Let ZŒcFT
 be the subgroup of ZŒbC
 generated by the lifted five-term relations. There
is a commutative diagram

P t24
@

�ı@

P t23
@

�

P t22




ZŒcFT
 ZŒbC
 b	
^2.C/

(6.10)

It follows that � induces a map � W H3.SL.2;C/;N /! bB.C/. This map equals
the map defined in [27, Section 7]. The fact that � is independent of the choice of
logarithm is proved in [27, Remark 6.11] and also follows from Proposition 7.7 below.

LEMMA 6.7
For each c 2 P tn4 and each ˇ 2�4n�3.Z/, we have

�
�
@ˇ .c/

�
D 0 2 bP .C/: (6.11)

Proof
Let .ei ; fi /D �.cˇ i / be the flattening associated to cˇ i . We prove that the flattenings
satisfy the five-term relation by proving that the equations (3.4) are satisfied. We have

e0 DecˇC.1;1;0;0;1/CecˇC.1;0;1;1;0/ �ecˇC.1;1;0;1;0/ �ecˇC.1;0;1;0;1/;
e1 DecˇC.1;1;0;0;1/CecˇC.0;1;1;1;0/ �ecˇC.1;1;0;1;0/ �ecˇC.0;1;1;0;1/; (6.12)

e2 DecˇC.1;0;1;0;1/CecˇC.0;1;1;1;0/ �ecˇC.1;0;1;1;0/ �ecˇC.0;1;1;0;1/;
and it follows that e2 D e1 � e0 as desired. The other four equations are proved simi-
larly.
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LEMMA 6.8
For each c 2 P tn3 and each ˇ 2�3n�3.Z/, �.@ˇ .c//D 0 2 ^

2.C/.

Proof
We have

�.cˇ0/D�ecˇC.1;1;1;0/ ^ecˇC.1;1;0;1/CecˇC.1;1;1;0/ ^ecˇC.1;0;1;1/
�ecˇC.1;1;0;1/ ^ecˇC.1;0;1;1/CecˇC.1;1;0;1/ ^ecˇC.1;1;0;1/: (6.13)

Using this together with the similar formulas for �.cˇ i /, we obtain thatX
.�1/i�.cˇ i /D 0 2 ^

2.C/;

proving the result.

COROLLARY 6.9
The map � ı J n3 induces a map

� W H3
�
SL.n;C/;N

�
! bB.C/: (6.14)

Proof
Using Proposition 6.4, this follows from Lemma 6.7 and Lemma 6.8.

Remark 6.10
For nD 3, this map agrees with the map considered in [29, Section 7.1].

Definition 6.11
The extended Bloch group element of a decorated .G;N /-representation � is defined
by �.Œ�
/, where Œ�
 2H3.SL.n;C/;N / is the fundamental class of �.

Note that, if the decoration of � is generic and c is the corresponding Ptolemy
assignment, then the extended Bloch group element is given by �.c/, where � W
Pn.K/! bP .C/ is given by (5.10).

PROPOSITION 6.12
The map � W Pn.K/! bP .C/ has an image in bB.C/.
Proof
If c 2 Pn.K/ is a Ptolemy assignment on K , then we have a cycle ˛ D

P
i 	ic

i 2

P tn3 , and one easily checks that �.c/ as defined in (5.10) equals �.Œ˛
/. This proves
the result.
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6.2. Stabilization
We now prove that the map � W H3.SL.n;C/;N /! bB.C/ respects stabilization. We
regard SL.n� 1;C/ as a subgroup of SL.n;C/ via the standard inclusion adding a 1
as the upper-left entry.

Let � W M.n;C/!M.n � 1;C/ be the map sending a matrix to the submatrix
obtained by removing the first row and last column. The subgroup Dk.SL.n;C/=N /
of C gen

k
.SL.n;C/=N / generated by tuples .g0N; : : : ; gkN/ such that the upper-left

entry of each gi is 1 and such that�
�.g0/N; : : : ; �.gk/N

�
2 C

gen
k

�
SL.n� 1;C/=N

�
(6.15)

form an SL.n� 1;C/-complex. Consider the SL.n� 1;C/-invariant chain maps

� W D�
�
SL.n;C/=N

�
! P tn�1� ; i W D�

�
SL.n;C/=N

�
! P tn� ; (6.16)

where the first map is induced by � and the second is induced by the inclusion
D�.SL.n;C/=N /! C

gen
� .SL.n;C/=N /. Let Dk DDk.SL.n;C/=N /˝ZŒSL.n�1;C/�

Z.

LEMMA 6.13
The maps � ı � and � ı i from D3 to bP .C/ agree on cycles.

Proof
Let c 2Dk be induced by a tuple .g0N; : : : ; gkN/ 2Dk.SL.n;C/=N /, and let cI be
the collection of Ptolemy coordinates associated to .N;g0N; : : : ; gkN/. Since some
Ptolemy coordinates may be zero, cI is not necessarily a Ptolemy assignment. Note,
however, that cI˛ is a Ptolemy assignment for each .a0; : : : ; akC1/ 2 �

kC1
n�2 .Z/ with

a0 D 0. Note also that cI˛ 2 P t
2
kC1

depends only on c. Hence, there is a map

P W Dk! P t2kC1; c 7!
X

˛2�
kC1
n�2

.Z/

a0D0

cI˛ : (6.17)

We wish to prove the following:

@P.c/CP@.c/D J nk
�
i.c/

�
� J n�1k

�
�.c/

�
C

X
ˇ2�

kC1
n�3

.Z/

b0D0

@ˇ .c
I / 2 P t2kC1: (6.18)

Given this, the result follows immediately from Lemma 6.7.
One easily verifies that

cI.1;b0;:::;bk/ D �.c/.b0;:::;bk/ 2 P t
n�1
k ; .b0; : : : ; bk/ 2�

k
n�3.Z/; (6.19)

cI.0;a0;:::;ak/ D i.c/.a0;:::;ak/; .a0; : : : ; ak/ 2�
k
n�2.Z/: (6.20)
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Using this, one has

@P.c/CP@.c/D
X

˛2�k
n�2

.Z/

i.c/˛ C

kC1X
iD1

.�1/i
X

˛2�
kC1
n�2

.Z/

a0D0

cI˛i

C

kX
iD0

.�1/i
X

˛2�
kC1
n�2

.Z/

a0D0;aiC1D0

cI˛iC1

D
X

˛2�k
n�2

.Z/

i.c/˛ C

kC1X
iD1

.�1/i
X

˛2�
kC1
n�2

.Z/

a0D0;ai>0

cI˛i

D
X

˛2�k
n�2

.Z/

i.c/˛ C
X

ˇ2�
kC1
n�3

.Z/

b0D0

kC1X
iD1

.�1/icI
ˇ i

D
X

˛2�k
n�2

.Z/

i.c/˛ �
X

ˇ2�
kC1
n�3

.Z/

b0D0

cI
ˇ0
C

X
ˇ2�

kC1
n�3

.Z/

b0D0

@ˇ .c
I /

D J nk
�
i.c/

�
� J n�1k

�
�.c/

�
C

X
ˇ2�

kC1
n�3

.Z/

b0D0

@ˇ .c
I /: (6.21)

This proves (6.18), and hence the result.

PROPOSITION 6.14
The map � W H3.SL.n;C/;N /! bB.C/ respects stabilization.

Proof
First, note that � induces an isomorphism D0.SL.n;C/=N / Š C 0.SL.n � 1/=N /.
Using a standard cone argument, one easily checks that D�.SL.n;C/=N / is a free
SL.n � 1;C/-resolution of Ker.D0.SL.n;C/=N / ! Z/. Hence, D� computes
H�.SL.n� 1;C/;N /, and the result follows from Lemma 6.13.

6.3. p SL.n;C/-Ptolemy assignments
When n is even, define pP tn� to be the complex of Ptolemy coordinates of
generic tuples in p SL.n;C/=N . The Ptolemy coordinates are defined as in (5.1)
and take values in C�=h˙1i. As in (6.1), we have an isomorphism C

gen
� .p SL.n;C/=
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N/p SL.n;C/ Š pP t
n
� . For c 2 C�=h˙1i let ec 2 C be the image of some fixed set-

theoretic section of C
exp
��! C� ! C�=h˙1i, for example, 1

2
log.x2/ (the particular

choice is inessential). The map

� W pP t23 ! ZŒbCodd
; c 7! .ec03Cec12�ec02�ec13;ec01Cec23�ec02�ec13/ (6.22)

induces a map H3.PSL.2;C/;N / ! bB.C/PSL, which agrees with the map con-
structed in [27, Section 3]. By precomposing � with the map pJ n3 W pP t

n
3 ! pP t23

defined as in (6.2), we obtain a map

� W H3
�
p SL.n;C/;N

�
! bB.C/PSL; (6.23)

which commutes with stabilization. This proves that a decorated boundary-unipotent
representation in p SL.n;C/ determines an element in bB.C/PSL. The proofs of the
above assertions are identical to their SL.n;C/-analogues.

7. Invariance under the diagonal action
We now show that the extended Bloch group element of a decorated representation is
invariant under the diagonal action. We first prove that we can choose logarithms of
the Ptolemy coordinates independently, without affecting the extended Bloch group
element.

Definition 7.1
Let c W P�kn.Z/! C� be a Ptolemy assignment. A lift of c is an assignment ec W
P�kn.Z/!C such that exp.ec /D c.

For any liftec of a Ptolemy assignment c on �32, we have a flattening

�.ec /D .ec03Cec12 �ec02 �ec13;ec01Cec23 �ec02 �ec13/ 2bC: (7.1)

Definition 7.2
The log-parameters of a flattening .e; f / 2bC are defined by

wij D

8̂̂<
ˆ̂:
e if ij D 01 or ij D 23;

�f if ij D 12 or ij D 03;

�eC f if ij D 02 or ij D 13:

(7.2)

LEMMA 7.3
Letec W P�32.Z/!C be a lifted Ptolemy assignment, and let wij be the log-parameters
of �.ec /. Fix i < j 2 ¹0; : : : ; 3º, and letec 0 be the lifted Ptolemy assignment obtained
fromec by adding 2�

p
�1 toecij . Then



THE COMPLEX VOLUME OF SL.n;C/-REPRESENTATIONS OF 3-MANIFOLDS 2129

�.ec 0 /� �.ec /D 
.wij C 2�p�1ıij /; (7.3)

where ıij is 1 if ij D 02 or 13 and 0 otherwise.

Proof
Denote the flattening �.ec / by .e; f /. If ij D 03 or 12, it follows from (7.1) that
�.ec 0 /D .e C 2�p�1;f /. Similarly, �.ec 0 /D .e; f C 2�p�1/ if ij D 01 or 23,
and �.ec 0 /D .e � 2�p�1;f � 2�p�1/ if ij D 02 or 13. By Lemma 3.4,

.eC 2�
p
�1;f /� .e; f /D 
.�f /;

.e; f C 2�
p
�1/� .e; f /D 
.e/; (7.4)

.e � 2�
p
�1;f � 2�

p
�1/D 
.�eC f C 2�

p
�1/:

This proves the result.

Letec be a lift of a Ptolemy assignment c. For each ˛ 2�3n�2.Z/,ec induces a liftec˛ of c˛ . Consider the element

� D
X

˛2�k
n�2

.Z/

�.ec˛/ 2 bP .C/: (7.5)

Fix a point t0 2 P�kn.Z/. We wish to understand the effect on � of adding 2�
p
�1 toect0 . This changes � into an element � 0 2 bP .C/. Let wij .˛/ denote the log-parameters

of �.ec˛/. Note that t0 either lies on an edge, on a face, or in the interior of �3n.

LEMMA 7.4
Suppose that t0 is on the edge ij of �3n. Then

� 0 � � D 

�
wij .˛/C 2�

p
�1ıij

�
; (7.6)

where ˛D t � ei � ej (i.e., ˛ is such that t0 is an edge point of �3.˛/).

Proof
This follows immediately from Lemma 7.3.

LEMMA 7.5
Suppose that t0 is on a face opposite vertex i . Then � 0 � � D .�1/i
.� C 2�

p
�1/,

where � is given by

� Dec�i .0;�1;1/ �ec�i .0;1;�1/ � .ec�i .�1;0;1/ �ec�i .1;0;�1//
Cec�i .�1;1;0/ �ec�i .1;�1;0/; (7.7)

where �i inserts a zero as the i th vertex.
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Proof
For simplicity, assume i D 0. The other cases are proved similarly. There are exactly
three ˛’s for which t0 is an edge point of �3.˛/. These are

˛0 D t0 � .0; 0; 1; 1/; ˛1 D t0 � .0; 1; 0; 1/; ˛2 D t0 � .0; 1; 1; 0/: (7.8)

Note thatect D .ec˛0/23 D .ec˛1/13 D .ec˛2/12. Since adding 2�
p
�1 toect0 leavesec˛

unchanged unless ˛ 2 ¹˛0; ˛1; ˛2º, Lemma 7.3 implies that

� 0 � � D 

�
w23.˛0/

�
C 


�
w13.˛1/C 2�

p
�1
�
C 


�
w12.˛2/

�
: (7.9)

One easily checks that

w23.˛0/Dec.1;0;�1;0/Cec.0;1;0;�1/ �ec.1;0;0;�1/ �ec.0;1;�1;0/;
w13.˛1/Dec.1;0;0;�1/Cec.0;�1;1;0/ �ec.1;�1;0;0/ �ec.0;0;1;�1/; (7.10)

w12.˛2/Dec.1;�1;0;0/Cec.0;0;�1;1/ �ec.1;0;�1;0/ �ec.0;�1;0;1/;
from which the result follows.

LEMMA 7.6
If t0 is an interior point, � 0 D � .

Proof
If t0 is an interior point, then there are six ˛’s for which t0 is an edge point of �3.˛/.
These are ˛0, ˛1, and ˛2 as defined in (7.8), as well as

˛3 D t0 � .1; 1; 0; 0/; ˛4 D t0 � .1; 0; 1; 0/; ˛5 D t0 � .1; 0; 0; 1/: (7.11)

Again, by Lemma 7.3,

� 0 � � D 

�
w23.˛0/

�
C 


�
w13.˛1/C 2�

p
�1
�
C 


�
w12.˛2/

�
C 


�
w01.˛3/

�
C 


�
w02.˛4/C 2�

p
�1
�
C 


�
w03.˛5/

�
: (7.12)

Using (7.10) (and similar formulas for w01.˛3/, w02.˛4/, and w03.˛5/), we see that
all terms in (7.12) cancel out. Hence, � 0 D � .

PROPOSITION 7.7
Let c be a Ptolemy assignment on K . For any liftec of c, the element

�.ec /DX
i

X
˛2�k

n�2
.Z/

	i�.ec i˛ / 2 bP .C/ (7.13)

is independent of the choice of lift. In particular, if c is the Ptolemy assignment of a
decorated representation �, then �.ec / is the extended Bloch group element of �.
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Proof
Let ec and ec 0 be lifts of c. Let t0 2 P�3n.Z/. We wish to prove that �.ec /D �.ec 0 /. It
is enough to prove this when ec 0 is obtained from ec by adding 2�

p
�1 to ect . If t0

is an interior point, then the result follows immediately from Lemma 7.6. If t0 is a
face point, then t0 lies in exactly two simplices of K , and it follows from Lemma 7.5
that the two contributions to the change in �.ec / appear with opposite signs (by (3.5),
2
.2�

p
�1/D 0). Suppose that t0 is an edge point. Let C be the 3-cycle obtained

by gluing together all the �3.˛/’s having t0 as an edge point, using the face pairings
induced from K . Let e be the (interior) 1-cell of C containing t0. The argument in
[27, Theorem 6.5] shows that the total log-parameter around e is zero. It thus follows
from Lemma 7.4 that adding 2�

p
�1 to ect0 changes �.ec / by 2-torsion, which is

trivial if and only if the number n of simplices in C for which t is a 02 edge or a
13 edge is even. Consider a curve � in C encircling e. The vertex ordering induces
an orientation on each face of each simplex of C , such that when � passes through
two faces of a simplex in C , the two orientations agree unless e is a 02 edge or a 13
edge. Since M is orientable, it follows that n is even. The second statement follows
by lettingec D log c.

PROPOSITION 7.8
The extended Bloch group element of a decorated boundary-unipotent representation
is invariant under the diagonal action.

Proof
The argument is local. Let c be a Ptolemy assignment on �3n, and let c 0 be obtained
from c by the diagonal action. By (5.7), we have

c0t D ct

t0Y
kD0

d0k

t1Y
kD0

d1k

t2Y
kD0

d2k

t3Y
kD0

d3k (7.14)

for diagonal matrices di D diag.di0; : : : ; di;n�1/. Letting log denote a logarithm, andec a lift of c, define a liftec 0 of c0 by

ec 0t Dect C
t0X
kD0

log.d0k/C
t1X
kD0

log.d1k/C
t2X
kD0

log.d2k/C
t3X
kD0

log.d3k/: (7.15)

Using this, one easily checks that �.c˛/D �.c0˛/ for each i and each ˛ 2�3n�2.Z/.
Applying this local argument to each simplex, the result follows from Proposition 7.7.
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COROLLARY 7.9
The extended Bloch group element of a peripherally well-behaved boundary-
unipotent representation � is independent of the decoration.

Proof
By performing a barycentric subdivision if necessary, we may assume that any decora-
tion is generic. Since � is peripherally well behaved, the diagonal action is transitive
on equivalence classes of decorations. Since equivalent decorations have the same
fundamental class, the result follows.

7.1. p SL.n;C/-decorations
Let n be even. All results in this section have natural analogs for p SL.n;C/. The
proofs of these are obtained by replacing 2�

p
�1 by �

p
�1, and logarithms by lifts

of C
exp
��!C�=h˙1i.

8. A cocycle formula forbc
Let i� W H3.SL.n;C//!H3.SL.n;C/;N / denote the natural map. We wish to prove
that the composition

H3
�
SL.n;C/

� i�
�!H3

�
SL.n;C/;N

� �
�! bB.C/ R

�!C=4�2Z (8.1)

equals the Cheeger–Chern–Simons class bc. Note that i� is induced by the map
.g0; : : : ; g3/ 7! .g0N; : : : ; g3N/.

We shall make use of the canonical isomorphisms

H3
�
SL.n;C/

�
ŠH3

�
SL.3;C/

�
ŠH3

�
SL.2;C/

�
˚KM3 .C/: (8.2)

The first isomorphism is induced by stabilization (see [24]) and the second isomor-
phism is the ˙-eigenspace decomposition with respect to the transpose-inverse invo-
lution on SL.3;C/ (see [22]).

LEMMA 8.1 (Suslin [24])
Let H � SL.3;C/ be the subgroup of diagonal matrices. The KM3 .C/ summand of
H3.SL.3;C// is generated by the elements B��.ŒT 
/, where T D S1�S1�S1 is the
3-torus and � W �1.T /!H is a representation.

LEMMA 8.2
Let T D S1 � S1 � S1, and let � W �1.T /!H be a representation. The extended
Bloch group element Œ�
 2 bB.C/ of � is trivial.



THE COMPLEX VOLUME OF SL.n;C/-REPRESENTATIONS OF 3-MANIFOLDS 2133

Figure 5. Triangulation of @C .

Proof
We regard T as a cube C with opposite faces identified and triangulate C as the cone
on the triangulation on @C indicated in Figure 5 with cone point in the center. We
order the vertices of each simplex by codimension; that is, the 0-vertex is the cone
point, the 1-vertex is a face point, and so on. Let � W �1.T /! H be a representa-
tion, and pick a decoration of � by cosets in general position (the triangulation is such
that this is always possible). Note that, for every 3-simplex � of T , there is a unique
opposite 3-simplex�opp, such that the faces opposite the cone point are identified. We
may assume that the cone point is decorated by the coset N . If a simplex � is deco-
rated by the cosets .N;g0N;g1N;g2N/, then the simplex �opp must be decorated by
the cosets .N;dg0N;dg1N;dg2N/, where d is the image of the generator of �1.T /
pairing the faces of � and �opp. It thus follows from (5.2) that the fundamental class
is represented by a sum of terms of the form

.N;dg0N;dg1N;dg2N/� .N;g0N;g1N;g2N/ 2 C
gen
3

�
SL.n;C/=N

�
: (8.3)

Let c and c0 be the Ptolemy assignments associated to the tuples .N;g0N;g1N;
g2N/ and .N;dg0N;dg1N;dg2N/. Letting d D diag.d1; : : : ; dn/, we have c0t D
ct
Qn
iDt0

di . Fix a liftec of c, and consider the lift

ec 0t Dect C nX
iDt0

log.di / (8.4)

of c0. One now checks that �.ec 0˛ /D �.ec˛/ for all ˛ 2 P�kn.Z/, so �.ec /��.ec 0 /D 0.
This proves the result.

THEOREM 8.3
The composition R ı � ı i� equalsbc.
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Proof
Since � commutes with stabilization, it follows from [16] that R ı � ı i� D bc
on H3.SL.2;C//. Since bc is zero on KM3 .C/ (this follows from Lemma 8.1 and
[5, Theorem 8.22]), the result follows from (8.2) and Lemma 8.2.

Remark 8.4
By defining bc D R ı � W H3.SL.n;C/;N /! C=4�2Z, we have a natural extension
of the Cheeger–Chern–Simons class to bundles with boundary-unipotent holonomy,
and we can define the complex volume as in Definition 2.3.

Remark 8.5
The fact that the complex volume is independent of the choice of decoration can
be seen as follows: We can regard bc as a map Pn.�3/! C=4�2Z, and a simple
computation shows that the holomorphic 1-form dbc involves only coordinates on
the boundary of �3. Hence, for a closed 3-cycle K ,bc W Pn.K/!C=4�2Z is locally
constant. The result now follows from the fact that the space of decorations of a
representation is path-connected.

9. Recovering a representation from its Ptolemy coordinates
We now show that a Ptolemy assignment on K determines a generically decorated
boundary-unipotent representation, which is given explicitly in terms of the Ptolemy
coordinates. The idea is that a Ptolemy assignment canonically determines a .G;N /-
cocycle on M .

9.1. The generic .G;N /-cocycle of a tuple

Definition 9.1
An .n � n/-matrix A is counterdiagonal if the only nonzero entries of A are on the
lower-left to upper-right diagonal; that is, Aij D 0 unless j D n� iC1. If Aij D 0 for
j > n� iC1 (resp., j < n� iC1), then A is upper (resp., lower) countertriangular.

Given subsets I;J of ¹1; : : : ; nº, let AI;J denote the submatrix of A whose rows
and columns are indexed by I and J , respectively. If jI j D jJ j, then let jAjI;J denote
the minor det.AI;J /. Let I c denote ¹1; : : : ; nº n I .

Recall that the adjugate Adj.A/ of a matrix A is the matrix whose ij th entry is
.�1/iCj jAj¹j ºc ;¹iºc . It is well known that Adj.A/D det.A/A�1. The following result
by Jacobi (see, e.g., [1, Section 42]) expresses the minors of Adj.A/ in terms of the
minors of A.
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LEMMA 9.2
Let I;J be subsets of ¹1; : : : ; nº with jI j D jJ j D r . We haveˇ̌

Adj.A/
ˇ̌
I;J
D .�1/

P
.I;J / det.A/r�1jAjJ c ;Ic ; (9.1)

where
P
.I; J / is the sum of the indices occurring in I and J .

Definition 9.3
A matrix A 2GLn.C/ is generic if jAj¹k;:::;nº;¹1;:::;n�kC1º ¤ 0 for all k 2 ¹1; : : : ; nº.

Note that A is generic if and only if the Ptolemy coordinates of .N;AN/ are
nonzero. The following is a generalization of [27, Lemma 3.5].

PROPOSITION 9.4
Let A 2 GLn.C/ be generic. There exist unique x 2 N and y 2 N such that q D
x�1Ay is counterdiagonal. The entries of x, y, and q are given by

qn;1 D An;1;
(9.2)

qn�jC1;j D .�1/
j�1 jAj¹n�jC1;:::;nº;¹1;:::;j º

jAj¹n�jC2;:::;nº;¹1;:::;j�1º
for 1 < j � n;

xij D
jAj¹i;jC1;:::;nº;¹1;:::;n�jC1º

jAj¹j;:::;nº;¹1;:::;n�jC1º
for j > i; (9.3)

yij D .�1/
iCj
jAj
¹n�jC2;:::;nº;¹1;:::;bi;:::;j º

jAj¹n�jC2;:::;nº;¹1;:::;j�1º
for j > i: (9.4)

Proof
It is enough to prove existence and uniqueness of x and y in N such that Ay and
x�1A are upper and lower countertriangular, respectively. Suppose that Ay is upper
countertriangular. Then the vector y¹1;:::;j�1º;¹j º consisting of the part above the coun-
terdiagonal of the j th column vector of y must satisfy

A¹n�jC2;:::;nº;¹1;:::;j�1ºy¹1;:::;j�1º;¹j ºCA¹n�jC2;:::;nº;¹j º D 0: (9.5)

The existence and uniqueness of y, as well as the given formula for the entries, now
follow from Cramer’s rule. Since x�1A is lower countertriangular if and only if A�1x
is upper countertriangular, the existence and uniqueness of x follows. The explicit for-
mula for the entries follows from Jacobi’s identity (9.1) and the formula for the entries
of y. To obtain the formula for the entries of q, note that qn�jC1;j D .Ay/n�jC1;j .
Hence, qn;1 DAn;1, and, for 1 < j � n,
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qn�jC1;j D

j�1X
iD1

An�jC1;iyi;j CAn�jC1;j

D

Pj
iD1.�1/

iCjAn�jC1;i jAj¹n�jC2;:::;nº;¹1;:::bi;:::;j º
jAj¹n�jC2;:::;nº;¹1;:::;j�1º

D .�1/j�1
jAj¹n�jC1;:::;nº;¹1;:::;j º

jAj¹n�jC2;:::;nº;¹1;:::;j�1º
;

where the second equality follows from (9.4).

For a generic matrix A, let xA, yA, and qA be the unique matrices provided by
Proposition 9.4. Given cosets giN , gjN , gkN , define

qij D qg�1
i
gj
; ˛ijk D .xg�1

i
gj
/�1xg�1

i
gk
: (9.6)

Definition 9.5
The generic cocycle of a generic tuple .g0N; : : : ; gkN/ is the .G;N /-cocycle on a
truncated simplex � defined by labeling the long edges by qij and the short edges by
˛i
jk

(see Figure 6).

PROPOSITION 9.6
The diagonal left G-action on C gen

k
.G=N/ is free when k � 1, and the chain complex

C
gen
��1.G=N/˝ZŒG� Z computes relative homology.

Proof
By Proposition 9.4, every generic tuple .g0N; : : : ; gkN/ may be uniquely written as

g0xg�1
0
g1
.N;q01N;˛

0
12q02N; : : : ; ˛

0
1kq0kN/: (9.7)

Figure 6. A .G;N /-cocycle on a truncated 3-simplex.
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This proves that the G-action is free. Also note that, for each generic tuple .g0N; : : : ;
gkN/, there exists a coset gN such that .gN;g0N; : : : ; gkN/ is generic. Hence,
C

gen
��1.G=N/ is acyclic and is thus a free resolution of Ker.C0.G=N/! Z). This

proves the result (see, e.g., [27, Theorem 2.1]).

A generically decorated representation � thus determines a .G;N /-cocycle rep-
resenting �. Let B

gen
� .G;N / be the subcomplex of B�.G;N / generated by generic

cocycles on a standard simplex.

COROLLARY 9.7
We have a canonical isomorphism

B
gen
� .G;N /D C

gen
� .G=N/˝ZŒG� Z; (9.8)

and the fundamental class of a decorated representation is represented as in (4.4).

Proof
The first statement follows from Proposition 9.6 and the second from Theorem 4.8.

9.2. Formulas for the long and short edges
We wish to prove that a generic .G;N /-cocycle is uniquely determined by the
Ptolemy coordinates.

Notation 9.8
Let k 2 ¹1; : : : ; n� 1º.
(i) For a1; : : : ; an 2 C�, let q.a1; : : : ; an/ be the counterdiagonal matrix whose

entries on the counterdiagonal (from lower left to upper right) are a1; : : : ; an.
(ii) For x 2C, let xk.x/ be the elementary matrix whose .k; kC 1/ entry is x.
(iii) For b1; : : : ; bk 2C, let �k.b1; : : : ; bk/D x1.b1/x2.b2/ � � �xk.bk/.

PROPOSITION 9.9
The long edges of a generic .G;N /-cocycle are determined by the Ptolemy coordi-
nates as follows:

qij D q.a1; : : : ; an/; ak D .�1/
k�1

c.n�k/eiCkej

c.n�kC1/eiC.k�1/ej
: (9.9)

Proof
Let .g0N; : : : ; gkN/ be a generic tuple, and let AD g�1i gj . Then qij D qA. Since

jAj¹n�jC1;:::;nº;¹1;j º D det
�
¹giºn�k; ¹gj ºk

�
D c.n�k/eiCkej ; (9.10)

the result follows from (9.2).
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The corresponding formula for the short edges requires considerably more work
and is given in Proposition 9.14 below.

LEMMA 9.10
Let A be generic, and let LD x�1A A. The entries Li;n�iC2 right below the counter-
diagonal are given by

Li;n�iC2 D .�1/
n�i
jAj
¹i;:::;nº;¹1;:::;n̂�iC1;n�iC2º

jAj¹iC1;:::;nº;¹1;:::;n�iº
: (9.11)

Proof
We proceed as in the proof of Proposition 9.4. Let x D x�1A . Since L is lower coun-
tertriangular, we must have

x¹iº;¹iC1;:::;nºA¹iC1;:::;nº;¹1;:::;n�iºCA¹iº;¹1;:::;n�iº D 0; (9.12)

and so, by Cramer’s rule,

xij D .�1/
iCj
jAj
¹i;:::;bj ;:::;nº;¹1;:::;n�iº

jAj¹iC1;:::;nº;¹1;:::;n�iº
for j > i: (9.13)

We thus have

jAj¹iC1;:::;nº;¹1;:::;n�iºLi;n�iC2 D Ai;n�iC2jAj¹iC1;:::;nº;¹1;:::;n�iº

C

nX
kDiCi

.�1/iCkjAj
¹j;:::;bk;:::;nº;¹1;:::;n�j ºAk;n�iC2

D

nX
kDj

.�1/iCkjAj
¹j;:::;bk;:::;nº;¹1;:::;n�iºAk;n�iC2

D .�1/n�i jAj
¹i;:::;nº;¹1;:::;n̂�iC1;:::;n�iC2º

;

which proves the result.

Definition 9.11
Let A;B 2GL.n;C/.
(i) A and B are related by a type 0 move if all but the last column of A and B are

equal.
(ii) A and B are related by a type 1 move if all but the second last column of A

and B are equal.
(iii) A and B are related by a type 2 move if, for some j < n � 1, B is obtained

from A by switching columns j and j C 1.
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PROPOSITION 9.12
LetA andB be generic, and letAi andBi denote the i th column ofA, respectivelyB .
(i) If A and B are related by a type 0 move, then xB D xA.
(ii) If A and B are related by a type 1 move, then xB D xAx1.x/, where

x D�
det.A1; : : : ;An�1;Bn�1/det.e1; e2;A1; : : : ;An�2/

det.e1;A1; : : : ;An�1/det.e1;A1; : : : ;An�2;Bn�1/
: (9.14)

(iii) If A and B are related by a type 2 move switching columns j and j C 1,
xB D xAxn�j .x/, where

x D�
det.e1; : : : ; en�j�1;A1; : : : ;AjC1/det.e1; : : : ; en�jC1;A1; : : : ;Aj�1/

det.e1; : : : ; en�j ;A1; : : : ;Aj /det.e1; : : : ; en�j ;A1; : : : ;Aj�1;Bj /
:

(9.15)

Proof
The first statement follows from the fact that xA is independent of the last column
of A. Suppose that A and B are related by a type 1 move. Using (9.3), one sees that
.xA/ij D .xB/ij except when i D 1 and j D 2. It thus follows that xB D xAx1.x/,
where x D .xB/12 � .xA/12. Letting C be the matrix obtained from A by replacing
the nth column by the .n� 1/th column of B , one has

jAj¹1;3;:::;nº;¹1;:::;n�1º D Adj.C /n;2; jBj¹1;3;:::;nº;¹1;:::;n�1º DAdj.C /n�1;2;

jAj¹2;:::;nº;¹1;:::;n�1º D Adj.C /n;1; jBj¹2;:::;nº;¹1;:::;n�1º DAdj.C /n�1;1;

and it follows from (9.3) that

x D .xB/12 � .xA/12 D
Adj.C /n�1;2
Adj.C /n�1;1

�
Adj.C /n;2
Adj.C /n;1

: (9.16)

We then have

xAdj.C /n;1Adj.C /n�1;1 D Adj.C /n�1;2Adj.C /n;1 �Adj.C /n�1;1Adj.C /n;2

D�
ˇ̌
Adj.C /

ˇ̌
¹n�1;nº;¹1;2º

D�det.C /jC j¹3;:::;nº;¹1;:::;n�2º

D�det.A1; : : : ;An�1;Bn�1/det.e1; e2;A1; : : : ;An�2/;

where the third equality follows from Jacobi’s identity (9.1). Since

Adj.C /n;1Adj.C /n�1;1 D det.e1;A1; : : : ;An�1/det.e1;A1; : : : ;An�2;Bn�1/;

this proves the second statement.
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Now suppose that A and B are related by a type 2 move. Let Ej;jC1 be the ele-
mentary matrix obtained from the identity matrix by switching the j th and .j C 1/th
columns. Then B D AEj;jC1. Since L D x�1A A is lower countertriangular,

xn�j .�
Ln�j;jC1
Ln�jC1;jC1

/LEj;jC1 must also be lower countertriangular. We thus have

xB D xAxn�j

�
�
Ln�j;jC1

Ln�jC1;jC1

��1
D xAxn�j

� Ln�j;jC1

Ln�jC1;jC1

�
: (9.17)

By (9.11) and (9.2), we have

Ln�jC1;jC1 D .�1/
j�1
jAj
¹n�jC1;:::;nº;¹1;:::;bj ;jC1º
jAj¹n�jC2;:::;nº;¹1;:::;j�1º

;

(9.18)
Ln�j;jC1 D .�1/

j jAj¹n�j;:::;nº;¹1;:::;jC1º

jAj¹n�jC1;:::;nº;¹1;:::;j º
:

Hence

Ln�j;jC1

Ln�jC1;jC1

D�
jAj¹n�j;:::;nº;¹1;:::;jC1ºjAj¹n�jC2;:::;nº;¹1;:::;j�1º

jAj¹n�jC1;:::;nº;¹1;:::;j ºjAj¹n�jC1;:::;nº;¹1;:::;bj ;jC1º
D�

det.e1; : : : ; en�j�1;A1; : : : ;AjC1/det.e1; : : : ; en�jC1;A1; : : : ;Aj�1/

det.e1; : : : ; en�j ;A1; : : : ;Aj /det.e1; : : : ; en�j ;A1; : : : ;Aj�1;Bj /
;

proving the third statement.

Note that any two matrices A;B 2GL.n;C/ are related by a sequence of moves
of type 1, 2, and 0 as follows:

A
1
�! ŒA1; : : : ;An�2;B1;An


2
�! ŒA1; : : : ;An�3;B1;An�2;An


2
�! � � �

2
�! ŒB1;A1; : : : ;An�2;An


1
�! ŒB1;A1; : : : ;An�3;B2;An


2
�! � � �

2
�! ŒB1;B2;A1; : : : ;An�3;An


1;2
��! � � �

1;2
��! ŒB1; : : : ;Bn�1;An


0
�!B: (9.19)

Consider the tilings of a face ijk, i < j < k, of �2n by diamonds shown in Fig-
ure 7. We refer to the diamonds as being of type i , j , and k, respectively.

Definition 9.13
The diamond coordinate dkr;s of a diamond .r; s/ of type k is the alternating product
of the Ptolemy coordinates assigned to its vertices (see Figure 7).
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Figure 7. Diamonds of type i , j , and k. The diamond coordinates are d ir;s D d
k
r;s D

�ab
cd

, and

d
j
r;s D

ab
cd

, where a, b, c, and d are Ptolemy coordinates.

PROPOSITION 9.14
The short edges ˛i

jk
, j < k, of a generic .G;N /-cocycle are determined by the

Ptolemy coordinates as follows (�� is defined in 9.8(iii)):

˛ijk D �n�1.d
i
1;1; : : : ; d

i
1;n�1/�n�2.d

i
2;1; : : : ; d

i
2;n�2/ � � ��1.d

i
n�1;1/; (9.20)

where the d i
j;k

’s are the type i diamond coordinates on the face ijk.

Proof
Let .g0N; : : : ; glN/ be a generic tuple, and let A D g�1i gj and B D g�1i gk . We
assume that i < j < k, the other cases being similar. Note that the Ptolemy coordi-
nates on the ijk face are given by
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Figure 8. Ptolemy assignments and the corresponding cocycle for nD 2 and nD 3.

ctieiCtj ekCtkek D det.e1; : : : ; eti ;A1; : : : ;Atj ;B1; : : : ;Btk /: (9.21)

Performing the sequence of moves in (9.19), the result follows from Proposition 9.12.

COROLLARY 9.15
A generic tuple is determined up to the diagonalG-action by its Ptolemy coordinates.

Example 9.16
Suppose that Ptolemy assignments on �2n, n 2 ¹2; 3º, are given as in Figure 8. Using
(9.9) and (9.20), we obtain that the corresponding .G;N /-cocycle is given by

q01 D q.a;�1=a/; q12 D q.b;�1=b/; q02 D q.c;�1=c/;
(9.22)

˛012 D x1

��b
ac

�
; ˛102 D x1

� c
ab

�
; ˛201 D x1

��a
cb

�
when nD 2, and

q01 D q.c;�a=c; 1=a/; q12 D q.b;�e=b; 1=e/; q02 D q.f;�g=f; 1=g/;

˛102 D x1

�fa
cd

�
x2

� d
ab

�
x1

�gb
de

�
; (9.23)

˛012 D x1

��bc
ad

�
x2

��d
cf

�
x1

��ef
dg

�
; ˛201 D x1

��cg
fd

�
x2

��d
ge

�
x1

��ae
db

�
when nD 3.

9.3. From Ptolemy assignments to decorations
Corollary 9.15 shows that there is at most one generic .G;N /-cocycle with a given
collection of Ptolemy coordinates. We now prove that, when k � 3, there is exactly
one.
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LEMMA 9.17
Let ai;j and bi;j be nonzero complex numbers. The equality

�n�1.a1;1; : : : ; a1;n�1/ � � ��1.an�1;1/

D �n�1.b1;1; : : : ; b1;n�1/ � � ��1.bn�1;1/ (9.24)

holds if and only if ai;j D bi;j for all i; j .

Proof
For any ci;j , the nth column of �n�1.c1;1; : : : ; c1;n�1/ � � ��1.cn�1;1/ is equal to the
nth column of �n�1.c1;1; : : : ; c1;n�1/, which equals

�n�1Y
iD1

c1;i ;

n�1Y
iD2

c1;i ; : : : ; c1;n�1

�
:

This proves that a1;j D b1;j for all j . The result now follows by induction.

PROPOSITION 9.18
For any assignment c W P�2n.Z/!C�, there is a unique Ptolemy assignment c 2 P tn2
whose Ptolemy coordinates are ct .

Proof
We prove that the Ptolemy coordinates c0t of .N;q01N;˛012q02N/ equal ct , where
q01, q02, and ˛012 are given in terms of the ct ’s by (9.9) and (9.20). First, note that
ct D c

0
t if either t1 or t2 is 0, that is, if t is on one of the edges of �2n containing the

0th vertex. Each of the other integral points t is the upper-right vertex of a unique
diamond .r; s/ of type 0. Let �k be the upper-right vertex of the kth diamond Dk in
the sequence

.1; n� 1/; .1; n� 2/; : : : ; .1; 1/; .2; n� 2/; : : : ; .2; 1/; : : : ; .n� 1; 1/: (9.25)

By Lemma 9.17, d00r;s D d
0
r;s for all diamonds .r; s/ of type 0. It thus follows that if

ct D c
0
t for all but one of the vertices of a diamond D, then ct D c0t for all vertices

of D. In particular, c0�1 D c�1 . Suppose by induction that c0�i D c�i for all i < k. Then
c0t D ct , for all vertices of Dk except �k . Hence, we also have c0�k D c�k , completing
the induction.

PROPOSITION 9.19
For any assignment c W P�3n.Z/! C� satisfying the Ptolemy relations, there is a
unique Ptolemy assignment c 2 P tn3 whose Ptolemy coordinates are ct .
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Proof
Let c0t be the Ptolemy coordinates of the tuple .N;q01N;˛012q02N;˛

0
13q03N/ defined

from the ct ’s by (9.9) and (9.20). We wish to prove that c0t D ct for all t . Note that if,
for some subsimplex�3.˛/, c0˛ij D c˛ij for all but one of the 6 ˛ij ’s, then c0˛ij D c˛ij
holds for all ˛ij . This is a direct consequence of the Ptolemy relations. By Proposi-
tion 9.18, c0t D ct , when either t2 or t3 is zero. Hence, for each ˛ D .a0; a1; a2; a3/
with a2 D a3 D 0, c0˛ij D c˛ij except possibly when .i; j / D .2; 3/. As explained
above, c0˛23 D c˛23 as well. Now suppose by induction that c0˛ij D c˛ij for all ˛ with
a2 C a3 < k. Then c0˛ij D c˛ij holds except possibly when .i; j / D .2; 3/. Again,
c0˛23 D c˛23 must also hold, completing the induction.

A .G;N /-cocycle on M obviously determines a decorated representation (up to
conjugation). The main results of this section can thus be summarized by the diagram
below:®

Points in Pn.K/
¯
 !

®
Generic .G;N /-cocycles on M

¯
 !

®
Generically decorated .G;N /-representations

¯
: (9.26)

Remark 9.20
We stress that the Ptolemy variety parameterizes decorated representations and not
decorated representations up to equivalence. In particular, the dimension of Pn.K/
depends on the triangulation and may be very large if K has many interior vertices.

9.4. Obstruction cocycles and the p SL.n;C/-Ptolemy varieties
Suppose that n is even. The projection G ! pG maps N isomorphically onto its
image (also denoted by N ), and by elementary obstruction theory (see, e.g., [23]), the
obstruction to lifting a .pG;N /-representation � to a .G;N /-representation is a class
in

H 2.M;@M IZ=2Z/DH 2.KIZ=2Z/: (9.27)

We can represent it by an explicit cocycle in Z2.KIZ=2Z/ as follows: Pick any
.p SL.n;C/;N /-cocycle N� onM representing � and a lift � of N� to a .G;N /-cochain.
Each 2-cell of K corresponds to a hexagonal 2-cell of M , and the 2-cocycle � 2
Z2.KIZ=2Z/ taking a 2-cell to the product of the � -labelings along the correspond-
ing hexagonal 2-cell of M represents the obstruction class.

PROPOSITION 9.21
Suppose that the interior of M is a 1-cusped hyperbolic 3-manifold with finite vol-
ume. The obstruction class in H 2.KIZ=2Z/ to lifting the geometric representation is
nontrivial.
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Proof
By a result of Calegari [4, Corollary 2.4], any lift of the geometric representation
takes a longitude to an element in SL.2;C/ with trace �2. This shows that no lift is
boundary-unipotent, and so the obstruction class must be nontrivial.

Proposition 9.4 also holds in p SL.n;C/, and we thus have a one-to-one cor-
respondence between generically decorated representations and .pG;N /-cocycles
on M .

Definition 9.22
Let � 2 Z2.KIZ=2Z/. A lifted .pG;N / cocycle on M with obstruction cocycle �
is a generic .G;N /-assignment on M lifting a .pG;N /-cocycle on M such that the
2-cocycle on K obtained by taking products along hexagonal faces of M equals � .

A 1-cochain � 2 C 1.KIZ=2Z/ acts on a lifted .pG;N /-cocycle � by multiplying
a long edge e by �.e/. Note that if � has obstruction cocycle � , then �� has obstruction
cocycle ı.�/� , where ı is the standard coboundary operator. Recall that there is a
one-to-one correspondence between generic .G;N /-cocycles on M and points in the
Ptolemy variety. We shall prove a similar result for pG.

We wish to define a coboundary action on pG-Ptolemy assignments (see Defini-
tion 5.11). Let c be a pG-Ptolemy assignment on �, and let �ij 2 C 1.�IZ=2Z/ be
the cochain taking the edge ij to �1 and all other edges to 1. Define

�ij c W P�
3
n.Z/!C�; .�ij c/t D .�1/

ti tj ct ; (9.28)

and extend in the natural way to define �c for a pG-Ptolemy assignment c on K
and � 2 C 1.KIZ=2Z/. A priori �c is only an assignment of complex numbers to the
integral points of the simplices of K . However, we have the following lemma.

LEMMA 9.23
If c is a pG-Ptolemy assignment on K with obstruction cocycle � , then �c is a pG-
Ptolemy assignment on K with obstruction cocycle ı.�/� .

Proof
It is enough to prove this for a simplex � and for �D �ij . Let c0 D �ij c. We assume
for simplicity that ij D 01; the other cases are proved similarly. For any ˛D .a0; a1;
a2; a3/ 2�

k
n�2.Z/, we then have

c0˛03c
0
˛12
C c0˛01c

0
˛23
� c0˛02c

0
˛13

D .�1/a0Ca1.c˛03c˛12 � c˛01c˛23 � c˛02c˛13/: (9.29)



2146 GAROUFALIDIS, THURSTON, and ZICKERT

Let � D ı.�01/. Since ı.�01/2 D ı.�01/3 D�1 and ı.�01/0 D 1, (9.29) implies that

�2�3c
0
˛03
c0˛12 C �0�3c

0
˛03
c0˛01c

0
˛23
D c0˛02c

0
˛13
; (9.30)

as desired.

Definition 9.24
The diamond coordinates of a p SL.n;C/-Ptolemy assignment with obstruction cocy-
cle � are defined as in Definition 9.13, but multiplied by the sign (provided by � ) of
the face.

Note that, for � 2 C 1.KIZ=2=Z/, the diamond coordinates of c and �c are iden-
tical.

PROPOSITION 9.25
For any � 2 Z2.KIZ=2Z/, there is a one-to-one correspondence between
p SL.n;C/-Ptolemy assignments on K with obstruction cocycle � and lifted
.p SL.n;C/;N /-cocycles onM with obstruction cocycle � . The correspondence pre-
serves the coboundary actions.

Proof
It is enough to prove this for a simplex �. For a pG-Ptolemy assignment c on �
with obstruction cocycle � 2Z2.�IZ=2Z/, define a cochain � on � by the formulas
(9.9) and (9.20) using the � -modified diamond coordinates (Definition 9.24). Let � 2
C 1.�IZ=2Z/ be such that ı� D � , where ı is the standard coboundary map. By
Lemma 9.23, �c satisfies the SL.n;C/-Ptolemy relations (5.4) and hence corresponds
to an .SL.n;C/;N /-cocycle � 0. Since the diamond coordinates of c and �c are the
same, the short edges of � 0 agree with those of � and the long edges differ from those
of � by �. This proves that � is a lifted .pG;N /-cocycle with obstruction cocycle � .
The inductive arguments of Propositions 9.18 and 9.19 show that this is a one-to-one
correspondence. The fact that the actions by coboundaries correspond is immediate
from the construction.

COROLLARY 9.26
Let � 2 Z2.KIZ=2Z/. There is an algebraic variety P �n .K/ of generically deco-
rated boundary-unipotent representations � W �1.M/! p SL.n;C/ whose obstruc-
tion class to lifting to SL.n;C/ is represented by � . Up to canonical isomorphism,
the variety P �n .K/ depends only on the cohomology class of � .

Proof
This follows immediately from Proposition 9.25.
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Note that the canonical isomorphisms in Corollary 9.26 respect the extended
Bloch group element. This follows from the pG variant of Proposition 7.7. The ana-
logue of (9.26) is®

Points in P �n .K/
¯

 !
®
Lifted .pG;N /-cocycles on M with obstruction cocycle �

¯
kW1
�!�!

®
Generically decorated .pG;N /-representations with

obstruction cocycle �
¯
; (9.31)

where k is the number of lifts, that is, that k D jZ1.KIZ=2Z/j.

9.5. Proof of Theorems 1.3, 1.12, and 1.7
Let R W Pn.K/! RG;N .M/ be the composition of the map in (9.26) with the for-
getful map ignoring the decoration. The fact that � has image in bB.C/ follows from
Proposition 6.12, and commutativity of (1.11) follows from Remark 8.4. The fact that
R is surjective if K is sufficiently fine follows from Proposition 5.4. This concludes
the proof of Theorem 1.3. The first part of Theorem 1.12 is proved similarly, and the
last part follows from Theorem 11.7 below. The first statement of Theorem 1.7 fol-
lows from the definition of R. The second statement follows from the fact that if �
is boundary nondegenerate the only freedom in choosing a decoration is the diagonal
action. Finally, the third statement is proved in Corollary 7.9.

10. Examples
In the examples below, all computations of Ptolemy varieties are exact, whereas the
computations of complex volume are numerical with at least 50-digit precision.

Example 10.1 (The 52-knot complement)
Consider the 3-cycle K obtained from the simplices in Figure 9 by identifying the
faces via the unique simplicial attaching maps preserving the arrows. The space
obtained from K by removing the 0-cell is homeomorphic to the complement of the
52-knot, as can be verified by SnapPy [7].

Labeling the Ptolemy coordinates as in Figure 9, the Ptolemy variety for nD 3 is
given by the equations

a0x3C b0x1 D b0x2; a0y3C a0x0 D c0y2; a0x2C b0y2 D a0x1;

x2c0C b1x0 D x3a0; y2b0C a1x3 D y3b0; x1a0C b1y3 D x2c0;
(10.1)

x1c1C x3c0 D b1x0; x0b1C y3c0 D c1x3; y2a1C x2b0 D a1y3;

a1x0C x2c1 D x1a1; a1x3C y2c1 D x0b1; a1y3C x1b1 D y2c1
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Figure 9. A 3-cycle structure on the 52 knot complement, and Ptolemy coordinates for nD 3.

together with an extra equation (involving an additional variable t )

a0a1b0b1c0c1x0x1x2x3y2y3t D 1; (10.2)

making sure that all Ptolemy coordinates are nonzero. By (5.7), a diagonal matrix
diag.x; y; z/ acts by multiplying a Ptolemy coordinate on an edge by x2y and a
Ptolemy coordinate on a face by x3. Since we are not interested in the particular
decoration, we may thus assume, for example, that a0 D y3 D 1. Using Magma [3],
one finds that the Ptolemy variety, after setting a0 D y3 D 1, has three 0-dimensional
components with 3, 4, and 6 points, respectively. One of these is given by

a0 D a1 D y3 D 1; x1 D�1; c0 D c1 D x
2
0 C 2x0C 1;

y2 D x
2
0 C 2D�x2; x3 D�x

2
0 � x0 � 1; (10.3)

x30 C x
2
0 C 2x0C 1D 0:

Thus, this component gives rise to three representations, one for each solution to
x30Cx

2
0C2x0C1D 0. Using the fact thatR.�.c//D i VolC.�/, the complex volumes

of these can be computed to be

0:0� 4:453818209 : : : i 2 C=4�2iZ;
(10.4)

˙11:31248835 : : :C 12:09651350 : : : i 2 C=4�2iZ
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corresponding to the values x0 D �0:5698 : : : and x0 D �0:2150 � 1:3071 : : : i ,
respectively.

In [27, Section 6], the complex volumes of the Galois conjugates of the geometric
representation are computed to be

0:0� 1:113454552 : : : i 2 C=�2iZ;
(10.5)

˙2:828122088 : : :C 3:024128376 : : : i 2 C=�2iZ:

Notice that (10.4) is (approximately) 4 times (10.5). It thus follows from Theorem 1.10
that the representations given by (10.3) are �3 composed with the geometric compo-
nent of PSL.2;C/-representations and that the factor of 4 is exact.

Another component is given by

a0 D a1 D y3 D 1; x1 D�1; b1 D�x0;

b0 D 1=4x
3
0 � 1=4x

2
0 C 3=4x0 � 1=2;

c0 D c1 D 1=4x
3
0 � 1=4x

2
0 � 1=4x0C 1=2; (10.6)

y2 D �x2 D 1=4x
3
0 C 3=4x

2
0 C 7=4x0C 3=2; x3 D�x

2
0 � x0 � 1;

x40 C x
3
0 C x

2
0 � 4x0 � 4D 0:

In this case, there are two distinct complex volumes given by

0:0C 2:631894506 : : : i D
4

15
�2i 2C=4�2iZ;

(10.7)
0:0C 10:527578027 : : : i D

16

15
�2i 2C=4�2iZ:

The third component has somewhat larger coefficients, but after introducing a
variable u with u6C 5u4C 8u2 � 2uC 1D 0, the defining equations simplify to

a0 D y3 D 1; a1 D 1=4u
5C 1=4u4C 5=4u3C 1=2u2C 2u� 3=4;

b0 D b1 D�1=4u
4 � 3=4u2 � 1=4u� 3=4;

c1 D�1=4u
5 � 3=4u3 � 1=4u2 � 3=4u;

c0 D 1=2u
5C 9=4u3C 1=4u2C 7=2u� 1=4;

y2 D�8=17u
5 � 1=34u4 � 79=34u3 � 3=17u2 � 105=34uC 26=17;

(10.8)
x3 D 1=17u

5 � 1=17u4C 6=17u3 � 6=17u2C 14=17u� 16=17;

x2 D 9=34u
5C 4=17u4C 37=34u3C 31=34u2C 75=34uC 13=17;

x1 D 8=17u
5C 1=34u4C 79=34u3C 3=17u2C 139=34u� 9=17;
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x0 D 15=34u
5C 1=17u4C 73=34u3C 29=34u2C 125=34u� 1=17;

u6C 5u4C 8u2 � 2uC 1D 0:

In this case, there are three distinct complex volumes:

0:0C 1:241598704 : : : i; ˙6:332666642 : : :C 1:024134714 : : : i: (10.9)

According to Conjecture 1.20, 6:33 : : :C 1:02 : : : i should (up to rational multiples of
�2i ) be an integral linear combination of complex volumes of hyperbolic manifolds.
Using, for example, Snap [17], one checks that the complex volume of the manifold
m034 is given by

3:166333321 : : :C 2:157001424 : : : i; (10.10)

and we have

6:332666642 : : :C1:024134714 : : : i D 2VolC.m034/�
1

3
�2i 2C=4�2iZ: (10.11)

Example 10.2 (The figure-eight knot complement)
Let K be the 3-cycle in Figure 10. Then M DM.K/ is the figure-eight knot comple-
ment, and H 2.KIZ=2Z/DH 2.M;@M IZ=2Z/D Z=2Z.

For the trivial obstruction class, the Ptolemy variety for nD 2 is given by

yxC y2 D x2; xy C x2 D y2; (10.12)

and is thus empty since x and y are nonzero. In fact, the only boundary-unipotent
representations in SL.2;C/ are reducible, so this is not surprising. The nontrivial
obstruction class can be represented by the cocycle indicated in Figure 10, and the
Ptolemy variety is given by

yx � y2 D x2; xy � x2 D y2: (10.13)

Figure 10. A 3-cycle structure on the figure-eight knot complement and Ptolemy coordinates for
nD 2. The signs indicate the nontrivial second Z=2Z cohomology class.
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As in Example 10.1, we may assume y D 1. Hence, the Ptolemy variety detects two
(complex conjugate) representations corresponding to the solutions to x2�xC1D 0.
The extended Bloch group elements are

�.�ex;�2ex /C .ex; 2ex / 2 bB.C/PSL; (10.14)

with complex volume

˙2:029883212 : : :C 0:0i: (10.15)

We thus recover the well-known complex volume of the figure-eight knot comple-
ment.

For nD 3, similar calculations as those in Example 10.1 show that the Ptolemy
variety detects three 0-dimensional components, but the only one with nonzero vol-
ume is the one induced by the geometric representation. For nD 4, lots of new com-
plex volumes emerge. For the trivial obstruction class, the nonzero complex volumes
are

˙7:327724753 : : :C 0:0i D 2VolC.5
2
1/C �

2i=4; (10.16)

where the manifold 521 is the Whitehead link complement. For the nontrivial obstruc-
tion class, the complex volumes are

˙20:29883212 : : :C 0:0i D 10VolC.41/ 2C=�
2iZ;

˙4:260549384 : : :˙ 0:136128165 : : : i;

˙3:230859569 : : :C 0:0i; (10.17)

˙8:355502146 : : :C 2:428571615 : : : i DVolC.�9
3
15/C 2�

2i=3;

˙3:276320849 : : :C 9:908433886 : : : i:

Remark 10.3
When nD 2, examples of Conjecture 1.20 are abundant. For example, for the 10155-
knot complement (10 simplices), the volumes of the representations detected by the
Ptolemy variety are (numerically)

Vol
�
m032.6; 1/

�
; 2Vol.41/;

(10.18)
3Vol.10155/� 4Vol.v3461/; Vol.10155/:

Remark 10.4
For the hyperbolic census manifolds, most of the components of the reduced Ptolemy
varieties tend to be 0-dimensional. By a result of Menal-Ferrer and Porti [18], the
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composition of the geometric representation with �n is isolated among boundary-
unipotent p SL.n;C/-representations. Higher-dimensional components also occur
(rarely for nD 2, but quite often for n > 2); but, as mentioned earlier, the complex
volume is constant on components.

Remark 10.5
If the face pairings do not respect the vertex orderings, then one can still define a
Ptolemy variety by introducing more signs. See [14] for details.

Remark 10.6
The fact that the reduced Ptolemy varieties Pn.K/red are given by setting some of the
variables (chosen appropriately) equal to 1 is proved in [15].

11. The irreducible representations of SL.2;C/
Let �n W SL.2;C/! SL.n;C/ denote the canonical irreducible representation. It is
induced by the Lie algebra homomorphism sl.2;C/! sl.n;C/ given by�

0 1

0 0

	
7! diagC.n� 1; : : : ; 1/;

�
0 0

1 0

	
7! diag�.1; : : : ; n� 1/; (11.1)

�
1 0

0 �1

	
7! diag.n� 1;n� 3; : : : ;�nC 1/;

where diagC.v/ and diag�.v/ denote matrices whose first upper (resp., lower) diago-
nal is v and all other entries are zero. One has

�n

��
0 �a�1

a 0

	�
D q

�
an�1;�an�3; : : : ; .�1/n�1a�.n�1/

�
; (11.2)

�n

��
1 x

0 1

	�
D �n�1.x; : : : ; x/�n�2.x; : : : ; x/ � � ��1.x/: (11.3)

PROPOSITION 11.1
Let c be a Ptolemy assignment on �32, and let � denote the corresponding cocycle.
The Ptolemy assignment corresponding to �n.�/ is given by

�n.c/ W P�
3
n.Z/!C�; t 7! �n.c/t D

Y
i<j

c
ti tj
ij : (11.4)



THE COMPLEX VOLUME OF SL.n;C/-REPRESENTATIONS OF 3-MANIFOLDS 2153

Figure 11. �n acting on Ptolemy assignments.

Proof
Let ˛ D .a0; : : : ; a3/ 2 �3n�2.Z/. Letting k˛ D

Q
i<j c

aiaj
ij and l˛ D

Q
i<j c

aiCaj
ij ,

we have

�n.c/˛03�n.c/˛12 D k
2
˛l˛c03c12;

�n.c/˛01�n.c/˛23 D k
2
˛l˛c01c23; (11.5)

�n.c/˛02�n.c/˛13 D k
2
˛l˛c02c13:

Hence, the appropriate Ptolemy relations are satisfied. The long and short edges of
the cocycle corresponding to �n.c/ are given by (9.9) and (9.20), and we must prove
that these agree with those of �n.�/. For the long edges, this follows immediately
from (11.2). For the short edges, an easy computation shows that all the diamond
coordinates of a face are equal, and equal to the corresponding diamond coordinate
of c. For example, the type 1 diamond coordinate on face 3 whose left vertex is
t D .t0; t1; t2; 0/ is given by

�n.c/tC.0;�1;1;0/�n.c/tC.�1;1;0;0/

�n.c/t�n.c/tC.�1;0;1;0/

D
c
t0.t1�1/
01 c

t0.t2C1/
02 c

.t1�1/.t2C1/
12 c

.t0�1/.t1C1/
01 c

.t0�1/t2
02 c

.t1C1/t2
12

c
t0t1
01 c

t0t2
02 c

t1t2
12 c

.t0�1/t1
01 c

.t0�1/.t2C1/
02 c

t1.t2C1/
12

D
c02

c01c12
; (11.6)

which is a diamond coordinate for c. By (11.3), the short edges thus agree with those
of �n.�/, proving the result.



2154 GAROUFALIDIS, THURSTON, and ZICKERT

COROLLARY 11.2
If a representation � W �1.M/! PSL.2;C/ is detected by P �2 .K/, then �2kC1 ı � is
detected by P2kC1.K/ and �2k ı � is detected by P �

2k
.K/.

THEOREM 11.3
Let � be a boundary-unipotent representation in SL.2;C/ or PSL.2;C/. The extended
Bloch group element of �n ı � is

�
nC1
3

�
times that of �. In fact, the shapes of all

subsimplices are equal.

Proof
By refining the triangulation if necessary, we may represent � by a Ptolemy assign-
ment c on K . Then � D �n.c/ is a Ptolemy assignment representing �n ı �, and the
extended Bloch group element of �n ı � is given by

�n.�/

�
D
X
i

	i
X

˛2�3
n�2

.Z/

.e�i˛03 Ce�i˛12 �e�i˛02 �e�i˛13 ;e�i˛01 Ce�i˛23 �e�i˛02 �e�i˛13/:
(11.7)

By Proposition 7.7, we may choose the logarithms independently as long as we use
the same logarithm for identified points. Defining e�it DPj<k tj tkec ijk , we see that

.e�i˛03 Ce�i˛12 �e�i˛02 �e�i˛13 ;e�i˛01 Ce�i˛23 �e�i˛02 �e�i˛13/
D .ec03Cec12 �ec02 �ec13;ec01Cec23 �ec02 �ec13/; (11.8)

which means that the flattenings assigned to each subsimplex of �in are equal. By
Lemma 5.6, j�3n�2.Z/j D

�
nC1
3

�
, and the result follows.

11.1. Essential edges

Definition 11.4
An edge of K is essential if the lifts to L have distinct end points.

Note that an edge may be essential even though it is homotopically trivial in K .
Let L.0/ denote the 0-skeleton of L.

LEMMA 11.5
Let � be a representation in SL.2;C/ or PSL.2;C/. A decoration of � determines a
�-equivariant map

D W L.0/! @H
3
DC[ ¹1º; ei 7! gi1: (11.9)
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Every such map comes from a decoration, and the decoration is generic if and only if
the vertices of each simplex of L map to distinct points in C[ ¹1º.

Proof
Equivariance of (11.9) follows from the definition of a decoration. A �-equivariant
mapD W L.0/!C[¹1º is uniquely determined by its image of liftseei 2L of the 0-
cells ei ofK . Picking gi such that gi1DD.eei /, we define a decoration by assigning
the coset giN toeei . The last statement follows from the fact that det.g1e1; g2e1/D 0
if and only if g11D g21.

In the following, we assume that the interior of M is a cusped hyperbolic 3-
manifold H3=� with finite volume.

PROPOSITION 11.6
If all edges of K are essential, then the geometric representation has a generic deco-
ration.

Proof
We identify �1.M/ with � � PSL.2;C/. Each cusp of M determines a �-orbit of
points in @H3, and these orbits are distinct (if two orbits intersected, then they would
be identical, and thus correspond to the same cusp). Each vertex of L corresponds to
either a cusp of M or an interior point of M . Accordingly, we have L.0/ D L.0/cusp [

L
.0/
int . The stabilizer of a point in L.0/cusp is a parabolic subgroup of PSL.2;C/ and thus

fixes a unique point in C[ ¹1º. We thus have an equivariant map D W L.0/cusp! C[

¹1º taking a vertex v to the fixed point in @H3 of Stab.v/� PSL.2;C/. Let e1 and e2
be points in L.0/cusp connected by an edge. Since all edges of K are essential, e1 ¤ e2.
Since the �-orbits of different cusps are distinct, it follows that D.e1/ ¤ D.e2/ if
e1 and e2 correspond to different cusps. If e1 and e2 correspond to the same cusp,
there exists an element in � taking e1 to e2. Since only peripheral elements (i.e., cusp
stabilizers) have fixed points in C[ ¹1º, it follows that D.e1/¤D.e2/. We extend
D to L.0/ by choosing any equivariant map L.0/int ! C [ ¹1º. Since such a map is
uniquely determined by finitely many values (which may be chosen freely), we can
pick the extension so that the vertices of each simplex map to distinct points. This
proves the result.

THEOREM 11.7
Suppose that all edges of K are essential. The representation �n ı �geo is detected by
Pn.K/ if n is odd and by P

�geo
n .K/ if n is even.
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Figure 12. Assigning cross-ratio parameters to the edges of �i . By definition, z0 D 1
1�z and

z00 D 1� 1
z .

Proof
By Proposition 11.6, P

�geo

2 .K/ detects �geo. The result now follows from Corol-
lary 11.2.

Remark 11.8
The census triangulations all have essential edges.

12. Gluing equations and Ptolemy assignments
In this section, we discuss the relation between Ptolemy assignments and solutions to
the gluing equations. The latter were invented by Thurston [26] to explicitly compute
the hyperbolic structure (and its deformations) of a triangulated hyperbolic manifold
and used effectively in [17], [21], and [7]. The gluing equations make sense for any
3-cycle. They are defined by assigning a cross-ratio zi 2Cn¹0; 1º to each simplex�i
ofK . Given these, we assign cross-ratio parameters to the edges of�i as in Figure 12.

There is a gluing equation for each edge E in K and each generator � of the
fundamental group of each boundary component of M . These are given byY

e 7!E

z.e/
i .e/ D 1;
Y

� passes e

z.e/
i .e/ D 1: (12.1)

Here z.e/ denotes the cross-ratio parameter assigned to e, and 	i .e/D 	i if e is an
edge of �i . It follows that the set of assignments �i 7! zi 2 Cn¹0; 1º satisfying the
gluing equations (12.1) is an algebraic set V.K/.

LEMMA 12.1
For every point ¹ziº 2 V.K/, there is a map D W L.0/!C[¹1º such that if e�i is a
lift of�i with vertices e1; : : : ; e3 inL, the cross-ratio of the ideal simplex with vertices
D.e1/; : : : ;D.e3/ is zi . It is unique up to multiplication by an element in PSL.2;C/.
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Moreover, there is a unique (up to conjugation) boundary-unipotent representation
�1.M/! PSL.2;C/ such that D is �-equivariant.

Proof
Pick a fundamental domain F for K in L. Pick a simplex � in F and define D by
mapping the first three vertices of � to 0, 1 and 1. The map D is now uniquely
determined by the cross-ratios. The fundamental group of M has a presentation with
a generator for each face pairing of F . The second statement thus follows from the
fact that PSL.2;C/ is 3-transitive. We leave the details to the reader.

Given a Ptolemy assignment on K , we assign the cross-ratio zi D
ci
03
ci
12

ci
02
ci
13

to �i .

Note that the Ptolemy relations imply that the cross-ratio parameters are given by

zi D
ci03c

i
12

ci02c
i
13

; z0i D
ci02c

i
13

ci01c
i
23

; z00i D�
ci01c

i
23

ci03c
i
12

: (12.2)

THEOREM 12.2
There is a surjective regular mapa

�2H2.KIZ=2Z/

P �2 .K/! V.K/; c 7!
°
zi D

ci03c
i
12

ci02c
i
13

±
: (12.3)

The fibers are disjoint copies of .C�/h, where h is the number of 0-cells of K .

Proof
By a simple cancellation argument (as in the proof of Zickert [27, Theorem 6.5]), the
gluing equations would be satisfied if the formula (12.2) for z00i did not have the minus
sign. The minus sign appears whenever the edge is 02 or 13. As explained in the proof
of Proposition 7.7, any curve passes these an even number of times. It thus follows that
the cross-ratios satisfy the gluing equations. Surjectivity follows from Lemma 11.5,
and the fact that fibers are .C�/h follows from the fact that g11D g21 if and only
if g1N D g2dN for a unique diagonal matrix d .

Remark 12.3
Gluing equation varieties for n > 2 are studied in [14].
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