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1 Introduction

In electromagnetism, point charges are treated as singularities with infinite
field strength at their respective positions. The hypothetical 2-dimensional
magnetic monopole is described by the following symplectic form:

~ 1
w=dq" A dp;+ T—qul A dg?.

Following [Blo17| we show how to remove this singularity yielding a Lie
algebroid L, over T*R?. The key results of this thesis are the explicit
construction of an integrating Lie groupoid (Proposition and the discussion
of the convolution algebra associated to it (sectionsand . The resulting
noncommutative C*-algebra is interpreted as the noncommutative geometry
of the singularity.

In section [2] we introduce Lie groupoids and discuss some properties and
examples. Section [3] deals with their infinitesimal counterpart, the Lie
algebroid and the passage from Lie groupoids to algebroids. We will also briefly
discuss integrability and uniqueness of the t-simply connected integrating
groupoid.

Section [4] discusses C*-algebras of discrete and topological groups and in
we describe with the passage from a Lie groupoid with a Haar system to its
convolution C*-algebra.

In [5| we will apply the techniques that we developed to our example. Section
[.1] introduces Dirac structures as the tool needed to remove the singularity
yielding a Lie algebroid. In we compute explicitly the magnetic Lie
algebroid L, and its unique t-simply connected integrating Lie groupoid G.
In we construct a Haar system on G and discuss the C*-algebras of the
regular and singular part.

Section [f] reviews Morita equivalence of C*-algebras and Lie groupoids and
suggests to view convolution algebras modulo Morita equivalence in the
absence of a distinguished Haar system. In[6.1] we then discuss properties of
C*-algebras preserved under Morita equivalence that we can specify for our
example.

Deutsche Zusammenfassung Im Elektromagnetismus behandelt man
Punktladungen als Singularitdten mit einer an diesem Punkt unendlichen
Feldstarke. Der hypothetische 2-dimensionale magnetische Monopol wird
durch die folgende symplektische Form beschrieben:

, 1
w=dq" Adp; + —qul A dg?.
r
Basierend auf |Blo17] werden wir diese Singularitidt durch ein Lie Algebroid

L., iiber T*R? heben. Schliisselresultate dieser Arbeit sind die Konstruktion
eines integrierenden Lie Gruppoids (Proposition und die Diskussion der



assoziierten Faltungsalgebra (5.3)|6.1)). Diese nichtkommutative C*-Algebra
kann als nichtkommutative Geometrie der Singularitét interpretiert werden.
In Kapitel [2| fithren wir Lie Gruppoide ein und diskutieren Beispiele und erste
Eigenschaften. Kapitel [3| beschéftigt sich mit dem infinitesimalen Gegenstiick,
dem Lie Algebroid, und dem Ubergang von Gruppoid zu Algebroid. Wir
beriihren auch das Thema der Integrierbarkeit und beweisen Eindeutigkeit
des t-einfach zusammenhangenden integrierenden Gruppoids.

Kapitel [4] beschreibt C*-Algebren fiir diskrete und topologische Gruppen und
im Anschluss den Ubergang von Lie Gruppoiden mit Haarsystem zu ihrer
Faltungsalgebra.

In [§] werden wir diese Techniken auf unser Beispiel anwenden. Kapitel [5.]
fiihrt zur Hebung der Singularitét Dirac-Strukturen ein, wodurch wir ein Lie
Algebroid erhalten. In [5.2] werden das magnetische Lie Algebroid L, und
sein eindeutiges t-einfach zusammenhéngendes integrierendes Lie Gruppoid
G explizit berechnet. In konstruieren wir ein Haarsystem auf G und
diskutieren die C*-Algebren des singularen und reguldren Teils.

Kapitel |§| behandelt Morita-Aquivalenz fiir C*-Algebren und Lie Gruppoide
und begriindet, dass Faltungalgebren modulo Morita-Aquivalenz betrachtet
werden sollten in Abwesenheit eines ausgezeichneten Haarsystems. In [5.3
diskutieren wir Eigenschaften von C*-Algebren, die unter Morita-Aquivalenz
stabil sind und die wir fiir unser Beispiel prézisieren kénnen.



2 Lie Groupoids

One of the main objects of our study are Lie groupoids, a manifold version
of the groupoid.

Definition 1. A groupoid is a category in which every morphism is an
isomorphism.

Unraveling this definition, we will mostly think of a groupoid as the space
of morphisms G over the space of objects M called the base. Associated to
each morphism g € G is a source and a target object, i.e. maps s,t: G — M.
Composition of morphisms g, h € G gives the morphism gh € G which is
defined whenever s(g) = t(h).

This is equivalently an associative product o : G@ — G, where G@ =
{(g,h) € G : s(g) = t(h)} is the set of composable pairs.

Each object 2 € M has an identity €(x) := id, € G associated to it and since
every morphism is invertible, there exists an inverse map ~!: G — G.
Thus a groupoid will be denoted G =2 M with the arrows representing the
maps S, t.

Example 1. (a) Every group G can be viewed as a groupoid over a point
M = {pt}. Since s,t must be trivial maps, all elements are composable
as usual.

(b) Similarly, group bundles or disjoint unions of groups form a groupoid
with s = t mapping G 3 g — G. The composition then restricts to the
individual groups.

(c) For any set M we can form the pair groupoid M x M =3 M with

s((z,y)) ==y t((x,y)) =2 and (z,y)o(y,z) = (2,7)

This is the prime example of a transitive groupoid. Subgroupoids of the
pair groupoid are just symmetric and transitive relations on M.

(d) The fundamental groupoid II(X) =3 X for a topological space X provides
a great motivation for the study of groupoids, eliminating the necessity
of choosing a basepoint. The maps s,t assign to each homotopy class of
paths its fixed endpoints.

(e) Let G be a group acting on a space M.The action groupoid associated
to it is G x M 3 M with space of arrows G x M and the following maps:

s((g,m)) :=m t((g,m)) :==g.m and (g,h.m)o(h,m) = (gh,m)

(f) To a principal G-bundle © : P — M we can associate the Atiyah
groupoid (or Gauge groupoid) Gau(P).



G acts on P x P diagonally via g.(p,q) = (g9.p, g.q) which preserves the
source and target maps t((p,q)) = m(p), s((p,q)) = 7(q) because we are
dealing with a principal G-action. We obtain the quotient Gau(P) =
(P x P)/JG =3 M. Every element [p,q] € Gau(P) corresponds to a
G-equivariant map

¢: 1 (n(p)) — 7 (n(q))

which is uniquely determined by ¢(p) = ¢ since G acts transitively on
the fibers. The composition of these maps gives the natural composition
on the Atiyah groupoid.

Adding more structure to the groupoids, we can consider topological
groupoids, where the product and inverse are required to be continous and
the identity section € is required to be an embedding. In the smooth category
we get the following definition:

Definition 2. A Lie groupoid G =3 M is a groupoid where G, M are
smooth manifolds and the s,t are required to be smooth submersions. The
identity section € is required to be a smooth embedding and multiplication
and inverse are required to be smooth maps.

In dealing with integrability questions it is often necessary to not require
Hausdorffness of G and only that of M.
The submersion requirement ensures the smoothness of G(2) and that all
fibers s71(m), ¢! (m) are smooth manifolds. By the inverse function theorem
smoothness of multiplication already implies the smoothness of the globally
defined inverse.

Example 2. a) Lie groups can be regarded as groupoids over a point {pt}
and similarly Lie group bundles over a manifold are groupoids. A special
case of this are vector bundles over manifolds.

b) Most of the groupoids above can be given a natural smooth structure:
the pair groupoid, the action groupoid of a smooth action, the Atiyah
groupoid and even the fundamental groupoid in some cases.

Definition 3. A morphism of groupoids G = M, H =3 N is a functor,
ie. amap F : G — H that satisfies F(gh) = F(g)F(h) for composable
g, h € G inducing a base map f: M — N that makes the following diagram
commute:

Gt H

!

M-t N

A Lie groupoid morphism is a smooth morphism of Lie groupoids.



With this notion of morphism we get the categories Grpd and LieGrpd.
For any groupoid G = M we get a unique morphism (¢,s) : G — M x M to
the pair groupoid. In the restricted category of groupoids over a specific base
we thus get the pair groupoid as a terminal object. For groups, regarded as
groupoids over a point, the terminal object is thus ({pt} x {pt} = {pt}) = {0}.

Definition 4. A groupoid G 3 M provides an equivalence relation on points
in the base M by p ~ q < p = s(g),q = t(g) for some g € G. The equivalence
classes are the orbits of G and G is called transitive if it has only one orbit.
The orbit of m € M will be denoted G.m/[]

The isotropy groups are G, = s~ *(m) nt~1(m) for me M.

For the action groupoid associated to a group action the original notion
of an orbit and the groupoid notion coincide. The fundamental groupoid is
transitive if and only if the underlying space is connected and its isotropy
groups are the fundamental groups associated to different basepoints.

Proposition 1. The isotropy groups of a Lie groupoid are Lie groups and
the orbits are immersed submanifolds.

Proof. We first sketch a conceptual proof that the target map ¢ has constant
rank along the s-fibers. Let m € M and g,¢’ € s7'(m) and let S = G be a
local bisection containing ¢’¢g~!, i.e. a submanifold for which the restriction
of s,t provides diffeomorphisms to open subsets of M. Their existence is a
local question and uses that s,t are submersions.

By left multiplication a local bisection induces an s-equivariant local diffeo-
morphism Ag mapping g — (¢'g~')g = ¢’. By equivariance, Ag provides a
local diffeomorphism between neighbourhoods of g and ¢’ in s~1(m). The
equivariant rank theorem implies that the rank of ¢ is constant on the s-
fibers. Level sets of t[,-1(,,) are therefore submanifolds making the isotropy
group G, a Lie group. Furthermore the image of a constant rank map is an
immersed submanifold, so G.m = t(s~!(m)) is immersed. O

Proposition 2. FEvery transitive Lie groupoid G = M is isomorphic to an
Atiyah groupoid of any of the (left) principal Gp,-bundles t=1(m) — M.

Proof. Let m € M be arbitrary. And let P = t~!(m) with bundle map s :
P — M. Then G, is a Lie group acting smoothly on P via left multiplication.
This action preserves s-fibers. It is free since multiplication by g € G, is an
isomorphism and it is transitive on the s-fibers. Now s : P — M is surjective
because G is transitive by assumption. As seen above s has constant rank on P.
Therefore s is a submersion and its normal form gives us local trivializations

!This is an example of a groupoid action on a manifold N. The difference to ordinary
actions is that we need a moment map p: N — M and g.n is defined only if s(g) = pu(n).



of P. This proves that P is a principal G,,-bundle.
Define a map

PxP—G
(.%' ) y) — y_lx .

This is surjective: for any g € G we find h connecting t(g) to m. Then
h='(hg) = g. Additionally, the map factors through the diagonal action of
Gy, on P x P giving us a bijection ® : (P x P)/G,, = G which is smooth as
a quotient map. Recalling the groupoid structure of Gau(P) we see that ®
is a groupoid morphism compatible with the source and target maps.

Finally, ® is also an isomorphism of Lie groupoids. For this we only need to
verify smoothness of ®~! which follows from the inverse function theorem
when we show that ® has constant rank (it must then be a submersion).
However, this is easily verified since the kernel of the differential T'(P x P) —
TG is just the trivial Gy, orbit that is factored out. O

Corollary 3. Let M be connected. The fundamental groupoid of Ty (M) is
a Lie groupoid.

Proof. The isotropy groups of IT; (M) == M are just copies of the fundamental
group. For manifolds the fundamental group is a countable O-dimensional
Lie group. The fiber s7!(m) is the set of homotopy classes of paths in M
starting at m which is the standard description of the universal cover M of
the connected manifold M. Thus IT; (M) =~ Gau(M) is a Lie groupoid. [

3 Lie Algebroids

In the case of Lie groups it is extremely fruitful to look at the infinitesimal
version, the associated Lie algebra. One way to construct the Lie algebra
Lie(G) of a Lie group G is by left-invariant vector fields. X e X(G) is
called left-invariant if X, = (dLg)eXe,Vg € G where Ly : G — G is left
multiplication by g € G.

It thus easily follows that as a vector space Lie(G) = T.G. The bracket is
the commutator bracket inherited from X(G).

We will in the following examine the infinitesimal analogue of a Lie groupoid,
first in the abstract algebraic setting and then the construction from a given
Lie groupoid.

Definition 5. A Lie algebroid is a vector bundle A — M with a Lie
bracket [-, -] on the sections I'(4) and an anchor map bundle homomorphism
p: A — TM that satisfies the following Leibniz rule:

[0, fT] = flo,7]+plo)f-T where 0,7 € T'(A), f € C°(M)



Proposition 4. The anchor map p is a Lie algebra homomorphism. It also
is the unique anchor making A a Lie algebroid.

Proof. By abuse of notation denote p(c) := poo e X(M).
First we verify uniqueness. Let p, p’ be different anchors making A a Lie
algebroid. The Leibniz rule gives:

flostl+plo)f -7 = flo,7] +p' (o) f - T
Therefore by varying f, o, 7 we get p = p'.

Let f € C®(M),7,n,0 € I'(A). Using the Leibniz rule, bilinearity and
anticommutativity of the bracket we compute:

[[Tv fn]a U] = [f[Ta 77] + p<T)f -1, O']
= fllm,nl, o] = plo)f - [T.0] + p(7)f - [n,0] = p(a)(p(T)f) - 7Z |
1
([fn,ol,7] = [f[n, o] = plo)f - n,7]
[, ol 7]l =p(r)f - [n.0]l = plo) f-[n. 7]+ p(T)(p(a) f) - n |
2

(
[[o, 7], fnl = fllos Tl + p(lo, TS -1 (3)

Summing everything, by the Jacobi identity and anticommutativity of the
bracket we get:

0= [[7, fnl,a] + [[fn,ol,7] + [[o, 7], fn]
=f-0+p(lo,7)f-n+pla)f-0+p(r)f-0
—p(@)(p(T)f) -+ p(T)(p(e)f) n
= (p([o,7]) = [p(a), p(T)]) f -

Since this holds for arbitrary sections n and functions f, we conclude that
p(lo,7]) = [p(o), p(T)] is a Lie algebra homomorphism.
O

Example 3. a) A Lie algebra is a Lie algebroid over a point {pt} because
then C*({pt}) =~ R and the Leibniz rule is plain linearity with trivial
anchor. Similarly bundles of Lie algebras with trivial anchor constitute a
Lie algebroid.

b) The tangent bundle T'M to a manifold M with p = id forms the prime
example of a Lie algebroid. The Leibniz rule is inherent in the characteri-
sation of I'(T'M) as derivations on M.

c) Let © : g — X(M) be a Lie algebra action. Recall that a Lie algebra
action is by definition a homomorphism of Lie algebras. We can associate



an action algebroid g x M — M which is a trivial bundle over M with
anchor p(X,m) = O(X),,. The bracket is given by

[X, Y] = [X, Y]g + ,Cp(X)Y — ﬁp(y)X

with the identification I'(g x M) = C*(M, g) and the bracket [-, -], evalu-
ated pointwise. It is the unique bracket determined by the requirement
that [C, C2] = [C1, C2]4 on constant sections C, Cy which span I'(g x M)
as a C*(M)-module.

d) Let w be a closed 2-form on M. Then we can associate to it a Lie algebroid
A, =TM @L where L is a line bundle. Then I'(A,,) = X(M) @& C* (M)
and bracket given by:

(X, f), (Y, 9)] = ([X, Y], Lxg — Ly [ + w(X,Y))

The closedness of w is equivalent to this bracket satisfying the Leibniz
rule.

e) Let m: P — M be a principal left G-bundle. Then the differential of the
action induces a free and proper left G-action on T'P. The quotient T'P/G
is called the Atiyah algebroid of P. 7 factors through this quotient
making TP/G — M a vector bundle. Its differential dm provides the
anchor map.

Sections of TP/G can be identified with G-invariant vector fields on T'P
which are invariant under the lifted action. They form a Lie subalgebra
inducing a natural bracket on TP/G.

3.1 The Lie algebroid of a Lie groupoid

Let G 3 M be a Lie groupoid. Elements g € G act on specific fibers of G
when left multiplication is allowed. Namely we have:

Lyt (s(g)) — t ' (t(g))
h — gh

This is a diffeomorphism between smooth manifolds with inverse L,-1 and a
differential that is an isomorphism:

(dLg)n : Tu(t™'(s(9))) — Tyn(t™" (t(9)))

Again, since t is a submersion, the level sets’ tangent spaces are just the kernel
of dt: Ty (t~1(t(h))) = (ker(dt)),. Also, by constant rank, TG := ker(dt) is
a subbundle of T'G, consisting of all the fibers’ tangent spaces.

To get a notion of left-invariance of vector fields on G similar to that of a Lie



group, we need to restrict our attention to sections of TG for which some
kind of left multiplication is defined.
A vector field X € X(G) is called left-invariant if it is a section of T*G and
satisfies:

(dL)nXn = Xy ¥(g,h) e G®

Lemma 5. The set of left-invariant vector fields forms a Lie subalgebra of
X(G). A left-invariant vector field is uniquely determined by its values along
the identity bisection (M) < G.

Proof. Let X,Y € I'(T'G). Then X, Y are tangent to all submanifolds ¢~ (m).
By basic properties of Lie brackets we can compute their Lie bracket inside
X(t~1(m)) and the result will be another vector field tangent to ¢t~ (m), ¥m.
This shows that [X,Y] e T'(T'G).

For left-invariance we can evaluate the bracket on the fiber t=!(t(g)) with
feC®(t1(t(g))). Then for composable g, h we have fo L, € C*(t~1(t(h)))
and we compute (with a slight abuse of notation):

dLg[X,Ynf = Xn(Y(f o Lg)) — Ya(X(f o Ly))
= Xn((dLgY ) f) = Yn((dLygX) f)
= Xp(YfolLg) = Yu(XfolLy)
= dLyXp(Y f) — dLgYr(X f)
= XV f =YX f = [X,Y]gnf

It is easy to see that for left-invariant vector fields:
Xy =dLy X,y

where we identify M =~ e(M). This shows that X is already determined by
its values along €. In fact this is true for any bisection (a simultaneous section
of s and t). O

Lemma 6. Sections of e*T'G = T'G|y can uniquely be extended to left-
mwvariant vector fields on G.

Proof. Let X € T'(e*T'G). Define )’(\'g := dLyX,(4) where we regard X as a par-
tially defined section along a submanifold. Then X is left-invariant: It takes
values in T*G since im(dLy) < T'G and we have dLyX), = dLy(dLy X)) =
dLgh Xny = Xgn. What is left to verify is smoothness of X.

For that let f € C*(G) be arbitrary. Then

Xf(g) = dLng(g)f
= Xy(g)(forgoLy)

0
= Gy, T,



where ¢4 : t71(t(g)) — G is the inclusion and © is some locally defined flow
of X. This obviously depends smoothly on g. O

Lemma 7. Lie(G) := T'G|ys has the structure of a Lie algebroid with anchor
ds : T'G|p — TM and the bracket induced from left-invariant vector fields.

Proof. We have seen above the identification of I'(Lie(G)) with left-invariant
vector fields on G which endows I'(Lie(G)) with a Lie algebra structure. To
verify the Leibniz rule we first observe that multiplication of Y € T'(Lie(G))
by f € C®(M) yields the left-invariant vector field fl\/g = f(s(g))?g. We

compute:

[X, Y]

[X, 7Y = [X, (fos)Y]|u
(fo )X, Y]+ X(fos)Y|u
f[X,Y] +ds(X)f-Y

O

It is further possible to construct a functor LieGrpd — LieAlgbd under
some suitable notion of Lie algebroid morphism which will not be necessary
for our purposes. [HM90| We will now turn to a couple of examples of Lie
algebroids derived in this fashion.

Example 4. a) The pair groupoid M x M = M has Lie algebroid TM with
its standard anchor and bracket.

b) The Lie algebroid of the action groupoid G x M =3 M is the action
algebroid g x M. We can see this in the following way:
First, note that t=1(m) = {(h, h~t.m)|h € G}. Now we can observe that
any left-invariant field X must be tangent to this foliation and thus that
its flow @™ (t) = (@(g’m) (1), @g\%m) (t)) € G x M must stay inside the
t-fibers. Therefore O™ () = (@g]’m) (1), @g,m) (t)~1.m). We know that
such a vector field is determined uniquely by its values along the identity
section (e, m),m € M where X takes values

X = % . ©5™ (1), 0™ (£) " :m) € Tiem)(G x M) = g x T,M
Recalling that for a left G-action 7 the canonical Lie algebra homomor-
phism 7 : g — X(M) is given by +/(0) — %‘t:o y(t)~t.m, we see that
the vector field X is uniquely determined by a section Y of the action
algebroid g x M via X, = (Yin, T (Yin)). From this representation we
easily see that the anchor also coincides with the anchor of the action
algebroid.

As noted above, I'(g x M) is a C* (M )-module spanned by the constant
sections. The bracket on constant sections then determines the whole

10



bracket by the Leibniz rule. So consider Y,Z € g as constant sections.
They determine left-invariant vector fields on G (in the usual Lie group
sense) and vector fields on M via 7. It is a straightforward computation
to see that their lift to a left-invariant vector field on the Lie groupoid
G x M is given by }Af(g,m) = (Y, 7m(Y)) and similarly for Z.
The bracket can then be computed componentwise to yield:

[V, 2] = (IY, 2], F(Y),7(2)]) = ([Y, Z], 7([Y Z]))

Therefore the bracket of these constant sections is just their ordinary Lie
bracket regarded as a constant section. This concludes the example.

c) As one might expect, the Lie algebroid of the Atiyah (or Gauge) groupoid
(PxP)/G is the Atiyah algebroid TP/G. A simple consequence is example
[ak For the trivial bundle M — M, the associated Atiyah groupoid is the
pair groupoid with algebroid T'M.

As we see from the construction of Lie(G) is essentially determined by a
small open neighbourhood of the identity section in G. Denote GO < G the
set of g € G that belong to the connected component of t~!(¢(g)) containing
e(t(g)). This GO is obviously t-connected, i.e. has connected t-fibers.
Furthermore the following theorem holds:

Theorem 8. G© is a wide, open and t-connected subgroupoid of G with the
same Lie algebroid.

Proof. The maps Ly : t~1(s(g)) — t~1(t(g)) are homeomorphisms. If g has
s(g) = x,t(g) = y and lies in the same connected component of ¢t~1(y) as
id,, then Ly(id,) = g and thus the homeomorphism L, maps the connected
component of id, to the connected component of id,. This means that
multiplication on G© is well-defined. Also inversion restricts to GO: g~ =
(Lg)~Y(idy) so that g~! must have been in the connected component of id,,.
We conclude by showing that GO is open in G giving it a unique smooth
Lie groupoid structure. It is evident that they must then yield the same
Lie algebroid whose construction depends only on a neighbourhood of the
identity section.

Since t is a submersion, t is locally a projection and for each m € M we
can find a neighbourhood U, of id,, that in some local coordinates is a
product neighbourhood so that U,, nt~1(n) is connected Vn € M. Denote
U = Umers Um the resulting neighbourhood of the identity section. Then
G9 = G9 .U is open as a union of open sets. O

3.2 Integrability of Lie algebroids

It is now natural to ask whether all Lie algebroids can be integrated to
a (possibly non-Hausdorff) Lie groupoid, i.e. if every Lie algebroid A is

11



isomorphic to Lie(G) for some Lie groupoid G. For the case of Lie groups
Lie’s third theorem provides an affirmative answer: There is a unique simply
connected Lie group integrating any Lie algebra. It is also possible to extend
this to Lie algebra bundles [CASW99]. However, not every Lie algebroid is
integrable. An important observation is the following;:

Theorem 9. If G is a t-connected Lie groupoid, there exists a unique t-simply
connected Lie groupoid G and a homomorphism F : G — G such that F is a
local diffeomorphism and G and G have the same Lie algebroid.

Proof. The only possible construction is to piece together the universal covers
of the t-fibers of G. So define t~(m) to be the universal cover of t~!(m)
consiting of homotopy classes of paths ending at m. § will then be the starting
point and multiplication will be multiplication of homotopy classes. This
obviously defines a groupoid G.

We find a smooth structure on G by the following trick: G is foliated by JF,
the fibers of the submersion ¢. The associated fundamental groupoid II; (F%)
is a (possibly non Hausdorff) Lie groupoid (see Proposition |[10]). If we denote
its target map by p : II; (F;) — G, then G = p~1(M) since II; (F;) consists of
homotopy classes of paths inside the ¢-fibers which by construction belong to
G precisely when their endpoint is some id,, € M. Thus G is an embedded
submanifold as a preimage of an embedded submanifold by a submersion.
To show that the structure maps are submersions we just note that they
have constant rank (as shown above) and are surjective. Multiplication and
inversion as well as the identity section are smooth by restriction. O

Proposition 10. If F is a reqular smooth foliation of M then the groupoid
IT1; (F) consisting of homotopy classes of paths that stay inside leafs is a Lie
groupoid. It is not Hausdorff in general. [CF11|]

Proof. We will sketch a construction of charts. Let [y] € II;(F) be a path
connecting p,q € M. Let Wy, W1 be foliation charts around p, g with W; =~
U; x V; € RP x R4, p will be the dimension of the leafs and V; the transverse
space to the leafs. We can assume U; to be simply-connected.

Shrinking Vy and V; we get a transverse ’holonomy lift’ of v to each of the leafs
starting in Vj and ending in V3. We get a chart by the injection Uy x Vo xU; —
IT; (F) that sends a point (x1,x2,y) to the following concatenation: [v] lifts
to the leaf of x5 and connects this to V5. We precompose this with the
unique homotopy class connecting z1 with the start of this lift and follow it
by connecting the endpoint to y.

The source and target maps in these charts are just projections onto Uy, Uy
and thus are smooth submersions. O

It turns out that reconstructing this unique integrating groupoid purely
from paths in the Lie algebroid is possible. [CF03| The only obstruction to
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integrability then is the existence of a smooth structure on this Weinstein
groupoid.

4 C*-algebras

Definition 6. A *-algebra is an algebra over C with a conjugate linear
involution a — a* satisfying (ab)* = b*a*. A *-homomorphism is an
algebra homomorphism compatible with the involutions.

A C*-algebra is a *-algebra with a submultiplicative norm | - || making it a
Banach space. The last additional constraint is ||a*a|| = ||a||?.

A representation of a C*-algebra is a pair (7, H) of a Hilbert space H and
a *-homomorphism 7 : A — B(H). Two representations (71, Hy), (w2, H2)
are unitarily equivalent if there is a unitary operator U : H; — Hs such
that ma(a) = Uy (a)U~! for all a € A.

It turns out that any *-homomorphism ¢ between C*-algebras is already
continuous with ||¢|| < 1 and ¢ is injective if and only if ¢ is isometric.
The standard example of C*-algebras are the bounded linear operators B(H)
on a (complex) Hilbert space H with the operator norm and hermititan
adjoint as involution.
If X is a locally compact Hausdorff space, Cy(X) becomes a commutative
C*-algebra with the supremum norm and complex conjugation. For X = {pt}
this just yields C.
However, note that it is explicitly not required that C*-algebras are unital
(or even commutative).
As a result of the Gelfand-Naimark-Segal construction every C*-algebra is
*-isomorphic to a to a C*-subalgebra of B(H) for some Hilbert space H
(c.f. [Putl9]) If A is a commutative C*-algebra we get an even stronger
result. Namely, the Gelfand representation shows that A is isometrically
*-isomorphic to Cp(X) where X is locally compact and Hausdorff. Explicitly,
X is the set of (multiplicative, complex valued) characters of A with the
weak-*-topology denoted Spec(A). Furthermore Spec(A) is compact if and
only if A is unital.
The Gelfand duality is a contravariant equivalence of categories between
commutative C*-algebras and locally compact Hausdorff spaces. This suggests
that noncommutative C*-algebras arise from "noncommutative spaces". The
following will develop a way of noncommutative convolution on Lie groupoids
giving rise to such algebras.

4.1 Group C*-algebras

Before diving into the case of Lie groupoids we will present briefly the usual
constructions of C*-algebras of discrete and topological groups.
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Discrete Groups. Let G be a finite group. The complex valued functions
on G form a |G|-dimensional vector space CG with standard basis {d4|g € G}
called the group algebra. We will define a product = on CG by defining
dg * O, := Ogp, and extending it by bilinearity to all of CG. This yields the
following convolution formula:

dxb =Y d(glg " h)s, b eCC

heqG geG

We thereby have extended the group structure of G to a "linear object"
CG. We further get an involution on CG by ¢*(g) := ¢(¢~!) making CG a
*_algebra.

The deep relationship between G and CG is reflected in the bijective correspon-
dence of unitary representations of G with nondegenerate *-representations
of CG induced by linear continuation (see Theorem [L1| below). We conclude
by remarking that CG is a C*-algebra if we equip it with the norm induced
by the injective left regular representation.

Topological Groups. Let G be a locally compact, Hausdorff group. Then
there exists a (left) Haar measure p on G that is unique up to scalar multiples,
i.e. a Radon measure that is left-invariant: u(gE) = pu(F) for all g € G and
E < G measurable. Similarly one defines right Haar measures. Any left Haar
measure induces a right Haar measure via ! (E) = u(E~!) and vice versa.
On R” the Haar measure is just the Lebesgue measure, for discrete groups it
is the counting measure. We will see below a proof for general Lie groups.
Measure-theoretic induction shows that p is a left Haar measure if and only
if
|| dtamaun) = | omau 1o o< L)

Right-shift by any g € G gives us a new left Haar measure py(E) := u(Eg).
By uniqueness we must have p, = A(g)p. This assignment defines the
modular function A : G — R which can be easily seen to be a continuous
group homomorphism.

Generalizing the case of discrete groups, we are now going to construct a
convolution algebra structure on C.(G) using the unique Haar measure pu.
Define the convolution product and involution by:

(g Jas S(hYgdu(h)  6*(9) = Al)B(g ) 6.1 € CulG)

This makes C.(G) into a *-algebra. Convolution is commutative if and only
if G is abelian. By Young’s inequality all this extends to L'(G). Using
the modular function, one can verify that = is an isometric involution and
convolution is submultiplicative. However, L' may still fail the C*-identity.
The solution that will also be described later is a completion with respect to
another norm.
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Theorem 11. Let G be a locally compact, Hausdorff group. If m: G — U(H)
s a unitary representation of G, then

7: LY(G) — B(H)
o | olormo)dg
G
is a nondegenerate *-representation of Ll(G), Every unitary-representation
is uniquely determined in this way by a representation of L*(G).

Remark 1. The operator 7(¢) needs to be understood in this way:

(1,€) L<¢<g>w<g>n,s>dg néeH

is bilinear and thus, by Lax-Milgram theorem, induced by 7(¢) € B(H) in
such a way that this bilinear map takes the form {(7(¢)n, £).

Remark 2. Any group admits the left regular representation \ : L'(G) —
U(L*(@)) by [Ag)¢] (h) == #(g~'h). This representation induces the convo-

lution representation A\(¢)n = ¢ #n for p € L', ne L2 ) is faithful as can be
seen by approximate units in L?(G).

For a proof we refer to [Foll6|. The Renault disintegration theorem pro-
vides a generalization of the above for groupoids, but requires representations
of groupoids on Borel Hilbert bundles. (c.f. [RW9S8|, [Ren80])

4.2 The C*-algebra of a Lie groupoid

Much as in the case for topological (Lie) groups our aim is to construct an
algebraic invariant of the underlying groupoid. The appropriate analogue
and generalization of the Haar measure on topological groupoids is the notion
of a Haar system. [Ren80)]

Definition 7. Let G 3 M be a topological locally compact and Hausdorff
groupoid (or a Lie groupoid). A left Haar system on G is a family of
Radon measures {i,}, m € M indexed by the base manifold such that:

(i) supp(pm) =t~ (m)
(ii) for any f e C.(M) the map
m— Jdpm
t=1(m)

is continuous (respectively smooth).
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(iii) for any f e C.(M) the following left invariance holds:
Jf Jdp(g)(h) = ff (gh)dps(g)(h)

Note that the last formula makes sense since supp(gis(g)) = t*(s(g)) and
thus the composition of g, h in the integrand is well-defined on the support

of fis(g):
Proposition 12. Any Lie groupoid admits a smooth (left) Haar system.

Proof. Let G 3 M be a Lie groupoid with associated Lie algebroid A — M.
Then k := rankA is also the dimension of the t-fibers. Let p € |AkA*| be a
top degree non-zero section.

We can extend p smoothly to G' by setting p, = L;,lps(g). Then p satisfies
L% p = p, because:

(Lyp)n = Lgpgn = Lg(Ly-1,-1)Ps(gh)
Z—lg—lgps(h) = Ph-

We get positive linear functionals on C(G) by

fe fr
t=1(m)
which by continuity extend to C.(G). The Riesz representation theorem now
yields a family of Radon measures {/i,,}, m € M on G with support in t~*(m)
such that § fdum, = St—l(m) fp.
The assignment m +— { fdu,, is easily seen to be smooth and we furthermore
compute:

(foLg)p= f

t=1(s(g

ff(gh)dus@(h) = L_l( )
s(g
_ f N j F(B)dpry(q) (R)

where we used that L, : t71(s(g)) — t(t(g)) is a diffeomorphism and that
p is invariant under pullback by Lg. Thus we have found a Haar system on
G. In the case of Lie groups we have in fact proven existence of a unique
Haar measure up to a multiplicative constant. ]

: Ly(fp)

We can now describe the construction of the C*-algebra of a groupoid.
For this purpose, let G =3 M be a locally compact Hausdorff groupoid with
a fixed Haar system {fiy,}menrs. First, C°(G) becomes a #-algebra by the
convolution

f¢ S () ¢*(9) = @) b e CF(G).
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The convolution is well-defined. It is smooth (as can most easily be checked
in local coordinates by applying dominated convergence) and is compactly
supported inside supp¢ - suppy. It is associative and the verification of the
axioms is a computation using basic properties of the Haar system. The
isomorphism of group, viewed as a groupoid, fron} the groupoid convolution
algebra to the group version is given by f — A2 f. There is no canonical
analogue of a modular function on groupoids as there is no uniqueness of the
Haar system.

We are now constructing representations of C°(G) following [Muh97].

Definition 8. Let A be a measure on M. Denote the induced measure on
G by v = Ao u given by successive integration:

j fdv = JM J FdpmdA(m).

Denote v~ ! the measure determined by precomposition of v with the inversion
homeomorphism. To integrate with respect to v~! we can use S fdv—! =

§ g7 Hdv(g).

Define the norm | fl|; := max(

s) where

1o = sup f i 1fl1e = sup f £(g D) dpm(9)
meM

We define the induced representation of A on L?(rv~1) to be
[ndA(@)€](g) == dx&(g) b CL(G),E€ L2 ()

A s-representation 7 is called bounded if |7 (f)| < ||f|1.
Lemma 13. Ind\ is indeed a bounded =-representation of C(G).

Proof. Let ¢, € CX(G) and &,m e L?(v~!). We will first show that indeed
¢ * & e L?(v~!) and that the norm is bounded. First note that by Cauchy-
Schwarz inequality

6% £(9)] < f\¢<h>r\s<h-1g>|dut(g><h>

< | [ 1otiee o) Py )| | [ttty |

1
The second factor is always smaller than |¢[7. We use this to compute:
o+ €221y = [ [ 10+ €la )P (9)dr )
< [ anial, f j 1ol IEBY) b (W) dpi(9)

< Il j aA f ) f r¢<g-1h>\dum<g>dum<h>
< 10[2€25(,
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Therefore IndA is bounded. It is a homomorphism since IndA(¢ * )& =
(px1h) x& == (=) =IndA(¢)Ind\(¢)€ by associativity of convolution.

Lastly, Ind) is also a #-homomorphism:
A @6 = [ (6" + )lg g v
= fd)\f 9) Uq%(h—l)&(hlgl)dut(glm(g‘l)}
=[x [ duno) [ duonWTTTg1E it TRY
=[x [z f o(h= )19 djim o)

— [ [ dun 7w
— (¢, IndA(6)n) = (IndA(@)*€, )
And thus IndA(¢*) = IndA(¢)*. O

dpim
dpm (g

For the Dirac measure ¢, concentrated at m € M we thus get represen-
tations Inde,, on L?(s~!(m)) equipped with the inverse Haar measure. We
refer to them as left regular representations.

For g € G the two representations Inde(,) and Inde;(4) are unitarily equivalent

by U+ L*(s™4(s(9))) — L*(s™!(t(9))) with Uf(h) = f(hg).

Definition 9. The reduced C*-algebra C} (G) is the completion of
C¥(G) in the norm

[#llxea = sup{|Indey (@)] - m € M}.

The full C*-algebra Cf,(G) is the completion with respect to the supremum
norm that ranges over all bounded #-representations of C°(G).

These are obviously seminorms. We have shown that these are actually
norms by the construction of the representations above so that the supremum
is always positive. We remark that construction makes direct use of one par-
ticular Haar measure on G. But in fact, the resulting C*-algebra is somewhat
independent of the Haar measure used (see section [6]). In what follows we
are only going to consider reduced C*-algebras. By unitary equivalence of
many of the representations Inde,,, it actually suffices to consider only one
for each G-orbit.

Example 5. a) The trivial groupoid M =3 M has as Haar system the
counting or Dirac measures. Convolution is just pointwise multiplication
and the reduced norm is the supremum norm on C°(M). Its completion

is C*(M) = Co(M).
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b) Let M be a manifold and A\ a measure with full support on M. Then
the pair groupoid M x M =3 M has a Haar system given by €, x A.
Convolution of f,ge CP (M x M) is then given by convolution of Hilbert-
Schmidt integral kernels:

ﬂﬂmm=LﬁWthWWM

All representations being unitarily equivalent, we see that C(M x M) is
completed in the norm of the representation 7 on L?(M) given by:

ﬂﬁwm=Lﬁmmmmww.

Thus every f can be identified with a smooth integral kernel in the compact
operators K (L?(M)). To see that they lie dense, it suffices to show that
they are dense in the finite rank operators. This is easily verified using
that (L?)* = L?. Therefore we conclude that C*(M x M) =~ K(L*(M)).

5 The magnetic monopole

This section finally deals with the magnetic symplectic singularity. We will
remove this singularity by means of Dirac structures. The resulting Lie
algebroid is integrable to a Lie groupoid (Proposition . We will then treat
its convolution algebra in section This procedure might generally be
interesting to classify and describe types of removable singularities.

5.1 Dirac structures

A Dirac structure is a simultaneous generalization of Poisson and Symplectic
Geometry in that both provide canonical examples of such a structure.

On the bundle TM @ T*M — M we have the following additional structure:
A nondegenerate symmetric and fibrewise bilinear form:

X+a,Y+8)=08(X)+a) X, YeT,M «,BeTiM,
and the Courant bracket [-,-] on the sections of TM @ T*M
1
[(X, @), (V:5)] = [X, Y] + Lxf = Lya + Sd(a(Y) = 5(X)). (4

The Courant bracket is not a Lie bracket. A long calculation gives the
following violation of the Jacobi identity. [Burl3|

a1, az2],as] + c.p. = éd(([[al, as], as) + c.p.) (5)

where c.p. means cyclic permutations.
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Definition 10. A Dirac structure over M is a subbundle L ¢ TM ®T*M
that satisfies

(i) L = L* with respect to the pairing (-, -)
(i) [I'(L), T(L)] = T'(L)

Using equation (j5)) and (i) we see that (ii) is equivalent to {[a1, as],az) =0
for all aj,as,a3 € I'(L). By nondegeneracy, (i) is equivalent to rank(L) =
dim(M) and (-, )|, = 0.

We also see that [-, ]|z does provide a Lie bracket. Using Cartan’s magic
formula on and the vanishing of {-,-) on L we immediately get a different
expression for the Courant bracket: [X + a,Y + ] = [X,Y] + Lx S — iy da.

Lemma 14. Any Dirac structure L — M provides a Lie algebroid with
anchor prpy, and the Courant bracket.

Proof. We only have to check the Leibniz rule. Let X + o, Y + g€ I'(L) and

feC®(M). Then

[X +a (¥ + B)] = [X, Y]+ £x(7B) ~ Lyva+ sd(al(fY) - FH(X))
=fIX. Y]+ Xf-Y+ X[ B+ fLxB— fLya—aY)df

+ 5 (@Y) = BN + 3 fd(a(¥) ~ BX))

=flIX+a,Y +B]+Xf- (Y +5).
We are done because prpy (X + a) = X. O

The canonical examples of Dirac structures are the graphs of Poisson
bivectors and presymplectic forms. Since it is more relevant to our case, we
will only discuss the latter.

Example 6. Let w € Q?(M) be a closed 2-form, i.e. (M,w) is a presym-
plectic manifold. The canonical map wf : TM — T*M given by interior
multiplication gives us a graph Dirac structure.

Craph(w) = Ly, = {X + ¥ (X): X e TM} c TM @T*M

By skew-symmetry (-, )|z, = 0 and it follows as in the remark above that
L, = L. An easy calculation yields

(X +*(X),Y +F(V)], Z +w*(2)) = dw(X,Y, Z) = 0,

so that [-,-]|r, does provide a Lie bracket and L, = Graph(w) is a Dirac
structure. Note that L, n T*M = {0}. In fact, it is easy to see that this last
property uniquely identifies Dirac structures that are induced by a closed
2-form.
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5.2 The Dirac structure of the magnetic monopole

This section follows |Blo17|. We are going to deal with the magnetic symplectic
form w of a magnetic monopole in 2 dimensions, which is a 2-form on
M := T*R? given by

4 1
wzwo—i—B:dqlAdpi—l——qul/\dqz,
r

where {¢,p;} are the standard global Darboux coordinates on M and r? =
lq]*> = (¢1)? + (¢*)%. wp is the standard symplectic form on M.

w has a singularity at the origin which just means that w is not defined on
and cannot be extended to TFR?.

[Blo17| proposes a process to get rid of this singularity by introducing a Dirac
structure.

Proposition 15. The Dirac structure Graph(w) of the magnetic form w €
Q2 (T*R?\T§R?) extends to a smooth Dirac structure L := Graph(w) on all
of T*R?.

However, L is not the graph of any symplectic form.

Proof. By our example above Graph(w) is a Dirac structure over T*R2 =
T*RQ\T*RQ where we denote R% = R?\{0}.

Since 6?1“ 3p; Sban T(T*R2), Graph(w) will be spanned by

0 0 . .
{az‘f‘Zii ,api+ZaiiWIZ=1,2}.

Computing these, we get the following sections:

a1 = 2o +dp1 + Hdg? by = 5 —dgt
ag = Er +dp2 - T12dq by = (322 _dq2

To remove the singular part of @;, we introduce the sections

a, = —r2Gy = —7“2&—2 — r2dpy + dg*

as = r2a; =r? a +r2dp1 + dg?

On R%, r? is a positive function, so that {a;, b;} will still span Graph(w). But
we further observe that a;,b; can be extended to TS‘RQ where they remain
linearly independent. This makes the topological closure L = Graph(w) a
smooth subbundle.
Being a subbundle already suffices to equip L with a Dirac structure: Since
the pairing (-, -) is a smooth operation, we see that the singular fiber will
again be isotropic by continuity, i.e. I = L. The bracket will also restrict
since ([ X1, X>], X3) is smooth and will vanish on T*R?. It must then vanish
identically on all of T*R2.

O
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As seen above, Dirac structures can be viewed as Lie algebroids.

Proposition 16. The magnetic Lie algebroid L — T*R? is a trivial vector
bundle spanned by the 4 sections a1, az, b1, by with anchor p and bracket [-, -]
given by:

plar) = —r*25 plb1) = &5 lar,a2] = —2¢"a1 — 2¢%az
plaz) =150 plba) = 5 [ai, bj] = [bi, bj] = 0

Proof. We are only left to compute the Lie brackets. For this we can use the
trick that p is a Lie algebra homomorphism.

It is easy to see that [p(ai), p(b;)] = [p(bi),p(b;)] = 0. Away from the
singular fiber, any section ¢ € I'(L) is given by ¢ = p(c) + iyw. It then
follows necessarily that [a;, b;] = [b;,b;] = 0.

For computing [a1, az2] just note that

0 0 0 %
20 20 o129 5220
|:7‘ r :| qran QTaql

The same trick as above implies [a1, as] = —2¢'a;. O

The natural question that arises is whether L is integrable. Denote by L
the restriction of L to T*R2 which is just the graph of w as a Dirac structure.
We see that p: Ly — T(T*R%) is an isomorphism (because r? # 0). Hence
L is integrable by the pair groupoid T*R? x T*R? = T*R?. However, this
groupoid is not ¢-simply connected as every t-fiber is isomorphic to T*R?2
which is homotopic to C\{0}. Using the universal cover C — C\{0} : z — €7,
we can replace the target fibers by their universal cover (cf. Theorem E[) and
we get the following ¢-simply connected groupoid integrating L:

I = T*C x T*R? =3 T*R?
s ((2,0),(¢:p)) = (¢,p) t((2,v),(q,p)) = (ge*,v)

((z,0), (@ 2)((Z,p), (d,p) = ((z + 2/, v),(¢,p))) where g = ¢'e*

We are identifying here C =~ R? =~ Tq*RQ = T7C by using the usual global
trivialization by coordinate differentials. The isotropy at any point is isomor-
phic to Z corresponding to the Deck transformations of the universal cover.
If L is integrable by a t-simply connected Lie groupoid G =3 T*R? we must
find T' as the subgroupoid s~ n ¢t~1(T*R2) by uniqueness of the integrating
groupoid. This suggests to take some closure of .
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Proposition 17. L — T*R? is integrable to a Lie groupoid G = T*R? given

by:
G = T*C x T*R? 3 T*R? (6)
s(z,v,¢,p) = (¢,p) t(2,v,4,p) = (qe?,v) (7)
(z,v,0,p)(2,p, ¢, p)) = (7% 2+ 2, v,¢,p)) where ¢ =7 (8)
id(gp) = (0,p, ¢, p) 9)
(2,v,4,p) " = (=2, p,qe%,v) (10)

Proof. We need to verify first that G is indeed a groupoid, then that it is Lie
and lastly that its Lie algebroid of left-invariant vector fields is isomorphic to
L.

Source and target maps are well-defined making the canonical identifications
C =~ R? and T*C =~ T*R2?. Tt is then easy to see that the composition behaves
well with respect to the source map, i.e. s(gh) = s(h). For the target map
we compute:

—, = ———
q/eq’ (eq z z+z') _ (q,eqlzl) eq/eq’z’z _ qeaz‘

This proves that t((z,v,q,p)(z',p,¢,p")) = t((2,v,q,p)). For each (¢,p) €
T*R? id(, ) provides an identity element as can be verified by a quick
calculation. That does indeed provide an inverse is checked in this way:
Clearly s((z,v,¢,p)™') = t((z,v,q,p)) by reading off the last two entries.
Also

t((z,0,4,p) ") = (%™ (7277) p) = (¢,p) = 5((2,v,4,p))-

Therefore composition with the inverse on both sides is well-defined and we
can compute:

(Zv v, 4, p)(_zeiqza b, q6§z7 U) = <eqeqZ (_Zeiqz> z = Zeiqgv v, qeﬁz? U) = id(qeﬁz,v)

(=27, p,qe™,v)(2,v,¢,p) = (e7(—2e™ + 2,p,q,p)) = id(y

This finishes the verification that G is a groupoid. Equipping G with the
standard smooth structure, we see that all structure maps are smooth. s
is a projection and thus clearly a submersion. ¢ is also a submersion since
(2,q) — (ge?) is a submersion. Therefore G admits a smooth Lie groupoid
structure.

We are left to show that the Lie algebroid Lie(G) = T'G|p«pe2 is isomorphic
to L. Let X € X(T'G) be a left-invariant vector field. X is determined by
its values along the identity bisection id(,,). We consider the flow SICEY

of X along this bisection. Write ©(47) = (@gq’p),@gq’p),@éq’p),@iq’p)). By
definition of the flow starting at id,,) we have

(_):(Lq,p) (0) =0, @gq,p)(o) _ @Z(lq,p)(o) —p, @i(])qvp)(o) =q.
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Since X is tangent to the t-fibers the flow will stay inside the t-fibers and

thus (g,p) = t(©@P) = (@g},p)e@émm@gq,p)7@gq,p)). Therefore @gq’p)(s) =p
for all s in the flow domain. o
Differentiating the equality ¢ = ©3e9391 at s = 0 gives:

=(%®%Hhm@56&myuh<mﬁ>@<g 0301 (0)
= (©5(0) + 0 + ¢707(0)) €” = X3 + |g[> X1,

where we denoted the components of X at id, ;) by X;. It follows from this
discussion that left-invariant vector fields along the identity bisection are
exactly of the form

X

q,p) — (le 7_‘q|2X1)X2))

where X is in TC =~ TR? < TT*R? and X5 is in the vertical part of TT*R?,

i.e. X € span( a%i) and Xy € span( a;)- We get a global trivialization frame

for the vector bundle Lie(G) by defining

a1<w,,mmf® b1 = (0,0,0, ;%)
az = (—r,0, g1 555, 0) b2 = (0,0,0, 527

As s is just the projection onto the last two components, the anchor p = ds
will also be the projection onto the last components. The bracket is uniquely
determined by the fact that p is a Lie algebra homomorphism and continuity.
We therefore see that

plar) = —la*s% p(b) = 52 la1,02] = —2¢'ar — 2q2a2

pm>|W£ pb2) = 32 [ai, b;] = [bi,b] =
Comparing this to the magnetic algebroid L — T*R? we get an obvious
isomorphism Lie(G) = L. O

The resulting groupoid has two orbits: TFR? and T*R%.

5.3 The noncommutative geometry of the magnetic monopole

Our next goal is to compute the C*-algebra of the magnetic monopole which
can be interpreted as the noncommutative geometry arising from it. For this
we have to find and choose a (left) Haar system. It turns out that finding a
right Haar system is slightly easier, but as the two are related by inversion
we are going to stick with the associated left Haar system.

Lemma 18. A left Haar system on G =3 T*R? is given by:
de/‘(q,p) = Jf(_zeqz,% qe?*, v)|e” % |dvdz,

where dv,dz are two dimensional Lebesque measures on C =~ R2.
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Proof. The Riesz representation theorem guarantees the existence of such a
system of measures. Note that we integrate over (z,v,q,p) ! = (—ze~ %, p, ¢e?*, v).
Therefore t((z,v,q,p)~!) = (¢, p) and this is also a surjective parametrization

for the t-fiber t~!(g, p). This shows that supp(t(q,p)) = t=(q, p).

For left-invariance we compute:

ff O Lz vt q.p)AH(gp) = J (20, q,p)(—2ze~ P, p, g%, v))|e¥|dvdz

= Jf((z' —2)e” T 0/, qe?*  v)|e? |dvdz.
While on the other hand (2, v/, ¢,p) = (g%, ') and

— _ ., T = —7
deM(Qeqz/,v') - jf(_ze—qeqz Za Ul? qeqz’eqeqz z’ U)|6qeqz z|dUdZ

= ff(—(w — z')e*‘ﬁ/e*q(w*?),v’, qe?®, v)|e*5(“’*Zl)He*q7|dvdw,
where we have substituted w = 2/ + ze?” with dw = |e9%|dz. These
expressions obviously match. Lastly, we need to verify smoothness of
(q,p) = S fdpgp) for f e CX(G). For this we just rewrite [e?| = e??.

Then the integrand is smooth in (z,v, ¢, p) and thus the integral will depend
smoothly on (¢, p). O

This Haar system induces the convolution

Frg(zva,p) = f (2 = 0)e T, v, g™, w)g(w, u, ¢, p)e™dudw (1)

and involution

Note that f # g(z,v,0,p) = { f(z — w,v,0,u)g(w, u,0, p)dudw takes a much
nicer form when restricted to the singular fiber TFR?. Also f*(z,v,0,p) =
f(=z,p,0,v). This motivates the following lemma.

Lemma 19. Let G 3 M be a Lie groupoid.

(i) Let U = M be an open orbit of G and H = s~ (U) nt=Y(U). Then we
get an injective *-homomorphism i : C*(H) — C*(G). Its image is an
ideal.

(ii) Let C = M be a closed orbit of G and S = s7H(C) nt=1(C). Then we

get a surjective *-homomorphism r : C*(G) — C*(S) by restriction.

Proof. The map i : CP(H) — CP(G) is given by continuation by 0. r :
CP(G) — CF(S) is given by restriction. For this we need the sets to be
open and closed respectively.
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First, we need to implicitly restrict the Haar systems to the subgroupoids. It
is then easy to see that the convolution restricts when we are dealing with
orbits (or unions thereof). Involution obviously restricts to subgroupoids, so
that 4, are *~homomorphisms.

1 is an isometry since the left regular representations of H trivially agree with
their counterparts in GG. The other representations will precisely be those
of U¢ where any i(f) will vanish identically. The supremum norm will thus
agree and i extends to an isometric embedding C*(H) — C*(G).

For r we are reducing the number of representations which makes it trivially
continuous. It then extends to a *~homomorphism of the completions with
dense image. Since the image of *-homomorphisms of C*-algebras is always
closed, r extends to a surjective map. O

In our example we are interested in the singular closed subgroupoid S lying
over TFR? and its regular open counterpart I' lying over T*R%. Note that
0— CP () — CP(G) — CF(S) — 0 is certainly not exact since functions
vanishing at 0 need not vanish on a neighbourhood of 0. We could hope
to get rid of this by passing to completions. Using the lemma we get the
following short exact sequence: 0 — ker(r) — C*(G) — C*(S) — 0. Since
r(CL(T')) = 0 we have C*(I") < ker(r) by continuity.

Proposition 5.1 in [LRO1| says that we would have C*(T") = ker(r) if S were
amenable, i.e. Cf;(S) = C*(S). Furthermore this sequence would always be
exact when dealing with the full C*-algebras.

However, in our case the inclusion is strict, since bounding the L? norms in the
singular representation is impossible. The groupoids S and I' are transitive.
This means that all left regular representations are unitarily equivalent and we
can view them as C*-algebras of operators acting on L?(s71(0,0)) =~ L?(C?)
and L?(s71(1,0)) respectively.

We can compute C*(.S) directly: The convolution takes an easy form as seen
above. It seems to be a simultaneous convolution of integral kernels and of
functions on C. We make this more precise using the following map:

CL(C) @ CL(C*) — CL(S)
f®p—[f®d(z,0,0,p) = f(2)e(v,p)]

This has dense image. We can regard C as a group and C? as a pair
groupoid. The convolution is compatible with this:

<f®w*@®wxaumm=j]ﬂmwwwuwmwwmmmww

=ffu—wMWwawuw¢WmMu
=fxg(2) - oxY(v,p) = (f+9) ® (¢ *¢)(2,v,0,p)

A similar computation shows compatibility with the involution on the tensor
product. We implicitly equipped the tensor product of two *-algebras with a

(13)
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*_algebra structure. Finding a C*-norm on tensor products is more difficult.
We will only remark that compact operators are a nuclear, i.e. that one finds a
unique C*-norm on all tensor products with compact operators. (c.f. [Bla06|)
Our map is an isometry with dense image and we thus get an induced
isomorphism on the completed C*-algebras: C*(C) ® K(H) = C*(S). Here
we used that C*(C x C) >~ K(H). This fits neatly into the following theorem.

Theorem 20 ( [MRWST7|). Let G =3 M be a transitive Lie groupoid and
m € M with isotropy group Gp,. Then C*(G) = C*(G,) ® K(L%(s71(m))).

Corollary 21. C*(I') ~ C*(Z) ® K(H) and C*(S) 2 C*(C)® K(H). The
last isomorphism is given explicitly by .

We now collect a few facts about C*(Z). It is a commutative and unital
C*-algebra, since Z is abelian and discrete. Hence, the Gelfand represen-
tation gives us C*(Z) = C(Spec(C*(Z)). The compact Hausdorff space
Spec(C*(Z)) is just S': Any character is uniquely determined by its value at
the identity ¢(1) € U(1) =~ S!. This is a continuous evaluation in the weak
*_topology on the spectrum and bijective, thus a homeomorphism of compact
Hausdorff spaces. We interpret this as a remnant of the singularity.

Proposition 22. C*(T') ~ C(SY) ® K(H).

6 Morita equivalence

We remarked earlier that the C*-algebra of a Lie groupoid depends on the
choice of a Haar system and that there may not be a isomorphism between
two such choices. But what we do obtain are Morita equivalent C*-algebras
in a sense that we will introduce now. For a more detailed discussion we refer
to [RW98| and [Oc16.

The classical Morita theory deals with rings and their category of left modules.
Two rings are said to be Morita equivalent if their categories of left modules are
equivalent. Every such equivalence between rings S and R will be naturally
equivalent to taking a tensor product with a S-R-bimodule ¢Qr and an
inverse rPs. [Mey97|

For a C*-algebra A the relevant category of representations is the category
of Hermitian A-modules.

Definition 11. A Hermitian A-Module is a Hilbert space H together
with a nondegenerate *-representation of A by which A acts from the left on
H. A morphism of Hermitian A-modules is an A-equivariant continuous map
between Hilbert spaces. We will denote this category by Rep(A).

Any representation (7, H) of A can be made nondegenerate by considering
m(A)H.
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Definition 12. A right Hilbert B-module is a right B-module and C-
vector space X together with a sesquilinear B-valued inner product (-,-) :
X x X — B that is linear in the second variable and satisfies:

(i) {(z,x) = 0 with equality only for x = 0E|

(11) <$7y>* = <y,.’17>
(iii) {z,yb) = {(z,y)b Ve,ye X,be B

Furthermore X is assumed to be complete in the norm ||{z, :1:>H%

An operator T € B(X) is called adjointable if there is an operator T% €
B(X) such that (T'z,y) = {x, T*y).

A Hilbert A-B-bimodule is a right Hilbert B-module X together with
a nondegenerate *-representation 7 : A — B(X) which maps into the C*-
algebra of adjointable operators.

Note that a Hilbert A-C bimodule is just a Hermitian A-module and that
a C-B bimodule is a right Hilbert B-module. Any C*-algebra A provides a
canonical A-A-bimodule with the inner product {a,b) = a*b.
Given two bimodules 4 Hg and gKc we can form a product A-C' bimodule
AH®K( as follows: The sesquilinear pairing (h®@k, K’ ®Qk"> := (k,{(h, K'Y pk">c
on H ®c K is compatible with the canonical right C-action. Factoring out by
the space of isotropic vectors and completing with respect to the norm then
yields a right Hilbert C-module. It is an easy verification that the canonical A-
action on H ®¢ K factors through the quotient, acts by adjointable operators
and is nondegenerate.
This tensor product with an A-B-bimodule 4 Hp takes Hermitian B-modules
to Hermitian A-modules: 4 Hp®— : Rep(B) — Rep(A). Moreover the tensor
product is associative up to isomorphism by the usual h® (k®!) — (h®k)®I
which preserves the sesquilinear pairing and thus factors as an isometry to the
completions. The bimodule 4 A4 acts as an identity up to isomorphism. This
gives us a weak 2-category C*Bimod with C*-algebras as objects, Hilbert
bimodules as 1-morphisms and biequivariant maps as 2-morphisms. We define
two C*-algebras A, B to be Morita equivalent if they are equivalent in
this category and this equivalence is implemented by an equivalence bimodule
4Hp. E| In this case, their categories of representations are equivalent and
this equivalence is additive. Therefore Morita equivalence also preserves
irreducibility of representations.

2An element b € B is positive, denoted b = 0, if b = c*¢ or equivalently, if it is self-adjoint
and spec(b) [0, 00).

3An A-B -equivalence bimodule 4 Hp is both a left Hilbert A- and right Hilbert B-module
with a{z,y)z = z{y, z)p. The actions need to be adjointable in both inner products and
the images a(H,H) c A,{H, H)p < B are required to be dense.
Every equivalence bimodule is canonically invertible by g H°P? 4 consisting of the same
underlying set. The left B action on H°? is given by the right action by the adjoint, etc.
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A *-homomorphism of C*-algebras 1) : A — B induces a A-B bimodule X, as
follows: a.b := 1(a)b defines a *-representation of A on B which is canonically
a right B-module. We can make the A-representation nondegenerate by
restricting to ¢ (A)B. A straightfroward computation shows that this provides
a functor C*Alg to C*Bimod. Thus isomorphic C*-algebras are Morita
equivalent.

For Lie groupoids we can also define a notion of Morita equivalence by means
of bibundles.

Definition 13. A G-H-bibundle is a manifold M together with maps
b : M — GO r : M — H©O that is equipped with commuting left and
right G and H actions respectively. It is left-principal if )/ is a surjective
submersion whose fibres are the free G-orbits of M.

For left-principal bibundles ¢ My and g Ng we can define their tensor
product M ®p N := (M X 0y N)/H where the quotient is with respect to the
H-action given by (m,n).h = (m.h,h=!.n). Left-principality is sufficient to
make M ®g N a smooth manifold (c.f. [Oc16]). Furthermore, the product is
associative up to isomorphism, i.e. up to a biequivariant diffeomorphism. To
any group G — G0 we can associate the G-G-bibundle G with the G-actions
given by left and right multiplication. It acts as an identity for the product.
We thus get another weak 2-category LGBimod. Two Lie groupoids are
called Morita equivalent if they are isomorphic in this bicategory.

There is a canonical way to associate to a morphism of Lie groupoids ¢ :
G — H a G-H-bibundle given diagramatically as follows:

®

G

| oam  >u
prm

M Yo

N

This actually provides a functor LieGrpd to LGBimod sending a compo-
sition of Lie groupoid morphisms to the product of bimodules. This shows
that isomorphic groupoids are actually Morita equivalent.

A biprincipal bibundle ¢ My is a G-H-bibundle that is both left and right
principal, where the latter condition is essentially left principality mutatis
mutandis. Such a bibundle is invertible in the following sense: We obtain
an H-G-bibundle M°P by using the same underlying set but exchanging
all relevant maps: The left H-action is given by the right H-action with
the inverse, etc. Then M ®y M°P =~ G and M°P° ®c M =~ H constitues
a Morita equivalence. We see this by M x g MP = {(m,n) : r(m) =
r(n),m,n e M} = {(m,g.m) : m e M,g € G}. The H-action then identi-
fies (m,g.m) ~ (m.h,g.m.h). Since H acts freely and transitively on the
Ipr orbits this precisely identifies (m, g.m) ~ (n,g.n). The desired isomor-
phism of bibundles is then finally given by g+~ [¢g~'.m,m] for an arbitrary
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m e I3, (1(9))-
It is shown in [BloO8| that any Morita equivalence of Lie groupoids is actually
given by a biprincipal bibundle and that N =~ M°P.

Proposition 23. Let G =3 M be a transitive Lie groupoid and m € M.
Then G = M and the isotropy group G., = {m} are Morita equivalent Lie
groupoids.

Proof.

G r~1(m) Gm

u r

M {m}
We claim that »~!(m) provides an biprincipal bibundle. The left and right
actions are given by ordinary multiplication whenever defined. For left
principality we note that r is trivially a surjective submersion. The fiber of
this map is the full »=!(m). Multiplication from the left stays inside this
fiber. It is transitive since for h, b’ € r~1(m) we have b’ = (W'h~1).h.
Right principality is proven as follows: [ is surjective since G is transitive. It
has constant rank by Proposition [I| and is thus a submersion. Its fibers are

I=1(n) nr=1(m) on which G,, acts transitively from the right since for any
two elements h, b’ we have ' = h.(h~'h'). O

A proof of the following can be found in [Oc16]. It also proves (using the
trivial G-G-bibundle) that different Haar systems lead to the same C*-algebra.

Theorem 24. Morita equivalent Lie groupoids have Morita equivalent C*-
algebras. Furthermore, we get a functor LGBimod — C*Bimod mapping
a Lie groupoid to its C*-algebra (with a chosen Haar system).

The proof constructs a C*(G)-C*(H)-bimodule from a given G-H-bibundle
M by equipping CF (M) with a CF(H)-valued inner product and bilateral
actions by convolution. It is then shown to be compatible with composition
of bimodules by a series of computations.
The theorem gives a fancy way of showing the Morita equivalence between
compact operators K (H) and C by considering any transitive pair groupoid
M x M with C*(M x M) =~ K(L?*(s~(m))). Its isotropy group is trivial
and thus has C as its convolution algebra. This also shows that Morita
equivalence is strictly weaker than isomorphism.
Generally, a transitive groupoid C*-algebra will be Morita equivalent to the
C*-algebra of any of its isotropy groups. This is a (slightly) weaker version
of Theorem [20| which we could recover by stable isomorphism [BGR77|.
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6.1 The magnetic C*-algebra up to Morita equivalence

We will now discuss the Morita equivalence classes in our example.

C*(T) =~ C*(Z)® K(H) =~ C(S') ® K(H) is Morita equivalent to C*(Z)
and C(S'). The former is an abelian and unital group C*-algebra and
thus has easy representation theory. Every nondegenerate representation is
induced by a unitary representation of Z (Theorem and by Schur’s lemma
all irreducible representations are one dimensional characters. A unitary
representation of Z is determined by any unitary operator m(1) = U € U(H).
This describes the Hermitian C*(Z)-modules completely.

Actually, the above considerations work for arbitrary abelian groups.

Proposition 25. Let H be an abelian topological locally compact group.
C*(H) = C’O(PI) where H is the Pontryagin dual of H.

All nondegenerate representations of C*(H) are induced by unitary represen-
tations of H. This correspondence preserves irreducibility. All irreducible
representations are characters.

Proof. The Gelfand representation gives us C*(H) = Cy(Spec(C*(H))). Now
every irreducible representation of C*(H) is induced by one of H (Theorem
. This gives H = Spec(C*(H)). It is worthwile to remark here that all
abelian groups are amenable, i.e. C*(H) = Cf;(H). The last assertions
follow immediately. O

Morita equivalence preserves representation categories and irreducibil-
ity. Furthermore, Morita equivalence also preserves liminal C*-algebras
[AHRWO7|, that is C*-algebras for which every irreducible representation
acts by compact operators. In finite dimensions all operators are compact.

Corollary 26. C*(T") is Morita equivalent to C(S*) and C*(S) is Morita
equivalent to Cy(C). Proposition gives us an abstract classification of
Rep(C*(T')) and Rep(C*(S)) and especially of irreducible representations.
They are liminal.

Morita equivalence of C*-algebras induces an isomorphism on the lattice
of closed ideals [RW9§|. The closed ideals Z are partially ordered by inclusion
and every pair I, .JJ € Z has a greatest lower and least upper bound given by
InJand Iv J=(IulJ). Wecan describe some of the lattices explicitly in
the present situation.

Let X be Hausdorff and locally compact, A c X closed and I < Cy(X) a
closed ideal. Define V(I) = {z e X : f(z) =0 Vfel}and I(A) ={f¢€
Co(X): f(x)=0 Vze A}

Theorem 27. V(I(A)) = A and I(V(I)) = I for all closed subsets A < X
and closed ideals I < Cy(X).
If Ac B then I(B) c I(A). If I < J then V(J) < V(I).
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(i) I([AuB)=1(A)nI(B) and I(An B) =I(A) v I(B)
(ii) VI J)=VI)uV(J)and V(I v J)=V(I)nV(J)

That is, V : (Z,v,n) — (Closed(X), n,v) and I are inverse lattice isomor-
phisms where we equip Closed(X) with the reverse ordering A < B <=
A>B.

Proof. Let A < X be closed and x € A°. Then by Urysohn’s lemma 3f € I(A)
with f(x) = 1. Therefore V(I(A)) = A.

I ¢ I(V(I)) is immediate. Applying Urysohn’s lemma again we can see
that I seperates points of X\V(I) and thus by Stone-Weierstrafs, we have
1= Co(X\V(D) = {flxwa : £@) =0 Vae V(D)) = I(V(1). [Follg
The remaining claims are easy computations some of which need to be shown
by using that I,V are mutual inverses. O

Corollary 28. The lattice of closed ideals in C*(I") is isomorphic to the
lattice of closed subsets of S*.

The lattice of closed ideals in C*(S) is isomorphic to the lattice of closed
subsets of C.

Morita equivalence preserves nuclearity. [AHRWO07| For C*-algebras with
countable approximate identities this follows from the nuclearity of the com-
pact operators and stable isomorphism [BGR77] (C*(S),C*(I") are stable).
Also, all commutative C*-algebras are nuclear. [RW98| Using either charac-
terization we get:

Proposition 29. C*(S) and C*(I') are nuclear.

Proposition 30. The canonical inclusion C*(T') — C*(G) does not induce
a Morita equivalence.

Proof. Consider the sequence C*(I') = C*(G) > C*(S) in C*Alg inducing
Cc*(I) X C* (@) Xy C*(S) in C*Bimod. Since roi = 0 we have X;®X, = 0
by functoriality. Since X, # 0, X; cannot be invertible in C*Bimod. O

It is not yet known whether C*(I") and C*(G) are Morita equivalent or
not. In this section we have listed some invariants of C*(I") that could help
answering this question.

Remark 3. Somewhat counterintuitively, C*(I") and C*(S) are Morita
equivalent. For commutative C*-algebras the equivalence class only depends
on the cardinality of their spectra. |Rie74,|Bee82]
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7 Conclusion and Outlook

In the preceding chapters, we have shown an example of how to take a singular
symplectic form on a manifold M, remove its singularity by a Dirac structure,
integrate the Lie algebroid to a Lie groupoid and compute its convolution
algebra.

Other removable singularities Some of our propositions are of a easily
generalizable nature, but the integration is certainly not. We suspect that
for M simply connected, dimM > 3 some simplifications occur, as the pair
groupoid T* My x T*M, will be the unique t-simply connected integration
of the regular part of the resulting Dirac structure.

If integrability is of concern, it might be possible to describe the Morita
equivalence class of the C*-algebra more directly from the Lie algebroid or
even the symplectic form, alleviating the need for integrability, perhaps even
foregoing the removability hypothesis.

Prequantization In[5.2] we only used the Lie algebroid structure of the
Dirac structure. However, the antisymmetric pairing (X + o, Y + ) =
B(X) — a(Y) on Dirac structures generally restricts to a closed 2-form in
the Lie algebroid cohomology. Such cohomology classes are in one-to-one
correspondence with central extensions of the Lie algebroid similar to example
Bldl We were not able to find an integration of this extended Lie algebroid in
the form of a central extension of Lie groupoids, which are also described by
2-cocycles in the groupoid cohomology. The abstract integrability question is
covered in [Cra04]. This again would yield an extension of C*-algebras and
it would be interesting to characterize this in terms of cocycles.
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