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1 Introduction

In electromagnetism, point charges are treated as singularities with infinite
field strength at their respective positions. The hypothetical 2-dimensional
magnetic monopole is described by the following symplectic form:

ω “ dqi ^ dpi `
1

r2
dq1 ^ dq2.

Following [Blo17] we show how to remove this singularity yielding a Lie
algebroid Lω over T ˚R2. The key results of this thesis are the explicit
construction of an integrating Lie groupoid (Proposition 17) and the discussion
of the convolution algebra associated to it (sections 5.3 and 6.1). The resulting
noncommutative C*-algebra is interpreted as the noncommutative geometry
of the singularity.
In section 2 we introduce Lie groupoids and discuss some properties and
examples. Section 3 deals with their infinitesimal counterpart, the Lie
algebroid and the passage from Lie groupoids to algebroids. We will also briefly
discuss integrability and uniqueness of the t-simply connected integrating
groupoid.
Section 4 discusses C*-algebras of discrete and topological groups and in 4.2
we describe with the passage from a Lie groupoid with a Haar system to its
convolution C*-algebra.
In 5 we will apply the techniques that we developed to our example. Section
5.1 introduces Dirac structures as the tool needed to remove the singularity
yielding a Lie algebroid. In 5.2 we compute explicitly the magnetic Lie
algebroid Lω and its unique t-simply connected integrating Lie groupoid G.
In 5.3 we construct a Haar system on G and discuss the C*-algebras of the
regular and singular part.
Section 6 reviews Morita equivalence of C*-algebras and Lie groupoids and
suggests to view convolution algebras modulo Morita equivalence in the
absence of a distinguished Haar system. In 6.1 we then discuss properties of
C*-algebras preserved under Morita equivalence that we can specify for our
example.

Deutsche Zusammenfassung Im Elektromagnetismus behandelt man
Punktladungen als Singularitäten mit einer an diesem Punkt unendlichen
Feldstärke. Der hypothetische 2-dimensionale magnetische Monopol wird
durch die folgende symplektische Form beschrieben:

ω “ dqi ^ dpi `
1

r2
dq1 ^ dq2.

Basierend auf [Blo17] werden wir diese Singularität durch ein Lie Algebroid
Lω über T ˚R2 heben. Schlüsselresultate dieser Arbeit sind die Konstruktion
eines integrierenden Lie Gruppoids (Proposition 17) und die Diskussion der
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assoziierten Faltungsalgebra (5.3,6.1). Diese nichtkommutative C*-Algebra
kann als nichtkommutative Geometrie der Singularität interpretiert werden.
In Kapitel 2 führen wir Lie Gruppoide ein und diskutieren Beispiele und erste
Eigenschaften. Kapitel 3 beschäftigt sich mit dem infinitesimalen Gegenstück,
dem Lie Algebroid, und dem Übergang von Gruppoid zu Algebroid. Wir
berühren auch das Thema der Integrierbarkeit und beweisen Eindeutigkeit
des t-einfach zusammenhängenden integrierenden Gruppoids.
Kapitel 4 beschreibt C*-Algebren für diskrete und topologische Gruppen und
im Anschluss 4.2 den Übergang von Lie Gruppoiden mit Haarsystem zu ihrer
Faltungsalgebra.
In 5 werden wir diese Techniken auf unser Beispiel anwenden. Kapitel 5.1
führt zur Hebung der Singularität Dirac-Strukturen ein, wodurch wir ein Lie
Algebroid erhalten. In 5.2 werden das magnetische Lie Algebroid Lω und
sein eindeutiges t-einfach zusammenhängendes integrierendes Lie Gruppoid
G explizit berechnet. In 5.3 konstruieren wir ein Haarsystem auf G und
diskutieren die C*-Algebren des singulären und regulären Teils.
Kapitel 6 behandelt Morita-Äquivalenz für C*-Algebren und Lie Gruppoide
und begründet, dass Faltungalgebren modulo Morita-Äquivalenz betrachtet
werden sollten in Abwesenheit eines ausgezeichneten Haarsystems. In 5.3
diskutieren wir Eigenschaften von C*-Algebren, die unter Morita-Äquivalenz
stabil sind und die wir für unser Beispiel präzisieren können.
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2 Lie Groupoids

One of the main objects of our study are Lie groupoids, a manifold version
of the groupoid.

Definition 1. A groupoid is a category in which every morphism is an
isomorphism.

Unraveling this definition, we will mostly think of a groupoid as the space
of morphisms G over the space of objects M called the base. Associated to
each morphism g P G is a source and a target object, i.e. maps s, t : GÑM .
Composition of morphisms g, h P G gives the morphism gh P G which is
defined whenever spgq “ tphq.
This is equivalently an associative product ˝ : Gp2q Ñ G, where Gp2q “
tpg, hq P G : spgq “ tphqu is the set of composable pairs.
Each object x PM has an identity εpxq :“ idx P G associated to it and since
every morphism is invertible, there exists an inverse map ´1 : GÑ G.
Thus a groupoid will be denoted G Ñ M with the arrows representing the
maps s, t.

Example 1. (a) Every group G can be viewed as a groupoid over a point
M “ tptu. Since s, t must be trivial maps, all elements are composable
as usual.

(b) Similarly, group bundles or disjoint unions of groups form a groupoid
with s “ t mapping G Q g ÞÑ G. The composition then restricts to the
individual groups.

(c) For any set M we can form the pair groupoid M ˆM Ñ M with

sppx, yqq :“ y tppx, yqq :“ x and pz, yq ˝ py, xq “ pz, xq

This is the prime example of a transitive groupoid. Subgroupoids of the
pair groupoid are just symmetric and transitive relations on M .

(d) The fundamental groupoid ΠpXq Ñ X for a topological space X provides
a great motivation for the study of groupoids, eliminating the necessity
of choosing a basepoint. The maps s, t assign to each homotopy class of
paths its fixed endpoints.

(e) Let G be a group acting on a space M .The action groupoid associated
to it is GˆM Ñ M with space of arrows GˆM and the following maps:

sppg,mqq :“ m tppg,mqq :“ g.m and pg, h.mq˝ph,mq “ pgh,mq

(f) To a principal G-bundle π : P Ñ M we can associate the Atiyah
groupoid (or Gauge groupoid) GaupP q.

3



G acts on P ˆ P diagonally via g.pp, qq “ pg.p, g.qq which preserves the
source and target maps tppp, qqq “ πppq, sppp, qqq “ πpqq because we are
dealing with a principal G-action. We obtain the quotient GaupP q “
pP ˆ P q{G Ñ M . Every element rp, qs P GaupP q corresponds to a
G-equivariant map

φ : π´1pπppqq Ñ π´1pπpqqq

which is uniquely determined by φppq “ q since G acts transitively on
the fibers. The composition of these maps gives the natural composition
on the Atiyah groupoid.

Adding more structure to the groupoids, we can consider topological
groupoids, where the product and inverse are required to be continous and
the identity section ε is required to be an embedding. In the smooth category
we get the following definition:

Definition 2. A Lie groupoid G Ñ M is a groupoid where G,M are
smooth manifolds and the s, t are required to be smooth submersions. The
identity section ε is required to be a smooth embedding and multiplication
and inverse are required to be smooth maps.

In dealing with integrability questions it is often necessary to not require
Hausdorffness of G and only that of M .
The submersion requirement ensures the smoothness of Gp2q and that all
fibers s´1pmq, t´1pmq are smooth manifolds. By the inverse function theorem
smoothness of multiplication already implies the smoothness of the globally
defined inverse.

Example 2. a) Lie groups can be regarded as groupoids over a point tptu
and similarly Lie group bundles over a manifold are groupoids. A special
case of this are vector bundles over manifolds.

b) Most of the groupoids above can be given a natural smooth structure:
the pair groupoid, the action groupoid of a smooth action, the Atiyah
groupoid and even the fundamental groupoid in some cases.

Definition 3. A morphism of groupoids G Ñ M,H Ñ N is a functor,
i.e. a map F : G Ñ H that satisfies F pghq “ F pgqF phq for composable
g, h P G inducing a base map f : M Ñ N that makes the following diagram
commute:

G H

M N

F

f

A Lie groupoid morphism is a smooth morphism of Lie groupoids.
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With this notion of morphism we get the categories Grpd and LieGrpd.
For any groupoid G Ñ M we get a unique morphism pt, sq : GÑM ˆM to
the pair groupoid. In the restricted category of groupoids over a specific base
we thus get the pair groupoid as a terminal object. For groups, regarded as
groupoids over a point, the terminal object is thus (tptuˆtptu Ñ tptuq – t0u.

Definition 4. A groupoid G Ñ M provides an equivalence relation on points
in the baseM by p „ q :ô p “ spgq, q “ tpgq for some g P G. The equivalence
classes are the orbits of G and G is called transitive if it has only one orbit.
The orbit of m PM will be denoted G.m.1

The isotropy groups are Gm “ s´1pmq X t´1pmq for m PM .

For the action groupoid associated to a group action the original notion
of an orbit and the groupoid notion coincide. The fundamental groupoid is
transitive if and only if the underlying space is connected and its isotropy
groups are the fundamental groups associated to different basepoints.

Proposition 1. The isotropy groups of a Lie groupoid are Lie groups and
the orbits are immersed submanifolds.

Proof. We first sketch a conceptual proof that the target map t has constant
rank along the s-fibers. Let m P M and g, g1 P s´1pmq and let S Ă G be a
local bisection containing g1g´1, i.e. a submanifold for which the restriction
of s, t provides diffeomorphisms to open subsets of M . Their existence is a
local question and uses that s, t are submersions.
By left multiplication a local bisection induces an s-equivariant local diffeo-
morphism AS mapping g ÞÑ pg1g´1qg “ g1. By equivariance, AS provides a
local diffeomorphism between neighbourhoods of g and g1 in s´1pmq. The
equivariant rank theorem implies that the rank of t is constant on the s-
fibers. Level sets of t|s´1pmq are therefore submanifolds making the isotropy
group Gm a Lie group. Furthermore the image of a constant rank map is an
immersed submanifold, so G.m “ tps´1pmqq is immersed.

Proposition 2. Every transitive Lie groupoid G Ñ M is isomorphic to an
Atiyah groupoid of any of the (left) principal Gm-bundles t´1pmq ÑM .

Proof. Let m P M be arbitrary. And let P “ t´1pmq with bundle map s :
P ÑM . Then Gm is a Lie group acting smoothly on P via left multiplication.
This action preserves s-fibers. It is free since multiplication by g P Gm is an
isomorphism and it is transitive on the s-fibers. Now s : P ÑM is surjective
becauseG is transitive by assumption. As seen above s has constant rank on P .
Therefore s is a submersion and its normal form gives us local trivializations

1This is an example of a groupoid action on a manifold N . The difference to ordinary
actions is that we need a moment map µ : N ÑM and g.n is defined only if spgq “ µpnq.
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of P . This proves that P is a principal Gm-bundle.
Define a map

P ˆ P ÝÑ G

px, yq ÞÑ y´1x.

This is surjective: for any g P G we find h connecting tpgq to m. Then
h´1phgq “ g. Additionally, the map factors through the diagonal action of
Gm on P ˆ P giving us a bijection Φ : pP ˆ P q{Gm – G which is smooth as
a quotient map. Recalling the groupoid structure of GaupP q we see that Φ
is a groupoid morphism compatible with the source and target maps.
Finally, Φ is also an isomorphism of Lie groupoids. For this we only need to
verify smoothness of Φ´1 which follows from the inverse function theorem
when we show that Φ has constant rank (it must then be a submersion).
However, this is easily verified since the kernel of the differential T pP ˆP q Ñ
TG is just the trivial Gm orbit that is factored out.

Corollary 3. Let M be connected. The fundamental groupoid of Π1pMq is
a Lie groupoid.

Proof. The isotropy groups of Π1pMq Ñ M are just copies of the fundamental
group. For manifolds the fundamental group is a countable 0-dimensional
Lie group. The fiber s´1pmq is the set of homotopy classes of paths in M
starting at m which is the standard description of the universal cover ĂM of
the connected manifold M . Thus Π1pMq – GaupĂMq is a Lie groupoid.

3 Lie Algebroids

In the case of Lie groups it is extremely fruitful to look at the infinitesimal
version, the associated Lie algebra. One way to construct the Lie algebra
LiepGq of a Lie group G is by left-invariant vector fields. X P XpGq is
called left-invariant if Xg “ pdLgqeXe,@g P G where Lg : G Ñ G is left
multiplication by g P G.
It thus easily follows that as a vector space LiepGq – TeG. The bracket is
the commutator bracket inherited from XpGq.
We will in the following examine the infinitesimal analogue of a Lie groupoid,
first in the abstract algebraic setting and then the construction from a given
Lie groupoid.

Definition 5. A Lie algebroid is a vector bundle A Ñ M with a Lie
bracket r¨, ¨s on the sections ΓpAq and an anchor map bundle homomorphism
ρ : AÑ TM that satisfies the following Leibniz rule:

rσ, fτ s “ f rσ, τ s ` ρpσqf ¨ τ where σ, τ P ΓpAq, f P C8pMq
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Proposition 4. The anchor map ρ is a Lie algebra homomorphism. It also
is the unique anchor making A a Lie algebroid.

Proof. By abuse of notation denote ρpσq :“ ρ ˝ σ P XpMq.
First we verify uniqueness. Let ρ, ρ1 be different anchors making A a Lie
algebroid. The Leibniz rule gives:

f rσ, τ s ` ρpσqf ¨ τ “ f rσ, τ s ` ρ1pσqf ¨ τ

Therefore by varying f, σ, τ we get ρ “ ρ1.
Let f P C8pMq, τ, η, σ P ΓpAq. Using the Leibniz rule, bilinearity and
anticommutativity of the bracket we compute:

rrτ, fηs, σs “ rf rτ, ηs ` ρpτqf ¨ η, σs

“ f rrτ, ηs, σs ´ ρpσqf ¨ rτ, ηs ` ρpτqf ¨ rη, σs ´ ρpσqpρpτqfq ¨ η
(1)

rrfη, σs, τ s “ rf rη, σs ´ ρpσqf ¨ η, τ s

“ f rrη, σs, τ s ´ ρpτqf ¨ rη, σs ´ ρpσqf ¨ rη, τ s ` ρpτqpρpσqfq ¨ η
(2)

rrσ, τ s, fηs “ f rrσ, τ s, ηs ` ρprσ, τ sqf ¨ η (3)

Summing everything, by the Jacobi identity and anticommutativity of the
bracket we get:

0 “ rrτ, fηs, σs ` rrfη, σs, τ s ` rrσ, τ s, fηs

“ f ¨ 0` ρprσ, τ sqf ¨ η ` ρpσqf ¨ 0` ρpτqf ¨ 0

´ ρpσqpρpτqfq ¨ η ` ρpτqpρpσqfq ¨ η

“ pρprσ, τ sq ´ rρpσq, ρpτqsqf ¨ η

Since this holds for arbitrary sections η and functions f , we conclude that
ρprσ, τ sq “ rρpσq, ρpτqs is a Lie algebra homomorphism.

Example 3. a) A Lie algebra is a Lie algebroid over a point tptu because
then C8ptptuq – R and the Leibniz rule is plain linearity with trivial
anchor. Similarly bundles of Lie algebras with trivial anchor constitute a
Lie algebroid.

b) The tangent bundle TM to a manifold M with ρ “ id forms the prime
example of a Lie algebroid. The Leibniz rule is inherent in the characteri-
sation of ΓpTMq as derivations on M.

c) Let Θ : g Ñ XpMq be a Lie algebra action. Recall that a Lie algebra
action is by definition a homomorphism of Lie algebras. We can associate
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an action algebroid gˆM ÑM which is a trivial bundle over M with
anchor ρpX,mq “ ΘpXqm. The bracket is given by

rX,Y s “ rX,Y sg ` LρpXqY ´ LρpY qX

with the identification ΓpgˆMq – C8pM, gq and the bracket r¨, ¨sg evalu-
ated pointwise. It is the unique bracket determined by the requirement
that rC1, C2s “ rC1, C2sg on constant sections C1, C2 which span ΓpgˆMq
as a C8pMq-module.

d) Let ω be a closed 2-form onM . Then we can associate to it a Lie algebroid
Aω “ TM ‘ L where L is a line bundle. Then ΓpAωq – XpMq ‘ C8pMq
and bracket given by:

rpX, fq, pY, gqs “ prX,Y s,LXg ´ LY f ` ωpX,Y qq

The closedness of ω is equivalent to this bracket satisfying the Leibniz
rule.

e) Let π : P ÑM be a principal left G-bundle. Then the differential of the
action induces a free and proper left G-action on TP . The quotient TP {G
is called the Atiyah algebroid of P . π factors through this quotient
making TP {G Ñ M a vector bundle. Its differential dπ provides the
anchor map.
Sections of TP {G can be identified with G-invariant vector fields on TP
which are invariant under the lifted action. They form a Lie subalgebra
inducing a natural bracket on TP {G.

3.1 The Lie algebroid of a Lie groupoid

Let G Ñ M be a Lie groupoid. Elements g P G act on specific fibers of G
when left multiplication is allowed. Namely we have:

Lg : t´1pspgqq ÝÑ t´1ptpgqq

h ÞÑ gh

This is a diffeomorphism between smooth manifolds with inverse Lg´1 and a
differential that is an isomorphism:

pdLgqh : Thpt
´1pspgqqq ÝÑ Tghpt

´1ptpgqqq

Again, since t is a submersion, the level sets’ tangent spaces are just the kernel
of dt: Thpt´1ptphqqq “ pkerpdtqqh. Also, by constant rank, T tG :“ kerpdtq is
a subbundle of TG, consisting of all the fibers’ tangent spaces.
To get a notion of left-invariance of vector fields on G similar to that of a Lie
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group, we need to restrict our attention to sections of T tG for which some
kind of left multiplication is defined.
A vector field X P XpGq is called left-invariant if it is a section of T tG and
satisfies:

pdLgqhXh “ Xgh @pg, hq P Gp2q

Lemma 5. The set of left-invariant vector fields forms a Lie subalgebra of
XpGq. A left-invariant vector field is uniquely determined by its values along
the identity bisection εpMq Ă G.

Proof. LetX,Y P ΓpT tGq. ThenX,Y are tangent to all submanifolds t´1pmq.
By basic properties of Lie brackets we can compute their Lie bracket inside
Xpt´1pmqq and the result will be another vector field tangent to t´1pmq,@m.
This shows that rX,Y s P ΓpT tGq.
For left-invariance we can evaluate the bracket on the fiber t´1ptpgqq with
f P C8pt´1ptpgqqq. Then for composable g, h we have f ˝Lg P C8pt´1ptphqqq
and we compute (with a slight abuse of notation):

dLgrX,Y shf “ XhpY pf ˝ Lgqq ´ YhpXpf ˝ Lgqq

“ XhppdLgY qfq ´ YhppdLgXqfq

“ XhpY f ˝ Lgq ´ YhpXf ˝ Lgq

“ dLgXhpY fq ´ dLgYhpXfq

“ XghY f ´ YghXf “ rX,Y sghf

It is easy to see that for left-invariant vector fields:

Xg “ dLgXspgq

where we identify M – εpMq. This shows that X is already determined by
its values along ε. In fact this is true for any bisection (a simultaneous section
of s and t).

Lemma 6. Sections of ε˚T tG “ T tG|M can uniquely be extended to left-
invariant vector fields on G.

Proof. LetX P Γpε˚T tGq. Define pXg :“ dLgXspgq where we regard X as a par-
tially defined section along a submanifold. Then pX is left-invariant: It takes
values in T tG since impdLgq Ă T tG and we have dLg pXh “ dLgpdLhXsphqq “

dLghXsphq “
pXgh. What is left to verify is smoothness of pX.

For that let f P C8pGq be arbitrary. Then

pXfpgq “ dLgXspgqf

“ Xspgqpf ˝ ιg ˝ Lgq

“
B

Bt

ˇ

ˇ

ˇ

ˇ

t“0,h“g

fphΘpsphq, tqq
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where ιg : t´1ptpgqq ãÑ G is the inclusion and Θ is some locally defined flow
of X. This obviously depends smoothly on g.

Lemma 7. LiepGq :“ T tG|M has the structure of a Lie algebroid with anchor
ds : T tG|M Ñ TM and the bracket induced from left-invariant vector fields.

Proof. We have seen above the identification of ΓpLiepGqq with left-invariant
vector fields on G which endows ΓpLiepGqq with a Lie algebra structure. To
verify the Leibniz rule we first observe that multiplication of Y P ΓpLiepGqq

by f P C8pMq yields the left-invariant vector field xfY g “ fpspgqqpYg. We
compute:

rX, fY s “ r pX, xfY s|M “ r pX, pf ˝ sqpY s|M

“ pf ˝ sqr pX, pY s|M ` pXpf ˝ sqpY |M

“ f rX,Y s ` dspXqf ¨ Y

It is further possible to construct a functor LieGrpdÑ LieAlgbd under
some suitable notion of Lie algebroid morphism which will not be necessary
for our purposes. [HM90] We will now turn to a couple of examples of Lie
algebroids derived in this fashion.

Example 4. a) The pair groupoidMˆM Ñ M has Lie algebroid TM with
its standard anchor and bracket.

b) The Lie algebroid of the action groupoid G ˙ M Ñ M is the action
algebroid gˆM . We can see this in the following way:
First, note that t´1pmq “ tph, h´1.mq|h P Gu. Now we can observe that
any left-invariant field X must be tangent to this foliation and thus that
its flow Θpg,mqptq “ pΘ

pg,mq
G ptq,Θ

pg,mq
M ptqq P G ˆM must stay inside the

t-fibers. Therefore Θpg,mqptq “ pΘ
pg,mq
G ptq,Θ

pg,mq
G ptq´1.mq. We know that

such a vector field is determined uniquely by its values along the identity
section pe,mq,m PM where X takes values

Xm “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

pΘ
pe,mq
G ptq,Θ

pe,mq
M ptq´1.mq P Tpe,mqpGˆMq – gˆ TmM

Recalling that for a left G-action τ the canonical Lie algebra homomor-
phism pτ : g Ñ XpMq is given by γ1p0q ÞÑ d

dt

ˇ

ˇ

t“0
γptq´1.m, we see that

the vector field X is uniquely determined by a section Y of the action
algebroid g ˆM via Xm “ pYm, pτmpYmqq. From this representation we
easily see that the anchor also coincides with the anchor of the action
algebroid.
As noted above, ΓpgˆMq is a C8pMq-module spanned by the constant
sections. The bracket on constant sections then determines the whole
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bracket by the Leibniz rule. So consider Y,Z P g as constant sections.
They determine left-invariant vector fields on G (in the usual Lie group
sense) and vector fields on M via pτ . It is a straightforward computation
to see that their lift to a left-invariant vector field on the Lie groupoid
G˙M is given by pYpg,mq “ pYg, pτmpY qq and similarly for pZ.
The bracket can then be computed componentwise to yield:

rpY , pZs “ prY, Zs, rpτpY q, pτpZqsq “ prY,Zs, pτprY,Zsqq

Therefore the bracket of these constant sections is just their ordinary Lie
bracket regarded as a constant section. This concludes the example.

c) As one might expect, the Lie algebroid of the Atiyah (or Gauge) groupoid
pPˆP q{G is the Atiyah algebroid TP {G. A simple consequence is example
a: For the trivial bundle M ÑM , the associated Atiyah groupoid is the
pair groupoid with algebroid TM .

As we see from the construction of LiepGq is essentially determined by a
small open neighbourhood of the identity section in G. Denote GO Ă G the
set of g P G that belong to the connected component of t´1ptpgqq containing
εptpgqq. This GO is obviously t-connected, i.e. has connected t-fibers.
Furthermore the following theorem holds:

Theorem 8. GO is a wide, open and t-connected subgroupoid of G with the
same Lie algebroid.

Proof. The maps Lg : t´1pspgqq Ñ t´1ptpgqq are homeomorphisms. If g has
spgq “ x, tpgq “ y and lies in the same connected component of t´1pyq as
idy, then Lgpidxq “ g and thus the homeomorphism Lg maps the connected
component of idx to the connected component of idy. This means that
multiplication on GO is well-defined. Also inversion restricts to GO: g´1 “

pLgq
´1pidxq so that g´1 must have been in the connected component of idy.

We conclude by showing that GO is open in G giving it a unique smooth
Lie groupoid structure. It is evident that they must then yield the same
Lie algebroid whose construction depends only on a neighbourhood of the
identity section.
Since t is a submersion, t is locally a projection and for each m P M we
can find a neighbourhood Um of idm that in some local coordinates is a
product neighbourhood so that Um X t´1pnq is connected @n PM . Denote
U “

Ť

mPM Um the resulting neighbourhood of the identity section. Then
GO “ GO ¨ U is open as a union of open sets.

3.2 Integrability of Lie algebroids

It is now natural to ask whether all Lie algebroids can be integrated to
a (possibly non-Hausdorff) Lie groupoid, i.e. if every Lie algebroid A is
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isomorphic to LiepGq for some Lie groupoid G. For the case of Lie groups
Lie’s third theorem provides an affirmative answer: There is a unique simply
connected Lie group integrating any Lie algebra. It is also possible to extend
this to Lie algebra bundles [CdSW99]. However, not every Lie algebroid is
integrable. An important observation is the following:

Theorem 9. If G is a t-connected Lie groupoid, there exists a unique t-simply
connected Lie groupoid rG and a homomorphism F : rGÑ G such that F is a
local diffeomorphism and rG and G have the same Lie algebroid.

Proof. The only possible construction is to piece together the universal covers
of the t-fibers of G. So define rt´1pmq to be the universal cover of t´1pmq
consiting of homotopy classes of paths ending atm. rs will then be the starting
point and multiplication will be multiplication of homotopy classes. This
obviously defines a groupoid rG.
We find a smooth structure on rG by the following trick: G is foliated by Ft,
the fibers of the submersion t. The associated fundamental groupoid Π1pFtq
is a (possibly non Hausdorff) Lie groupoid (see Proposition 10). If we denote
its target map by p : Π1pFtq Ñ G, then rG “ p´1pMq since Π1pFtq consists of
homotopy classes of paths inside the t-fibers which by construction belong to
rG precisely when their endpoint is some idm PM . Thus rG is an embedded
submanifold as a preimage of an embedded submanifold by a submersion.
To show that the structure maps are submersions we just note that they
have constant rank (as shown above) and are surjective. Multiplication and
inversion as well as the identity section are smooth by restriction.

Proposition 10. If F is a regular smooth foliation of M then the groupoid
Π1pFq consisting of homotopy classes of paths that stay inside leafs is a Lie
groupoid. It is not Hausdorff in general. [CF11]

Proof. We will sketch a construction of charts. Let rγs P Π1pFq be a path
connecting p, q PM . Let W0,W1 be foliation charts around p, q with Wi –

Ui ˆ Vi Ă Rp ˆRq. p will be the dimension of the leafs and Vi the transverse
space to the leafs. We can assume Ui to be simply-connected.
Shrinking V0 and V1 we get a transverse ’holonomy lift’ of γ to each of the leafs
starting in V0 and ending in V1. We get a chart by the injection U0ˆV0ˆU1 Ñ

Π1pFq that sends a point px1, x2, yq to the following concatenation: rγs lifts
to the leaf of x2 and connects this to V2. We precompose this with the
unique homotopy class connecting x1 with the start of this lift and follow it
by connecting the endpoint to y.
The source and target maps in these charts are just projections onto U0, U1

and thus are smooth submersions.

It turns out that reconstructing this unique integrating groupoid purely
from paths in the Lie algebroid is possible. [CF03] The only obstruction to
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integrability then is the existence of a smooth structure on this Weinstein
groupoid.

4 C*-algebras

Definition 6. A *-algebra is an algebra over C with a conjugate linear
involution a ÞÑ a˚ satisfying pabq˚ “ b˚a˚. A *-homomorphism is an
algebra homomorphism compatible with the involutions.
A C*-algebra is a *-algebra with a submultiplicative norm } ¨ } making it a
Banach space. The last additional constraint is ‖a˚a‖ “ ‖a‖2.
A representation of a C*-algebra is a pair pπ,Hq of a Hilbert space H and
a *-homomorphism π : A Ñ BpHq. Two representations pπ1, H1q, pπ2, H2q

are unitarily equivalent if there is a unitary operator U : H1 Ñ H2 such
that π2paq “ Uπ1paqU

´1 for all a P A.

It turns out that any *-homomorphism φ between C*-algebras is already
continuous with ‖φ‖ ď 1 and φ is injective if and only if φ is isometric.
The standard example of C*-algebras are the bounded linear operators BpHq
on a (complex) Hilbert space H with the operator norm and hermititan
adjoint as involution.
If X is a locally compact Hausdorff space, C0pXq becomes a commutative
C*-algebra with the supremum norm and complex conjugation. For X “ tptu
this just yields C.
However, note that it is explicitly not required that C*-algebras are unital
(or even commutative).
As a result of the Gelfand-Naimark-Segal construction every C*-algebra is
*-isomorphic to a to a C*-subalgebra of BpHq for some Hilbert space H
(c.f. [Put19]) If A is a commutative C*-algebra we get an even stronger
result. Namely, the Gelfand representation shows that A is isometrically
*-isomorphic to C0pXq where X is locally compact and Hausdorff. Explicitly,
X is the set of (multiplicative, complex valued) characters of A with the
weak-*-topology denoted SpecpAq. Furthermore SpecpAq is compact if and
only if A is unital.
The Gelfand duality is a contravariant equivalence of categories between
commutative C*-algebras and locally compact Hausdorff spaces. This suggests
that noncommutative C*-algebras arise from "noncommutative spaces". The
following will develop a way of noncommutative convolution on Lie groupoids
giving rise to such algebras.

4.1 Group C*-algebras

Before diving into the case of Lie groupoids we will present briefly the usual
constructions of C*-algebras of discrete and topological groups.
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Discrete Groups. Let G be a finite group. The complex valued functions
on G form a |G|-dimensional vector space CG with standard basis tδg|g P Gu
called the group algebra. We will define a product ˚ on CG by defining
δg ˚ δh :“ δgh and extending it by bilinearity to all of CG. This yields the
following convolution formula:

φ ˚ ψ “
ÿ

hPG

ÿ

gPG

φpgqψpg´1hqδh φ, ψ P CG

We thereby have extended the group structure of G to a "linear object"
CG. We further get an involution on CG by φ˚pgq :“ φpg´1q making CG a
*-algebra.
The deep relationship betweenG and CG is reflected in the bijective correspon-
dence of unitary representations of G with nondegenerate *-representations
of CG induced by linear continuation (see Theorem 11 below). We conclude
by remarking that CG is a C*-algebra if we equip it with the norm induced
by the injective left regular representation.

Topological Groups. Let G be a locally compact, Hausdorff group. Then
there exists a (left) Haar measure µ on G that is unique up to scalar multiples,
i.e. a Radon measure that is left-invariant: µpgEq “ µpEq for all g P G and
E Ă G measurable. Similarly one defines right Haar measures. Any left Haar
measure induces a right Haar measure via µ´1pEq “ µpE´1q and vice versa.
On Rn the Haar measure is just the Lebesgue measure, for discrete groups it
is the counting measure. We will see below a proof for general Lie groups.
Measure-theoretic induction shows that µ is a left Haar measure if and only
if

ż

G
φpghqdµphq “

ż

G
φphqdµphq for φ P L1pGq.

Right-shift by any g P G gives us a new left Haar measure µgpEq :“ µpEgq.
By uniqueness we must have µg “ ∆pgqµ. This assignment defines the
modular function ∆ : GÑ R` which can be easily seen to be a continuous
group homomorphism.
Generalizing the case of discrete groups, we are now going to construct a
convolution algebra structure on CcpGq using the unique Haar measure µ.
Define the convolution product and involution by:

φ˚ψpgq :“

ż

G
φphqψph´1gqdµphq φ˚pgq :“ ∆pgq´1φpg´1q φ, ψ P CcpGq

This makes CcpGq into a *-algebra. Convolution is commutative if and only
if G is abelian. By Young’s inequality all this extends to L1pGq. Using
the modular function, one can verify that ˚ is an isometric involution and
convolution is submultiplicative. However, L1 may still fail the C*-identity.
The solution that will also be described later is a completion with respect to
another norm.
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Theorem 11. Let G be a locally compact, Hausdorff group. If π : GÑ UpHq
is a unitary representation of G, then

rπ : L1pGq ÝÑ BpHq

φ ÞÑ

ż

G
φpgqπpgqdg

is a nondegenerate *-representation of L1pGq. Every unitary-representation
is uniquely determined in this way by a representation of L1pGq.

Remark 1. The operator rπpφq needs to be understood in this way:

pη, ξq ÞÑ

ż

G
xφpgqπpgqη, ξydg η, ξ P H

is bilinear and thus, by Lax-Milgram theorem, induced by rπpφq P BpHq in
such a way that this bilinear map takes the form xrπpφqη, ξy.

Remark 2. Any group admits the left regular representation λ : L1pGq Ñ
UpL2pGqq by rλpgqφsphq :“ φpg´1hq. This representation induces the convo-
lution representation rλpφqη “ φ ˚ η for φ P L1, η P L2. rλ is faithful as can be
seen by approximate units in L2pGq.

For a proof we refer to [Fol16]. The Renault disintegration theorem pro-
vides a generalization of the above for groupoids, but requires representations
of groupoids on Borel Hilbert bundles. (c.f. [RW98], [Ren80])

4.2 The C*-algebra of a Lie groupoid

Much as in the case for topological (Lie) groups our aim is to construct an
algebraic invariant of the underlying groupoid. The appropriate analogue
and generalization of the Haar measure on topological groupoids is the notion
of a Haar system. [Ren80]

Definition 7. Let G Ñ M be a topological locally compact and Hausdorff
groupoid (or a Lie groupoid). A left Haar system on G is a family of
Radon measures tµmu,m PM indexed by the base manifold such that:

(i) supppµmq “ t´1pmq

(ii) for any f P CcpMq the map

m ÞÑ

ż

t´1pmq
fdµm

is continuous (respectively smooth).
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(iii) for any f P CcpMq the following left invariance holds:
ż

fphqdµtpgqphq “

ż

fpghqdµspgqphq

Note that the last formula makes sense since supppµspgqq “ t´1pspgqq and
thus the composition of g, h in the integrand is well-defined on the support
of µspgq.

Proposition 12. Any Lie groupoid admits a smooth (left) Haar system.

Proof. Let G Ñ M be a Lie groupoid with associated Lie algebroid AÑM .
Then k :“ rankA is also the dimension of the t-fibers. Let ρ P

ˇ

ˇΛkA˚
ˇ

ˇ be a
top degree non-zero section.
We can extend ρ smoothly to G by setting ρg “ L˚g´1ρspgq. Then ρ satisfies
L˚gρ “ ρ, because:

pL˚gρqh “ L˚gρgh “ L˚g pL
˚
h´1g´1qρspghq

“ L˚h´1g´1gρsphq “ ρh.

We get positive linear functionals on C8c pGq by

f ÞÑ

ż

t´1pmq
fρ

which by continuity extend to CcpGq. The Riesz representation theorem now
yields a family of Radon measures tµmu,m PM on G with support in t´1pmq
such that

ş

fdµm “
ş

t´1pmq fρ.
The assignment m ÞÑ

ş

fdµm is easily seen to be smooth and we furthermore
compute:

ż

fpghqdµspgqphq “

ż

t´1pspgqq
pf ˝ Lgqρ “

ż

t´1pspgqq
L˚g pfρq

“

ż

t´1ptpgqq
fρ “

ż

fphqdµtpgqphq

where we used that Lg : t´1pspgqq Ñ t´1ptpgqq is a diffeomorphism and that
ρ is invariant under pullback by Lg. Thus we have found a Haar system on
G. In the case of Lie groups we have in fact proven existence of a unique
Haar measure up to a multiplicative constant.

We can now describe the construction of the C*-algebra of a groupoid.
For this purpose, let G Ñ M be a locally compact Hausdorff groupoid with
a fixed Haar system tµmumPM . First, C8c pGq becomes a ˚-algebra by the
convolution

φ ˚ ψpgq :“

ż

φphqψph´1gqdµtpgqphq φ˚pgq :“ φpg´1q φ, ψ P C8c pGq.
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The convolution is well-defined. It is smooth (as can most easily be checked
in local coordinates by applying dominated convergence) and is compactly
supported inside suppφ ¨ suppψ. It is associative and the verification of the
axioms is a computation using basic properties of the Haar system. The
isomorphism of group, viewed as a groupoid, from the groupoid convolution
algebra to the group version is given by f ÞÑ ∆

1
2 f . There is no canonical

analogue of a modular function on groupoids as there is no uniqueness of the
Haar system.
We are now constructing representations of C8c pGq following [Muh97].

Definition 8. Let λ be a measure on M . Denote the induced measure on
G by ν “ λ ˝ µ given by successive integration:

ż

fdν “

ż

M

ż

fdµmdλpmq.

Denote ν´1 the measure determined by precomposition of ν with the inversion
homeomorphism. To integrate with respect to ν´1 we can use

ş

fdν´1 “
ş

fpg´1qdνpgq.
Define the norm }f}I :“ maxp}f}I,t, }f}I,sq where

}f}I,t “ sup
mPM

ż

|f |dµm }f}I,s “ sup
mPM

ż

|fpg´1q|dµmpgq

We define the induced representation of λ on L2pν´1q to be

rIndλpφqξspgq :“ φ ˚ ξpgq φ P C8c pGq, ξ P L
2pν´1q

A ˚-representation π is called bounded if }πpfq} ď }f}I .

Lemma 13. Indλ is indeed a bounded ˚-representation of C8c pGq.

Proof. Let φ, ψ P C8c pGq and ξ, η P L2pν´1q. We will first show that indeed
φ ˚ ξ P L2pν´1q and that the norm is bounded. First note that by Cauchy-
Schwarz inequality

|φ ˚ ξpgq| ď

ż

|φphq||ξph´1gq|dµtpgqphq

ď

„
ż

|φphq||ξph´1gq|2dµtpgqphq


1
2
„
ż

|φ|dµtpgq


1
2

.

The second factor is always smaller than }φ}
1
2
I . We use this to compute:

}φ ˚ ξ}2L2pν´1q “

ż ż

|φ ˚ ξpg´1q|2dµmpgqdλpmq

ď

ż

dλ}φ}I

ż

t´1pmq

ż

t´1pmq
|φpg´1hq||ξph´1q|dµmphqdµmpgq

ď }φ}I

ż

dλ

ż

|ξph´1q|

ż

|φpg´1hq|dµmpgqdµmphq

ď }φ}2I}ξ}
2
L2pν´1q
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Therefore Indλ is bounded. It is a homomorphism since Indλpφ ˚ ψqξ “
pφ ˚ ψq ˚ ξ “ φ ˚ pψ ˚ ξq “ IndλpφqIndλpψqξ by associativity of convolution.
Lastly, Indλ is also a ˚-homomorphism:

xIndλpφ˚qξ, ηy “
ż

pφ˚ ˚ ξqpg´1qηpg´1qdν

“

ż

dλ

ż

dµmpgq

„
ż

φph´1qξph´1g´1qdµtpg´1qηpg
´1q



“

ż

dλ

ż

dµmpgq

ż

dµmphqφph´1gqξph´1qηpg´1hq

“

ż

dλ

ż

dµmphqξph
´1q

ż

φph´1gqηpg´1qdµmpgq

“

ż

dλ

ż

dµmphqξph
´1qφ ˚ ηph´1q

“ xξ, Indλpφqηy “ xIndλpφq˚ξ, ηy

And thus Indλpφ˚q “ Indλpφq˚.

For the Dirac measure εm concentrated at m PM we thus get represen-
tations Indεm on L2ps´1pmqq equipped with the inverse Haar measure. We
refer to them as left regular representations.
For g P G the two representations Indεspgq and Indεtpgq are unitarily equivalent
by U : L2ps´1pspgqqq Ñ L2ps´1ptpgqqq with Ufphq “ fphgq.

Definition 9. The reduced C˚-algebra C˚redpGq is the completion of
C8c pGq in the norm

}φ}red “ supt}Indεmpφq} : m PMu.

The full C˚-algebra C˚fullpGq is the completion with respect to the supremum
norm that ranges over all bounded ˚-representations of C8c pGq.

These are obviously seminorms. We have shown that these are actually
norms by the construction of the representations above so that the supremum
is always positive. We remark that construction makes direct use of one par-
ticular Haar measure on G. But in fact, the resulting C˚-algebra is somewhat
independent of the Haar measure used (see section 6). In what follows we
are only going to consider reduced C*-algebras. By unitary equivalence of
many of the representations Indεm, it actually suffices to consider only one
for each G-orbit.

Example 5. a) The trivial groupoid M Ñ M has as Haar system the
counting or Dirac measures. Convolution is just pointwise multiplication
and the reduced norm is the supremum norm on C8c pMq. Its completion
is C˚pMq “ C0pMq.
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b) Let M be a manifold and λ a measure with full support on M . Then
the pair groupoid M ˆM Ñ M has a Haar system given by εm ˆ λ.
Convolution of f, g P C8c pM ˆMq is then given by convolution of Hilbert-
Schmidt integral kernels:

f ˚ gpm,nq “

ż

M
fpm, kqgpk, nqdλpkq.

All representations being unitarily equivalent, we see that C8c pM ˆMq is
completed in the norm of the representation π on L2pMq given by:

πpfqξpmq “

ż

M
fpm,nqξpnqdλpnq.

Thus every f can be identified with a smooth integral kernel in the compact
operators KpL2pMqq. To see that they lie dense, it suffices to show that
they are dense in the finite rank operators. This is easily verified using
that pL2q˚ “ L2. Therefore we conclude that C˚pM ˆMq – KpL2pMqq.

5 The magnetic monopole

This section finally deals with the magnetic symplectic singularity. We will
remove this singularity by means of Dirac structures. The resulting Lie
algebroid is integrable to a Lie groupoid (Proposition 17). We will then treat
its convolution algebra in section 5.3. This procedure might generally be
interesting to classify and describe types of removable singularities.

5.1 Dirac structures

A Dirac structure is a simultaneous generalization of Poisson and Symplectic
Geometry in that both provide canonical examples of such a structure.
On the bundle TM ‘ T ˚M ÑM we have the following additional structure:
A nondegenerate symmetric and fibrewise bilinear form:

xX ` α, Y ` βy “ βpXq ` αpY q X,Y P TmM α, β P T ˚mM,

and the Courant bracket v¨, ¨w on the sections of TM ‘ T ˚M

vpX,αq, pY, βqw “ rX,Y s ` LXβ ´ LY α`
1

2
dpαpY q ´ βpXqq. (4)

The Courant bracket is not a Lie bracket. A long calculation gives the
following violation of the Jacobi identity. [Bur13]

vva1, a2w, a3w ` c.p. “
1

3
dpxva1, a2w, a3y ` c.p.q (5)

where c.p. means cyclic permutations.
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Definition 10. A Dirac structure overM is a subbundle L Ă TM‘T ˚M
that satisfies

(i) L “ LK with respect to the pairing x¨, ¨y

(ii) vΓpLq,ΓpLqw Ă ΓpLq

Using equation (5) and (i) we see that (ii) is equivalent to xva1, a2w, a3y “ 0
for all a1, a2, a3 P ΓpLq. By nondegeneracy, (i) is equivalent to rankpLq “
dimpMq and x¨, ¨y|L “ 0.
We also see that v¨, ¨w|L does provide a Lie bracket. Using Cartan’s magic
formula on (4) and the vanishing of x¨, ¨y on L we immediately get a different
expression for the Courant bracket: vX ` α, Y ` βw “ rX,Y s `LXβ ´ iY dα.

Lemma 14. Any Dirac structure L Ñ M provides a Lie algebroid with
anchor prTM and the Courant bracket.

Proof. We only have to check the Leibniz rule. Let X `α, Y ` β P ΓpLq and
f P C8pMq. Then

vX ` α, fpY ` βqw “ rX, fY s ` LXpfβq ´ LfY α`
1

2
dpαpfY q ´ fβpXqq

“ f rX,Y s `Xf ¨ Y `Xf ¨ β ` fLXβ ´ fLY α´ αpY qdf

`
1

2
pαpY q ´ βpXqqdf `

1

2
fdpαpY q ´ βpXqq

“ fvX ` α, Y ` βw `Xf ¨ pY ` βq.

We are done because prTM pX ` αq “ X.

The canonical examples of Dirac structures are the graphs of Poisson
bivectors and presymplectic forms. Since it is more relevant to our case, we
will only discuss the latter.

Example 6. Let ω P Ω2pMq be a closed 2-form, i.e. pM,ωq is a presym-
plectic manifold. The canonical map ω7 : TM Ñ T ˚M given by interior
multiplication gives us a graph Dirac structure.

Graphpωq “ Lω “ tX ` ω
7pXq : X P TMu Ă TM ‘ T ˚M

By skew-symmetry x¨, ¨y|Lω “ 0 and it follows as in the remark above that
Lω “ LKω . An easy calculation yields

xvX ` ω7pXq, Y ` ω7pY qw, Z ` ω7pZqy “ dωpX,Y, Zq “ 0,

so that v¨, ¨w|Lω does provide a Lie bracket and Lω “ Graphpωq is a Dirac
structure. Note that Lω X T ˚M “ t0u. In fact, it is easy to see that this last
property uniquely identifies Dirac structures that are induced by a closed
2-form.
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5.2 The Dirac structure of the magnetic monopole

This section follows [Blo17]. We are going to deal with the magnetic symplectic
form ω of a magnetic monopole in 2 dimensions, which is a 2-form on
M :“ T ˚R2 given by

ω “ ω0 `B “ dqi ^ dpi `
1

r2
dq1 ^ dq2,

where tqi, piu are the standard global Darboux coordinates on M and r2 “

|q|2 “ pq1q2 ` pq2q2. ω0 is the standard symplectic form on M .
ω has a singularity at the origin which just means that ω is not defined on
and cannot be extended to T ˚0 R2.
[Blo17] proposes a process to get rid of this singularity by introducing a Dirac
structure.

Proposition 15. The Dirac structure Graphpωq of the magnetic form ω P
Ω2pT ˚R2zT ˚0 R2q extends to a smooth Dirac structure L :“ Graphpωq on all
of T ˚R2.
However, L is not the graph of any symplectic form.

Proof. By our example above Graphpωq is a Dirac structure over T ˚R2
ˆ “

T ˚R2zT ˚0 R2 where we denote R2
ˆ “ R2zt0u.

Since B
Bqi
, B
Bpi

span T pT ˚R2
ˆq, Graphpωq will be spanned by

"

B

Bqi
` i B

Bqi
ω,

B

Bpi
` i B

Bpi
ω : i “ 1, 2

*

.

Computing these, we get the following sections:

ra1 “
B
Bq1
` dp1 `

1
r2
dq2 b1 “

B
Bp1
´ dq1

ra2 “
B
Bq2
` dp2 ´

1
r2
dq1 b2 “

B
Bp2
´ dq2

To remove the singular part of rai, we introduce the sections

a1 “ ´r
2
ra2 “ ´r

2 B
Bq2
´ r2dp2 ` dq

1

a2 “ r2
ra1 “ r2 B

Bq1
` r2dp1 ` dq

2

On R2
ˆ, r2 is a positive function, so that tai, biu will still span Graphpωq. But

we further observe that ai, bi can be extended to T ˚0 R2 where they remain
linearly independent. This makes the topological closure L “ Graphpωq a
smooth subbundle.
Being a subbundle already suffices to equip L with a Dirac structure: Since
the pairing x¨, ¨y is a smooth operation, we see that the singular fiber will
again be isotropic by continuity, i.e. L “ LK. The bracket will also restrict
since xvX1, X2w, X3y is smooth and will vanish on T ˚R2

ˆ. It must then vanish
identically on all of T ˚R2.
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As seen above, Dirac structures can be viewed as Lie algebroids.

Proposition 16. The magnetic Lie algebroid LÑ T ˚R2 is a trivial vector
bundle spanned by the 4 sections a1, a2, b1, b2 with anchor ρ and bracket r¨, ¨s
given by:

ρpa1q “ ´r
2 B
Bq2

ρpb1q “
B
Bp1

ra1, a2s “ ´2q1a1 ´ 2q2a2

ρpa2q “ r2 B
Bq1

ρpb2q “
B
Bp2

rai, bjs “ rbi, bjs “ 0

Proof. We are only left to compute the Lie brackets. For this we can use the
trick that ρ is a Lie algebra homomorphism.
It is easy to see that rρpaiq, ρpbjqs “ rρpbiq, ρpbjqs “ 0. Away from the
singular fiber, any section c P ΓpLq is given by c “ ρpcq ` iρpcqω. It then
follows necessarily that rai, bjs “ rbi, bjs “ 0.
For computing ra1, a2s just note that

„

´r2 B

Bq2
, r2 B

Bq1



“ 2q1r2 B

Bq2
´ 2q2r2 B

Bq1
.

The same trick as above implies ra1, a2s “ ´2qiai.

The natural question that arises is whether L is integrable. Denote by Lˆ
the restriction of L to T ˚R2

ˆ which is just the graph of ω as a Dirac structure.
We see that ρ : Lˆ Ñ T pT ˚R2

ˆq is an isomorphism (because r2 ‰ 0). Hence
Lˆ is integrable by the pair groupoid T ˚R2

ˆˆT
˚R2

ˆ Ñ T ˚R2
ˆ. However, this

groupoid is not t-simply connected as every t-fiber is isomorphic to T ˚R2
ˆ

which is homotopic to Czt0u. Using the universal cover CÑ Czt0u : z ÞÑ ez,
we can replace the target fibers by their universal cover (cf. Theorem 9) and
we get the following t-simply connected groupoid integrating Lˆ:

Γ “ T ˚Cˆ T ˚R2
ˆ Ñ T ˚R2

ˆ

s ppz, vq, pq, pqq “ pq, pq tppz, vq, pq, pqq “ pqez, vq

ppz, vq, pq, pqqppz1, pq, pq1, p1qq “ ppz ` z1, vq, pq1, p1qq where q “ q1ez
1

We are identifying here C – R2 – T ˚q R2 – T ˚q C by using the usual global
trivialization by coordinate differentials. The isotropy at any point is isomor-
phic to Z corresponding to the Deck transformations of the universal cover.
If L is integrable by a t-simply connected Lie groupoid G Ñ T ˚R2 we must
find Γ as the subgroupoid s´1 X t´1pT ˚R2

ˆq by uniqueness of the integrating
groupoid. This suggests to take some closure of Γ.
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Proposition 17. LÑ T ˚R2 is integrable to a Lie groupoid G Ñ T ˚R2 given
by:

G “ T ˚Cˆ T ˚R2 Ñ T ˚R2

spz, v, q, pq “ pq, pq tpz, v, q, pq “ pqeqz, vq

pz, v, q, pqpz1, p, q1, p1q “ peq
1z1z ` z1, v, q1, p1q where q “ q1eq

1z1

idpq,pq “ p0, p, q, pq

pz, v, q, pq´1 “ p´ze´qz, p, qeqz, vq

(6)

(7)

(8)
(9)

(10)

Proof. We need to verify first that G is indeed a groupoid, then that it is Lie
and lastly that its Lie algebroid of left-invariant vector fields is isomorphic to
L.
Source and target maps are well-defined making the canonical identifications
C – R2 and T ˚C – T ˚R2. It is then easy to see that the composition behaves
well with respect to the source map, i.e. spghq “ sphq. For the target map
we compute:

q1e
q1
´

eq
1z1z`z1

¯

“

´

q1eq
1z1
¯

eq
1eq1z1z “ qeqz.

This proves that tppz, v, q, pqpz1, p, q1, p1qq “ tppz, v, q, pqq. For each pq, pq P
T ˚R2 idpq,pq provides an identity element as can be verified by a quick
calculation. That (10) does indeed provide an inverse is checked in this way:
Clearly sppz, v, q, pq´1q “ tppz, v, q, pqq by reading off the last two entries.
Also

tppz, v, q, pq´1q “ pqeqzeqe
qzp´ze´qzq, pq “ pq, pq “ sppz, v, q, pqq.

Therefore composition with the inverse on both sides is well-defined and we
can compute:

pz, v, q, pqp´ze´qz, p, qeqz, vq “

ˆ

e
qeqz

´

´ze´qz
¯

z ´ ze´qz, v, qeqz, v

˙

“ idpqeqz ,vq

p´ze´qz, p, qeqz, vqpz, v, q, pq “
`

eqzp´ze´qz ` z, p, q, pq
˘

“ idpq,pq

This finishes the verification that G is a groupoid. Equipping G with the
standard smooth structure, we see that all structure maps are smooth. s
is a projection and thus clearly a submersion. t is also a submersion since
pz, qq ÞÑ pqeqzq is a submersion. Therefore G admits a smooth Lie groupoid
structure.
We are left to show that the Lie algebroid LiepGq “ T tG|T˚R2 is isomorphic
to L. Let X P XpT tGq be a left-invariant vector field. X is determined by
its values along the identity bisection idpq,pq. We consider the flow Θpq,pq

of X along this bisection. Write Θpq,pq “ pΘ
pq,pq
1 ,Θ

pq,pq
2 ,Θ

pq,pq
3 ,Θ

pq,pq
4 q. By

definition of the flow starting at idpq,pq we have

Θ
pq,pq
1 p0q “ 0, Θ

pq,pq
2 p0q “ Θ

pq,pq
4 p0q “ p, Θ

pq,pq
3 p0q “ q.
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Since X is tangent to the t-fibers the flow will stay inside the t-fibers and

thus pq, pq “ tpΘpq,pqq “ pΘ
pq,pq
3 eΘ

pq,pq
3 Θ

pq,pq
1 ,Θ

pq,pq
2 q. Therefore Θ

pq,pq
2 psq “ p

for all s in the flow domain.
Differentiating the equality q “ Θ3e

Θ3Θ1 at s “ 0 gives:

0 “
´

Θ13p0q `Θ3p0qΘ13p0qΘ1p0q `Θ3p0qΘ3p0qΘ
1
1p0q

¯

eΘ3p0qΘ1p0q

“
`

Θ13p0q ` 0` qqΘ11p0q
˘

e0 “ X3 ` |q|
2X1,

where we denoted the components of X at idpq,pq by Xi. It follows from this
discussion that left-invariant vector fields along the identity bisection are
exactly of the form

Xpq,pq “
`

X1, 0,´|q|
2X1, X2

˘

,

where X1 is in TC – TR2 Ă TT ˚R2 and X2 is in the vertical part of TT ˚R2,
i.e. X1 P spanp BBqi q and X2 P spanp BBpi q. We get a global trivialization frame
for the vector bundle LiepGq by defining

a1 “ p
B
Bq2
, 0,´|q|2 B

Bq2
, 0q b1 “ p0, 0, 0,

B
Bp1
q

a2 “ p´
B
Bq1
, 0, |q|2 B

Bq1
, 0q b2 “ p0, 0, 0,

B
Bp2
q

As s is just the projection onto the last two components, the anchor ρ “ ds
will also be the projection onto the last components. The bracket is uniquely
determined by the fact that ρ is a Lie algebra homomorphism and continuity.
We therefore see that

ρpa1q “ ´|q|
2 B
Bq2

ρpb1q “
B
Bp1

ra1, a2s “ ´2q1a1 ´ 2q2a2

ρpa2q “ |q|
2 B
Bq1

ρpb2q “
B
Bp2

rai, bjs “ rbi, bjs “ 0.

Comparing this to the magnetic algebroid L Ñ T ˚R2 we get an obvious
isomorphism LiepGq – L.

The resulting groupoid has two orbits: T ˚0 R2 and T ˚R2
ˆ.

5.3 The noncommutative geometry of the magnetic monopole

Our next goal is to compute the C*-algebra of the magnetic monopole which
can be interpreted as the noncommutative geometry arising from it. For this
we have to find and choose a (left) Haar system. It turns out that finding a
right Haar system is slightly easier, but as the two are related by inversion
we are going to stick with the associated left Haar system.

Lemma 18. A left Haar system on G Ñ T ˚R2 is given by:
ż

fdµpq,pq “

ż

fp´ze´qz, p, qeqz, vq|e´qz|dvdz,

where dv, dz are two dimensional Lebesgue measures on C – R2.
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Proof. The Riesz representation theorem guarantees the existence of such a
system of measures. Note that we integrate over pz, v, q, pq´1 “ p´ze´qz, p, qeqz, vq.
Therefore tppz, v, q, pq´1q “ pq, pq and this is also a surjective parametrization
for the t-fiber t´1pq, pq. This shows that supppµpq,pqq “ t´1pq, pq.
For left-invariance we compute:

ż

f ˝ Lpz1,v1,q,pqdµpq,pq “

ż

fppz1, v1, q, pqp´ze´qz, p, qeqz, vqq|eqz|dvdz

“

ż

fppz1 ´ zqe´qz, v1, qeqz, vq|eqz|dvdz.

While on the other hand tpz1, v1, q, pq “ pqeqz1 , v1q and
ż

fdµ
pqeqz1 ,v1q “

ż

fp´ze´qe
qz1z, v1, qeqz

1

eqe
qz1z, vq|eqe

qz1z|dvdz

“

ż

fp´pw ´ z1qe´qz
1

e´qpw´z
1q, v1, qeqw, vq|e´qpw´z

1q||e´qz
1

|dvdw,

where we have substituted w “ z1 ` zeqz
1 with dw “ |eqz

1

|dz. These
expressions obviously match. Lastly, we need to verify smoothness of
pq, pq ÞÑ

ş

fdµpq,pq for f P C8c pGq. For this we just rewrite |eqz| “ eq¨z.
Then the integrand is smooth in pz, v, q, pq and thus the integral will depend
smoothly on pq, pq.

This Haar system induces the convolution

f ˚ gpz, v, q, pq “

ż

fppz ´ wqe´qw, v, qeqw, uqgpw, u, q, pqeq¨wdudw (11)

and involution
f˚pz, v, q, pq “ fp´ze´qz, p, qeqz, vq. (12)

Note that f ˚ gpz, v, 0, pq “
ş

fpz ´ w, v, 0, uqgpw, u, 0, pqdudw takes a much
nicer form when restricted to the singular fiber T ˚0 R2. Also f˚pz, v, 0, pq “
fp´z, p, 0, vq. This motivates the following lemma.

Lemma 19. Let G Ñ M be a Lie groupoid.

(i) Let U ĂM be an open orbit of G and H “ s´1pUq X t´1pUq. Then we
get an injective *-homomorphism i : C˚pHq ãÑ C˚pGq. Its image is an
ideal.

(ii) Let C ĂM be a closed orbit of G and S “ s´1pCq X t´1pCq. Then we
get a surjective *-homomorphism r : C˚pGq Ñ C˚pSq by restriction.

Proof. The map i : C8c pHq Ñ C8c pGq is given by continuation by 0. r :
C8c pGq Ñ C8c pSq is given by restriction. For this we need the sets to be
open and closed respectively.
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First, we need to implicitly restrict the Haar systems to the subgroupoids. It
is then easy to see that the convolution restricts when we are dealing with
orbits (or unions thereof). Involution obviously restricts to subgroupoids, so
that i, r are *-homomorphisms.
i is an isometry since the left regular representations of H trivially agree with
their counterparts in G. The other representations will precisely be those
of U c where any ipfq will vanish identically. The supremum norm will thus
agree and i extends to an isometric embedding C˚pHq Ñ C˚pGq.
For r we are reducing the number of representations which makes it trivially
continuous. It then extends to a *-homomorphism of the completions with
dense image. Since the image of *-homomorphisms of C*-algebras is always
closed, r extends to a surjective map.

In our example we are interested in the singular closed subgroupoid S lying
over T ˚0 R2 and its regular open counterpart Γ lying over T ˚R2

ˆ. Note that
0 C8c pΓq C8c pGq C8c pSq 0 is certainly not exact since functions
vanishing at 0 need not vanish on a neighbourhood of 0. We could hope
to get rid of this by passing to completions. Using the lemma we get the
following short exact sequence: 0 kerprq C˚pGq C˚pSq 0. Since
rpC8c pΓqq “ 0 we have C˚pΓq Ă kerprq by continuity.
Proposition 5.1 in [LR01] says that we would have C˚pΓq “ kerprq if S were
amenable, i.e. C˚fullpSq “ C˚pSq. Furthermore this sequence would always be
exact when dealing with the full C*-algebras.
However, in our case the inclusion is strict, since bounding the L2 norms in the
singular representation is impossible. The groupoids S and Γ are transitive.
This means that all left regular representations are unitarily equivalent and we
can view them as C*-algebras of operators acting on L2ps´1p0, 0qq – L2pC2q

and L2ps´1p1, 0qq respectively.
We can compute C˚pSq directly: The convolution takes an easy form as seen
above. It seems to be a simultaneous convolution of integral kernels and of
functions on C. We make this more precise using the following map:

C8c pCq b C8c pC2q Ñ C8c pSq

f b ϕ ÞÑ rf b φpz, v, 0, pq “ fpzqϕpv, pqs
(13)

This has dense image. We can regard C as a group and C2 as a pair
groupoid. The convolution is compatible with this:

pf b ϕq ˚ pg b ψqpz, v, 0, pq “

ĳ

fpz ´ wqϕpv, uqgpwqψpu, pqdudw

“

ż

fpz ´ wqgpwqdw

ż

ϕpv, uqψpu, pqdu

“ f ˚ gpzq ¨ ϕ ˚ ψpv, pq “ pf ˚ gq b pϕ ˚ ψqpz, v, 0, pq

A similar computation shows compatibility with the involution on the tensor
product. We implicitly equipped the tensor product of two *-algebras with a
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*-algebra structure. Finding a C*-norm on tensor products is more difficult.
We will only remark that compact operators are a nuclear, i.e. that one finds a
unique C*-norm on all tensor products with compact operators. (c.f. [Bla06])
Our map is an isometry with dense image and we thus get an induced
isomorphism on the completed C*-algebras: C˚pCq bKpHq – C˚pSq. Here
we used that C˚pCˆCq – KpHq. This fits neatly into the following theorem.

Theorem 20 ( [MRW87]). Let G Ñ M be a transitive Lie groupoid and
m PM with isotropy group Gm. Then C˚pGq – C˚pGmq bKpL2ps´1pmqqq.

Corollary 21. C˚pΓq – C˚pZq bKpHq and C˚pSq – C˚pCq bKpHq. The
last isomorphism is given explicitly by (13).

We now collect a few facts about C˚pZq. It is a commutative and unital
C*-algebra, since Z is abelian and discrete. Hence, the Gelfand represen-
tation gives us C˚pZq – CpSpecpC˚pZqq. The compact Hausdorff space
SpecpC˚pZqq is just S1: Any character is uniquely determined by its value at
the identity φp1q P Up1q – S1. This is a continuous evaluation in the weak
*-topology on the spectrum and bijective, thus a homeomorphism of compact
Hausdorff spaces. We interpret this as a remnant of the singularity.

Proposition 22. C˚pΓq – CpS1q bKpHq.

6 Morita equivalence

We remarked earlier that the C*-algebra of a Lie groupoid depends on the
choice of a Haar system and that there may not be a isomorphism between
two such choices. But what we do obtain are Morita equivalent C*-algebras
in a sense that we will introduce now. For a more detailed discussion we refer
to [RW98] and [Öc16].
The classical Morita theory deals with rings and their category of left modules.
Two rings are said to be Morita equivalent if their categories of left modules are
equivalent. Every such equivalence between rings S and R will be naturally
equivalent to taking a tensor product with a S-R-bimodule SQR and an
inverse RPS . [Mey97]
For a C*-algebra A the relevant category of representations is the category
of Hermitian A-modules.

Definition 11. A Hermitian A-Module is a Hilbert space H together
with a nondegenerate *-representation of A by which A acts from the left on
H. A morphism of Hermitian A-modules is an A-equivariant continuous map
between Hilbert spaces. We will denote this category by ReppAq.

Any representation pπ,Hq of A can be made nondegenerate by considering
πpAqH.
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Definition 12. A right Hilbert B-module is a right B-module and C-
vector space X together with a sesquilinear B-valued inner product x¨, ¨y :
X ˆX Ñ B that is linear in the second variable and satisfies:

(i) xx, xy ě 0 with equality only for x “ 0 2

(ii) xx, yy˚ “ xy, xy

(iii) xx, yby “ xx, yyb @x, y P X, b P B

Furthermore X is assumed to be complete in the norm ‖xx, xy‖
1
2 .

An operator T P BpXq is called adjointable if there is an operator T ˚ P
BpXq such that xTx, yy “ xx, T ˚yy.
A Hilbert A-B-bimodule is a right Hilbert B-module X together with
a nondegenerate *-representation π : A Ñ BpXq which maps into the C*-
algebra of adjointable operators.

Note that a Hilbert A-C bimodule is just a Hermitian A-module and that
a C-B bimodule is a right Hilbert B-module. Any C*-algebra A provides a
canonical A-A-bimodule with the inner product xa, by “ a˚b.
Given two bimodules AHB and BKC we can form a product A-C bimodule
AH pbKC as follows: The sesquilinear pairing xhbk, h1bk1y :“ xk, xh, h1yBk

1yC

on H bCK is compatible with the canonical right C-action. Factoring out by
the space of isotropic vectors and completing with respect to the norm then
yields a right Hilbert C-module. It is an easy verification that the canonical A-
action on H bCK factors through the quotient, acts by adjointable operators
and is nondegenerate.
This tensor product with an A-B-bimodule AHB takes Hermitian B-modules
to Hermitian A-modules: AHB pb´ : ReppBq Ñ ReppAq. Moreover the tensor
product is associative up to isomorphism by the usual hbpkb lq ÞÑ phbkqb l
which preserves the sesquilinear pairing and thus factors as an isometry to the
completions. The bimodule AAA acts as an identity up to isomorphism. This
gives us a weak 2-category C*Bimod with C*-algebras as objects, Hilbert
bimodules as 1-morphisms and biequivariant maps as 2-morphisms. We define
two C*-algebras A,B to be Morita equivalent if they are equivalent in
this category and this equivalence is implemented by an equivalence bimodule
AHB. 3 In this case, their categories of representations are equivalent and
this equivalence is additive. Therefore Morita equivalence also preserves
irreducibility of representations.

2An element b P B is positive, denoted b ě 0, if b “ c˚c or equivalently, if it is self-adjoint
and specpbq Ă r0,8q.

3An A-B -equivalence bimodule AHB is both a left Hilbert A- and right Hilbert B-module
with Axx, yyz “ xxy, zyB . The actions need to be adjointable in both inner products and
the images AxH,Hy Ă A, xH,HyB Ă B are required to be dense.
Every equivalence bimodule is canonically invertible by BH

op
A consisting of the same

underlying set. The left B action on Hop is given by the right action by the adjoint, etc.
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A *-homomorphism of C*-algebras ψ : AÑ B induces a A-B bimodule Xψ as
follows: a.b :“ ψpaqb defines a *-representation of A on B which is canonically
a right B-module. We can make the A-representation nondegenerate by
restricting to ψpAqB. A straightfroward computation shows that this provides
a functor C*Alg to C*Bimod. Thus isomorphic C*-algebras are Morita
equivalent.
For Lie groupoids we can also define a notion of Morita equivalence by means
of bibundles.

Definition 13. A G-H-bibundle is a manifold M together with maps
lm : M Ñ Gp0q, rm : M Ñ Hp0q that is equipped with commuting left and
right G and H actions respectively. It is left-principal if rM is a surjective
submersion whose fibres are the free G-orbits of M .

For left-principal bibundles GMH and HNK we can define their tensor
productMbHN :“ pMˆHp0qNq{H where the quotient is with respect to the
H-action given by pm,nq.h “ pm.h, h´1.nq. Left-principality is sufficient to
make M bH N a smooth manifold (c.f. [Öc16]). Furthermore, the product is
associative up to isomorphism, i.e. up to a biequivariant diffeomorphism. To
any group GÑ Gp0q we can associate the G-G-bibundle G with the G-actions
given by left and right multiplication. It acts as an identity for the product.
We thus get another weak 2-category LGBimod. Two Lie groupoids are
called Morita equivalent if they are isomorphic in this bicategory.
There is a canonical way to associate to a morphism of Lie groupoids ϕ :
GÑ H a G-H-bibundle given diagramatically as follows:

G M ˆ
ϕ0,l
N H H

M N

ϕ

prM

r˝pr1H

ϕ0

This actually provides a functor LieGrpd to LGBimod sending a compo-
sition of Lie groupoid morphisms to the product of bimodules. This shows
that isomorphic groupoids are actually Morita equivalent.
A biprincipal bibundle GMH is a G-H-bibundle that is both left and right
principal, where the latter condition is essentially left principality mutatis
mutandis. Such a bibundle is invertible in the following sense: We obtain
an H-G-bibundle Mop by using the same underlying set but exchanging
all relevant maps: The left H-action is given by the right H-action with
the inverse, etc. Then M bH Mop – G and Mop bG M – H constitues
a Morita equivalence. We see this by M ˆHp0q M

op “ tpm,nq : rpmq “
rpnq,m, n P Mu “ tpm, g.mq : m P M, g P Gu. The H-action then identi-
fies pm, g.mq „ pm.h, g.m.hq. Since H acts freely and transitively on the
lM orbits this precisely identifies pm, g.mq „ pn, g.nq. The desired isomor-
phism of bibundles is then finally given by g ÞÑ rg´1.m,ms for an arbitrary
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m P l´1
M plpgqq.

It is shown in [Blo08] that any Morita equivalence of Lie groupoids is actually
given by a biprincipal bibundle and that N –Mop.

Proposition 23. Let G Ñ M be a transitive Lie groupoid and m P M .
Then G Ñ M and the isotropy group Gm Ñ tmu are Morita equivalent Lie
groupoids.

Proof.
G r´1pmq Gm

M tmu
l

r

We claim that r´1pmq provides an biprincipal bibundle. The left and right
actions are given by ordinary multiplication whenever defined. For left
principality we note that r is trivially a surjective submersion. The fiber of
this map is the full r´1pmq. Multiplication from the left stays inside this
fiber. It is transitive since for h, h1 P r´1pmq we have h1 “ ph1h´1q.h.
Right principality is proven as follows: l is surjective since G is transitive. It
has constant rank by Proposition 1 and is thus a submersion. Its fibers are
l´1pnq X r´1pmq on which Gm acts transitively from the right since for any
two elements h, h1 we have h1 “ h.ph´1h1q.

A proof of the following can be found in [Öc16]. It also proves (using the
trivial G-G-bibundle) that different Haar systems lead to the same C*-algebra.

Theorem 24. Morita equivalent Lie groupoids have Morita equivalent C*-
algebras. Furthermore, we get a functor LGBimodÑ C*Bimod mapping
a Lie groupoid to its C*-algebra (with a chosen Haar system).

The proof constructs a C˚pGq-C˚pHq-bimodule from a givenG-H-bibundle
M by equipping C8c pMq with a C8c pHq-valued inner product and bilateral
actions by convolution. It is then shown to be compatible with composition
of bimodules by a series of computations.
The theorem gives a fancy way of showing the Morita equivalence between
compact operators KpHq and C by considering any transitive pair groupoid
M ˆM with C˚pM ˆMq – KpL2ps´1pmqqq. Its isotropy group is trivial
and thus has C as its convolution algebra. This also shows that Morita
equivalence is strictly weaker than isomorphism.
Generally, a transitive groupoid C*-algebra will be Morita equivalent to the
C*-algebra of any of its isotropy groups. This is a (slightly) weaker version
of Theorem 20 which we could recover by stable isomorphism [BGR77].

30



6.1 The magnetic C*-algebra up to Morita equivalence

We will now discuss the Morita equivalence classes in our example.
C˚pΓq – C˚pZq b KpHq – CpS1q b KpHq is Morita equivalent to C˚pZq
and CpS1q. The former is an abelian and unital group C*-algebra and
thus has easy representation theory. Every nondegenerate representation is
induced by a unitary representation of Z (Theorem 11) and by Schur’s lemma
all irreducible representations are one dimensional characters. A unitary
representation of Z is determined by any unitary operator πp1q “ U P UpHq.
This describes the Hermitian C˚pZq-modules completely.
Actually, the above considerations work for arbitrary abelian groups.

Proposition 25. Let H be an abelian topological locally compact group.
C˚pHq – C0p pHq where pH is the Pontryagin dual of H.
All nondegenerate representations of C˚pHq are induced by unitary represen-
tations of H. This correspondence preserves irreducibility. All irreducible
representations are characters.

Proof. The Gelfand representation gives us C˚pHq – C0pSpecpC
˚pHqqq. Now

every irreducible representation of C˚pHq is induced by one of H (Theorem
11). This gives pH – SpecpC˚pHqq. It is worthwile to remark here that all
abelian groups are amenable, i.e. C˚pHq “ C˚fullpHq. The last assertions
follow immediately.

Morita equivalence preserves representation categories and irreducibil-
ity. Furthermore, Morita equivalence also preserves liminal C*-algebras
[AHRW07], that is C*-algebras for which every irreducible representation
acts by compact operators. In finite dimensions all operators are compact.

Corollary 26. C˚pΓq is Morita equivalent to CpS1q and C˚pSq is Morita
equivalent to C0pCq. Proposition 25 gives us an abstract classification of
ReppC˚pΓqq and ReppC˚pSqq and especially of irreducible representations.
They are liminal.

Morita equivalence of C*-algebras induces an isomorphism on the lattice
of closed ideals [RW98]. The closed ideals I are partially ordered by inclusion
and every pair I, J P I has a greatest lower and least upper bound given by
I X J and I _ J “ pI Y Jq. We can describe some of the lattices explicitly in
the present situation.
Let X be Hausdorff and locally compact, A Ă X closed and I Ă C0pXq a
closed ideal. Define V pIq “ tx P X : fpxq “ 0 @f P Iu and IpAq “ tf P
C0pXq : fpxq “ 0 @x P Au.

Theorem 27. V pIpAqq “ A and IpV pIqq “ I for all closed subsets A Ă X
and closed ideals I Ă C0pXq.
If A Ă B then IpBq Ă IpAq. If I Ă J then V pJq Ă V pIq.
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(i) IpAYBq “ IpAq X IpBq and IpAXBq “ IpAq _ IpBq

(ii) V pI X Jq “ V pIq Y V pJq and V pI _ Jq “ V pIq X V pJq

That is, V : pI,_,Xq Ñ pClosedpXq,X,Yq and I are inverse lattice isomor-
phisms where we equip ClosedpXq with the reverse ordering A ď B ðñ

A Ą B .

Proof. Let A Ă X be closed and x P Ac. Then by Urysohn’s lemma Df P IpAq
with fpxq “ 1. Therefore V pIpAqq “ A.
I Ă IpV pIqq is immediate. Applying Urysohn’s lemma again we can see
that I seperates points of XzV pIq and thus by Stone-Weierstraß, we have
I “ C0pXzV pIqq “ tf |XzV pIq : fpxq “ 0 @x P V pIqu “ IpV pIqq. [Fol16]
The remaining claims are easy computations some of which need to be shown
by using that I, V are mutual inverses.

Corollary 28. The lattice of closed ideals in C˚pΓq is isomorphic to the
lattice of closed subsets of S1.
The lattice of closed ideals in C˚pSq is isomorphic to the lattice of closed
subsets of C.

Morita equivalence preserves nuclearity. [AHRW07] For C*-algebras with
countable approximate identities this follows from the nuclearity of the com-
pact operators and stable isomorphism [BGR77] (C˚pSq, C˚pΓq are stable).
Also, all commutative C*-algebras are nuclear. [RW98] Using either charac-
terization we get:

Proposition 29. C˚pSq and C˚pΓq are nuclear.

Proposition 30. The canonical inclusion C˚pΓq ãÑ C˚pGq does not induce
a Morita equivalence.

Proof. Consider the sequence C˚pΓq C˚pGq C˚pSqi r in C*Alg inducing

C˚pΓq C˚pGq C˚pSq
Xi Xr inC*Bimod. Since r˝i “ 0 we haveXipbXr “ 0

by functoriality. Since Xr ‰ 0, Xi cannot be invertible in C*Bimod.

It is not yet known whether C˚pΓq and C˚pGq are Morita equivalent or
not. In this section we have listed some invariants of C˚pΓq that could help
answering this question.

Remark 3. Somewhat counterintuitively, C˚pΓq and C˚pSq are Morita
equivalent. For commutative C*-algebras the equivalence class only depends
on the cardinality of their spectra. [Rie74,Bee82]
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7 Conclusion and Outlook

In the preceding chapters, we have shown an example of how to take a singular
symplectic form on a manifold M , remove its singularity by a Dirac structure,
integrate the Lie algebroid to a Lie groupoid and compute its convolution
algebra.

Other removable singularities Some of our propositions are of a easily
generalizable nature, but the integration is certainly not. We suspect that
for M simply connected, dimM ě 3 some simplifications occur, as the pair
groupoid T ˚Mˆ ˆ T

˚Mˆ will be the unique t-simply connected integration
of the regular part of the resulting Dirac structure.
If integrability is of concern, it might be possible to describe the Morita
equivalence class of the C*-algebra more directly from the Lie algebroid or
even the symplectic form, alleviating the need for integrability, perhaps even
foregoing the removability hypothesis.

Prequantization In 5.2 we only used the Lie algebroid structure of the
Dirac structure. However, the antisymmetric pairing pX ` α, Y ` βq “
βpXq ´ αpY q on Dirac structures generally restricts to a closed 2-form in
the Lie algebroid cohomology. Such cohomology classes are in one-to-one
correspondence with central extensions of the Lie algebroid similar to example
3.d. We were not able to find an integration of this extended Lie algebroid in
the form of a central extension of Lie groupoids, which are also described by
2-cocycles in the groupoid cohomology. The abstract integrability question is
covered in [Cra04]. This again would yield an extension of C*-algebras and
it would be interesting to characterize this in terms of cocycles.
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