

Representations up to homotopy via Kan extension to differentiable stacks

David Aretz

Advisors : Prof. Dr. Peter Teichner and Dr. Chris-

tian Blohmann

IMPRS Moduli Spaces

Representations of Lie groupoids

A Lie groupoid is a groupoid object $\mathcal{G}_1 \stackrel{t}{\Rightarrow} \mathcal{G}_0$ in manifolds such that the source and target maps s, t are submersions. This contains the following fundamental examples:

- Lie group $G \rightrightarrows$ *.
- manifold $M \rightrightarrows M$ where all arrows are units.
- action groupoid $G \ltimes M \rightrightarrows M$ associated to an action $G \sim M$.

We write \mathcal{G}_n for the manifold of *n*-composable arrows (g_1, \ldots, g_n) and we write $g_1g_2 \ldots g_n$ for the multiplication. This is the nth level of the simplicial nerve.

Definition 1. A representation of G is a vector bundle over the base $E \to \mathcal{G}_0$ and an action $a_q : E_{s(q)} \to E_{t(q)}$ that satisfies $a_a a_h = a_{ah}$ for composable arrows $q, h \in \mathcal{G}_1$ and $a_{id_x} = id$.

This cannot be made into a representation. Rather, there will be a *quasi-action* on $T\mathcal{G}_0$ that is associative up to the differential coming from A. This motivates the following definition.

Definition 2 (Abad, Crainic [\[AC09\]](#page-0-0)). A representation up to homotopy consists of a dg vector bundle (E^*,∂) on \mathcal{G}_0 together with cochain maps $R_n(g_1,\ldots,g_n): E_{s(g_n)} \to E_{t(g_1)}$ of degree $1-n, n \geq 1$, i.e. $R_n \in \mathrm{dgVec}_{\mathcal{G}_n}^{1-n}(s^*E, t^*E)$, such that:

This entails:

- representation of G on a vector space.
- vector bundle over M .
- G-equivariant vector bundle over $G \cap M$.

For a Lie group G, an important representation is the adjoint representation $G \cap \mathfrak{g}$ on its Lie algebra. The analogue of the Lie algebra for a Lie groupoid $\mathcal G$ is its Lie algebroid A or more precisely, the following 2-term complex of vector bundles over \mathcal{G}_0 :

 $A \longrightarrow T \mathcal{G}_0$.

The class W of morphisms in Grpd that are sent to equivalences in Stacks are called Morita morphisms. A Morita morphism $\mathcal{G} \to \mathcal{H}$ of Lie groupoids is a map such that $\mathcal{G}_1 \cong \mathcal{H}_1 \times_{\mathcal{H}_0 \times \mathcal{H}_0} (\mathcal{G}_0 \times \mathcal{G}_0)$. The full subcategory $\textsf{Grpd}[W^{-1}] \subset \textsf{Stacks}$ is called the category of differentiable stacks. Many functors/constructions on groupoids are known to be Morita invariant, i.e. constructions on the level of differentiable stacks.

$$
\sum_{i=1}^{n-1}(-1)^{i}R_{n-1}(g_1,\ldots,g_ig_{i+1},\ldots,g_n)=\sum_{i=0}^{n}(-1)^{i}R_{i}(g_0,\ldots,g_i)R_{n-i}(g_{i+1},\ldots,g_n)
$$

Additionally, $R_1(\text{id}) = \text{id}$ and R_n , $n > 1$ vanishes when inserting units.

There is a dg-category $\text{Rep}_{\infty}(\mathcal{G})$ of representations up to homotopy.

Example 3. Consider the stack \mathcal{V} ec = BO. A calculation shows that Stacks($[\mathcal{G}_0/|\mathcal{G}_1]$, \mathcal{V} ec) \simeq Rep(\mathcal{G}). Hence, the category of representations of a Lie groupoid is a Morita invariant.

$$
E_{h.m}^{*}
$$
\nA dg vector bundle\n
$$
(E^*, \partial) \text{ over } M
$$
\n
$$
+ R_1(h) \wedge R_2(g,h) \wedge R_1(g) + \text{Higher coherent homotopies } R_n
$$
\n
$$
E_m^* \wedge R_1(gh) \wedge R_2(g,h) \wedge R_3(g,h) \wedge R_4(g,h)
$$

quasi-action

Figure 1: A representation up to homotopy of an action groupoid $G \ltimes M \rightrightarrows M$.

Conjecture: [\[AC09\]](#page-0-0)

The functor $\text{Rep}_{\infty} : \text{LieGrpd}^{\text{op}} \to \text{dgCat}$ maps Morita equivalences to Dwyer-Kan equivalences. Equivalently, Rep_{∞} factors through LieGrpd \rightarrow Stacks.

The dg-nerve $N^{dg}: dgCat \to sSet_{Joval}$ is a right Quillen functor. This means we can regard dg-categories as ∞-categories. The only advantage of dg-categories is that the algebra is very explicit.

Let F be some sort of "geometric" structure, e.g. a function, a metric, a bundle, etc. An interesting question is: What is the correct version of F for Lie groupoids? ''Correct" often means Morita invariant. Here is an abstract nonsense answer to this:

To explain the conjecture, we need to explain some of the terms.

Differentiable Stacks

From now on we will work with the ∞-category Stacks of stacks on manifolds with the Grothendieck topology of open covers. Its key features are: There is a fully faithful Yoneda embedding:

 \mathcal{M} fld \hookrightarrow Stacks

Start with a functor $F : \mathcal{M}^{\text{fdop}} \to \mathcal{C}$ where \mathcal{C} is an ∞ -category. Then, there is a unique way to extend F to a functor F: PreStacks^{op} \rightarrow C that maps homotopy colimits to homotopy limits. If F satisfies descent [\(1\)](#page-0-1), it factors through the stackification functor and has the same continuity property.

Stacks is a reflective subcategory of PreStacks = Fun(Mfd^{op}, ∞ Grpd) consisting of those prestacks F that satisfy descent for any open cover (U_i) of U :

We can calculate the value on a differentiable stack $[\mathcal{G}_0/(\mathcal{G}_1)]$ presented by a Lie groupoid \mathcal{G} as the cosimplicial homotopy limit

 $F([\mathcal{G}_0/\mathcal{G}_1]) \simeq \text{holim}_{[n]\in\Delta} F(\mathcal{G}_n)$.

$$
\mathcal{F}(U) = \text{holim}(\prod_i \mathcal{F}(U_i) \iff \prod_{i,j} \mathcal{F}(U_{ij}) \iff \prod \mathcal{F}(U_{ijk}) \iff \dots)
$$
\n(1)

Stacks is bicomplete, so we can take weak quotients and this gives a functor LieGrpd \rightarrow Stacks:

[G0//G1] = hocolim∆op(G⁰ G¹ G² . . .)

Consider the functor $dgVec$ which assigns to a manifold the dg-category of bounded complexes of vector bundles.

 Rep_{∞} is the homotopy Kan extension of dgVec : $\mathcal{M}Hd^{op} \to dg\mathcal{C}$ at along the Yoneda embedding to PreStacks, i.e.

 $\text{Rep}_{\infty}(\mathcal{G}) \simeq \text{holim}_{\Delta} dg \mathcal{V}ec(\mathcal{G}_n).$

dgVec does not satisfy descent and hence Rep_{∞} , as defined above, is not Morita invariant.

Thus the primary answer to the conjecture is negative. But it is really close to being true. The problem is that the Tor-amplitude might be globally unbounded.

Example 4. This margin is too narrow to contain a long geometric motivation for stacks. Geometrically, most examples arise from Lie groupoids.

dg-categories

A dg-category is a category C enriched in cochain complexes Ch_k. By taking cohomology $H^0(-)$, we get an ordinary category $Ho(\mathcal{C})$ The category $dgCat_k$ carries the Dwyer-Kan model structure.

- Weak equivalences are those enriched functors $F : C \rightarrow \mathcal{D}$ that (a) induce quasi-isomorphisms $\mathcal{C}(c, c') \simeq \mathcal{D}(Fc, Fc')$ and (b) induce an equivalence $Ho(\mathcal{C}) \simeq Ho(\mathcal{D})$
- The fibrations are those functors $F : C \to D$ that induce (a) degreewise surjections and (b) an isofibration $Ho(\mathcal{C}) \to Ho(\mathcal{D})$. All objects are fibrant.

- The failure of Rep_{∞} to be Morita invariant is the failure of dgVec to satisfy descent. The ∞ -category of perfect complexes of sheaves should be the correct replacement. Using such a refined theory, we get a category of perfect complexes on all higher stacks Rep_{∞} : Stacks^{op} \rightarrow dgCatCat_∞.
- This is a proof-of-concept and there are many constructions for LieGrpd that could be revisited homotopically.

- [AC09] Camilo Arias Abad and Marius Crainic. Representations up to homotopy and Bott's spectral sequence for Lie groupoids, 2009.
- [AO19] Sergey Arkhipov and Sebastian Oersted. Homotopy limits in the category of dg-categories in terms of A_{∞} -comodules, 2019.

Homotopy Kan extension to stacks

$$
\mathcal{M} \text{Hd}^{\text{op}} \xrightarrow{F} \mathcal{C}
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
\text{(Pre)Stacks}^{\text{op}}
$$

If F satisfies descent, this is by definition Morita invariant.

The main challenge is now the computation of the homotopy limit.

Example 5. • Let $F = C^{\infty}$: \mathcal{M} fld^{op} \to Ch₂₀(\mathbb{R}). Then holim_n $C^{\infty}(\mathcal{G}_n)$ is computed via totalization of the resulting double complex. The resulting cochain complex is otherwise known as differentiable groupoid cohomology $C^*(\mathcal{G})$ and is a smooth version of group cohomology.

- Let $F = (\Omega^*, d)$ be the de Rham complex. Then holim_n $\Omega^*(\mathcal{G}_n)$ is again a double complex known as the Bott-Shulman-Stasheff complex. It can be used to compute the equivariant de Rham cohomology.
- Let $F = \mathcal{V}_{\text{ec}} : \mathcal{M} \text{fd}^{\text{op}} \to \mathcal{C}$ at. Then the homotopy limit can be identified with the category of representations Rep (\mathcal{G}) .

Theorem: (DA)

Computation of the homotopy limit

The Bousfield-Kan formula tells us that under some fibrancy assumptions the homotopy limit may be computed as the end

$$
\operatorname{holim}_{\Delta} dg \mathcal{V}ec(\mathcal{G}_n) \simeq \int_{\Delta} dg \mathcal{V}ec(\mathcal{G}_n)^{\Delta^n}.
$$

In [\[AO19\]](#page-0-2) it is shown in general that these assumptions are always met in the case of dg categories. The dg-category $dg\text{Vec}(\mathcal{G}_n)^{\Delta^n}$ is a thickened version of $dg\text{Vec}(\mathcal{G}_n)$. A generic object for $n=2$ looks like this:

$$
E_1
$$

$$
E_0 \stackrel{\simeq}{\sim} \bigoplus_{\underline{\sim}}^{\underline{\sim}} E_2 \in \mathrm{dgVec}(\mathcal{G}_2)^{\Delta^2}
$$

Figure 2: A 2-simplex decorated with weakly equivalent dg vector bundles over \mathcal{G}_2 .

Computing the end amounts to glueing these simplices together.

Figure 3: An object in the dg-category computed by the end is a dg vector bundle E over \mathcal{G}_0 together with a map $R_1(g)$: $E_{s(g)} \to E_{t(g)}$ that is associative up to a homotopy $R_2(g, h)$ and higher coherences.

Doing this carefully, we arrive at the identification of $\text{Rep}_{\infty}(\mathcal{G})$ and holim_∆ dg $\text{Vec}(\mathcal{G}_n)$.

Outlook

References

2024 Max Planck Institute for Mathematics Bonn aretz@mpim-bonn.mpg.de