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Representations of Lie groupoids

t
A Lie groupoid is a groupoid object G; =% Gy in manifolds such that the source and target maps s,t are

S
submersions. This contains the following fundamental examples:

e Lie group G = .
e manifold M = M where all arrows are units.
e action groupoid G x M = M associated to an action G ~ M.

We write G,, for the manifold of n-composable arrows (gy, . .., g,) and we write g1gs . .. g, for the multiplica-

tion. This is the n'® level of the simplicial nerve.

Definition 1. A representation of G is a vector bundle over the base E — G and an action ay : Eyg) — Eyg)
that satisfies a4a;, = agy for composable arrows g, h € Gy and aiq, = id.

This entails:

e representation of GG on a vector space.
e vector bundle over M.
e (G-equivariant vector bundle over G ~ M.

For a Lie group G, an important representation is the adjoint representation G ~ g on its Lie algebra. The
analogue of the Lie algebra for a Lie groupoid G is its Lie algebroid A or more precisely, the following 2-term
complex of vector bundles over Gy:

A—— TG, .

This cannot be made into a representation. Rather, there will be a quasi-action on T'Gy that is associative
up to the differential coming from A. This motivates the following definition.

Definition 2 (Abad, Crainic [AC09]). A representation up to homotopy consists of a dg vector bundle
(E*,0) on Gy together with cochain maps R,(g1,...,0n) : Esg,) — Eig,) of degree 1 —n, n > 1 jie.
R, € dgVecé;”(s*E, t*F), such that:

n—1 n
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Additionally, R;(id) = id and R,,n > 1 vanishes when inserting units.

There is a dg-category Rep, (G) of representations up to homotopy.
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Figure 1: A representation up to homotopy of an action groupoid G x M = M.

Conjecture: [AC09]

The functor Rep,, : LieGrpd®® — dgCat maps Morita equivalences to Dwyer-Kan equivalences. Equiv-
alently, Rep,, factors through LieGrpd — Stacks.

To explain the conjecture, we need to explain some of the terms.

Differentiable Stacks

From now on we will work with the oo-category Stacks of stacks on manifolds with the Grothendieck
topology of open covers. Its key features are: There is a fully faithful Yoneda embedding;:

MAd < Stacks

Stacks is a reflective subcategory of PreStacks = Fun(MHfld°?, coGrpd) consisting of those prestacks F that
satisfy descent for any open cover (U;) of U:

F(U) = holim([, F(U;) &= II,; F(Uyj) == T1FUis)

) (1)

Stacks is bicomplete, so we can take weak quotients and this gives a functor LieGrpd — Stacks:

)

The class W of morphisms in Grpd that are sent to equivalences in Stacks are called Morita morphisms. A
Morita morphism G — H of Lie groupoids is a map such that G; = Hq X#, %2, (Go X Go). The full subcategory
Grpd[IW 1] C Stacks is called the category of differentiable stacks. Many functors/constructions on groupoids
are known to be Morita invariant, i.e. constructions on the level of differentiable stacks.

[Go//G1] = hocolimaer (Gy &—— G4 E G,

Example 3. Consider the stack Vec = BO. A calculation shows that Stacks([Go//G1], Vec) ~ Rep(G).

Hence, the category of representations of a Lie groupoid is a Morita invariant.

Example 4. This margin is too narrow to contain a long geometric motivation for stacks. Geometrically,
most examples arise from Lie groupoids.

dg-categories
A dg-category is a category C enriched in cochain complexes Chy. By taking cohomology H°(—), we get an

ordinary category Ho(C) The category dgCaty carries the Dwyer-Kan model structure.

e Weak equivalences are those enriched functors F' : C — D that (a) induce quasi-isomorphisms
C(c,d) ~D(Fe, Fd) and (b) induce an equivalence Ho(C) ~ Ho(D)

e The fibrations are those functors F' : C — D that induce (a) degreewise surjections and (b) an isofibra-
tion Ho(C) — Ho(D). All objects are fibrant.

The dg-nerve N% : dgCat — sSetjoyal is a right Quillen functor. This means we can regard dg-categories as
oo-categories. The only advantage of dg-categories is that the algebra is very explicit.

Homotopy Kan extension to stacks

Let F' be some sort of “geometric” structure, e.g. a function, a metric, a bundle, etc. An interesting question
is: What is the correct version of F' for Lie groupoids? “Correct” often means Morita invariant. Here is an
abstract nonsense answer to this:

Start with a functor F' : Mfld°® — C where C is an oo-category. Then, there is a unique way to extend
F to a functor F' : PreStacks®® — C that maps homotopy colimits to homotopy limits. If F' satisfies
descent , it factors through the stackification functor and has the same continuity property.
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We can calculate the value on a differentiable stack [Gy//G1] presented by a Lie groupoid G as the
cosimplicial homotopy limit

F({go//gl]) ~ holim[n]eA F(gn) 0

If I satisfies descent, this is by definition Morita invariant.

The main challenge is now the computation of the homotopy limit.

Example 5. o Let ' = C®: Mfd®® — Chs¢(R). Then holim, C*(G,) is computed via totalization
of the resulting double complex. The resulting cochain complex is otherwise known as differentiable
groupoid cohomology C*(G) and is a smooth version of group cohomology.

o Let F' = (Q*,d) be the de Rham complex. Then holim, 2*(G,) is again a double complex known as
the Bott-Shulman-Stasheff complex. It can be used to compute the equivariant de Rham cohomology.

o Let FF = Vec : Mfld® — Cat. Then the homotopy limit can be identified with the category of
representations Rep(G).

Consider the functor dgVec which assigns to a manifold the dg-category of bounded complexes of vector
bundles.

Theorem: (DA)

Rep,, is the homotopy Kan extension of dgVec : Mfld®* — dgCat along the Yoneda embedding to
PreStacks, i.e.
Rep,.(G) =~ holima dgVec(G,,) .

dgVec does not satisfy descent and hence Rep., as defined above, is not Morita invariant.

Thus the primary answer to the conjecture is negative. But it is really close to being true. The problem
is that the Tor-amplitude might be globally unbounded.

Computation of the homotopy limit

The Bousfield-Kan formula tells us that under some fibrancy assumptions the homotopy limit may be
computed as the end

holima dgVec(G,,) ~ / dgVec(G,)~".
A
In [AO19] it is shown in general that these assumptions are always met in the case of dg categories. The
dg-category dgVec(G,)>" is a thickened version of dgVec(G,). A generic object for n = 2 looks like this:
E,

gﬁ: e dgVec(G,)2’
Ey Ey

~

Figure 2: A 2-simplex decorated with weakly equivalent dg vector bundles over G,.

Computing the end amounts to glueing these simplices together.
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Figure 3: An object in the dg-category computed by the end is a dg vector bundle E over G, together with
amap Ri(g) : Eyg) — Eig) that is associative up to a homotopy R»(g, ) and higher coherences.

Doing this carefully, we arrive at the identification of Rep. (G) and holima dgVec(G,,).

Outlook

e The failure of Rep,, to be Morita invariant is the failure of dgVec to satisfy descent. The co-category
of perfect complexes of sheaves should be the correct replacement. Using such a refined theory, we get
a category of perfect complexes on all higher stacks Rep,, : Stacks™ — dgCatCat.

e This is a proof-of-concept and there are many constructions for LieGrpd that could be revisited homo-
topically.
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