

Representations up to homotopy via Kan extension to differentiable stacks

David Aretz

Advisors : Prof. Dr. Peter Teichner and Dr. Chris-

tian Blohmann

IMPRS Moduli Spaces

Representations of Lie groupoids

A Lie groupoid is a groupoid object $\mathcal{G}_1 \stackrel{\iota}{\Rightarrow} \mathcal{G}_0$ in manifolds such that the source and target maps s, t are submersions. This contains the following fundamental examples:

- Lie group $G \rightrightarrows *$.
- manifold $M \rightrightarrows M$ where all arrows are units.
- action groupoid $G \ltimes M \rightrightarrows M$ associated to an action $G \frown M$.

We write \mathcal{G}_n for the manifold of *n*-composable arrows (g_1, \ldots, g_n) and we write $g_1g_2 \ldots g_n$ for the multiplication. This is the n^{th} level of the simplicial nerve.

Definition 1. A representation of \mathcal{G} is a vector bundle over the base $E \to \mathcal{G}_0$ and an action $a_g : E_{s(g)} \to E_{t(g)}$ that satisfies $a_g a_h = a_{gh}$ for composable arrows $g, h \in \mathcal{G}_1$ and $a_{id_x} = id$.

This entails:

- representation of G on a vector space.
- vector bundle over M.
- *G*-equivariant vector bundle over $G \curvearrowright M$.

For a Lie group G, an important representation is the adjoint representation $G \curvearrowright \mathfrak{g}$ on its Lie algebra. The analogue of the Lie algebra for a Lie groupoid \mathcal{G} is its Lie algebroid A or more precisely, the following 2-term complex of vector bundles over \mathcal{G}_0 :

 $A \longrightarrow T\mathcal{G}_0$.

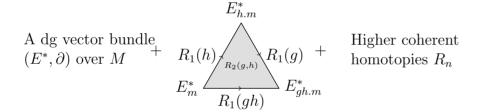
This cannot be made into a representation. Rather, there will be a *quasi-action* on $T\mathcal{G}_0$ that is associative up to the differential coming from A. This motivates the following definition.

Definition 2 (Abad, Crainic [AC09]). A representation up to homotopy consists of a dg vector bundle (E^*, ∂) on \mathcal{G}_0 together with cochain maps $R_n(g_1, \ldots, g_n) : E_{s(g_n)} \to E_{t(g_1)}$ of degree $1 - n, n \ge 1$, i.e. $R_n \in \mathrm{dg}\mathcal{V}\mathrm{ec}_{\mathcal{G}_n}^{1-n}(s^*E, t^*E)$, such that:

$$\sum_{i=1}^{n-1} (-1)^i R_{n-1}(g_1, \dots, g_i g_{i+1}, \dots, g_n) = \sum_{i=0}^n (-1)^i R_i(g_0, \dots, g_i) R_{n-i}(g_{i+1}, \dots, g_n)$$

Additionally, $R_1(id) = id$ and $R_n, n > 1$ vanishes when inserting units.

There is a dg-category $\operatorname{Rep}_{\infty}(\mathcal{G})$ of representations up to homotopy.



Conjecture: [AC09]

The functor $\operatorname{Rep}_{\infty}$: LieGrpd^{op} \rightarrow dgCat maps Morita equivalences to Dwyer-Kan equivalences. Equivalently, $\operatorname{Rep}_{\infty}$ factors through LieGrpd \rightarrow Stacks.

To explain the conjecture, we need to explain some of the terms.

Differentiable Stacks

From now on we will work with the ∞ -category Stacks of stacks on manifolds with the Grothendieck topology of open covers. Its key features are: There is a fully faithful Yoneda embedding:

 $\mathcal{M}\mathrm{fld} \hookrightarrow \mathsf{Stacks}$

Stacks is a reflective subcategory of $\mathsf{PreStacks} = \operatorname{Fun}(\mathcal{M}\mathrm{fld}^{\mathrm{op}}, \infty \mathsf{Grpd})$ consisting of those prestacks \mathcal{F} that satisfy descent for any open cover (U_i) of U:

$$\mathcal{F}(U) = \operatorname{holim}(\prod_{i} \mathcal{F}(U_{i}) \overleftarrow{\longrightarrow} \prod_{i,j} \mathcal{F}(U_{ij}) \overleftarrow{\bigoplus} \prod \mathcal{F}(U_{ijk}) \overleftarrow{\bigoplus} \dots)$$
(1)

 $\mathsf{Stacks} \text{ is bicomplete, so we can take weak quotients and this gives a functor \mathsf{LieGrpd} \to \mathsf{Stacks}:$

$$[\mathcal{G}_0/\!/\mathcal{G}_1] = \operatorname{hocolim}_{\Delta^{\operatorname{op}}}(\mathcal{G}_0 \xleftarrow{} \mathcal{G}_1 \xleftarrow{} \mathcal{G}_2 \xleftarrow{} \dots)$$

The class W of morphisms in Grpd that are sent to equivalences in Stacks are called *Morita morphisms*. A Morita morphism $\mathcal{G} \to \mathcal{H}$ of Lie groupoids is a map such that $\mathcal{G}_1 \cong \mathcal{H}_1 \times_{\mathcal{H}_0 \times \mathcal{H}_0} (\mathcal{G}_0 \times \mathcal{G}_0)$. The full subcategory $\operatorname{Grpd}[W^{-1}] \subset \operatorname{Stacks}$ is called the category of differentiable stacks. Many functors/constructions on groupoids are known to be Morita invariant, i.e. constructions on the level of differentiable stacks.

Example 3. Consider the stack $\mathcal{V}ec = BO$. A calculation shows that $\mathsf{Stacks}([\mathcal{G}_0/\mathcal{G}_1], \mathcal{V}ec) \simeq \operatorname{Rep}(\mathcal{G})$. Hence, the category of representations of a Lie groupoid is a Morita invariant.

Example 4. This margin is too narrow to contain a long geometric motivation for stacks. Geometrically, most examples arise from Lie groupoids.

dg-categories

A dg-category is a category C enriched in cochain complexes Ch_k . By taking cohomology $H^0(-)$, we get an ordinary category Ho(C) The category $dgCat_k$ carries the Dwyer-Kan model structure.

- Weak equivalences are those enriched functors $F : \mathcal{C} \to \mathcal{D}$ that (a) induce quasi-isomorphisms $\mathcal{C}(c,c') \simeq \mathcal{D}(Fc,Fc')$ and (b) induce an equivalence $Ho(\mathcal{C}) \simeq Ho(\mathcal{D})$
- The fibrations are those functors $F : \mathcal{C} \to \mathcal{D}$ that induce (a) degreewise surjections and (b) an isofibration $Ho(\mathcal{C}) \to Ho(\mathcal{D})$. All objects are fibrant.

quasi-action

Figure 1: A representation up to homotopy of an action groupoid $G \ltimes M \rightrightarrows M$.

Homotopy Kan extension to stacks

Let F be some sort of "geometric" structure, e.g. a function, a metric, a bundle, etc. An interesting question is: What is the correct version of F for Lie groupoids? "Correct" often means Morita invariant. Here is an abstract nonsense answer to this:

The basic recipe

Start with a functor $F : \mathcal{M}\mathrm{fld}^{\mathrm{op}} \to \mathcal{C}$ where \mathcal{C} is an ∞ -category. Then, there is a unique way to extend F to a functor $F : \mathsf{PreStacks}^{\mathrm{op}} \to \mathcal{C}$ that maps homotopy colimits to homotopy limits. If F satisfies descent (1), it factors through the stackification functor and has the same continuity property.

$$\begin{array}{c} \mathcal{M}\mathrm{fld}^{\mathrm{op}} \xrightarrow{F} \mathcal{C} \\ & \downarrow \\ & \mathsf{Pre})\mathsf{Stacks}^{\mathrm{op}} \end{array}$$

We can calculate the value on a differentiable stack $[\mathcal{G}_0//\mathcal{G}_1]$ presented by a Lie groupoid \mathcal{G} as the cosimplicial homotopy limit

 $F([\mathcal{G}_0/\mathcal{G}_1]) \simeq \operatorname{holim}_{[n] \in \Delta} F(\mathcal{G}_n).$

If F satisfies descent, this is by definition Morita invariant.

The main challenge is now the computation of the homotopy limit.

Example 5. • Let $F = C^{\infty}$: \mathcal{M} fld^{op} $\to Ch_{\geq 0}(\mathbb{R})$. Then $\operatorname{holim}_n C^{\infty}(\mathcal{G}_n)$ is computed via totalization of the resulting double complex. The resulting cochain complex is otherwise known as differentiable groupoid cohomology $C^*(\mathcal{G})$ and is a smooth version of group cohomology.

- Let $F = (\Omega^*, d)$ be the de Rham complex. Then $\operatorname{holim}_n \Omega^*(\mathcal{G}_n)$ is again a double complex known as the Bott-Shulman-Stasheff complex. It can be used to compute the equivariant de Rham cohomology.
- Let $F = \mathcal{V}ec : \mathcal{M}fld^{op} \to \mathcal{C}at$. Then the homotopy limit can be identified with the category of representations $\operatorname{Rep}(\mathcal{G})$.

Consider the functor $dg\mathcal{V}ec$ which assigns to a manifold the dg-category of bounded complexes of vector bundles.

Theorem: (DA)

 $\operatorname{Rep}_{\infty}$ is the homotopy Kan extension of $\operatorname{dg}\mathcal{V}ec : \mathcal{M}fld^{\operatorname{op}} \to \operatorname{dg}\mathcal{C}at$ along the Yoneda embedding to $\mathsf{PreStacks}$, i.e.

 $\operatorname{Rep}_{\infty}(\mathcal{G}) \simeq \operatorname{holim}_{\Delta} \operatorname{dg} \mathcal{V} \operatorname{ec}(\mathcal{G}_n).$

dg \mathcal{V} ec does not satisfy descent and hence $\operatorname{Rep}_{\infty}$, as defined above, is not Morita invariant.

Thus the primary answer to the conjecture is negative. But it is really close to being true. The problem is that the Tor-amplitude might be globally unbounded.

The dg-nerve N^{dg} : dg $Cat \rightarrow sSet_{Joyal}$ is a right Quillen functor. This means we can regard dg-categories as ∞ -categories. The only advantage of dg-categories is that the algebra is very explicit.

Computation of the homotopy limit

The Bousfield-Kan formula tells us that under some fibrancy assumptions the homotopy limit may be computed as the end

$$\operatorname{holim}_{\Delta} \operatorname{dg} \operatorname{\mathcal{V}ec}(\mathcal{G}_n) \simeq \int_{\Delta} \operatorname{dg} \operatorname{\mathcal{V}ec}(\mathcal{G}_n)^{\Delta^n}.$$

In [AO19] it is shown in general that these assumptions are always met in the case of dg categories. The dg-category dg $\mathcal{V}ec(\mathcal{G}_n)^{\Delta^n}$ is a thickened version of dg $\mathcal{V}ec(\mathcal{G}_n)$. A generic object for n = 2 looks like this:

$$E_{0} \xrightarrow{E_{1}} E_{2} \in \mathrm{dg}\mathcal{V}\mathrm{ec}(\mathcal{G}_{2})^{\Delta^{2}}$$

Figure 2: A 2-simplex decorated with weakly equivalent dg vector bundles over \mathcal{G}_2 .

Computing the end amounts to glueing these simplices together.

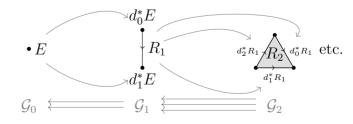


Figure 3: An object in the dg-category computed by the end is a dg vector bundle E over \mathcal{G}_0 together with a map $R_1(g): E_{s(g)} \to E_{t(g)}$ that is associative up to a homotopy $R_2(g, h)$ and higher coherences.

Doing this carefully, we arrive at the identification of $\operatorname{Rep}_{\infty}(\mathcal{G})$ and $\operatorname{holim}_{\Delta} \operatorname{dg}\mathcal{V}ec(\mathcal{G}_n)$.

Outlook

- The failure of $\operatorname{Rep}_{\infty}$ to be Morita invariant is the failure of $\operatorname{dg}\mathcal{V}$ ec to satisfy descent. The ∞ -category of perfect complexes of sheaves should be the correct replacement. Using such a refined theory, we get a category of perfect complexes on all higher stacks $\operatorname{Rep}_{\infty}$: Stacks^{op} \rightarrow dg \mathcal{C} at \mathcal{C} at $_{\infty}$.
- This is a proof-of-concept and there are many constructions for LieGrpd that could be revisited homotopically.

References

- [AC09] Camilo Arias Abad and Marius Crainic. Representations up to homotopy and Bott's spectral sequence for Lie groupoids, 2009.
- [AO19] Sergey Arkhipov and Sebastian Oersted. Homotopy limits in the category of dg-categories in terms of A_{∞} -comodules, 2019.

2024 Max Planck Institute for Mathematics Bonn aretz@mpim-bonn.mpg.de