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Representations of Lie groupoids

A Lie groupoid is a groupoid object G1

t
−−⇒
s

G0 in manifolds such that the source and target maps s, t are

submersions. This contains the following fundamental examples:

• Lie group G ⇒ ∗.
• manifold M ⇒ M where all arrows are units.

• action groupoid G⋉M ⇒ M associated to an action G ↷ M .

We write Gn for the manifold of n-composable arrows (g1, . . . , gn) and we write g1g2 . . . gn for the multiplica-
tion. This is the nth level of the simplicial nerve.

Definition 1. A representation of G is a vector bundle over the base E → G0 and an action ag : Es(g) → Et(g)

that satisfies agah = agh for composable arrows g, h ∈ G1 and aidx = id.

This entails:

• representation of G on a vector space.

• vector bundle over M .

• G-equivariant vector bundle over G ↷ M .

For a Lie group G, an important representation is the adjoint representation G ↷ g on its Lie algebra. The
analogue of the Lie algebra for a Lie groupoid G is its Lie algebroid A or more precisely, the following 2-term
complex of vector bundles over G0:

A TG0 .

This cannot be made into a representation. Rather, there will be a quasi-action on TG0 that is associative
up to the differential coming from A. This motivates the following definition.

Definition 2 (Abad, Crainic [AC09]). A representation up to homotopy consists of a dg vector bundle
(E∗, ∂) on G0 together with cochain maps Rn(g1, . . . , gn) : Es(gn) → Et(g1) of degree 1 − n, n ≥ 1 ,i.e.

Rn ∈ dgVec1−n
Gn

(s∗E, t∗E), such that:

n−1∑
i=1

(−1)iRn−1(g1, . . . , gigi+1, . . . , gn) =
n∑

i=0

(−1)iRi(g0, . . . , gi)Rn−i(gi+1, . . . , gn)

Additionally, R1(id) = id and Rn, n > 1 vanishes when inserting units.

There is a dg-category Rep∞(G) of representations up to homotopy.
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Figure 1: A representation up to homotopy of an action groupoid G⋉M ⇒ M .

Conjecture: [AC09]

The functor Rep∞ : LieGrpdop → dgCat maps Morita equivalences to Dwyer-Kan equivalences. Equiv-
alently, Rep∞ factors through LieGrpd → Stacks.

To explain the conjecture, we need to explain some of the terms.

Differentiable Stacks

From now on we will work with the ∞-category Stacks of stacks on manifolds with the Grothendieck
topology of open covers. Its key features are: There is a fully faithful Yoneda embedding:

Mfld ↪→ Stacks

Stacks is a reflective subcategory of PreStacks = Fun(Mfldop,∞Grpd) consisting of those prestacks F that
satisfy descent for any open cover (Ui) of U :

F(U) = holim(
∏

i F(Ui)
∏

i,j F(Uij)
∏

F(Uijk) . . .) (1)

Stacks is bicomplete, so we can take weak quotients and this gives a functor LieGrpd → Stacks:

[G0//G1] = hocolim∆op(G0 G1 G2 . . .)

The class W of morphisms in Grpd that are sent to equivalences in Stacks are called Morita morphisms. A
Morita morphism G → H of Lie groupoids is a map such that G1

∼= H1×H0×H0 (G0×G0). The full subcategory
Grpd[W−1] ⊂ Stacks is called the category of differentiable stacks. Many functors/constructions on groupoids
are known to be Morita invariant, i.e. constructions on the level of differentiable stacks.

Example 3. Consider the stack Vec = BO. A calculation shows that Stacks([G0//G1],Vec) ≃ Rep(G).
Hence, the category of representations of a Lie groupoid is a Morita invariant.

Example 4. This margin is too narrow to contain a long geometric motivation for stacks. Geometrically,
most examples arise from Lie groupoids.

dg-categories

A dg-category is a category C enriched in cochain complexes Chk. By taking cohomology H0(−), we get an
ordinary category Ho(C) The category dgCatk carries the Dwyer-Kan model structure.

• Weak equivalences are those enriched functors F : C → D that (a) induce quasi-isomorphisms
C(c, c′) ≃ D(Fc, Fc′) and (b) induce an equivalence Ho(C) ≃ Ho(D)

• The fibrations are those functors F : C → D that induce (a) degreewise surjections and (b) an isofibra-
tion Ho(C) → Ho(D). All objects are fibrant.

The dg-nerve Ndg : dgCat → sSetJoyal is a right Quillen functor. This means we can regard dg-categories as
∞-categories. The only advantage of dg-categories is that the algebra is very explicit.

Homotopy Kan extension to stacks

Let F be some sort of “geometric” structure, e.g. a function, a metric, a bundle, etc. An interesting question
is: What is the correct version of F for Lie groupoids? ’‘Correct” often means Morita invariant. Here is an
abstract nonsense answer to this:

The basic recipe

Start with a functor F : Mfldop → C where C is an ∞-category. Then, there is a unique way to extend
F to a functor F : PreStacksop → C that maps homotopy colimits to homotopy limits. If F satisfies
descent (1), it factors through the stackification functor and has the same continuity property.

Mfldop C

(Pre)Stacksop

F

We can calculate the value on a differentiable stack [G0//G1] presented by a Lie groupoid G as the
cosimplicial homotopy limit

F ([G0//G1]) ≃ holim[n]∈∆ F (Gn) .

If F satisfies descent, this is by definition Morita invariant.

The main challenge is now the computation of the homotopy limit.

Example 5. • Let F = C∞ : Mfldop → Ch≥0(R). Then holimnC
∞(Gn) is computed via totalization

of the resulting double complex. The resulting cochain complex is otherwise known as differentiable
groupoid cohomology C∗(G) and is a smooth version of group cohomology.

• Let F = (Ω∗, d) be the de Rham complex. Then holimnΩ
∗(Gn) is again a double complex known as

the Bott-Shulman-Stasheff complex. It can be used to compute the equivariant de Rham cohomology.

• Let F = Vec : Mfldop → Cat. Then the homotopy limit can be identified with the category of
representations Rep(G).

Consider the functor dgVec which assigns to a manifold the dg-category of bounded complexes of vector
bundles.

Theorem: (DA)

Rep∞ is the homotopy Kan extension of dgVec : Mfldop → dgCat along the Yoneda embedding to
PreStacks, i.e.

Rep∞(G) ≃ holim∆ dgVec(Gn) .

dgVec does not satisfy descent and hence Rep∞, as defined above, is not Morita invariant.

Thus the primary answer to the conjecture is negative. But it is really close to being true. The problem
is that the Tor-amplitude might be globally unbounded.

Computation of the homotopy limit

The Bousfield-Kan formula tells us that under some fibrancy assumptions the homotopy limit may be
computed as the end

holim∆ dgVec(Gn) ≃
∫
∆

dgVec(Gn)
∆n

.

In [AO19] it is shown in general that these assumptions are always met in the case of dg categories. The
dg-category dgVec(Gn)

∆n
is a thickened version of dgVec(Gn). A generic object for n = 2 looks like this:

E1

E2E0

≃ ≃
≃

⇒ ∈ dgVec(G2)
∆2

Figure 2: A 2-simplex decorated with weakly equivalent dg vector bundles over G2.

Computing the end amounts to glueing these simplices together.
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Figure 3: An object in the dg-category computed by the end is a dg vector bundle E over G0 together with
a map R1(g) : Es(g) → Et(g) that is associative up to a homotopy R2(g, h) and higher coherences.

Doing this carefully, we arrive at the identification of Rep∞(G) and holim∆ dgVec(Gn).

Outlook

• The failure of Rep∞ to be Morita invariant is the failure of dgVec to satisfy descent. The ∞-category
of perfect complexes of sheaves should be the correct replacement. Using such a refined theory, we get
a category of perfect complexes on all higher stacks R̃ep∞ : Stacksop → dgCatCat∞.

• This is a proof-of-concept and there are many constructions for LieGrpd that could be revisited homo-
topically.
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