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Abstract. The goal of this note is to show that the Bott-Shulman-Stasheff com-
plex associated to a Lie groupoid computes de Rham cohomology of the associated
quotient stack. As a consequence, any hypercover (also called Morita equivalence)
of Lie groupoids induces a quasiisomorphism on the Bott-Shulman-Stasheff com-
plex. We will also prove the de Rham theorem along the way.

Let X be a simplicial manifold. The Bott-Shulman-Stasheff complex ΩBSS is
defined to be the total complex of the following double complex:
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The horizontal differential is the alternating sum of the pullback along the face maps
δ =

∑n
i=0(−1)iδ∗i .

Theorem 0.1. Let X be a simplicial manifold that presents the ∞-stack X. Then
the Bott-Shulman-Stasheff complex ΩBSS computes the de Rham cohomology of X.

Corollary 0.2. Let f : X → Y be a finite height hypercover of simplicial mani-
folds. Then the induced map f ∗ on the Bott-Shulman-Stasheff complexes is a quasi-
isomorphism. In particular, this holds for all hypercovers between Lie n-groupoids.

We have to give a few definitions. In the following we will not need Lie n-groupoids
and we will instead refer to [Nui] for a discussion of hypercovers, Morita equivalence,
etc. To talk about higher stacks on the site of manifolds we will use simplicial
presheaves sPreShv(Mfld) satisfying a descent condition.

Definition 0.3. A ∞-stack is a simplicial presheaf F : Mfldop → sSet satisfying
the descent condition

F (M) holim∆op(
∏

F (Ui)
∏

F (Uij)
∏

F (Uijk) . . . )
≃ (D)

For any manifold M , the Yoneda embedding y(M) defines a presheaf valued in
Set ⊂ sSet satisfying descent. For any simplicial presheaf F there is an ∞-stack
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F̂ and a map F → F̂ such that any map F → G into an ∞-stack factors through
F̂ . F̂ is called the stackification of F . The stackification of the (levelwise) Yoneda
embedding defines an ∞-functor Mfld∆op → Stacks.

Mfld∆op −→Stacks

X 7−→ hocolim∆op y(Xn)

The ∞-category Stacks has the following universal property. For any contravariant
∞-functor F : Mfldop → D that satisfies descent (D) there is a unique ∞-functor
Ranyop F mapping homotopy colimits in Stacks to homotopy limits in D and that
makes the diagram below commutative:

Mfldop D

Stacksop

F

yop
Ranyop F

We will be interested in the functor Ω : Mfldop → ChR[q.i.
−1] that assigns to a man-

ifold the cochain complex of differential forms. The target is D(R) = ChR[q.i.
−1],

the derived ∞-category of R. The proof of Theorem 0.1 consists of 3 steps.

(1) We need to check that Ω satisfies the descent condition (D).
(2) Ω extends to a functor on stacks mapping colimits to limits. By abuse of

notation we will also write Ω for this functor.
(3) We can calculate Ω on the stack X presented by a simplicial manifold X and

show that it is quasiisomorphic to ΩBSS(X).

To prove Corollary 0.2 we also need the following:

(4) Under the map Mfld∆op → Stacks, hypercovers of simplicial manifolds are
mapped to equivalences of stacks.

Remark 0.4. Finally, it is worthwhile to remark that the unqualified term ∞-
category refers to any of the equivalent models such as quasicategories. For compu-
tations it is often easiest to work in model categories and all of this note could have
been phrased in model categories. We will not discuss any comparison results.

1. Proofs

To compute homotopy limits of cochain complexes we will need the following
Lemma. We will always consider the localization of ChR at quasi-isomorphisms, i.e.
the derived ∞-category D(R).

Lemma 1.1 (Prop 3.20 in [Ara23]). Let C : ∆ → ChR be a cosimplicial diagram
of cochain complexes. Then holim∆ C ≃ Tot(DK(C)) is the total complex of the
double complex obtained from C by taking the differential to be alternating sums of
face maps.

We now show Step (1).

Lemma 1.2. Ω satisfies descent.

Proof. Let U be a cover of M . Using Lemma 1.1 for [n] 7→
∏

Ω(Ui0...in) we compute
the homotopy limit to be the total complex of the Čech-de Rham double complex.
We conclude by invoking [BT82][Theorem 8.8]. Their proof shows that by the gen-
eralized Mayer-Vietoris argument the rows of the double complex augmented by
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Ω(M) are exact and hence the total complex also computes de Rham cohomology
of M . □

Remark 1.3. The real singular cochains M 7→ C∗(M,R) also satisfy descent. Both
Ω and C∗(−,R) are invariant under smooth homotopies, i.e. pr∗ : Ω(M) → Ω(M ×
R) is a quasiisomorphism.

Corollary 1.4 (De Rham Theorem). The natural map
∫
: Ω∗(M) → C∗(M,R) is

a quasiisomorphism for all M .

Proof. Both agree on M = ∗ and by homotopy invariance also on contractible open
sets. The integration is also an equivalence globally by using a good open cover and
the descent property. □

Lemma 1.5. Let X be a simplicial manifold. The Bott-Shulman-Stasheff complex
computes the homotopy limit holim∆ Ω(Xn) in D(R).

Proof. This follows directly from Lemma 1.1 and the definition of ΩBSS(X). □

We are now ready to prove Step (3).

Corollary 1.6. Let X be a simplicial manifold presenting the stack X. Then the
de Rham complex of X is computed by the Bott-Shulman-Stasheff complex: Ω(X) ≃
ΩBSS(X).

Proof. This follows directly from the previous Lemma and the definition of Ω(X) in
Step (2):

Ω(X) ≃ Ω(hocolim∆op y(Xn)) ≃ holim∆Ω(Xn) ≃ ΩBSS(X) . □

Consider the functor that maps M to its underlying topological space:

Mfld −→Top

M 7−→|M |

If we consider the relative category Top[W−1] where we invert weak homotopy equiv-
alences, then |− | satisfies a version of descent: |M | ≃ hocolim∆op

⊔
|Ui0...in|. By the

universal property of Stacks we can extend this to a functor |−| : Stacks → Top[W−1]
that preserves homotopy colimits. We refer to this as geometric realization. We
could now define singular cohomology as the singular cohomology of the geometric
realization X 7→ C∗(|X|,R). The various descent properties imply:

Corollary 1.7. Let X be a simplicial manifold presenting a stack X. The singular
cohomology of X coincides with de Rham cohomology and is computed by the Bott-
Shulman-Stasheff complex ΩBSS(X).

To conclude we provide a reference for Step (4). The preprint [Nui] in fact proves
much stronger structure theorems, but we are content with the following:

Theorem 1.8 (Prop. 4.9 in [Nui]). Let f : X → Y be a hypercover of height < ∞
between simplicial manifolds. Then the induced map X → Y is an equivalence of
stacks. In particular, this includes hypercovers of Lie n-groupoids for n < ∞.
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