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GUIDO BOSCO

ABsTRACT. We study a cohomology theory for rigid-analytic varieties over C,, without properness
or smoothness assumptions, taking values in filtered quasi-coherent complexes over the Fargues—
Fontaine curve, which compares to other rational p-adic cohomology theories for rigid-analytic
varieties — namely, the rational p-adic pro-étale cohomology, the Hyodo—Kato cohomology, and
the infinitesimal cohomology over the positive de Rham period ring. In particular, this proves a
conjecture of Le Bras. Such comparison results are made possible thanks to the systematic use
of the condensed and solid formalisms developed by Clausen—Scholze. As applications, we deduce
some general comparison theorems that describe the rational p-adic pro-étale cohomology in terms
of de Rham data, thereby recovering and extending results of Colmez—Niziot.
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1. INTRODUCTION

In this introduction, we fix a prime number p. We denote by K a complete discretely valued
non-archimedean extension of Q,, with perfect residue field k, and ring of integers Or. We fix

an algebraic closure K of K. We denote by C := K the completion of K, and by O¢ its ring of
integers. We let 9y := Gal(K/K) denote the absolute Galois group of K. We fix a compatible
system (1,ep,€,2,...) of p-th power roots of unity in O¢, which defines an element ¢ € O% with
Teichmiiller lift [¢] € Ais = W(OL).

1.1. Background and motivation. In the last decade, the field of p-adic Hodge theory has wit-
nessed dramatic advances, starting with Scholze’s development of perfectoid geometry, and Fargues—
Fontaine’s discovery of the fundamental curve. In particular, Scholze initiated the study of the p-adic
Hodge theory for rigid-analytic varieties in [Sch13a|, proving the finiteness of the geometric p-adic
étale cohomology of proper smooth rigid-analytic varieties, as well as the de Rham comparison the-
orem for such varieties. The latter was known before only for algebraic varieties, and we refer the
reader to [Niz21] for a historical account on the de Rham, crystalline, and semistable conjectures for
algebraic varieties. After Scholze’s work, there were efforts by a number of people to prove a version
of the crystalline/semistable conjecture for proper rigid-analytic varieties having good/semistable
reduction, culminating in the following theorem.

Theorem 1.1 ([CN17], [BMS18|, [CK19]). Let X be a proper p-adic formal scheme over Ok with
semistable reduction. We write X for the geometric rigid-analytic generic fiber of X. Let i > 0.
There is a natural isomorphism

Hi (X, Qp) ®q, Bst = Hio(Xr/W(K)°) @w () Bt (1.1)
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compatible with the Galois Yk, Frobenius ¢ and monodromy N actions, and filtrations."

In particular, there is natural Yx -equivariant isomorphism
Hiy (X, Qp) = (Heys(X1/W (K)°) @wy Bso) ="~ NFil’(Hig (Xk) @K Bar).  (1.2)

We remark that Colmez—Niziol’s strategy in [CN17| relies on a generalization of the syntomic
method initiated by Fontaine-Messing, and later refined by Hyodo, Kato and Tsuji. Instead, Bhatt—
Morrow—Scholze’s strategy, in their epoch-making work [BMS18], is based on the construction of a
cohomology theory for smooth p-adic formal schemes 3 over O¢ (generalized to the semistable case
by Cesnavicius-Koshikawa in [CK19]), called Ajn¢-cohomology RT a, . (3), which in the proper case
specializes to the (log-)crystalline cohomology of the special fiber and the étale cohomology of the
generic fiber, thus allowing to compare the latter two as in Theorem 1.1.

More recently, in a series of papers, Colmez—Niziol, partially in joint work with Dospinescu,
further generalized the syntomic method to study the rational p-adic Hodge theory of smooth
rigid-analytic varieties, which are neither assumed to be proper, nor having semistable reduction,
[CDN20b], [CN20], [CN21a], [CN21b]. These works are motivated in part by the desire of finding
a geometric incarnation of the p-adic Langlands correspondence in the p-adic cohomology of local
Shimura varieties, as partially indicated by [CDN20a].

In order to state the goals of this paper, we will denote by
Yer = Spa(Aint, Aint) \ V(0[P'])
the mixed characteristic punctured open unit disk,
FF := Yip/o?

the adic Fargues Fontaine curve (relative to C” and @,), and we fix oo the (C,O¢)-point of FF
corresponding to Fontaine’s map 6 : Ajnr — Oc.

As observed by Fargues, Theorem 1.1 can be reformulated as a natural isomorphism of ¥g-
equivariant vector bundles on FF

Hét(x07 @p> ®Qp Opr = S(Hciris(:{k/w(k)o)(@w o, N, Fﬂ) (1'3)

where the right-hand side of (1.3) denotes the vector bundle on FF associated to the filtered (¢, N)-
module H'; (X;/W (k)°)qg,- Since the left-hand side of (1.3) depends only on the geometric generic
fiber of X, it is natural to ask whether one can give a more direct cohomological construction of the
right-hand side that also depends only on the generic fiber, that interpolates between H ét (Xc,Qyp)
and the filtered (p, N)-module H!; (X,/W(k)")g,, and that allows to prove extensions of the
comparison (1.3) to any rigid-analytic variety over C.

Our first goal in this article will be to give a positive answer to the latter question by extending
Bhatt—Morrow—Scholze’s strategy and building crucially upon Le Bras’ work [LB18b|. We will study
a cohomology theory for rigid-analytic varieties X over C, taking values in filtered quasi-coherent
complexes over the Fargues—Fontaine curve FF, which compares to other rational p-adic cohomol-
ogy theories for rigid-analytic varieties over C', without properness or smoothness assumptions —

Here, we write Hl,;, for the log-crystalline cohomology, W (k)° denotes the log structure on W (k) associated to
(N — W(k),1+ 0), and X, is endowed with the pullback of the canonical log structure on X.
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namely, the rational p-adic pro-étale cohomology, the Hyodo Kato cohomology ([CN21a, §4]),% and
the infinitesimal cohomology over B ([BMS18, §13], [Guo21]). In particular, this will allow us to
obtain a general comparison theorem for rigid-analytic varieties defined over a p-adic field, describ-
ing the geometric rational p-adic pro-étale cohomology in terms of de Rham data, extending (1.2),
and recovering and generalizing the above-mentioned results of Colmez—Niziot.

1.2. B-cohomology. In the following, we denote by B the ring of analytic functions on Yr.

To pursue the goals stated in the previous section, we begin by defining the B-cohomology theory
for rigid-analytic varieties over C. Then, we shall explain how this cohomology theory interpo-
lates several other rational p-adic cohomology theories, and how to interpret our main comparison
theorems in terms of the Fargues—Fontaine curve FF.

For the reader willing to assume that X is smooth in Definition 1.2 below, we note that, in this
case, the éh-site of X (|Guol9, §2|, §2.2) can be replaced by the étale site of X (Proposition 2.42).
Our main results on the B-cohomology theory are already new in the smooth case.

Definition 1.2 (cf. Definition 2.38). Let X be a rigid-analytic variety over C. We denote by
a : X, — Xgn the natural morphism from the v-site to the éh-site of X.

(i) We define the B-cohomology of X as
RT5(X) := RTen(X, Ly RaB)

where B denotes the v-site sheaf theoretic version of the ring B, and we write L (—) for the
décalage functor with respect to t = log([¢]) € B, i.e. Fontaine’s 27i.
(ii) We define the B, -cohomology of X as

RI p+ (X) := Rlan(X, Ly Ra.BlR)

where IB%IR is the v-site sheaf theoretic version of the ring B:R.
We endow both RI'p(X) and RI’ BLTR(X ) with the filtration décalée, coming from Bhatt-Morrow—

Scholze’s interpretation of the décalage functor in terms of the connective cover functor for the
Beilinson t-structure (Definition 2.9). The Frobenius automorphism of B induces a ¢ p-semilinear
automorphism

¢: Rlp(X) — RI'p(X)
which preserves the filtration décalée.

Remark 1.3 (Le Bras’ work). We recall that, in the paper [LB18b|, Le Bras introduced and studied
(an overconvergent version of) the B-cohomology theory for smooth rigid-analytic varieties over
C. In particular, building upon results of [BMS18], for 3 a smooth proper p-adic formal scheme
over O¢, he compared the B-cohomology of the rigid-analytic generic fiber of 3 with the crystalline
cohomology of the special fiber of 3, [LB18b, Proposition 6.5].

In the following, we denote by F' the fraction field of the ring of Witt vectors W (k), we write F
for the completion of the maximal unramified extension of F' in K and we denote by O its ring of
integers.

2As we will see, the Hyodo—Kato cohomology is a cohomology theory for rigid-analytic varieties of C' which refines
the de Rham cohomology and, in the case of Theorem 1.1, compares to the rational log-crystalline cohomology of the
special fiber.
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To motivate our first main result on the B-cohomology theory, we recall that in [CN21a, §4], for
smooth rigid-analytic varieties X over C', Colmez—Niziol (adapting a construction of Beilinson in the
case of algebraic varieties |Beil3|), via the alterations of Hartl and Temkin, defined a Hyodo—-Kato
cohomology theory

RUpk (X)

taking values in the derived category of (y, N)-modules over F , which refines the de Rham coho-
mology RI'gr(X), and in the case X has a semistable formal model X over O¢ it is given by the
rational log-crystalline cohomology Rfcris(f{%c /p / O%)Qp (see also §3, and in particular Theorem
3.15).

At this point, based on Le Bras’ work (Remark 1.3), it was natural to ask how the B-cohomology
compares to the Hyodo—Kato cohomology, and whether, at least in the proper case, the latter
cohomology theory (which is defined using log-geometry) can be recovered from the former (which
is defined directly in terms of the generic fiber). To answer this question, the difficulty is twofold: the
first issue comes from the very definition of the Hyodo—Kato cohomology, which forces us to construct
a comparison morphism with the B-cohomology locally, and in a functorial way, using log-geometry;’
the second issue is of topological nature, since, locally, RT'gk (X ) is in general not a perfect complex
over F'. To avoid the topological issues, one could instead study an overconvergent version of the
desired comparison (cf. [LB18b, Conjecture 6.3|), however this makes the first mentioned difficulty
even more challenging.

As in our previous work [Bos21], we overcome the topological issues via the condensed mathe-
matics recently developed by Clausen—Scholze, and we refer the reader to the introduction of loc.
cit. for a more exhaustive explanation of the relevance of the condensed and solid formalism in the
study of the p-adic Hodge theory for rigid-analytic varieties.

Thus, given a condensed ring A,* we denote by ModCAOnd the category of A-modules in condensed
abelian groups, and, for A a solid ring, we denote by Modiflid the symmetric monoidal subcategory
of A-modules in solid abelian groups, endowed with the solid tensor product ®%. We denote by
D(Mod%™) and D(Mod!i4) the respective derived co-categories.

Our first main result is the following.
Theorem 1.4 (cf. Theorem 4.1, Theorem 5.1, Theorem 5.9, Theorem 5.20). Let X be a connected,
paracompact, rigid-analytic variety defined over C.

(i) We have a natural isomorphism in D(Modsgi?)
RTp(X) = (RTy (X) £5 Biog) V=" (1)

compatible with the action of Frobenius ¢, and the action of Galois Yk in the case when X 1is
the base change to C of a rigid-analytic variety defined over K.

3Likevvise, as explained to us by Cesnavicius and Le Bras, it is a priori not clear whether the absolute crystalline
comparison isomorphism for the Ajy¢-cohomology in the semistable case, constructed in [CK19, Theorem 5.4], is
functorial.

4All condensed rings will be assumed to be commutative and unital. Moreover, we refer the reader to 1.7 for the
set-theoretic conventions we adopt.
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Here, Biog denotes the log-crystalline condensed period ring (see §2.3), and RI'nk(X) de-
notes the Hyodo—Kato cohomology of X (Definition 3.14).°

(11) We have natural isomorphisms in D(Mod?ﬁd)
dR

RU'p(X) ®%" Bjy ~ RT Bt (X) = Rine(X/BJR)

compatible with the isomorphism (1.4). Here, RTins(X/BJg) denotes the infinitesimal coho-
mology over B:{R (|Guo2l], §5.2.1).
If X is the base change to C of a rigid-analytic variety Xo defined over K, then we have a

natural isomorphism in D(Modsgﬁd)
dR

RFBCTR (X) ~ RT4r(Xo) ®Ik. B;_R

compatible with the action of i, and with filtrations. Here, RTqr(Xo) denotes the de Rham
cohomology of Xy (Definition 2.16).

The proof of Theorem 1.4 proceeds by constructing functorial local isomorphisms, which are then
globalized using some magical properties of the solid tensor product proved by Clausen—Scholze,
which rely on the theory of nuclear modules.

Remark 1.5 (Overconvergent Fargues—Fontaine cohomology). Thanks to the properties of the solid
tensor product, one can also easily deduce a version of Theorem 1.4 for X a dagger variety over C.
In particular, reinterpreting the latter result in terms of the Fargues—Fontaine curve (see §6.2), one
can deduce a generalization of [LB18b, Conjecture 6.3|, as shown in Theorem 6.17: for i > 0, given
X a qcqgs dagger variety over C', the cohomology group Hfg (X) is a finite projective p-module over
B; then, denoting by HZFF (X) the associated vector bundle on FF, we have a natural isomorphism

Hiop(X) = E(Hpk (X)) (1.5)

where Hi(X) is a finite (p, N)-module over F, and the right-hand side denotes the associated
vector bundle on FF; moreover, the completion at oo of (1.5) gives a natural isomorphism

Fr(X)% = Hipg(X/B).

[eS) inf

We note that (1.5) implies in particular that the vector bundle Hkp(X) determines, up to isomor-
phisms, the ¢-module structure on HIZ{K (X), and, while the latter is defined via log-geometry, the
former is defined directly on the generic fiber. In addition, one can also recover from Hip(X) the
(¢, N)-module structure on Hip (X) (see Remark 6.18).°

As applications, using Theorem 1.4, via the relative fundamental exact sequence of p-adic Hodge
theory, we show the following result.

Theorem 1.6 (Theorem 7.1). Let X be a gegs rigid-analytic variety defined over K. We have a
Y -equivariant pullback square in D(Mode‘fild)

5F0rgetting the condensed structure, the Hyodo—Kato cohomology of X agrees with the one defined by Colmez—
Niziol (|[CN21a, §4]) in the case when X is smooth.

6We also remark that, recently, Binda—Kato—Vezzani, via a motivic approach, proposed a definition of the over-
convergent Hyodo—Kato cohomology theory without using log-geometry, [BKV22, Appendix A].
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RT prost (X0 Qp) ——— (RTuk(X¢) @%® Biog[1/]) V=041

| !

Fil’(RT4r(X) @ Bgr) ————— RI4r(X) @%™ Byr.

We note that Theorem 1.6 can be regarded as a derived generalization of (1.2): it tells us that the
rational p-adic (pro-)étale cohomology of X can be recovered from the Hyodo—Kato cohomology
of X¢ and the de Rham cohomology of X together with its Hodge filtration.

1.3. Syntomic Fargues—Fontaine cohomology. The search for a theorem comparing the ratio-
nal p-adic pro-étale cohomology of any rigid-analytic variety over C' in terms of the B-cohomology
and its filtration led us to define the following cohomology theory.

Definition 1.7. Let X be a rigid-analytic variety over C'. Let ¢ > 0 be an integer. We define the
syntomic Fargues—Fontaine cohomology of X with coefficients in Q,(7) as the complex of D(Mod@jpnd)

Ry pr (X, Q,(i)) := Fil' RT g(X)*=*'
where RI'p(X) is endowed with the filtration décalée.
The first main result on the syntomic Fargues—Fontaine cohomology is the following.

Theorem 1.8 (Theorem 6.3). Let X be a rigid-analytic variety over C. Let i > 0.
(i) We have a natural isomorphism in D(Mod%)pnd)

TSiRPSynvFF (X’ QP(Z)) — TSiRFproét (X, Qp(l))
(ii) We have a natural isomorphism in D(Modgpnd)
RTgyn rr(X, Qp(7)) ~ ﬁb(RI‘B(X)SDZPZ _ RPBIR(X)/Fili)‘

We remark that the construction of the comparison morphisms in Theorem 1.8 is global in nature
and it can be extended to coefficients (see §7.5).

Combining Theorem 1.4 with Theorem 1.8, we obtain the following result. Cf. [LB18b, §6] and
[AMMN20, Theorem 7.13] for some related results in the proper good reduction case, and [CN21a,
Theorem 1.1] for smooth rigid-analytic varieties.

Theorem 1.9 (Theorem 7.2). Let X be a connected, paracompact, rigid-analytic variety defined
over K. For any i > 0, we have a 9 -equivariant isomorphism in D(Moda’fd)

7= R proet (X0, Qp(i)) ~ 7" fib((RTuk (X o) @™ Biog)™ =0¢=F' _, (RT4r(X) @%* Bi,,)/ Fil’).

Another interesting fact about the syntomic Fargues—Fontaine cohomology concerns its close
relationship with the curve FF, as it can be guessed from its very definition. As explained in §6.2,
for any X qcgs rigid-analytic variety over C, the p-equivariant filtered complex Fil* RT'p(X) lifts
to a filtered object

Fil* Hpp(X)
of the oo-category of quasi-coherent complexes QCoh(FF), in the sense of Clausen—Scholze (see
§A.3). Then, relying in particular on results of Andreychev on the analytic descent for nuclear
complexes on analytic adic spaces, [And21]|, we show the following theorem.
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Theorem 1.10 (Theorem 6.19). Let X be a qcgs rigid-analytic variety over C. Leti > 0. Consider
the quasi-coherent complex on FF defined by

Heyn(X) (i) := Fil' Hpp(X) @ O(i).
We have
RF(FR Hsyn(X)(i)) = RPSyH,FF(Xa @p(l))

If X is proper, the complex Heyn(X)(i) is perfect, in particular the complex RIsyn pr(X, Qp(7))
identifies with the C'-points of a bounded complex of Banach—Colmez spaces.

Remark 1.11 (Comparison with Fontaine-Messing/Colmez—Niziol’s syntomic cohomology). Fix i >
0. In [CN20], via the alterations of Hartl and Temkin, Colmez—Niziol, starting from the syntomic
cohomology of Fontaine-Messing, defined a syntomic cohomology theory for any smooth rigid-
analytic variety X over C, that here we will denote by RI'syn cn(X,Qp(7)). We observe that
Hgyn,FF(X’ Qp(4)) is isomorphic to Hgyn,CN(X’ Qp (7)) for any integer j < i, as in this case the two
cohomology groups are both isomorphic to ngoét(X, Qp(7)); however, in general, for j > i, the
two cohomology groups are not isomorphic (see Example 6.36). This difference is reflected in the
fact that, for X proper, the complex RI'sy pr(X,Qp(i)) canonically lifts to a complex of vector
bundles on FF, as shown by Theorem 1.10, while the complex RI'syn on(X, Qp(7)) canonically lifts
to a complex of ¢-modules jaugés over BT, in the sense of Fargues (|[Farl5, Définition 4.15]), cf.
[Niz19, Theorem 1.1].”

1.4. Semistable conjectures. From the general derived comparison results we have stated above,
in particular from Theorem 1.6 and Theorem 1.9, one can deduce in some special cases a refined
description of the single rational p-adic (pro-)étale cohomology groups in terms of de Rham data.

For X a proper (possibly singular) rigid-analytic variety over C, we prove in Theorem 7.4 a
version of the semistable conjecture for X, generalizing Theorem 1.1. In the case when X is the
base change to C of a rigid-analytic variety Xy defined over K, this result relies on the degeneration
at the first page of the Hodge-de Rham spectral sequence associated to Xy ([Schl3a, Corollary
1.8], [Guol9, Proposition 8.0.8]). In general, we reduce to the previous case via a combination of
Conrad—Gabber’s spreading out for proper rigid-analytic varieties and a generic smoothness result
recently proved by Bhatt-Hansen, [BH22|.

Another case in which the Hodge-de Rham spectral sequence simplifies is for smooth Stein spaces,
thanks to Kiehl’s acyclicity theorem. In this case, we show the following theorem which reproves
results of Colmez—Dospinescu-Niziol [CDN20b| (in the semistable reduction case) and Colmez—
Niziol [CN21b].

Theorem 1.12 (cf. Theorem 7.7). Let X be a smooth Stein space over C. For any i > 0, we have
a short exact sequence in Modald

0 — QN (X)/kerd — Hios (X, Qp(i) — (Hip (X) &% Biog) V=097 — 0.

Remark 1.13. A recent conjecture of Hansen, [Han21l, Conjecture 1.10|, suggests that any local
Shimura variety is a Stein space, therefore Theorem 1.12 potentially applies to any such variety.

"We recall that the category of p-modules jaugés over B is equivalent to the category of modifications of vector
bundles on FF, [Farl5, §4.2]. However, this is not an equivalence of exact categories, in the sense of Quillen.
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Remark 1.14 (A p-adic Artin vanishing for smooth Stein spaces). Let X be a smooth Stein space
over C'. As a corollary of Theorem 1.12, we have that

H}i)roét(X’ Qp) =0
for all ¢ > dim X (Corollary 7.10).

For smooth affinoid rigid spaces, the Hodge-de Rham spectral sequence simplifies similarly to
smooth Stein spaces, thanks to Tate’s acyclicity theorem (see also Proposition 7.3). Therefore, in
view of Theorem 1.12, we are led to state the following conjecture.

Conjecture 1.15 (cf. Conjecture 7.11). Let X be a smooth affinoid rigid space over C. For any
1 > 0, we have a short exact sequence in Mod?Q‘fild

0— Q1 (X)/kerd — H}, o5 (X, Qpu(i)) — (Hip (X) @Y%, Blog)zv:o,wpi o

We remark that before the advent of condensed mathematics one couldn’t even dare to formulate
a conjecture in the spirit of the one above; in fact, for a smooth affinoid rigid space X over C,
the de Rham Hz(X) and Hyodo-Kato H{;;(X) cohomology groups are in general pathological if
regarded as topological vector spaces (see [Bos21, Remark 5.14]).% Instead, regarded as condensed
vector spaces, these objects are perfectly well-behaved, even though they are non-quasi-separated.
Then, exploiting the possibility (provided by the solid formalism) of doing functional analysis with
such new objects, we prove the following result.

Theorem 1.16 (cf. Theorem 7.12). Conjecture 7.11 holds true for X a smooth affinoid rigid space
over C' of dimension 1.

We discuss in §7.4 the obstruction to proving Conjecture 7.11 in dimension higher than 1. We
note however that an analogue of Remark 1.14 for smooth affinoid spaces over C is known in any
dimension, thanks to a result of Bhatt—Mathew (see Lemma 7.13).

1.5. Link to prismatic cohomology: toward an integral theory. We conclude this introduc-
tion by conjecturing the existence of an integral variant of the B-cohomology theory for rigid-analytic
varieties, which in particular better explains the relation between the results of this paper and the
work of Bhatt—-Morrow—Scholze and Cesnavicius—Koshikawa.

In the following, we write yo for the (C,O¢)-point of Ypp corresponding to Fontaine’s map
0 : Ains — Oc¢ (and projecting to the point co of FF). Let us recall the following result of Fargues.

Proposition 1.17 (Fargues, cf. [Farl5, Proposition 4.45], [SW20, Theorem 14.1.1]). The following
two categories are equivalent:

(1) Shtukas (of vector bundles).over SpaC” relative to SpaQ, with one leg at ™ (yc), i.e.
vector bundles & on SpaC” x Spa Qp = Yrr? together with an isomorphism

pe - (¢*5)|YFF\¢_1(ZJC) = g’YFF\SO_l(yC)

which is meromorphic at o~ (yc).

8There were previously some partial and ad hoc solutions to this issue. For example, in [CDN21|, for X a
smooth affinoid over C' of dimension 1, Colmez—Dospinescu—Niziol considered the maximal Hausdorff quotient of the
topological F-vector space Hyjk (X).

~

9To motivate the notation and the terminology, we recall that YF% =~ (SpaC)® x (Spa@Q,)? as diamonds.
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(2) Admissible modifications of vector bundles on FF at oo, i.e. triples (Fi, Fa, ) where Fi and
Fo are vector bundles on FF with Fi semistable of slope 0, and « : Fi|pp \{oo} = Folrr \{oo}
s an isomorphism.

Now, given X a proper rigid-analytic variety over C', for ¢ > 0 we consider the modification of
the vector bundle Hip(X) at oo given by the Bjj-lattice

Fil’( ECTR(X) ®p+ Bar) € Hip(X)% @ p1 Bar = Hg (X, Q) ®g, Bar
which gives an admissible modification of vector bundles on FF at oo
(Hgt(X7 QP) ®Qp OFF? H%F(X)a Oé) (16)

(see Theorem 7.4). Then, inspired by Bhatt-Morrow—Scholze’s work, it is natural to wonder whether
one can give a direct geometric cohomological construction of the shtuka corresponding to (1.6)
via the above recalled Fargues’ equivalence, and how the latter compares to the A;,s-cohomology
theory in the semistable reduction case. More precisely, we formulate the following conjecture (for
simplicity, we restrict ourselves to proper rigid-analytic varieties).

We will consider the analytic adic space

Vrr = Spa(Ains, Aint) \ V(["])

and denote by A the ring of analytic functions on Vpr. We note that Ypr C YVpp is the open subset
defined by the locus where p # 0.

Conjecture 1.18. There exists a cohomology theory

RT 41t (X/VFr)

for proper rigid-analytic varieties X over C, taking values in shtukas of perfect complezes over Spa C”
relative to SpaZ, with one leg at p~L(yc) (i.e. perfect complezes € on Spa C" x Spa Zyp = Yrr
together with an isomorphism ¢g @ (P*E)|yp\o-1(ye) = Elyer\p-1(ye) Which is meromorphic at
0 Yyc)), and satisfying the following properties.

(i) If X is the generic fiber of a proper p-adic formal scheme X over O¢ with semistable reduction,
there is a natural isomorphism between RUgh(X/Vrr) and the shtuka of perfect complexes over
Spa C” relative to SpaZ, with one leg at o~ (yc) associated to RT 4, ,(X) ®a,,, A.

(ii) Denoting by RUgn(X/Yrr) the restriction of RUgn(X/Vrr) to Yer, the cohomology groups
Hsiht(X/YFF) are shtukas of vector bundles over SpaC® relative to SpaQ, with one leg at
0o Yyc), and the admissible modification of vector bundles on FF at oo defined in (1.6) cor-

responds to H, (X/Yyr) via Fargues’ equivalence (Proposition 1.17).

In the notation of Definition 1.2, a natural candidate for the cohomology theory conjectured above
is given by a lift of the complex RI¢y(X, Ln,RoA) to Ve, where A is the v-site sheaf theoretic
version of the ring A, and p = [g] — 1 € A;yr. However, it would be more interesting (especially for
questions related to cohomological coefficients) to give a definition of RTg(X/YVrr) in the spirit of
prismatic cohomology ([BS22], [Dri22], [BL22])."” We hope to come back on these questions in a
future work.

OMore precisely, such definition would give a Frobenius descent of RTsnt(X/Vrr).
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1.6. Leitfaden of the paper. We have organized the paper as follows. We begin by defining the
B-cohomology and the B(YR-cohomology, together with their filtration décalée, in §2. In §3, we
revisit, in the condensed setting, the Hyodo—Kato cohomology of Colmez—Niziot, and we extend it
to singular rigid-analytic varieties over C'. In §4 and §5, we prove the first main result of the paper:
Theorem 1.4. We then proceed in §6 by introducing the syntomic Fargues—Fontaine cohomology
and proving Theorem 1.8 and Theorem 1.10; on the way, we also study nuclear complexes on the
Fargues—Fontaine curve. In §7, we give applications of the main results proven in the previous
sections, showing in particular Theorem 1.6 and Theorem 1.9. We end with Appendix A in which
we collect some complements on condensed mathematics used in the main body of the paper.

1.7. Notation and conventions.

Ground fields. Fix a prime number p. We denote by K a complete discretely valued non-
archimedean extension of Q,, with perfect residue field %, and ring of integers Or. We
choose a uniformizer w of Ok.

We fix an algebraic closure K of K. We denote by C' := K the completion of K, and
by O¢ its ring of integers. We denote by F' the fraction field of the ring of Witt vectors
W (k), we write F for the completion of the maximal unramified extension of F in K, and
we denote by O its ring of integers.

Moreover, we let 9k := Gal(K/K) denote the absolute Galois group of K.

oo-categories. We will adopt the term co-category to indicate a (oo, 1)-category, i.e. a higher
category in which all n-morphisms for n > 1 are invertible. We will use the language of
oo-categories, [Lur09], and higher algebra, [Lurl7|.

We denote by A the simplicial category and, for every integer m > 0, we write A<, for
the full subcategory of A having as objects [n] for 0 < n < m.

We denote by Ani := Ani(Set) the co-category of anima, i.e. the co-category of animated
sets, [CS21, §5.1.4].

Condensed mathematics. We fix an uncountable cardinal x as in [Sch21, Lemma 4.1]|. Un-
less explicitly stated otherwise, all condensed sets will be x-condensed sets (and often the

prefix “£” is tacit). We will denote by CondAb the category of k-condensed abelian groups,
and by Solid C CondAb the full subcategory of k-solid abelian groups.

Unless stated otherwise, all condensed rings will be k-condensed commutative unital rings.
Given a (k-)condensed ring A, we denote by Modi,ond the category of A-modules in CondAb,
and, for A a solid ring, we denote by Modi{’lid the symmetric monoidal subcategory of A-
modules in Solid, endowed with the solid tensor product ®%. We denote by D(Mod$™9)
and D(Mod!i4) the respective derived co-categories, and sometimes we abbreviate D(A) =
D(Mod$™). Moreover, we write Hom 4 (—, —) for the internal Hom in the category Mod$™?
(and in the case A = Z, we often omit the subscript Z).

Throughout the paper, we use Clausen—Scholze’s non-archimedean condensed function
analysis, for which we refer the reader to [Bos21, Appendix A].
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Condensed group cohomology. Given a condensed group G, and a G-module M in CondAb,
the condensed group cohomology of G with coefficients in M will be denoted by

Rl cona(G, M) := RHomg¢(Z, M) € D(CondAb)
where Z is endowed with the trivial G-action (see e.g. [Bos21, Appendix BJ).

Adic spaces. We say that an analytic adic space X is k-small if the cardinality of the underly-
ing topological space | X| is less than r, and for all open affinoid subspaces Spa(R, RT) C X,
the ring R has cardinality less than . In this paper, all the analytic adic spaces will be
assumed to be x-small.

Throughout the article, all Huber rings will be assumed to be complete, and will be
regarded as condensed rings.

Pro-étale topology. We recall that there is a natural functor X — X from the category
of analytic adic spaces defined over Spa(Z,, Zy) to the category of locally spatial diamonds,

satisfying | X| = | X¢| and X¢ = Xé?, [Sch21, Definition 15.5, Lemma 15.6].
For X an analytic adic space defined over Spa(Z,,Z,), we denote by
Xproét = X<>

qproét
its (k-bounded) pro-étale site, [Sch21, Definition 14.1].

Given f : X — Spa(C, O¢) an analytic adic space over C, and F a sheaf of abelian groups
on Xprost, we define the complex of D(CondAb)

Rrproét (X7 J:) = prroét *-F
(see also [Bos21, Definition 2.7, Remark 2.9]).
Fargues—Fontaine curves. For S = Spa(R, R") an affinoid perfectoid space over F,, we let
Yer,s == Spa(W(R'), W(R™)) \ V(p[p’]).

We recall that Ygp g defines an analytic adic space over Qp, [F'S21, Proposition II.1.1]. The
p-th power Frobenius on R" induces an automorphism ¢ of Ypp g whose action is free and
totally discontinuous, [F'S21, Proposition I1.1.16]. The Farques—Fontaine curve relative to S
(and Qp) will be denoted by

FFs := Yp 5/¢". (1.7)
For I = [s,r] C (0,00) an interval with rational endpoints, we define the open subset
Yer,s.1 = {Ip|” < |[P’]] < IpI°} C Yer.s- (1.8)

We note that Ypp g 1 is an affinoid space, as it is a rational open subset of Spa(W (R™), W (R™)).
We denote by Bun(FFg) the category of vector bundles on FFg, and by ISOCFP the category

of isocrystals over ﬁp (also called finite ¢-modules over @p), i.e. the category of pairs (V, p)

with V a finite-dimensional @p-vector space and ¢ a o-semilinear automorphism of V', where

o is the automorphism of Q, = W (F,)[1/p] induced by the p-th power Frobenius on F,,.
Recall that we have a natural exact ®-functor

Isocg — Bun(FFg), (V,p)— EV, ).
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For A € Q, we denote by (Dy, ¢,) the simple isocrystal over F,, of slope A in the Dieudonné—
Manin classification, and we let

Orrs(=A) := E(Dx, ¢a)-
In particular, for n € Z, we have
Orrg(n) = E(Qpp~"0).
In the case S = Spa(C”®, O»), we omit the subscript S from (1.7) and (1.8).

We will often use the classification of vector bundles on FF (see [FF18, §8], [['S21, Theo-
rem I1.0.3]): the functor Isocg — Bun(FF) induces a bijection on isomorphism classes; in
particular, any vector bundle on FF is isomorphic to a direct sum of vector bundles of the

form Opp(\) with A € Q.

We will denote by oo the (C, O¢)-point of the curve FF corresponding to Fontaine’s map
0:W(Oe) — Oc, and
loo : Spa(C, O¢) — FF

the inclusion map.

Rigid-analytic varieties. All rigid-analytic varieties, and all dagger varieties (|GKO00]), oc-
curring in this work will be assumed to be quasi-separated, and of finite dimension.

We say that a rigid-analytic/dagger variety X is paracompact if it admits an admissible
locally finite affinoid covering, i.e. there exists an admissible covering {U;}icr of X by
affinoid subspaces such that for each index ¢ € I the intersection U; N U; is non-empty for
at most finitely many indices j € I.

We recall that a paracompact rigid-analytic variety is taut, |[Hub96, Definition 5.1.2,
Lemma 5.1.3|, and it is the admissible disjoint union of connected paracompact rigid-analytic
varieties of countable type, i.e. having a countable admissible affinoid covering, [dJvdP96,
Lemma 2.5.7]. We refer the reader to [Bos21, §5.2] for further recollections on paracompact
rigid-analytic varieties.

Formal schemes. Unless explicitly stated otherwise, all formal schemes will be assumed to
be p-adic and locally of finite type.
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2. PRELIMINARIES

In this first section, our goal is to define the B-cohomology together with its filtration décalée.
Along the way, we will establish several preliminary technical results, which will be used in the rest
of the paper.

2.1. Décalage functors and Beilinson ¢-structure. In this subsection, we will recall an interpre-
tation of the décalage functor in terms of the connective cover functor for the Beilinson t-structure.

2.1.1. Décalage functors. We shall use the following notation.

Notation 2.1. Let (T, Or) be a ringed topos and let (f) C Or be an invertible ideal sheaf. We
will write D(Or) for the derived category of Or-modules.

The following slight generalization of [BMS18, Definition 6.2|, which goes back to Berthelot—Ogus,
will be used in particular in §6.3.

Definition 2.2 (cf. [BO78, Definition 8.6]). Let 6 : Z — Z be a function. Let M® be an f-
torsion-free complex of Op-modules. We denote by 75 ¢(M*®) the subcomplex of M*[1/f] defined
by

.p(M*) == {z € fPOM" : dx € fPUFD MY
In the case 0 = id, we put n¢(—) := niq,f(—).
Remark 2.3. We note that the definition of 1s s(—) depends on the ideal sheaf (f) C Or and it is
independent on the chosen generator of the latter.

Proposition 2.4 (cf. [BO78, Proposition 8.19]). Let 0 : Z — Z be a non-decreasing function. The
functor ns ¢ from f-torsion-free complexes of Or-modules to D(Or) factors canonically over the
décalage functor (relative to (f) and ¢)

Lns.s - D(Or) — D(Or).

Proof. First, recall that every complex of Op-modules is quasi-isomorphic to an f-torsion-free com-
plex of Op-modules, [BMS18, Lemma 6.1]. We want to show that the endo-functor 75 on the
category of f-torsion-free complexes of Op-modules preserves quasi-isomorphisms. The latter as-
sertion is implied by the following claim (cf. [BMSI18, Lemma 6.4]): given M*® an f-torsion-free
complex of Op-modules, for all ¢ € Z, the multiplication by f°) map, i.e. tensoring by —®0; ( £O0),
induces an isomorphism

HY(M®)/H (M®)[fO~00D) 5 H (5 M*)
(note that 6(i) — d(i — 1) > 0 by assumption on the function § : Z — Z). For this, let Z*(M*®) C M®

and Z'(ns s M®) C (ns s M*)" denote the cocycles. By f-torsion-freeness of the terms of the complex
M?*, the multiplication by f‘;(i) map induces an isomorphism

ZY(M*®) = Z*(ns, s M*)
which in turn induces a surjection
H'(M®) — H'(ns fM*).
Moreover, given a cocycle z € Z*(M®) mapping to the zero class of H'(ns fM®) via multiplication

by f°@), we have that f0)z = d(f50=Dy) for some y € M~ ie. fO0-00=D; = gy which means
that the image of z in H*(M*) is fO@=9(=1_torsion, as claimed. O
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2.1.2. Beilinson t-structure. Next, as promised, we want to recall the oco-categorical interpretation
of the décalage functor Lns(—) as the connective cover functor for the Beilinson t-structure.

Notation 2.5. Let A be a commutative unital ring. Let D(A) denote the derived oo-category of
A-modules. We write
DF(A) := Fun(Z°?, D(A))
for the filtered derived oco-category of A-modules. Given F € DF(A), for i € Z, we define the i-th
graded piece of F' as the cofiber
gr'(F) := F(i)/F(i + 1).

We refer the reader to [BMS19, §5.1] for recollections on filtered derived oo-categories.

Definition 2.6 ([BMS19, Definition 5.3]). Let DF=<°(A) C DF(A) be the full co-subcategory
spanned by those F' such that gri(F) € D<!(A) for all i € Z, and let DFZ%(A) ¢ DF(A) be the
full co-subcategory spanned by those F' such that F(i) € D=*(A) for all i € Z. The pair

(DF=0(A), DF=0(A))
is called the Beilinson t-structure on DF(A).

Note that the t-structure depends only on the triangulated category underlying the derived oo-
category D(A). The definition above is justified by the following result.

Proposition 2.7 (|[BMS19, Theorem 5.4|). Fiz notation as in Definition 2.0.
(i) The Beilinson t-structure (DF<0(A), DFZ°(A)) is a t-structure on DF(A).
(ii) Denoting by
50 : DF(A) — DF=°(A)
the connective cover functor for the Beilinson t-structure on DF(A), there is a natural iso-
morphism
g orfg (—) = T o gr' ().
(#ii) Denote by
HY : DF(A) — DF(A)Y := DF=%(A) N DF=%(A)
the 0-th cohomology functor for the Beilinson t-structure. The heart DF(A)QQ 18 equivalent to
the abelian category Ch(A) of chain complexes of A-modules in abelian groups, via sending,
for varying F € DF(A), the 0-th cohomology HY.4(F) € DF(A)Y to the chain complex
(H®(gr*(F)),d) with differential d induced by the boundary map for the exact triangle

gt T (F) — F(i)/F(i +2) — gr'(F).

In the following, let f be a non-zero-divisor in A.

Proposition 2.8. Let M € D(A). Define Fil* Ln;M € DF(A) the filtration on LnsM whose i-th
level is given by Ln., fM, where €; : 7 — 7,j — max(i,j). Denote by f* @ M € DF(A) the
filtration on M whose i-th level is given by f*®@4 M. Then, Fil* Lns M identifies with ngl(f* ®@M)
in DF(A).

Proof. First, note that the function g; is non-decreasing, hence it satisfies the assumptions of Propo-
sition 2.4. Then, the statement is contained in the proof of [BMS19, Proposition 5.8]. O
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Definition 2.9. Given M € D(A), we call the filtration Fil* LnsM defined in Proposition 2.8 the
filtration décalée on Ln;M.

The definitions and the results above extend to any ringed topos (or site). In particular, they
extend to the case of the ringed site (*y.prost, A4), for k cut-off cardinal as in §1.7, where %, proet is
the site of xk-small profinite sets, with coverings given by finite families of jointly surjective maps,
and A is a k-condensed ring.

2.2. The éh-topology. In this subsection, we recall the definition of the éh-site for rigid-analytic
varieties, introduced by Guo, and we consider its variant for dagger varieties. This site will be
used crucially in the definition of the B-cohomology theory for arbitrary (possibly singular) rigid-
analytic/dagger varieties.

2.2.1. Definition of the éh-site. We will use the following notation and conventions.

Notation and conventions 2.10. We denote by L a characteristic 0 complete valued field with
a non-archimedean valuation of rank 1 and residue characteristic p. We write Rig; (resp. RigTL)
for the category of rigid-analytic (resp. dagger) varieties over L, and we denote by RigSm; (resp.
RigSmTL) the category of smooth rigid-analytic (resp. dagger) varieties over L.

We refer the reader to [GKO00] for the foundations of dagger varieties (also called overconvergent
rigid varieties), and to [Vez18, §2| for a quick recollection of the definitions and the main results on
the subject, which we will freely use in the following.

Given a dagger variety X = ()? , O over L with underlying rigid-analytic variety X and over-
convergent structure sheaf OF, we say that X is the limit of X, and vice versa that X is a dagger
structure on X, [Vez18, Definition 2.22]; moreover, we regard O as a sheaf with values in Mochond.

Before defining the éh-site for rigid-analytic and dagger varieties, we need to introduce the notion
of blowing-up. The construction of the blow-up of a rigid-analytic variety along a closed analytic
subset, as well as the verification of its universal property, is due to Conrad, [Con06, §4.1]. In turn,
such construction relies on the definition of the relative analytified Proj, [Con06, §2.3], denoted
Proj®. We note that the latter definition translates verbatim to dagger varieties (replacing the
structure sheaf with the overconvergent structure sheaf). We can then give the following definition
(see [Con06, Definition 4.1.1]).

Definition 2.11. Let X be a rigid-analytic (resp. dagger) variety over L, and let Z = V(Z) be the
Zariski closed subset defined by a coherent ideal sheaf Z over X. The blow-up of X along Z is the
rigid-analytic (resp. dagger) variety over X defined by

Blz(X) = Projan(69n20 In)

Remark 2.12. Keeping the notation above, the blow-up of X along Z has the following universal
property (see the discussion after [Con06, Definition 4.1.1]): Blz(X) — X is the final object in the

category of morphisms f : ¥ — X in Rig; (resp. RigTL) such that the coherent pullback f*Z7 is
invertible.

Definition 2.13 (|Guo19, Definition 2.4.1]). The big éh-site Rig, 4, (vesp. RigTL ¢n,) 18 the Grothendieck
topology on the category Rig; (resp. Rig}r:), such that the covering families are generated by étale



18 GUIDO BOSCO

coverings, universal homeomorphisms, and morphisms
Blz(Y)UZ =Y

with Z a closed analytic subset of Y.
Given X a rigid-analytic (resp. dagger) variety over L, we define the small éh-site Xy, as the

localization of the site Rigy, ¢, (resp. Rig} ¢n) at the object X.
The definition above is designed to make the following result hold true.

Proposition 2.14 (cf. [Guol9, Corollary 2.4.8|). Let X be a quasi-compact, reduced, rigid-analytic
(resp. dagger) variety over L. Then, there exists a proper éh-covering f : Y — X with Y a smooth
rigid-analytic (resp. dagger) variety over L.

Proof. We will check that the proof of [Guol9, Corollary 2.4.8| also holds for dagger varieties.
Since X is quasi-compact and reduced, by Temkin’s non-embedded desingularization theorem,
[Tem12, Theorem 1.2.1, Theorem 5.2.2], there exists a finite sequence of blowups

X,—>Xp1— - — X=X

such that X, smooth, with X; = Ble_1 (X j,l) the blowup of X;_; along a smooth Zariski closed
subset Z;_1 of X j—1~” In fact, we note that loc. cit. also applies in the case when X is a dagger
variety, as any dagger L-algebra is an excellent ring: this follows from a criterion of Matsumura
[Mat80, Theorem 102|, using that Washnitzer algebras are regular, [GK00, Proposition 1.5|, and L
has characteristic 0.
In conclusion, the morphism
Vo= Xo| | (U0 Z) - X

is a proper éh-covering with Y smooth. O

Remark 2.15. Let X be a rigid-analytic (resp. dagger) variety over L. By Proposition 2.14, the
Y € X¢n, with Y a smooth rigid-analytic (resp. dagger) variety over L, form a basis of Xg,. In fact,
for any rigid-analytic (resp. dagger) variety Z over L, denoting by Zycq the reduced subspace of Z,
the natural map Z,eq — Z is a universal homeomorphism, hence it is an éh-covering.

2.2.2. Differential forms and de Rham cohomology of singular varieties. Next, we want to
state a condensed version of Guo’s descent result for the éh-differentials (Proposition 2.17), which
will be useful in the following sections. For this, we refer the reader to [Bos21, §5.1] for a discussion
on how to translate classical results on coherent cohomology of rigid-analytic varieties into the
condensed setting.

The following definition is based on Proposition 2.14 (and Remark 2.15).
Definition 2.16. Let X be a rigid-analytic variety over L. Denote by Bg}' the basis of the site X¢,
consisting of all smooth Y € Xg,. For i > 0, we define QiXéh as the sheaf on X¢, with values in
Mod%ond, associated to the presheaf

(BE)°P — Mod$™ 1 YV — Qb (Y).
e observe that in loc. cit. the blow-ups considered are analytification of scheme-theoretic blow-ups. However,

by the universal property in Remark 2.12, we have natural comparison morphisms between the blow-up in the sense
of Definition 2.11 and the analytification of the scheme-theoretic blow-up, which are isomorphisms.
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Denote by Qkéh the de Rham complex of X, given by

° L d 1 d 2 d
QXéh T [OXéh - QXéh - QX - ]

éh
We define the de Rham cohomology of X (over L) as
RT4r(X) := RT(X,Q%,, ) € D(Mod{")
and endow it with the N°P-indexed filtration Fil* RT'gr (X) := RT'(X, Q)Z(:h), called Hodge filtration.

The next result shows in particular that in the smooth case the de Rham cohomology defined
above agrees with the usual de Rham cohomology.

Proposition 2.17 (|[Guol9, Theorem 4.0.2]). Let X be a smooth rigid-analytic variety over L. Let
7w Xgn — Xt be the natural morphism of sites. Then, for each i > 0, we have

R, = QY [0]
as complezes of sheaves with values in Mod$™?,
The following boundedness result will also be useful in the sequel.

Proposition 2.18 ([Guol9, Theorem 6.0.2]). Let X be a qcgs rigid-analytic variety over L of
dimension d. Then, H (X, Q]Xéh) vanishes if i > d or j > d.

From the proposition above we deduce the following corollary.

Corollary 2.19. Let X be a qcqs rigid-analytic variety over L of dimension d. Then, the de Rham
cohomology complex RUqr(X) lies in D=2¢(Modid).

2.3. Period sheaves. In this subsection, we first recall the definitions of the pro-étale sheaf-
theoretic version of the classical period rings of Fontaine, and we introduce a log-variant of the
pro-étale sheaf-theoretic version B of the ring B of analytic functions on Y, i.e. the log-crystalline
pro-étale period sheaf Biog. Then, after some preliminary complementary results on the pro-étale
period sheaves (and condensed period rings), we recall that, thanks to results of Scholze [Sch21],
the pro-étale period sheaves satisfy v-descent.

2.3.1. Pro-étale period sheaves.
Definition 2.20. Let X be an analytic adic space over Spa(Zy, Zy). We define the integral proét-

structure sheaf (9+ and the proét-structure sheaf 19) x as the sheaves on X4 satisfying respectively
O} (Y) == 0F,(v9), Ox(Y) = Oy(YY)
for all perfectoid spaces Y € X0t

We recall that, thanks to [Sch21, Theorem 8.7/, @} and O x are indeed sheaves.

Definition 2.21. Let X be an analytic adic space over Spa(Qp,Z,). The following are defined to
be sheaves on X o4t
(i) The tilted integral proét-structure sheaf @\gj = pin@ @\} /p, where the inverse limit is taken

along the Frobenius map ¢.
(ii) The sheaves Ay = W(O?) and Biyr = Aje[1/p]. We have a morphism of pro-étale sheaves
0: Ay — @} that extends to 0 : Bi,s — @X.
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(iii) We define the positive de Rham sheaf Bl = lim o Bing/ (ker )", with filtration given by
Fil' B}y = (ker6)"Bi;.

(iv) Let t be a generator of Fil' BY,.'* We define the de Rham sheaf Bar = B, [1/t], with filtration
Fil' Bag = Y eyt Fil'™ BY;.

Notation 2.22. In the following, we denote by v(—) the valuation on O, defined as follows: for

z € Op», we define v(x) as the p-adic valuation of z* € O¢.

Definition 2.23. Let X an analytic adic space over Spa(C,O¢). Let I = [s,7] be an interval of
(0, 00) with rational endpoints, and let «, 8 € O, with valuation v(«) = 1/r and v(5) = 1/s. We
define the following sheaves on Xpq¢t

Ainf,] = Ainf [&) @] ) AI = @Ainf,l/pnv ]BI = Af[l/p]
Moreover, we define the sheaf on Xpo¢t
B= lim B;
4
1C(0,00)

where I runs over all the compact intervals of (0, 00) with rational endpoints.

We recall the following interpretation of the latter period sheaves defined above in terms of the
curves Yrp g (see §1.7 for the notation).

Lemma 2.24 ([Bos21, Lemma 4.14]). Let S* be an affinoid perfectoid space over Spa(C,O¢), and
let S = (S")®. Let I = [s,7] C (0,00) be an interval with rational endpoints. Then, we have

B;(S%) = O(Yir.s,1), B(S*) = O(Yrr.s).

The following fundamental exact sequences of p-adic Hodge theory summarize the relevant rela-
tions between the various rational period sheaves.

Proposition 2.25. Let X an analytic adic space over Spa(C,O¢). Let i > 0 be an integer. We
have the following exact sequences of sheaves on Xprogt

0B B2 LB 0 (2.1)
0— Qi) —» B*=" — B}, /Fil' B}, — 0. (2.2)
Proof. See e.g. [Bos21, Proposition 4.16]. O

Corollary 2.26. Let X be an analytic adic space over Spa(C,O¢). We have the following exact
sequences of sheaves on Xprost

0 — B. — B[1/] = B[1/t] — 0 (2.3)
0— Q, — B. — Bqr/Biz — 0 (2.4)
where B, := B[1/t]¥~1.
Proof. See |[LB18a, Proposition 8.5| and [Bos21, Corollary 4.18]. O

12Guch a generator exists locally on Xprost, it is a non-zero-divisor and unique up to unit, by [Sch13a, Lemma 6.3].
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2.3.2. Log-crystalline period sheaves. We recall that Fargues—Fontaine defined in [FF18, §10.3.1] the
log-crystalline period ring

By := B Dsymy, 0%, SymZ(Cb)x
where Symy(—) denotes the symmetric algebra over Z. The ring B, is endowed with an action of
the Galois group ¥k, a Frobenius ¢, and a monodromy operator N for which Bf(\)’gzo = B. Moreover,
there is a (non-canonical) isomorphism of rings

BIU] = Buog, U+ loglp]
where B[U| denotes the ring of polynomials over B in the variable U.
Now, keeping the notation of Definition 2.23, we introduce a pro-étale sheaf-theoretic version of
the ring Biog.
Definition 2.27. Let X be an analytic adic space over Spa(C,O¢). Let I = [s,r]| be an interval
of (0,00) with rational endpoints, and let «, 5 € O, with valuation v(a) = 1/r and v(5) = 1/s.
We define the following sheaves on X4t
Biog := B[U], Biog, 1 := B [U].
We endow Biog (resp. Biog,r) with a Frobenius ¢ and a Galois action extending the ones on B
(resp. Bj) by setting ¢(U) := pU, and, for g € Y,
9(U) :== U +loglg(p’) /1’]- (2.5)
Moreover, we equip Bjog and Bjog ; with a monodromy operator N := — 5.
Let us list some useful basic properties of Bj,g.
Remark 2.28. The action of ¥k on Bj,, defined above commutes with ¢ and N, and we have
Np =ppN.

Remark 2.29. We have the following exact sequence of sheaves on Xp,;q4t

0—>IB3—>Blogi>]Blog—>0.

Remark 2.30. For I = [s,r] an interval of (0,00) with rational endpoints such that s < 1 < r, we
have a natural inclusion

IB] — IB(—;R
The induced inclusion B — IB%CTR extends to a ¥x-equivariant injection Bj,e — IB%XR, via sending U
to log([p"]/p) (see the proof of [FF18, Proposition 10.3.15]).

In this article, we will adopt the following notation and conventions.

Notation and conventions 2.31.

Condensed period rings. We denote by Ajyf, B:{R, Bgr, B, Bjog, the condensed rings given
respectively by the sheaves Aj,¢, IB%(J{R, Bar, B, Biog on the site Spa(C, O¢)prost and, for any
compact interval I C (0,00) with rational endpoints, we similarly define Ayt 7, Ar, By,
Biog,1- 13 In addition, we denote by Acys, BT B;g the condensed version'* of the crystalline

cris?
and semistable period rings of Fontaine (relative to O¢), [Fon94].

13gee [Bos21, Corollary 4.9, Example 4.10] for the relation to the classical topological period rings.
l4yWe take Fontaine’s definitions in condensed sets.



22 GUIDO BOSCO

Orientation. We fix a compatible system (1,ep,¢,2,...) of p-th power roots of unity in O¢,
which defines an element € € Obc. We denote by [e] € Ay its Teichmiiller lift and p =
[e] — 1 € Ajne. Furthermore, we let &€ = /o~ (1) € Ayt and t = log[e] € B.

Let us collect some useful facts on the above-defined (condensed) period rings, that we will
repeatedly use in the following.

Remark 2.32. Let us recall that, for a compact interval I C [1/(p — 1), 00) with rational endpoints,
we have that Acis C A (see e.g. [CN17, §2.4.2]). In particular, for any such interval I, we also
have BJf C Biog, 1, via the (non-canonical) identification

B-‘r

cris

U] S BY, U loglp’] (2.6)
+

+ . . .
where we endow B[, [U] with a Frobenius ¢ extending the one on B_

by setting ¢(U) := pU, a

Galois action extending the one on B;';is as in (2.5), and we equip it with a monodromy operator
N:.=-—4.
daUu

We will also need the following result.

Lemma 2.33. Let I C (0,00) be a compact interval with rational endpoints. The system of ideals
of the ring Ar defined by (p"Ar)n>1 and ({z € Ar: px € p"Ar})n>1 are intertwined.

Proof. We will proceed by noetherian approximation, adapting the proof of [BMS18, Lemma 12.8
(ii)]. We define A := Z,[T1, T3], and we regard Ajns as a A-module via the Zy-linear map

A— Ainf7 Ty — [d) Ty — [pb]' (27)
First, note that p is the image of 77 — 1 under the map (2.7). By setting
1/s
p T
Ainf,[ =A 1/r’ 2
T, p

we have that Ajnr 1 = Ainf ®a Ainr,7- In particular, denoting by A the p-adic completion of Ajyr 7, we
have A; = A @A 1, where the latter completion is p-adic. Then, it suffices to prove the statement
with the ring A; in place of A;. For this, observing that A; is noetherian, we conclude by the Artin-
Rees lemma ([Sta20, Tag 00IN]) for the system of ideals (p"Ar)n>1 of A7, and (177 —1)A; C Ay O

2.3.3. v-descent. As announced, our next goal is to state a consequence of Scholze’s v-descent results
in [Sch21], which will serve as a tool to prove the main comparison results of this paper for singular
rigid-analytic varieties. To state the desired result we need some preliminary definitions.

Definition 2.34. Let X be an analytic adic space defined over Spa(Z,, Z,). We denote by
X, = XY
its v-site.

We recall from [Sch21, Theorem 8.7 that the presheaves OF : Y +— O (Y) and O : Y — Oy (Y)
on the v-site of all (k-small) perfectoid spaces are sheaves. Then, similarly to Definition 2.20, we
can give the following definition.
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Definition 2.35. Let X be an analytic adic space defined over Spa(Z,,Z,). We define the integral
v-structure sheaf O} and the v-structure sheaf Ox on X, by setting respectively

Ox(Y):=05,(Y%),  Ox(Y):=0y:(YH)
for all perfectoid spaces Y € X,,.
Then, we can introduce the following notation.

Notation 2.36. For X an analytic adic space over Spa(C,O¢), starting from the integral v-
structure sheaf @}, we define an analogue of the pro-étale period sheaves in §2.3.1 on the v-site
X,. By aslight abuse of notation, we denote such v-sheaves with the same symbol as the respective
pro-étale period sheaves, adding a subscript (—)y, resp. (—)pro¢t, in case of potential confusion.

Proposition 2.37. Let I C (0,00) be a compact interval with rational endpoints, and let m > 1 be
an integer. Let
B € {B;,B,Bj;, Bl / Fil"}. (2.8)
(i) For any Z affinoid perfectoid space over Spa(C,O¢), we have H:(Z,B) = 0 for all i > 0.
(ii) Let X an analytic adic space over Spa(C,Oc¢). Let A 1 X, — X denote the natural
morphism of sites. Then, we have

RA*BU - Bproét-
In particular, the pro-étale cohomology of B satisfies v-hyperdescent.

Proof. By standard reduction steps (see e.g. [Bos21, Proposition 4.7] and the references therein),
part (i) follows from the almost vanishing of H!(Z, @}) for ¢ > 0, which is proven in greater
generality in [Sch21, Proposition 8.8|.

For part (ii), by definition we have A\,B, = Bpros. Then, we want to show that RNB, =0
for i > 0. This follows from part (i) recalling that R‘A.B, is the sheafification of the presheaf
U+ H!(U,B) on Xpro¢t, and affinoid perfectoid spaces in X0, form a basis of the site. O

2.4. B-cohomology and B(;FR-cohomology. Now, we can finally define the B-cohomology and
the B(J{R—cohomology theories for rigid-analytic varieties over C.

In the following, for X a rigid-analytic variety over C', we denote by X¢; conda the site introduced
in [Bos21, Definition 2.13|, and similarly we define the site X¢p cond. Note that we have a natural
morphism of sites

a: Xy — Xéh,cond‘
A feature of the site Xgp cona (as opposed to the site Xgp) is that the pushfoward along o retains
the information captured by profinite sets.'”

Definition 2.38. Let X be a rigid-analytic variety over C. We denote by « : X, — X¢p conda the
natural morphism of sites. Let I C (0,00) be a compact interval with rational endpoints, and let
m > 1 be an integer. Given

B € {B;,B,B_;.Blz/Fil"}

we write # = Bgpa(0) for the corresponding condensed period ring.

proét

15We refer the reader to [Bos21, §2.3] for a more detailed discussion.
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We define the #-cohomology of X as the complex of D(Modf;gnd)
RT(X) = RT¢p cona(X, Lijy Ra, B).
We endow RI'%(X) with the filtration induced by the filtration décalée of Definition 2.9.

Remark 2.39 (Frobenius on the B-cohomology). Since ¢(t) = pt, the Frobenius automorphism of B
induces a @ p-semilinear automorphism

¢ : RT'p(X) — RI'p(X)
which preserves the filtration décalée.

Next, we begin to study some basic properties of the B-cohomology theory. As a preparation,
we state the following boundedness result which relies on an improved version of the almost purity
theorem recently proved by Bhatt—Scholze, [BS22, Theorem 10.9].

Proposition 2.40 (cf. [Guol9, Proposition 7.5.2|, [Zav22, Theorem 6.10.3]). Let X be a rigid-
analytic variety over C of dimension d. Let v : Xprosr — Xét,cond denote the natural morphisms of
sites. Let B any of the period sheaves of (2.8). Then, R'v,B vanishes for all i > d.

Proof. We will show that for any affinoid rigid space X over C of dimension d, we have H}f)roét (X,B) =
0 for all i > d. By Noether normalization lemma, [Bosl4, §3.1, Proposition 3|, there exists a finite
morphism f: X — ]D)dc, where the target denotes the d-dimensional unit closed disk over C'. Then,
by [Zav22, Lemma 6.10.2],'° the diamond X< admits a Z,(1)%torsor for the v-topology

X% - x° (2.9)

where X© is a diamond representable by an affinoid perfectoid space. Considering the Cartan—Leray
spectral sequence associated to (2.9), by [Bos21, Proposition 4.12] and Proposition 2.37, we have
an isomorphism

RFcond(Zp(l)d’ HO(X<>7 B)) = Rrproét(Xa B)

Then, the statement follows from [Bos21, Proposition B.3|, which implies that Z,(1)? = Zg has
cohomological dimension d. O

The following lemma will be useful to reduce the study of the B-cohomology theory to the study
of the Br-cohomology theories for suitable intervals I C (0, c0).

Lemma 2.41 (cf. [LB18b, Lemma 4.3]). With notation as in Definition 2.38, the natural maps

LnRa,B — Rlim L Ro, By Ly Ro, Bl — RliLnLntRa*(BjR/ Fil'™). (2.10)
I m

are isomorphisms compatible with the filtration décalée.

Proof. We prove that the left map in (2.10) is an isomorphism compatible with filtrations (for the
right map in (2.10) the proof is similar and easier). By [BMS19, Lemma 5.2, (1)], it suffices to
show that the limit of the filtrations of the source and the target agree, and that such map is an
isomorphism on graded pieces.

16This lemma relies on [BS22, Theorem 10.11], and hence on [BS22, Theorem 10.9].
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For the first assertion, by the uniform boundedness of the complexes Ra.,.B and R, B for varying
compact intervals I C (0, 00) with rational endpoints, which follows from Proposition 2.40, we can
reduce to showing that the natural map

Ro,B — Rlim Ro, Bf
T

is an isomorphism. This follows recalling that the natural map B — R lﬂl s B; is an isomorphism: in
fact, using [Sch13a, Lemma 3.18], we can reduce to checking this on each affinoid perfectoid space
Z over Spa(C,O¢), where it follows from the topological Mittag-Leffler property of the countable
inverse system {B;(Z)}; which implies that, for all j > 0, we have R/ lim B/ (Z) = 0 ([Bos21,
Lemma 4.8]).

Then, by Proposition 2.7(ii) (and by twisting) it remains to prove that, for each i > 0, the natural
map

7' Ra.(B/t) — Rlim 7~'Rav,(B; /1) (2.11)
I

is an isomorphism. For this, we observe that, by [FS21, Theorem I1.0.1], for any compact interval
I C (0,00) with rational endpoints, we have

Br/t= ] Bix/t"""B (2.12)
y€|Yrp, 1]

where |Yrp, 1| c |Yrp 1| denotes the subset of classical points (we note that, by compactness of

the interval I, the latter product is a finite direct product of copies of 6).17 Then, using again the
topological Mittag-Leffler property of the countable inverse system {B;(Z)}; for each Z affinoid
perfectoid spaces over Spa(C, O¢), we have that

B/t= ][ Bla/t""IB, (2.13)
ye|Yrp |

where |Ypp|? C |Yrp| denotes the subset of classical points (cf. with [FF18, §2.6]). Moreover, by
(2.12) we have that

Rlim 75" Rov,(By /t) = [ [ 7" Row (B, /). (2.14)

1 1
We conclude that the natural map (2.11) is an isomorphism, combining (2.12), (2.13), (2.14), and
fact that cohomology commutes with direct products. O

The next proposition gives in particular a convenient local description of the B-cohomology theory
on a smooth affinoid rigid space over C.

Proposition 2.42. With notation as in Definition 2.58, let v : Xprosr — Xét,cond denote the natural
morphism of sites.

(i) If X is smooth, we have a natural identification in D(ModSy™?)

RT »(X) = RI'(X, Ly, Rv,B).

1TRor y € |Yrr|®, we have ord,(t) € {0,1}: in fact, ¢t has a simple zero at co on FF = Yep /",
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(i1) If X is a smooth affinoid over C, the natural map of complexes of condensed B-modules
Ly RT,(X,B) — RI'(X, Ly Ra,B) = R »(X) (2.15)

is a filtered quasi-isomorphism. Here, on both sides, the filtration on Ln.(—) is the filtration
décalée of Definition 2.9.
Proof. We first prove part (ii), adapting the proof of |[LB18b, Proposition 3.11|, and using Proposi-
tion 2.8 for the compatibility with the filtrations statement.

Thus, let X be a smooth affinoid over C'. To show that (2.15) is a filtered quasi-isomorphism,
similarly to the proof of Lemma 2.41, by [BMS19, Lemma 5.2, (1)], it suffices to show that the limit
of the filtrations of the source and the target of (2.15) agree, and that such map is an isomorphism
on graded pieces. The former statement follows from Proposition 2.40. Then, by Proposition 2.7(ii)
(and by twisting) it suffices to prove that, for each ¢ > 0, the natural map

TSIRL(X, B/t) — RT(X,7<'Ra.(B/t))

is a quasi-isomorphism. By (the proof of) Lemma 2.41, we can reduce to the case B € {B;, B}
Then, recalling that B/t is isomorphic to a finite direct product of copies of O (by (2.12) and the
compactness of the interval I), we can further reduce to showing that, for each i > 0, the natural
map

7SIRI(X,0) — RI'X,75'Ra,O)
is a quasi-isomorphism. For this, considering the spectral sequences

H %X, H*(Ra,0)) = H’(X,0)
H7*(X, H*(rS'Ra,0)) = H/(X,75'Ra,O)

it suffices to show that, for j > 4 and k < i, we have Hj_k(X7 Rka*@) = 0, or more generally that

H'(X,R*a,0) =0, for all 7 > 0. (2.16)

By (the proof of ) [Sch13b, Proposition 3.23|, for any Y smooth rigid-analytic variety over Spa(C, O¢),
denoting by v : Y06t — Yét,cona the natural morphism of sites, we have a natural isomorphism
Q'f/ét(—k:) = RFy, O of sheaves with values in Mod&$"®.'® Then, by éh-sheafification, we have a

natural isomorphism of sheaves with values in Mod&md
0k, (—k) > RFa,O. (2.17)

Denoting by 7 : Xg, — Xg the natural morphism of sites, by Proposition 2.17 (using that X is
smooth), we have that

R, O, = 0k (0] (2.18)

as complexes of sheaves with values in Mod$™®. Then, combining (2.17) and (2.18), we deduce
(2.16) from the condensed version of Tate’s acyclicity theorem (see [Bos21, Lemma 5.6(i)]). This
concludes the proof of part (ii).

For part (i), as the statement is étale local, we can reduce to the case when X is a smooth affinoid
rigid space over C. In this case, similarly to part (ii), the natural map

Lt RT prost (X, B) — RU(X, L, Rv,B) (2.19)

18VVorking with condensed group cohomology instead of continuous group cohomology in the proof of loc. cit..
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is a quasi-isomorphism. Hence, combining (2.19) and (2.15), the statement follows from Proposition
2.37. ]

3. Hyopo—KATO COHOMOLOGY

In this section, following Colmez—Niziot, [CN21a|, we define the Hyodo—Kato cohomology theory
for rigid-analytic varieties over C', simplifying the topological treatment given in op. cit. and
extending it to the singular case.

3.1. Local Hyodo—Kato morphism. We begin by revisiting in the condensed setup the Hyodo—
Kato morphism constructed by Beilinson and Colmez—Niziot.

Notation and conventions 3.1. Let n > 1 be an integer. For a condensed ring R, we denote by
R,, the reduction of R modulo p™.

Log structures. We define a (pre-)log structure on a given condensed ring as a (pre-)log
structure on the underlying ring.

For O a discrete valuation ring, we denote by O* (resp. O,°) the canonical log structure
on O (resp. its pullback on O,,), and we denote by O° (resp. 0%) the log structure on O
associated to (N — O, 1+ 0) (resp. its pullback on O,,).

We denote by OF (resp. Of,)) the canonical log structure on O¢ (resp. its pullback
on Oc,). We write ACXrism for the unique quasi-coherent, integral, log structure on Acisp

lifting O, (see e.g. [CK19, §5.2]). We denote by A, the log structure on Acjs associated
to the pre-log structure

O \ {0} — Acris, z— [z].
Note that the log structure AX.  is the pullback of the log structure A*

cris,n cris®

Log-crystalline cohomology. We refer the reader to [Beil3, §1] for a review of log-crystalline
cohomology, and the terminology used in the following. We write PD as a shortening of
divided power.

Let (Y, My,Z,~) be a (p-adic formal) log PD scheme such that (), My) is quasi-coherent.
Let (X, My) be an integral quasi-coherent (p-adic formal) log scheme over (Y, My, Z,~).
We write

((X> MX)/(J), My))cris
for the log-crystalline site of (X, Mx) over (¥, My,Z,~), [Beil3, §1.12|, we denote by Oeis
its structure sheaf, regarded as a sheaf with values in condensed abelian groups, and we
define the log-crystalline cohomology

RTis((X, Mx)/ (Y, My)) :== RT((X, Mx)/(Y, My))eris, Ocris) € D(CondAb).
In the case the relevant log structures are fixed, they are omitted from the notation.

Condensed period rings. Recall from §1.7 that Op = W (k) and Op = W (k), where k is
a fixed algebraic closure of k. We fix the unique Frobenius equivariant section k — Ok /p
of Or/p — k, in order to regard Ok as a Op-algebra, and O, as well as the condensed
period rings of 2.31, as a O-algebra.
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We denote r; = Op[T] and we equip it with the log structure associated to T. We write
rPP for the p-adic log PD envelope of 7} with respect to the kernel of the morphism

rt - 05 Trow

and we endow it with a Frobenius induced by T +— TP, and a monodromy defined by 7" +— T.
Then, we define the condensed period rings

A\st,n = H((:)ris( é,n/r};l?n) = chris( égn/rgl?n% A\st = lim st,ny Es—it_ = A\Sf,[l/p]
and we equip them with their natural action of ¥k, Frobenius ¢, and monodromy N, [Tsu99,
§4.6], [CDN20b, §3.2.1].

Theorem 3.2 (Beilinson, Colmez—Niziol, [CN21a, Theorem 2.12, Corollary 2.20]). Let X be an
integral quasi-coherent log scheme over Of . Denote by XY the pullback of X to (’)%1, Assume that

X has a descent to Z a qcgs, fine, log-smooth, log scheme over OF ; of Cartier type,'? for some
finite extension L/K.

(i) There exists a natural isomorphism in D(Mod?Q‘?;id)

RTeris(X°/O) @88 By = RUeuis (X /A%;) @40, B (3.1)

cris

independent of the descent, and compatible with the actions of Galois, Frobenius ¢ and mon-
odromy N .* ‘
(11) There exists a natural isomorphism in D(Mod?Q?ild)

RTris(X°/0%) ©6% C = RTeris(X/O%)g, (3.2)

independent of the descent, and compatible with the actions of Galois, Frobenius ¢ and with
the quasi-isomorphism (3.1) via the morphism RTcis(X/A%,) — Rlais(X/OF) induced by
Fontaine’s map 0 : Acis — Oc¢.

Proof. For part (i), the desired morphism (3.1), satisfying the stated properties, is constructed in
[CN21a, Theorem 2.12|, and we only need to carry loc. cit. to solid Q,-vector spaces. By the
independence of the descent proven in loc. cit. we can assume for simplicity that L = K. Relying
on [CN21a, §2.3.3], we will construct (3.1) as the composite

Eqt 1= 5—1 o (é\st)N—nilp )

—ni . r— ~ 54+, N-—nil .
where MNP .= colim,ey MY =0, we denote by & : B = B ™P the natural B, -linear

21

isomorphism,”" and

Bt RTuris(X0/0%) @l By — RTaio(X/A%,) @48 B

cris cris

is defined as follows. Considering the morphisms of PD thickenings

195¢e [Kat89, Definition 4.8] for the definition of Cartier type.

200n the right-hand side of (3.1) the operator N is the monodromy of B, and on the left-hand side of (3.1) it
combines the monodromy of both factors of the tensor product.

21Which is compatible with Galois, Frobenius, and monodromy actions, [Kat94, Theorem 3.7].
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PD

X
Ton — OK,l

L

~

X
Ast,n » 0071

for varying n > 1, by base change, [Beil3, (1.11.1)], we have quasi-isomorphisms
chris(Z/( };Dnv OX )) TPD Ast n = chrls(X/( st,ns Oé‘ 1)) (33)

Now, denoting by &" the derived p-adic completion, again by base change [Beil3, (1.11.1)], after
taking the derived inverse limit over n > 1, and then inverting p in (3.3), the right-hand side

identifies with (R cpis(X /Ams)&x\) AcmASt)Qp’ and, by [CN2la, Theorem 2.6|, the left-hand side is
quasi-isomorphic to

(chrls(zo/oo )®OpAst)Qp (chrls(XO/OO )®O A )Q
where 29 is the pullback of Z to O F1- We denote by & the induced from (3.3) morphism

~ ~L
Bt t (Rlaris(X°/OL)®0 , Ast)g, = (RTeris(X /A 24 A, (3.4)

CI"IS) cris

To write the target of (3.4) in terms of the derived solid tensor product, we note that, since the
Acris-algebra Ay is isomorphic to the p-adic completion of a divided power polynomial algebra of

the form Agyis(z), applying Proposition A.3 with M = RTqs(X/AY..) and N = Agyis(z) regarded
in D(ModSOhd) we obtain the identification
BT eris (X /A% ) B Ay = RTenig(X/AX,) @5% Ay (3.5)
Next, we want to show that
~L -~ ~
(RTaris(X° /0080, Ast)a, = (RTais(X°/O%) @67 Ast)g,- (3.6)

We note that, choosing a basis for the F-Banach space ESJE , we can can identify it with Né\[l /),
where N = @; O for some set [ .22 Since A\St is a lattice in E;g , there exist n,m € Z such that

”NA C Ay C pmN/\ Then, (3.6) follows applying Proposition A.3 with M = Rfcris(XO/O%) and
N = @; O regarded in D(ModSOhd)

Therefore in view of (3.5) and (3 6), using that the derived solid tensor product commutes with
filtered colimits, the composite g5 = 61 o (£ )V ™P 0 § is given by

RT4is(X°/0%) @6 By = (RTeris(X°/0%) 0% BN 1P (3.7)
(RFC“S(X/ACI‘IS) ®O Bst)N milp (38)
- RFCHS(X/ACI‘IS) ®Acm B;{ (39)

221n fact, as F is discretely valued, combining [Bos21, Lemma A.30, Proposition A.55(i), Lemma A.52], any F-
Banach space is isomorphic to (D, Zy); ®Z, F, for some set I, and the latter is isomorphic to (), O 1Oy [1/p] by
Proposition A.3.
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where in (3.7) we used that the monodromy operator N on R qs( X/ (9%) is nilpotent by Lemma

3.3 (and base change), and in (3.9) we used the triviality of the action of N on RTcis(X/AL)-
This shows part (i).

Part (ii) follows from (i). In fact, under the (non-canonical) identification B = B[, [U], given by
(2.6), applying to (3.1) the (non-Galois-equivariant) map By — B, : U — 0, and then Fontaine’s
map 0 : Bf.. — C, by base change we get (3.2). The compatibility of (3.2) with the Galois action

is checked in the proof of [CN21a, Corollary 2.20]. O

+

Lemma 3.3. Let Z be a quasi-separated, fine, saturated, log-smooth, locally of finite type log scheme
over O | of dimension d. Then, the monodromy operator N on RTcis(Z/W (k)™) is nilpotent with
nilpotency index bounded above by a function depending on d.

Proof. By [Niz06, Theorem 5.10| there exists a log-blow-up Y — Z over O ; that resolves singu-

larities, and by the proof of [Niz08, Proposition 2.3| we have a natural quasi-isomorphism
chriS(Z/W(k)X) - chriS(y/W(k)X)

compatible with monodromy N. Then, the statement follows from [Mok93, §3]. O

3.2. Beilinson bases and oo-categories of hypersheaves. In this subsection, we collect some

oo-categorical tools that we will need to extend to rigid-analytic varieties over C' the local Hyodo—
Kato morphism of §3.1.

Notation 3.4 (Hypersheaves and hypercompletion). Let C be a site, and let D be a presentable
oo-category. We denote by Shv(C, D) the oco-category of sheaves on C with values in D.
We recall that

Shv(C, D) = Shv(C, Ani) ® D
[Lurl8, Remark 1.3.1.6], where ® denotes the tensor product of co-categories [Lurl7, §4.8.1].

We denote by Shvi¥P(C, Ani) the full co-subcategory of Shv(C, Ani) spanned by the hypercomplete
objects, [Lur09, §6.5|, and we define the co-category of hypersheaves on C with values in D as

Shvi¥P(C, D) := Shv¥P(C, Ani) ® D.
The inclusion Shv™P(C, D) < Shv(C, D) admits a left adjoint

(=)P . Shv(C, D) — Shv'™¥P(C, D) (3.10)
called hypercompletion, [Lurl8, Remark 1.3.3.2].

The following generalization of the notion of Grothendieck basis for a site is due to Beilinson,
[Beil2, §2.1].

Definition 3.5. Ler C be a small site. A Beilinson basis for C is a pair (B,3) where B is a small
category and J: B — C is a faithful functor satisfying the following property:

for any V' € C and any finite family of pairs {(Uy, fo)} with Uy € B and f, : V — 2(Uy,), there
exists a family {Uj} with Uj € B and a covering family {3(Uj) — V'} such that each composition

AUs) =V — J(Ua)
lies in the image of Hom(Uj, Us) — Hom(3(Uj), A(Ua))-
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We endow B with the Grothendieck topology induced from that of C: a sieve in B is a covering
sieve if its image under 3 : B — C generates a covering sieve in C.

We will use repeatedly the following result.

Lemma 3.6. Let C be a small site, and let (B,3) be a Beilinson basis for C. For any presentable
oco-category D, the functor J: B — C induces an equivalence of oco-categories
Shvi¥P(B, D) = Shv¥P(C, D) : F s F-
where the hypersheaf F= is defined via sending V € C to
F2(V) = colim lim F(U,)
Us [n]eA

the colimit running over all simplicial objects Uq of B such that I(Us) — V is a hypercover; fur-
thermore, chosen such a U,, the natural map

FAV) = lim F(U,)
[n]leA

s an isomorphism in D.
Proof. Tt suffices to show the statement in the case D is the co-category of anima Ani. By |Beil2,
§2.1 Proposition|, the functor 3 : B — C is continuous and induces an equivalence of topoi B~ — C™.

Then, the statement follows interpreting the notion of hypercompleteness in terms of the Brown—
Joyal-Jardine theory of simplicial presheaves, via [Lur09, Proposition 6.5.2.14]. O

Remark 3.7. We will often apply Lemma 3.6 in the case D = D(Mod$™?) is the derived co-category
of A-modules in CondAb, for a given condensed ring A. Note that such D is indeed presentable,
since it is compactly generated, as it follows from [CS19, Theorem 2.2].?* Moreover, by [Lurl8,
Corollary 2.1.2.3], we have an equivalence of co-categories

D(Shv(C, Mod%™)) & Shv™P(C, D(Mod$™?))
sending M € D(Shv(C, Mod%™)) to the hypersheaf U — RI'(U, M).
3.3. Globalization. In this subsection, we extend to rigid-analytic varieties over C' the local
Hyodo-Kato morphism of §3.1, from a suitable Beilinson basis for the site Rigc ¢
Notation 3.8.

Semistable formal schemes. For each prime ¢, we fix a compatible system (p,pl/z,pﬂ, oY)
of ¢-th power roots of p in O¢c. We denote by Mg, the category of semistable p-adic formal
schemes over Spf(Oc¢), that is the category of p-adic formal schemes over Spf(O¢) having in
the Zariski topology a covering by open affines Ll with semistable coordinates, i.e. admitting
an étale Spf(O¢)-morphism £ — Spf(RY) with

RY = Oc{to,. ...ty t5, .. '} (to -+ - tr — p7)
for some 0 < r < d, and ¢ € Q¢ (that may depend on ). We denote by Mg qeqs the
subcategory of Mg consisting of the qcgs formal schemes. We write
(=) : Mss — Rige

for the generic fiber functor.

23Recall also our set-theoretic conventions in §1.7.
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Log structures. Unless stated otherwise, we equip X € My (resp. .’f@c/pn) with the canoni-
cal log structure, [CK19, §1.6], i.e. the log structure given by the subsheaf associated to the
subpresheaf Ox ¢ N (Ox¢t[1/p])* — Oxg¢ (vesp. its pullback). For X € My, we denote by
X%C /p the pullback to O% L of the log scheme Xo,, /, over O(X),l'

Log de Rham cohomology. For X € Mg, we denote by Qse,log the logarithmic de Rham
complex of X over O¢, and we define the log de Rham cohomology of X (over O¢) as

RFlong(x) = RF(:{a Q?{,log) € D(MOdgggd)
Remark 3.9.

(i) For any affine X € Mg with semistable coordinates there exists a finite extension L/K and a
p-adic formal scheme X’ — Spf(Op) admitting an étale Spf(Or)-morphism X’ — Spf(R’) with

R = Op{to, ...ttt} (to -t — pY)

for some 0 < r < d, and ¢ € Qs0, such that X = X’ Xspt(0y,) SPf(Oc): this follows from
[Sta20, 04D1, 00U9]. By [CK19, Claims 1.6.1 and 1.6.2], the p-adic formal scheme X’ can be
endowed with a fine log structure, whose base change to Spf(O¢) gives the log structure on X
we started with.

(ii) For any X € M qeqs there exist a finite extension L/K and a descent of X, /, to a qcgs, fine,
log-smooth, log scheme over O;’l of Cartier type: covering X by a finite number of open affines

with semistable coordinates, this follows from part (i) and fact that morphisms of Cartier type
are stable under base change.

The following Beilinson basis will be used to define the Hyodo—Kato cohomology for rigid-analytic
varieties over C starting from the semistable reduction case.

Proposition 3.10. The pair (Mss, (—)y) is a Beilinson basis for the site Rige g, -

Proof. By Proposition 2.14 (and Remark 2.15), it suffices to show that (Mg, (—);,) is a Beilinson
basis for RigSmg ¢, 1.e. the big étale site of smooth rigid-analytic varieties over C' . This follows
from Temkin’s alteration theorem [Tem17, Theorem 3.3.1|, as shown in [CN20, Proposition 2.8]. O

3.3.1. Condensed (p, N)-modules. Before defining the Hyodo—Kato cohomology for rigid-analytic
varieties over C, we need to establish the following terminology.

Definition 3.11. Let 0 = o : F — [ denote the automorphism induced by the p-th power
Frobenius on the residue field.

(i) A condensed p-module over F'is a pair (V, ) with V € Mod%?nd and ¢ : V — V a o-semilinear
automorphism, called Frobenius. A morphism of condensed p-modules over Fisa morphism
of condensed modules over F , which is compatible with the Frobenius.

(i) A condensed (¢, N)-module over F' is a triple (V, @, N) with (V,¢) a condensed @-module
over F and N : V — V a F-linear endomorphism, called monodromy operator, such that
Ny = ppN. A morphism of condensed (¢, N)-modules over F is a morphism of condensed
modules over F, which is compatible with the Frobenius and the monodromy operator.

Note that the category of condensed (¢, N)-modules over F' is an abelian category. We denote by
Dy, n) (Modg’nd) the corresponding derived oo-category; we abbreviate D, n)(F) = D, n) (Mod%ond).
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Remark 3.12. The category of condensed (¢, N)-modules over F can be identified with the category
LMOdFﬁ{wi N} (Mod%?nd)

of left modules in Mod%f’nd over the condensed non-commutative algebra F {o*, N} over F' defined
as follows: for any (k-small, for x cut-off cardinal as in §1.7) extremally disconnected set S, we
define F'{p*, N}(S) as the twisted polynomial ring

€S, F){p, o', N}
1 1

with underlying abelian group €°(S, 15')[50, ¢~ !, N] and multiplication rules pp~! = =ty = 1,
pa = o(a)p and Na = aN for all a € €°(S, F), and Ny = ppN.

Then, we note that we have an equivalence of co-categories

D,y (Mod ™) ~ LMod,. (ot N} D(Mod")

as it follows from [Lurl7, Theorem 7.1.3.1] (applied to the co-category of k-condensed spectra).”*

Thus, we can regard objects in D, n) (Mod%?nd) as complexes M € D(Mod%ﬁmd) endowed with a
o-semilinear automorphism ¢ : M — M, called Frobenius, and a F-linear endomorphism N : M —
M, called monodromy operator, such that Ny = ppN.
Remark 3.13. For X € Mg, we have that

RTeris (X0, // OF) @, € Do) (Mod$2™).

In fact, we recall that the complex RI qis (%%C /p / O%)Qp € D(Mod}ond) is naturally equipped with

a o-semilinear endomorphism ¢ called Frobenius, and, by the arguments in [Beill, §1.16, §1.19], it
comes equipped with a monodromy operator N, satisfying N = ppN; by (the proof of) [HK94,
Proposition 2.24| the Frobenius ¢ is a o-semilinear automorphism on it.

Then, we are ready to give the following definition, which is based on Lemma 3.6 and Proposition
3.10.

Definition 3.14 (Hyodo—Kato cohomology). We denote by Fyk the hypersheaf on Rige ¢ with
values in D, n) (Mod%f’nd) associated to the presheaf
(M) = D) (Mod ™) : X — RTeris (X0, 1,/ OF ), (3.11)
For X a rigid-analytic variety over C, we define the Hyodo—Kato cohomology of X as
RTyk(X) := RT(X, Fk) € Dy ) (Mod ).

The following result shows in particular that the Hyodo—Kato cohomology of X is a refinement
of the de Rham cohomology of X (Definition 2.16).

We refer the reader to [Bos21, §A.6] and §A.2 for a review of the notion of nuclearity, introduced
by Clausen—Scholze, used in the following statement and the rest of the paper.

Theorem 3.15. Let X be a rigid-analytic variety over C.

241y fact, applying loc. cit. to the oo-category of k-condensed spectra CondSp (for k cut-off cardinal as in
§1.7), we have, for any k-condensed commutative ring R and any R-algebra A in Cond Ab, an equivalence of co-
categories LMod 4 (LModg(Cond Sp)) ~ LModa (Cond Sp). Then, it remains to observe that we have an equivalence
of oo-categories LMod 4(Cond Sp) ~ D(LMod 4 (Cond Ab)), cf. [Lurl8, Theorem 2.1.2.2].
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(i) (Local-global compatibility) Assume X is the generic fiber of X € Mss, then the natural map
RTeris (X0, /,/ OF) @, — RTHx (X)

is an isomorphism in D(%N)(Mod%?nd).

(11) (Boundedness and nuclearity) If X is gcgs of dimension d, then RUuk(X) is represented by
a complex of nuclear (solid) F-vector spaces, and it lies in D§2d(Mod‘°I’:?Hd). Moreover, the
monodromy operator N on RI'yk(X) is nilpotent with nilpotency index bounded above by a
function depending on d.

(117) (Hyodo—Kato isomorphism) Assume X is connected and paracompact, then we have a natural
isomorphism in D(Moda’fd)

LHK RFHK(X) ®I;5. c= RFdR(X)'

Proof. We start with some preliminary observations. First, we observe that, for any X € Mg gegs,
by [Beil3, (1.8.1)], we have a natural quasi-isomorphism

RFcris(x(’)C/p/Oé)Qp = RFlong(%)Qp = RFdR(%C) (312>
and then, by Theorem 3.2, which applies thanks to Remark 3.9, we have a natural quasi-isomorphism
chris(%%c/p/o%)(@p ®I}%- C = RFdR(xC)' (3~13)

Moreover, we claim that RIcis (Z{OC /p / O%)Qp is represented by a complex of F-Banach spaces. For

this, we note that, as Fis discretely valued we can choose a basis of the F-Banach space C', and
then there exists a F’-Banach space V' and an isomorphism

C=Fa&V in Mod$. (3.14)
Now, the claim follows using the quasi-isomorphism (3.13) combined with the isomorphism (3.14),
observing that, as X¢ is qcgs, RI'qr(X¢) is represented by a complex C-Banach spaces (and hence
F-Banach spaces), and a direct summand of a Banach space is a Banach space.

For part (i), it suffices to show that given X € Mg qeqs With generic fiber X, then, for any
simplicial object s of Mg qeqs such that U, ,, — X is a éh-hypercover, the natural map

RTeris(X0, /p/ O, — ﬁm RTeris (45, 00 1o/ OF)a, (3.15)
is a quasi-isomorphism. First, we note that the map (3.15) is compatible with the Frobenius and

the monodromy operator. Next, we will use an idea from the proof of [CN21a, Proposition 3.5]. By
(3.13) we have the following commutative diagram

chris( Oc/p/oo) ®%l C — hm[n]EA(RFcrls( " Oc/p/o ) ®I}%l C)

§ i

RU4r(Xc) limppea RTgr (8h,0)-

The bottom horizontal arrow is a quasi-isomorphism, as RI'qg(—) satisfies éh—hyperdescent hence
the top horizontal arrow is a quasi-isomorphism too. Moreover, setting M,, := R cris(4° n,0c/p JOU )
we have

lim (M, @%*C lim M,) k" C
Jm, (Mp @57 C) = (Iim, M) @
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as it follows from [Bos21, Corollary A. 67(11)] recalling that each M, is represented by a complex of
F-Banach spaces (and hence nuclear F-vector spaces by [Bos21, Corollary A.61]), and using that*

lim M, = lim lim M,. (3.16)
[H}EA EN [n}eA<7n

Then, considering the fibers of the horizontal arrows in the following commutative diagram

RFCI‘IS( Oc/p/o ) Qp _— llm[n]eA RPCI“IS( nOC/p/O )
RTeris(XQ,., ,/ O%)a, @ € —= limpjen (Rleris (U5 o, /,/ O%)g,) @ C

in order to show that the top horizontal arrow is a quasi-isomorphism, it suffices to prove that, for
any M € D(Mod}?hd),

M ®II;' C acyclic = M acyclic.

This immediately follows using the isomorphism (3.14).

For part (ii), to show that RI'gk(X) lies in DSQd(Mod}?hd), using the quasi-isomorphism (3.13)
combined with the isomorphism (3.14) and éh-hyperdescent, we can reduce to the analogous state-
ment for the de Rham cohomology, which follows from Corollary 2.19. To show that RI'gx(X) is
represented by a complex of nuclear F-vector spaces, taking a simplicial object U, of Mg qcqs sSuch
that 4, , — X is a éh-hypercover, by éh-hyperdescent and part (i), we have

RFHK( ) - [lﬁm chrls (un Oc/p/o%)(@p (317)

and then, by [Bos21, Corollary A.61, Theorem A.43(i)|, we can reduce to the fact that each complex

RT¢yis (ugoc/p
The last statement of part (ii) follows from Lemma 3.3.

For part (iii), we first assume X qcgs. In this case, using (3.17), the statement follows (3.13)
and [Bos21, Corollary A.67(ii)], which applies thanks to part (ii). For a general X connected and
paracompact, choosing a quasi-compact admissible covering {U,, },en of X such that U,, C U, 41, the

statement follows from the previous case, using again [Bos21, Corollary A.67(ii)| and part (ii). O

/ O%)Qp is represented by a complex of F-Banach spaces, which was shown above.

As a consequence of the Hyodo—Kato isomorphism, we have the following result.

Corollary 3.16. Let X be a connected, paracompact, rigid-analytic variety over C. Then, the
Hyodo-Kato complex RT'uk(X) and the de Rham complex RT'qr(X) have the same cohomological
dimension.

Proof. By Theorem 3.15(iii) and the flatness of C' for the solid tensor product ®% ([Bos21, Corollary
A.65]), for any i > 0, we have an isomorphism

Hip (X) @% C = Hig(X).

Therefore, if Hij(X) vanishes then H'g(X) vanishes as well, and the converse statement follows
using the isomorphism (3.14). O

25Here, all the limits are derived.
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3.4. Finiteness in the overconvergent case. In this subsection, we extend the Hyodo-Kato
morphism to dagger varieties over C. As we will see, this will follow easily from the results of
the previous subsection, using that the solid tensor product commutes with colimits. Moreover,
we will prove a finiteness result for the Hyodo—Kato cohomology of qcqs dagger varieties over C,
generalizing already known results to the singular case.

3.4.1. Hyodo—Kato cohomology of dagger varieties over C'. We begin with a general con-
struction that will allow us to canonically define a cohomology theory on RigTL ¢, Starting from a
cohomology theory defined on Rigy, 4,. Then, we will specialize this construction to the Hyodo—-Kato
and the de Rham cohomology theories.

Notation 3.17. In the following, we keep notation and conventions from 2.10. In particular, we
denote by L a characteristic 0 complete valued field with a non-archimedean valuation of rank 1
and residue characteristic p.

Construction 3.18. Let D be a presentable co-category. The continuous functor
I: Rig} 4 — Rigp g : X — X (3.18)
given by sending a dagger variety X to its limit X , induces an adjunction
. : Shv™P(Rig} . D) = Shv™P(Rigy g, D) : 1P

where [*1YP s given by the composite of the pullback functor I* : Shv(Rigy, &,, D) — Shv(RigTL o D)
and the hypercompletion functor (3.10). For F € Shv(Rigy ¢, D), we denote

Fhi= 1P F e S (Rig] ., D).

Now, using Construction 3.18 in the case D = D(A) = D(Mod$™) (see Remark 3.7), we can
give the following definition.

Definition 3.19 (de Rham and Hyodo—Kato cohomology of dagger varieties).
(i) Let X be a dagger variety over L. Denote by

Far € Shv™P(Rige ¢, D(L))
the hypersheaf given by RI'qr(—). We define the de Rham cohomology of X as
RT4r(X) := RT(X, Fiy) € D(L).
(ii) Let X be a dagger variety over C. Consider the hypersheaf
Fuk € Shv™P(Rige g, Do ny (F))
introduced in Definition 3.14. We define the Hyodo—Kato cohomology of X as

RTyk(X) := RU(X, Fli) € Don)(F).
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3.4.2. Presentation of a dagger structure. In order to construct the Hyodo-Kato morphism
for dagger varieties over C, we will rely on its analogue for rigid-analytic varieties over C, that
is Theorem 3.15. For this, we will need to express more explicitly the Hyodo-Kato/de Rham
cohomology of a smooth dagger affinoid over C' in terms of the respective cohomology of smooth
affinoid rigid spaces over C'. This is our next goal.

We recall from 2.10 that given a dagger variety X = ()? , O over L with underlying rigid-analytic
variety X we say that X is a dagger structure on X.
We have the following important example of dagger structure.

Remark 3.20 (Dagger structure on smooth affinoid rigid spaces). We note that any smooth affi-
noid rigid space X = Spa(R, R°) over L has a dagger structure. In fact, by [Elk73, Theorem
7 and Remark 2|, there exist fi,..., f, elements of the Washnitzer algebra L(T)T such that
R = LT)/(f1,..., fm).”° In particular, the dagger variety associated to the dagger algebra
L)/ (f1,..., fm) defines a dagger structure on X.

Next, we recall the following convenient definition.

Definition 3.21 ([Vez18, Definition A.19]). Let X be an affinoid rigid space over L. A presentation
of a dagger structure on X is a pro-(affinoid rigid space over L) liﬂlheN X}, with X and X}, rational

subspaces of X7, such that X € Xp11 € X 1,2 and this system is coinitial among rational subspaces
containing X.

A morphism of presentations of a dagger structure on an affinoid rigid space over L is a morphism
of pro-objects.

The next lemma relates affinoid dagger spaces to presentations of a dagger structure on an affinoid
rigid space.
Lemma 3.22. Let X be an affinoid rigid space over L, and let liinh Xp be a presentation of a
dagger structure on X. We denote by X1 the dagger affinoid over L associated to the dagger algebra
R =lim, O(Xp).
(i) The functor
@h Xy — xf
from the category of presentations of a dagger structure on an affinoid rigid space over L to
the category of affinoid dagger spaces over L is an equivalence.
(it) Let (lim, Xp)e denote the (small) étale site of lim, Xj, [Vezl8, Definition A.24]. We have
natural morphisms of sites
Xt — (XT)ét - anh Xn)et
which induce an equivalence on the associated topoi.

Proof. Part (i) is [Vez18, Proposition A.22(2)|, and part (ii) is [Vez18, Corollary A.28]. O

26Here, we write T for T1,...,T, where n is the dimension of X.
2TFor Y C Z an open immersion of rigid-analytic varieties over L, we write Y € Z if the inclusion map of Y into
Z factors over the adic compactification of Y over L.
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Remark 3.23. Entering the proof of [Vez18, Proposition A.22(2)], we see that given an affinoid dagger
space (X,0%) over L, associated to a dagger algebra L(T)T/(f1,..., fm), then the corresponding
presentation of a dagger structure liinh X}, on X can be defined as follows: since L(T)' is noetherian,

[GKO0, §1.4], there exists an integer H sufficiently big such that fi,..., f,, € L{(zx'/7T), where 7 is
a pseudo-uniformizer of Or; then, we set X}, := Spa(R},, R;) with

Rh = L<7T1/(h+H)I>/(f17 ctt fm)

Then, the next result follows formally from Lemma 3.22 by étale hyperdescent (cf. [CN20, Lemma
3.13)).

Lemma 3.24. Fiz notation as in 2.10 and Construction 5.18. Let F € Shvhyp(RigL’éh,D) that is

the pullback of an hypersheaf in Shvhyp(RigSvaét,D). Let X be a smooth dagger affinoid over L
with corresponding presentation liglh Xp. Then, we have

RT(X, F') = colim RT'(X},, F).
heN

The assumptions of the previous lemma are designed to be satisfied by the hypersheaves defining
the de Rham and the Hyodo—Kato cohomology:

Remark 3.25. We note that Lemma 3.24 applies to F = Fyr, thanks to Proposition 2.17, and it
applies to F = Fpk thanks to Theorem 3.15(i).

Next, we recall that the category of partially proper dagger varieties is equivalent to the category
of partially proper rigid-analytic varieties, via the functor (3.18), [GK00, Theorem 2.27|. In the
situation of Lemma 3.24, such equivalence preserves cohomology:

Proposition 3.26. Fiz notation as in 2.10 and Construction 3.18. Let F € Shvhyp(RigL,éh,D)

that is the pullback of an hypersheaf in Shvhyp(RigSmLét,D). Let X be a partially proper dagger
variety over L. Then, there exists a natural isomorphism

RI(X, 7" = RT(X, F).

Proof. Recalling that any partially proper dagger variety admits an admissible covering by Stein
spaces (see the proof of [GK00, Theorem 2.26]), we may assume that X is a Stein space. Then,
let {U,}nen be a Stein covering of X. Writing RT'(X, F1) = Rlim RT(U,, F), and similarly
RF()?,}") = RliﬂlneN RF(ﬁn,]:), it suffices to show that, for a fixed n € N, the natural map
RT (U1, FT) — RD(U,, F) factors through RT(Un41, F). Renaming V := U, and W := Uy 11,
by Proposition 2.14 (and Remark 2.15), we can choose an éh-hypercover W, — W with each W,,
smooth dagger affinoid over L; via pullback along the open immersion V' — W, we obtain an éh-

hypercover Vo — V with each V,,, smooth dagger affinoid over L. Then, we may reduce to the case
V and W are smooth over L, which follows from Lemma 3.24. ([

3.4.3. Semistable weak formal schemes. In order to study the Hyodo-Kato cohomology of
dagger varieties over C' (Definition 3.19), we will define a convenient Beilinson basis for the site
RigTa ¢n- In addition to Notation 3.8, we introduce the following notation. We refer the reader to
[Mer72] for the basics on the theory of weak formal schemes, and to [LM13] for an analogue of
Raynaud’s theorem relating the categories of weak formal schemes and dagger varieties.
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Notation 3.27. We denote by MZS the category of weak formal schemes over Spf(O¢) having in
the Zariski topology a covering by open affines i with semistable coordinates, i.e. admitting an
Spf(O¢)-morphism & — Spf(RET) with

R = Oclto, ...ty 5, 5T/ (to -+ - £ — p7)

for some 0 < r < d, and ¢ € Q¢ (that may depend on ). We denote by M;rs,chs the subcategory
of M;[S consisting of the qcqgs formal schemes. We write

(=)n : M;[s - RigTC
for the generic fiber functor.
Proposition 3.28. The pair (Mls, (—)n) is a Beilinson basis for the site RigTC ¢h-

Proof. As in the proof of Proposition 3.10, the statement follows from Proposition 2.14 (and Remark
2.15) combined with [CN20, Proposition 2.13]. O

The following result is an overconvergent version of Theorem 3.15.

Theorem 3.29. Let X be a dagger variety over C.

(i) (Local description) Assume X is the generic fiber of X € M, then there is a natural quasi-
tsomorphism
RFHK(X) =~ RFrig(%,;/O%)
compatible with Frobenius ¢ and monodromy N. Here, the right-hand side denotes the (ratio-
nal) log-rigid cohomology of Xy, over O%, [GKO05, §1], [CDN20b, §3.1.2].
(i7) (Hyodo—Kato isomorphism) Assume X is connected and paracompact, then we have a natural
isomorphism in D(Modaiid)

tak : Rk (X) ®%. c= R (X).

Proof. Part (i) follows from [CN21a, §4.2.1, (iv)].?® Part (i) for X smooth affinoid follows from
Theorem 3.15(ii) and Lemma 3.24 (together with Remark 3.25), using that the tensor product ®Ijﬁ'
commutes with filtered colimits. From Lemma 3.24 we also deduce that, for X smooth affinoid,
RT'pk (X) is represented by a complex of nuclear F-vector spaces (recall that the category of nuclear
F-vector spaces is closed under colimits). Therefore, the same argument used in the proof of
Theorem 3.15(iii) shows part (ii) in general. O

3.4.4. Finiteness. Now, we state the promised finiteness result for the Hyodo—Kato cohomology
groups of a qcgs dagger variety over C, and we give a bound on the slopes of such cohomology
groups regarded as p-modules.

Theorem 3.30. Let X be a qcqs dagger variety over C. Let i > 0.
(i) The condensed cohomology group Hiy (X) (resp. Hir(X)) is a finite-dimensional condensed
vector space over F (resp. over C).

(ii) The vector bundle on FF associated to the finite o-module Hij(X) over F has Harder-
Narasimhan slopes > —i.

28Note that Theorem 3.15(i) implies that, for X a smooth rigid-analytic/dagger variety over C, the Hyodo-Kato
cohomology RT'uk (X) agrees with the one defined in [CN21a] considered in D(CondAb).
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Proof. In the case when X is the generic fiber of X € Mls,chs by Theorem 3.29(i) part (i) follows
from a result of Grosse-Klonne, [GK05, Theorem 5.3] (and base change), and part (ii) follows from

[CLS99, Théoréme 3.1.2|. In the general case, we take a simplicial object g of Mlqucqs such that
e, — X is a éh-hypercover, and we consider the spectral sequence

EY' = Hid (8,) = Hi(X), (3.19)

Then, part (i) for the Hyodo—Kato cohomology follows immediately from the previous case, the
spectral sequence (3.19), and [Bos21, Lemma A.33|. Similarly, part (i) for the de Rham cohomology
follows from the previous case and an analogous spectral sequence for the de Rham cohomology.?’

For part (ii), applying to (3.19) the exact functor £(—) sending a finite p-module over E to
the associated vector bundle on FF, and then twisting by O(i), we deduce that the vector bundle
E(Hfyk (X)) ® O(i) has non-negative Harder-Narasimhan slopes: in fact, by the previous case, for

all j, the vector bundle £ (Hf{KJ (Uj5)) ® O(7) has non-negative Harder-Narasimhan slopes, and then
the claim follows from the classification of vector bundles on FF. O

4. B-COHOMOLOGY

This section is devoted to the proof of the following main result, which compares the B-cohomology
with the Hyodo—Kato cohomology.

Theorem 4.1. Let X be a connected, paracompact, rigid-analytic variety defined over C'. Then, we
have a natural isomorphism in D(Modigid)

RT(X) ~ (RTk (X) ®%® Biog) V=" (4.1)
compatible with the action of Frobenius . If X is the base change to C' of a rigid-analytic variety
defined over K, then (/.1) is Yk -equivariant.

We will first prove Theorem 4.1 in the case when X has semistable reduction. This will be done
in two main steps: we first compare, in §4.1, the B-cohomology with the log-crystalline cohomology
over Acris, and then, in §4.2, we relate the latter with the Hyodo—Kato cohomology.

Notation and conventions 4.2. In the following, we keep the notation and conventions introduced
in 3.1 and 3.8.

4.1. The comparison with the log-crystalline cohomology over A.is. We begin by compar-
ing the B-cohomology with the log-crystalline cohomology over Acyis.

Theorem 4.3. Let X be a qcqs semistable p-adic formal scheme over Spf(O¢) and let I C [1/(p —
1),00) be a compact interval with rational endpoints. Then, there is a natural isomorphism in
D(Mod")

RUp,(Xc) =~ Rl eis(Xog /p/A By (4.2)

compatible with the action of Frobenius p.

CI'IS) crls
In the first instance, we prove a local version of Theorem 4.3, and then we globalize the result.
Therefore, we begin by defining the local setting in which we will work.

29A1ternative1y, part (i) for the de Rham cohomology follows from part (i) for the de Hyodo—Kato cohomology
and the Hyodo—Kato isomorphism, Theorem 3.29(ii).
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Notation 4.4. Let X = Spf(R) be a connected affine p-adic formal scheme over Spf(O¢) admitting
an étale Spf(O¢)-morphism X — Spf(R") with

RY = Oc{to,. ...ty t5, . 5 Y (to - - tr — D7)
for some 0 <1 <d, and q € Q-g.
We denote by RS the perfectoid R--algebra defined by RS, := (lim R%)I/,\ with

R = Oc{tg/™" . T gty — P
and we put %800 := Spa(R[1/p], RY)). We set
Reo = (R®po RI))
and we note that (see also [CK19, §3.2])
Xc 00 == Spa(Rx[1/p], R) — Xc (4.3)
is an affinoid perfectoid pro-étale cover of X with Galois group
.= Zp(l)d = Zz

where the latter isomorphism is given by the choice of a compatible system of p-th power roots of
unity in O¢ (see 2.31). We denote by 71, ...,74 the generators of I" defined by

vi=(e11,...,1,e1,...,1) fori=1,...,r
vii=(1,...,1,e,1,...,1) fori=r+1,...,d
where ¢ sits on the i-th entry.

4.1.1. The condensed ring B;(R ). In the setting of Notation 4.4, given M any pro-étale period
sheaf of §2.3.1, we put

M(Rg) =M(Xgo)  M(Bu) = M(Xc,e0)
which we regard as condensed rings.

Remark 4.5. We recall from [CK19, §3.14] that we have the following decomposition of Ay,¢(R5.)

Ainr(RY) = Ajr(R7) @ Ape (RS )™ (4.4)
where Aj(RY) denotes the “integral” part, and Aj,¢(RS)™™ the “nonintegral part”. We have
Aine(RP) 2 Ape{ Xo, .., X, X2, XY (Xo - X0 — [P]9) (4.5)

where X; := [2], and the convergence is (p, j1)-adic. Such decomposition lifts to Ajut(Reo) as follows

Aint(Roo) = Ains(R) & Ainp(Roo)™™ (4.6)
where Ajn(R) is the unique lift of the étale (RY/p)-algebra R/p, along 6 : Aj¢(RY) - RY, to a
(p, )-adically complete, formally étale Ajp,(R")-algebra.

Remark 4.6. Given a compact interval I C (0, 00) with rational endpoints, by [Bos21, Proposition
4.7(i1)], we have

Ar(Roo) = Aing(Roo)®a;, Al (4.7)
where the completion ® A, 18 p-adic. Then, one has similar decompositions as (4.6) replacing Aj,¢
with Az, resp. By, and Aj,¢(R) with A7(R) := Ains(R)®a, Ar, resp. Br(R) := A7(R)[1/p] (where
the completion ® Ay 18 p-adic).

inf
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Remark 4.7. Let I C (0,00) be a compact interval with rational endpoints. We claim that we have
a natural isomorphism

AI(ROO) = Ainf(Roo) ®1.4inf AI (48)
In particular, inverting p, using that the solid tensor product commutes with filtered colimits, we
have an isomorphism

Br(Reo) = Ainf(Reo) @Y%, . Br.

To show (4.8), up to twisting by the Frobenius, we can assume that I C [1/(p—1),00). Now, we

use the isomorphism (4.7), and then we apply Proposition A.3 taking M = Aiy(Roo) and N = Ajpe

(see 2.31 for the notation), regarded as objects of Modi‘fili?, thus obtaining that
Ainf(‘Roo) ®I,Z1. (Ainf,l)/\ = (Ainf(Roo) ®Ainf Ainf,[)/\ (49)
inf p p
where (—)I/,\ denotes the derived p-adic completion. Since Aju¢ 1 is p-torsion-free, thanks to Lemma

A.5 the derived p-adic completion (Ajns, 7)" identifies with A;. Then, it remains to show that the
derived p-adic completion appearing on the right-hand side of (4.9) is underived: by [BMS18, Lemma
12.2] and Remark 2.32, we have up_l/p € Acris C Ag, and therefore, for any integer n > 1, we have
that Ainer/p" = Ar/p™ = Ar/(p", /ﬂ"/) for a large enough integer n’;* now, it suffices to observe
that, by [CK19, Lemma 3.13], (p", ™) is an Ains(Roo)-regular sequence and Aing(Roo)/(p", ™) is

flat over Aie/(p™, 1'),*" hence
Aunt(Roo) ®1,, At/ (0", 1)

is concentrated in degree 0, and the claim follows.

inf

4.1.2. Local computations. Next, by a standard argument, we express locally the B-cohomology
and the BS{R—cohomology in terms of Koszul complexes.

Lemma 4.8. Let I C (0,00) be a compact interval with rational endpoints, and let m > 1 be an
integer. Given

B e {IB%I,IB%,IB(;“R,IBZILR/ Fil™}
for the corresponding condensed period ring. In the setting of Notation

4.4, we have a natural isomorphism in D(Modghd)

RT 5(Xc) ~ Ln; Kosg(r. ) (71— 1,...,7a — 1) (4.10)
compatible with the filtration décalée of Definition 2.9.

we write B = Bgpa(c)

proét

Proof. Using Proposition 2.42(ii), it remains to check that

RT o6t (X0, B) ~ KOSB(ROO)(% —1,...,7q—1).
Considering the Cartan—Leray spectral sequence associated to the affinoid perfectoid pro-étale cover
X(c 00 — X¢ of (4.3) with Galois group I' (|[Bos21, Proposition 4.12]), we have the following natural
isomorphism in D(Mod33')

chond (F, B(Roo)) = Rrproét (%Cy B)
Then, the statement follows from [Bos21, Proposition B.3]. O
30In fact, one can take n’ := (p — 1)n.

3110 fact, loc. cit. translates to the condensed setting, for the ideal sheaf (p™, ,u",) in the condensed ring Aint(Roo ),
observing that both Ain¢(Res)/(p", u"/) and Aine/(p", ,u”/) are discrete.
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Our next goal is to express the right-hand side of (4.10) in terms of differential forms. For this,
recalling the notation introduced in Remark 4.5 and Remark 4.6, in the setting of Notation 4.4 we
denote the dual basis of the log Aj-derivations (see [CK19, §5.10]) as follows:

0
0 i=m ———
dlog(X;)
for 1 < i < d. Given I C (0,00) a compact interval with rational endpoints, by slight abuse of
notation, we will also denote by 0; the extension of the derivatives (4.11) to Ar(R) or Br(R).

. Ainf(R) — Ainf(R) (411)

Lemma 4.9. Let I C [1/(p —1),00) be a compact interval with rational endpoints. In the setting
of Notation 4.4, we have a Br-linear quasi-isomorphism

KOSAmf(R)(al, ooy 0g) ®5i‘nf By = KOSBI(R)(al, ey 0q) = L, KOS]BI(ROO)(’yl —1,...,7q—1) (4.12)
compatible with the action of Frobenius .

Proof. We will generalize the proof of [Bos21, Proposition 7.13]. Since p divides v; — 1 in By(R) for
all 7, i.e. T acts trivially on Bj(R)/u, and since, by the choice of I, the elements p and ¢ differ by
a unit in By, by [Bos21, Lemma 7.8] we have that

-1 vda—1
Nt KOSBI(R)(’yl - 1, ey Yd — 1) >~ KOSB[(R) < 7 yoe ey 7 ) . (413)

Using that Aeis C By, by the choice of I, the arguments in [BMS18, Lemma 12.5] and [CK19,
Lemma 5.15] show that, for each i, we have the following Taylor expansion in Bj(R)

’}/Z'—l 8 . tj 8 J
= . h h:=1
[ dlog(xy) M +;hﬁ4ﬂgb%m>

where h — 1 is topologically nilpotent, in particular the factor h is an automorphism of Bj(R);
furthermore, the latter automorphism is @-equivariant.”> Then, recalling the notation (4.11), we
deduce that the maps

((Bi(R) % Bi(R)) " (i) "= Bi(R))

for 1 <17 < d, induce a p-equivariant quasi-isomorphism
Kosp, (r)(01,...,04q) = nKosp,(gy(71 — 1,...,7a — 1). (4.14)
Next, we show that the natural map
neKosg,(ry(m1 — 1,...,7a — 1) = m Kosg,(ro)(m1 — 1,...,7a — 1) (4.15)
is a quasi-isomorphism. For this, recalling Remark 4.6, we have
Ar(Reo) =2 Af(R) @ Ar(Roo)™™

where Aj(Roo)™™ denotes the “nonintegral part” of Ar(Re). Then, as Ln,(—) commutes with
filtered colimits (hence with inverting p), it suffices to show that

L?’]‘u KOSAI(ROO)n—int (’yl - 1, e Yd — 1) ~ 0. (416)

32To check this one can argue as in the proof of [Bos21, Proposition 7.13].
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(I, Ar(Roo)™™) for all 4 € Z. By [CK19,
(T, Ajng(Roo )™ %) for all

In order to show (4.16) we need to prove that u kills H?__,
Proposition 3.25] (and [Bos21, Proposition B.3|), the element p kills H?
1 € Z, then we conclude by Corollary 4.11 below.

Now, combining (4.14) with (4.15), to prove the statement it remains to check that we have an
isomorphism

ond

Kos 4, (r) (01, - .-, 04) 4" Br = Kosp, (r) (01, - .., 0a). (4.17)
Since the solid tensor product commutes with filtered colimits, it suffices to show (4.17) replacing
Br = Aj[1/p] with A;. Then, using Proposition A.3, we reduce to showing that we have an
isomorphism

~L ~
KOSAinf(R)(al, ce ,ad)(X)Aian[ — KOSAI(R) (817 ce ,8d)

where the completion @Zinf is derived p-adic. For this, we observe that the latter completion is an
underived (termwise) p-adic completion: as recalled in Remark 4.7, for any integer n > 1, we have
Ap/p" = Ap/(p™, 1) for a large enough integer n/, and, by [CK19, Lemma 3.13], (p", ™) is an
Ajnt(R)-regular sequence with Aj(R)/(p™, ') flat over A/ (p", u™). O

We used crucially the following result.

Lemma 4.10. Let A be a condensed ring, and let (f) C A be a principal ideal sheaf. Let M be an

(f)-adically complete A-module in CondAb. Consider the following condition on a given A-module
P in CondAb:

for every j,n > 1 the map Tor]A(P, M/ — Torf(P, M/ f™) vanishes for some n' >n. (4.18)

For any bounded complex P* of A-modules in CondAb, with each P* and H'(P®) satisfying (4.18),
for all i € Z we have a natural isomorphism in CondAb

H{(P*&aM) = H (P*)@4 M
where the completion ® 4 is (f)-adic.

Proof. See the proof of [CK19, Lemma 3.30]. O

Corollary 4.11. Let I C [1/(p—1),00) be a compact interval with rational endpoints. Let us denote
Noo 1= Ajne(Roo)™™ . Then, for every i € Z, we have a natural isomorphism in CondAb

éond (T, Nm@AianI) = éond (T, Nw)®AianI
where the completion ®Ainf s p-adic.

Proof. We will show that the condition (4.18) of Lemma 4.10 holds for A = Ay, f =p, M = Ay,
and each P € {Aj¢(Roo), H! 4T, Noo), H' (T, Noo/p)}, adapting the argument of [CK19,
Lemma 3.31] to our setting.

For P = Ajp¢(R~ ), we even have that P ®imf Ar/p" € D(CondAb) is concentrated in degree 0

for all n > 1: in fact, recalling that A;/p" = A;/(p™, u™') for a large enough integer n’ (see Remark
4.7), it suffices to apply [CK19, Lemma 3.13], which implies that (p™, ™) is an Ain(Reo)-regular
sequence with Air(Roo)/(p™, 1) flat over Apg/(p™, u”') (noting that the latter two condensed rings
are discrete).

Next, we claim that the case P = H_, 4(I', Noo) follows from the case P = H{, (', Noo/ 1)

C

In fact, by [CK19, Proposition 3.25] (and [Bos21, Proposition B.3|), p kills every H? (T, Nuo),
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therefore, the long exact sequence in condensed group cohomology associated to the short exact
sequence 0 — Ny 2 Noo — N /i — 0, gives the short exact sequences

0— Héond(rv NOO) - Héond(rv NOO/:“’) - HH—l (F7 NOO) — 0.

cond

By [Bos21, Proposition B.3|, H, Zond(l“, Ny ) vanishes for a large enough integer i, hence the claim
follows by descending induction on 4.
Finally, for P = H! (T, Noo/p), we claim that P satisfies the following conditions that imply
the condition (4.18) of Lemma 4.10:

(i) P is p-torsion-free;

(ii) for every n > 1, P/p™ is a filtered colimit of Aj,s-modules isomorphic to Aine/(@~" (1), p™) for

variable r > 0.

In fact, recalling [Bos21, Proposition B.3|, condition (i) follows from [CK19, Proposition 3.19], and
condition (ii) follows from [CK19, Proposition 3.19, Corollary 3.23] and Lazard’s theorem ([Sta20,
058G]), observing that P/p™ is discrete. It remains to show that such conditions on P imply the
condition (4.18) of Lemma 4.10 in our case. For this, by condition (i) and Lemma A.5, we have
that P ®iinf Aing/p"™ = P ®% Z/p™ is concentrated in degree 0, and then by condition (ii) and the
p-torsion-freeness of Ajne/p™, we can reduce to checking that, for every n > 1 and r > 0, the map

Tor™ 7" (e (" (1), 2™), Ar /") = Tor{™ " (Aune /(97" () "), Ar/p") - (4.19)
vanishes for some n’ > n. In order to check this, we observe that the source of the map (4.19)
identifies with (A7/p™ )" (1)] (and the target with (A;/p™)[¢~"(1)]), and we conclude observing
that =" (u) divides p in Ajn,* and, by Lemma 2.33, the map (A;/p")[u] — A;/p" vanishes for
some n' > n. O

4.1.3. The functorial isomorphism. As we will see in this subsection, the source of the quasi-
isomorphism (4.12) of Lemma 4.9 computes

RFcriS(%Oc/p/Agris) ®5c‘ris Br.

Therefore, Lemma 4.9, combined with Lemma 4.8, already provides a local version of the desired
Theorem 4.3. However, such quasi-isomorphism depends on the choice of the coordinates X —
Spf(RY), introduced in Notation 4.4. To have a functorial quasi-isomorphism, we will rely on a
modification of the method of “all possible coordinates” pioneered by Bhatt—Morrow—Scholze in
[BMS18, §12.2], and used by Cesnavi¢ius—Koshikawa in [CK19, §5] to prove the functoriality with
respect to étale maps of the absolute crystalline comparison isomorphism for the A;,s-cohomology
in the semistable case.

Let us begin resuming the setting of [CK19, §5.17].

Notation 4.12. We denote by k¢ the residue field of Oc¢.

e Let X = Spf(R) be an affine p-adic formal scheme over Spf(O¢), such that every two
irreducible components of Spec(R ®¢,, k) intersect, and such that there exist finite sets X
and A # (), and a closed immersion of p-adic formal schemes over Spf(O¢)

X — SPf(RS) Xspr(oe) [Irea SPE(RY) =: Spf(RY ) (4.20)

33In fact, for any r > 1, one has p = (H]T;ClJ ©I(E) T ().
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where
Ry = Oc{tf! 10 e ¥}
the induced map X — Spf (Rg) is a closed immersion, and, for each \ € A,

RS 1= Oc{tass s taras B oo B} (Bno - tary = 2%)

for some 0 < ry) < d, and ¢, € Qs¢, and the induced map X — Spf(RE) is étale.
We will denote by Mp the canonical log structure on R, Notation 3.8.
e We define e
0 VS
Apgsn = Aint(Rg)®4,,Qrer Aint (RY)
where the completions are (p, u)-adic.

We will denote by MiEf s o the log structure on AEHC s, A associated to the log structures

on Ap(RY) and A (RY), for varying A € A, defined in [CK19, §5.9].
e Similarly to Notation 4.4, we define R%,A,oo a perfectoid ngA—algebra such that
Spa(RE 5 o1/, RS A 00) — Xc (4.21)

is an affinoid perfectoid pro-étale cover of X with Galois group

>
Ly =Tg X [[heaIa = ZL ' [TeaZy

(see also [CK19, §5.18]).
We denote by (V5)sex, (Ya,i)reA1<i<d the generators of I's; o defined by

Yo :=(1,...,1,e,1,...,1) foroceXx
where € sits on the o-th entry, and
7,\71»::(5*1,1,...,1,5,1,...,1) fori=1,...,7m)
mwi=01,...,1,¢e1,...,1) fori=ry+1,...,d
where ¢ sits on the i-th entry.

The base change of (4.21) along the generic fiber of (4.20) defines an affinoid perfectoid
pro-étale cover of X¢

Xox 00 = Spa(Rs A,00(1/p], Ry A 00) = X

with Galois group I's; z.
e Given M any pro-étale period sheaf of §2.3.1, we set

M(RsA,00) = M(Xc 5 A 00)

and we regard it as a condensed ring.

Remark 4.13. In Notation 4.12, the assumption on the special fiber Spec(R ®o,, kc) guarantees
that each irreducible component of such special fiber is cut out by a unique ¢y ; with 0 <1 < ry
(see also [CK19, §5.17]).

We note that Remark 4.6 and Remark 4.7 hold in the setting of Notation 4.12, i.e. with Rg and
RE in place of R™. In particular, to fix the notation, we let

At (RY) = A {XZo € 3}

Aint(RY) =2 Ane{ X0, - -- ,XA,WXiIer e 7XAi,Cll}/(XA,o Xy, — [P
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be the isomorphisms (4.5) for RS and RY.

For the proof of Theorem 4.3, we will need the next result from [CK19, §5.22| on the log-crystalline
cohomology over A.pis, that we translate here in the condensed setting.

Lemma 4.14. In the setting of Notation 4.12, we have a p-equivariant identification
RFCriS(%OC/p/A;riS) = Q.DZ’A(R) = KOSDE’A(R) ((80)0627 (8)\,i)>\EA,1§i§d) (422)

where Dx, A (R) is an Auis-algebra in CondAb characterized by the following properties: Ds, o(R) is
p-adically complete, and, for each integer n > 1, D, A(R)/p" is the log PD envelope of **

(AElf,Z,A ®Ainf Acris/pn) MiEf,E,A) - (R/pa MR) over A;fris/pn - Oé/p
Here, 0, := ﬁw, resp. Oy = W, are as in (/.11) with RS, resp. RY, in place of R.

Proof. This is the content of [CK19, Proposition 5.23|, which relies on [Beil3, (1.8.1)]. The charac-
terization of Dy o(R) follows from [CK19, §5.22, Lemma 5.29]. O

We note that the action of I's; A on Agf 5, A induces a natural action of I'; A on Dx; A(R).

The next lemma, which is a semistable version of [BMS18, Corollary 12.7], expresses the complex
Q.DZ,A( R) of Lemma 4.14, which computes the log-crystalline cohomology over Ag;s, in terms of
condensed group cohomology RIcond(I's A, Ds a(R)) via passage through Lie algebra cohomology.
Cf. |[CN17, §4.3].

Lemma 4.15. In the setting of Notation /.12, we denote by LieI's; p the Lie algebra of I's; n, and
we write exp : LieI's A = I's o for the exponential isomorphism. Then, there is a natural action of
LieI's, o on Ds a(R) defined for g € LieD's; o, with exp(g) =~ € 'y a, by

g =tog(r) = 3 N e (4.23

n>1
We write Us, o for the universal enveloping algebra of LieI's 5, and we denote by
RT'(LieT's, o, Dy A(R)) = RHoirnUZ’A(Zp7 Dy, A(R)) € D(CondAb)

the Lie group cohomology.

(i) There is a quasi-isomorphism

Ln,RT'(LieT's o, Dy A(R)) ~ Q;DE,A(R)'
(i) There is a quasi-isomorphism
RT'(LieI's o, D5 A(R)) =~ Rl'cona(I's A, Dy A (R)).

Proof. We first need to check that, for g € LieI's; 5, the series (4.23) converges to an endomorphism
of Dy, A(R). For this, it suffices to prove that the action of v — 1 on Dy A(R) takes values in
([e] = 1)Ds a(R): in fact, by [BMSI18, Lemma 12.2|, this implies that the action of @ on

Ds; A(R) has values in Dy; A(R), and such values converge to 0 as n — oo. Thus, following the proof
of [BMS18, Lemma 12.6] and using [CK19, Lemma 5.29|, we can reduce to checking that the action

34Here, R/p is equipped with the pullback of the canonical log structure Mr on R, and AE]f’E’A ® A Acris/p" is
endowed with the pullback of the log structure MEf,E’A on AElf,E’A, Notation 4.12.
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of y —1 on Aian,E,A takes values in ([e] — 1)A51f,2,A: this is clear for v being one of the generators

(Yo)oes, (Mni)aean<ica of s A.*?

Next, to prove both part (i) and part (ii), we denote T'(X, A) := XU{(A,i) : A € A,1 <i < d}. By
(the proof of) [CK19, Lemma 5.33|, the element 7, € I's 5 acts on Ds; A(R) as the endomorphism
exp(log([e]) - 0;), for varying 7 € T(X,A). Therefore, denoting g, := log([¢]) - 0, € LieI's a, we
have a quasi-isomorphism

RI(LieI's , Dy A(R)) ~ Kospy, , (r) (9rer(s,0)) (4.24)

Since log([e]) and p differ by a unit in A, part (i) follows from the quasi-isomorphism (4.24) and
[Bos21, Lemma 7.8(ii)]. For part (ii), we note that g, = log(vs) = (v — 1) - h; for 7 € T(X,A),
with h, automorphisms of Ds; A(R) commuting with each other and with ~, — 1, therefore

Kospg ,(r)(9rer(z.n)) = Kospy, , (r) (r = Drer(z,a)) (4.25)
(cf. the proof of [BMS18, Lemma 12.5]). Then, the statement of part (ii) follows combining (4.24),
(4.25), and [Bos21, Proposition B.3]. O

We deduce the following result.

Corollary 4.16. In the setting of Notation 4.12, we have a natural (in X and the datum (4.20))
quasi-isomorphism
RPcris(%Oc/p/AX ) ;> LnMRFCOHd(FE7A7 DEJ\(R)) (426)

cris

Proof. We first construct the desired natural morphism (4.26). By the proof of [Beil3, (1.8.1)] and
by [CK19, Lemma 5.29|, we have the following Cech-Alexander computation of the log-crystalline
cohomology over Acys:

Reris(Xoe /p/Adis) = (DA (R)(0) = Dz a(R)(1) — Dua(R)(2) — --+) (4.27)

cris

where Dy p(R)(n) :=lim__ Ds A m(R)(n) with Spec(Dx A m(R)(n)) the (n + 1)-fold product of

—m>1

Spec(Ds A (R)/p™) in (X0, /p/Agism)eris (We recall 3.1 for the notation). On the other hand, by

cris,m

[Bos21, Proposition B.2(i)], the condensed group cohomology is computed by

Rlcona(T's,a, DeA(R)) ~ (DsA(R) — Hom(Z [Ty A, D A (R)) — Hom(Z[T'%; 4], Dsa(R)) — -+ ) .
(4.28)
Under the identifications (4.27) and (4.28), we define the morphism

RTcris (X0 /p/Agis) = Rlcond(T's A, Ds A (R)) (4.29)

cris
induced, in degree n > 0, by the composite of the termwise action I', \ x Dx; A (R)(n) — Dy A (R)(n)
with the co-diagonal map Ds A (R)(n) — Dy a(R). By [BMSI18, Lemma 6.10] there is a natural
map

LnuRFmS(.’{Oc/p/AX ) — chris(foc/p/AX ) (430)

Cris Cris
which is a quasi-isomorphism, as it follows combining Lemma 4.14 and Lemma 4.15(i). Using the
quasi-isomorphism (4.30), applying the décalage functor Ln,(—) to (4.29), we obtain the desired
morphism (4.26), which is a quasi-isomorphism thanks to Lemma 4.14 (which relies on [Beil3,
(1.8.1)], as (4.27)) and Lemma 4.15. O

35Note that, for 1 < i < d, the element Yx,s — 1 acts as follows on Xj;: it sends X; — ([g] — 1)X;; X; — 0 if
0<j#4; Xor (g7 = D Xo = —([e] — 1)[e7 )Xo if i < rx; and Xo +— 0if i > 7.
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As a next step toward Theorem 4.3, we want to construct a comparison morphism from the
log-crystalline cohomology over Acps to the Br-cohomology. For this, we will rely on the morphism
(4.26), defined in Corollary 4.16, and on the following construction (which is inspired from the proof
of [Kos22, Theorem 8.1|), that will allow us to compare the target of (4.26) with the Bj-cohomology.

Lemma 4.17. In the setting of Notation /.12, there is a natural (in R and the datum (4.20))
I's; A -equivariant map

DZ,A(R) - AcriS(RZ},A,oo) (4.31)
where Acris(RE,A,oo) = Ainf(RZ,A7OO)®Ainf
Proof. Since both Agyis(Rs: A 00) and Dy A(R) are p-adically complete (for the latter, recall [CK19,
Lemma 5.29]), it suffices to construct, for each n > 1, a natural map Dx, A (R)/p" — Acis(Rx A00) /D™

We observe that Acis(Rx A,00)/P" = Aint(Rx,A,00) @4, Acris/P". Then, we consider the following
commutative diagram of log rings

Agis and the completion Ra. . is p-adic.

inf

inf

(Aglf,z,/\ @ Ajs Acris /D", MiEf,E,A) — (R/p, MR)

l J (4.32)

(Ainf(RE,A,oo) ®Ainf Acris/pna N)a — (RE,A,oo/p, MR)

Here, R/p and Ry o /p are equipped with the pullback of the canonical log structure Mg on R,
and AEHC’Z, A @4, Acris/P" is endowed with the pullback of the log structure MEf’n A On Aian& A
as in Lemma 4.14. Moreover, Ainf(Rx A 00) @4, Acris/p" is equipped with the pullback of the
log structure on Ajn¢(Rx A 00) associated to the pre-log structure defined as follows: we set N :=
(hgp)*l(MiEf& A) where h&P denotes the morphism of groups associated to the natural morphism

of monoids h : MZ. o, — Mpg; the argument of [CK19, Lemma 5.37| shows that the natural

1

map MiEf,E,A — Ajnt(Rx A00) uniquely extends to a map N — Ajp(Rsaco)-°® The resulting
surjective map of log rings at the bottom of the diagram (4.32) is exact by construction, hence, the
universal property of the log PD envelope Ds; A(R)/p™ gives the desired natural map Dyx; A (R)/p" —

Acris(-RE,A,oo)/pn~ ]
We are now ready to prove Theorem 4.3.

Proof of Theorem 4.53. 1t suffices to prove the statement Zariski locally on X in a functorial way, as
X is assumed to be qcgs and the derived tensor product ®i:m commutes with finite limits.

Thus, let X = Spf(R) as in Notation 4.12, with fixed finite sets ¥ and A. We will denote
T(E,A) =XU{(N\0):Ae A 1<i<d}.

First, we note that, similarly to Lemma 4.8, we have a yp-equivariant identification

RUp,(X¢) =~ LRl cona(T's A, Br(RsA,00)) = L Kosg, (ry, , ) (7 — Drer(za))- (4.33)

Then, using the natural map (4.26) constructed in Corollary 4.16, together with the natural mor-
phism (4.31) constructed in Lemma 4.17, we have a natural (in X and the datum (4.20)) morphism

Rl is ('}:Oc/p/Asris) = LnuRFcond(FE,Ay DZ,A(R)) - LnuRFcond (FE,Aa B; (RE,A,OO))- (434)

361p fact, in the notation of [CK19, §5.25, §5.26], it suffices to prove that Ains(Rs; 4.0 ) is naturally an (ARf 54210
Z[P,))-algebra compatibly with the change of Ag € A, which is shown in [CK19, Lemma 5.37].
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Using that p and ¢ differ by a unit in By, (4.34) induces a natural morphism
ezt Rleis(Xog p/Ads) @45, Br = RUp,(Xc) (4.35)

that we claim to be a quasi-isomorphism. For this, it suffices to show that, for a fixed A € A, we
have a commutative diagram as follows, whose arrows are quasi-isomorphisms

Kosa,.. (), ((Oxi)1<i<a) ®4™  Br —— n:Kosg, (g, .y (1 — Di<i<a)

l J (4.36)

Kospg ,(r) ((0)rer(z,a)) ©4" Br —— n:Kosg, (ry, , ) (7r — Drer(za))

cris

with the bottom arrow of (4.36) compatible with the morphism (4.35), under the identifications
(4.22) and (4.33). Here, we denote Auis(R)y = Ainf(R)A(@Aiancris, where the completion ®Ainf is
p-adic, and Aj¢(R))y is the unique lift of the étale (RE /p)-algebra R/p, along 6 : Ainf(RE) —» RE,
to a (p, u)-adically complete, formally étale A;,(RY)-algebra.
(i) The right vertical map of (4.36) is a quasi-isomorphism since, by Lemma 4.8 and (4.33), both
the target and the source are quasi-isomorphic to RI'g, (X¢).
(ii) The top horizontal arrow of (4.36) is induced by the quasi-isomorphism constructed in Lemma
4.9, observing that we have the following identifications:

Kosa, (), ((Oxi)1<i<a) @4 Br = (Kosa, (), ((Ori)1<i<d) ®4". Aais) ®4™ By

cris

and, by Proposition A.3,

Kos 4, (r), ((Ox)1<i<a) @™ Acis 2 Kosa_, (), ((Or)1<i<d) (4.37)

as we now explain. In fact, Proposition A.3 implies that the derived solid tensor product
®Tg;f appearing in (4.37) can be replaced by the derived p-adic completion @imf, and then
it remains to observe that the latter completion identifies with the underived (termwise)
p-adic completion: for this, denoting by A - Acis the p-adic completion of the Aj,¢-

: cris
subalgebra generated by &7 /j! for varying j < m, we note that, for any integer n > 1, we have

Acris/p" = lim pA((::ilS)/p", with Agfb)/p” = A(m)/(p”,u”/) for m > p, and a large enough

—m> Cris
integer n/ (see [CK19, §3.26]);* then, we recall that (p", ™) is an Aj,¢(R)-regular sequence
with Aie(R)/(p", 1) flat over Ape/(p", 1) (see [CK19, Lemma 3.13]).

(iii) The left vertical map of (4.36) is constructed as follows. Since Ds; o(R) is a p-adically complete
pro-nilpotent thickening of R/p (here we use [CK19, Lemma 5.29]), by the infinitesimal lifting
criterion for the p-adic formally étale map Acris(RE) — Aais(R)y, we deduce that in the
following diagram

ACI‘iS(RE) — Acris(R))\

l L’// l

D27A<R) e R/p

37In fact, for m > p, one has u?/p! € A" therefore one can take n’ := pn.

cris ?
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there exists a unique dotted arrow making the diagram commute. The resulting map
Kosa,..(r), ((Oxi)1<i<a) = Kospy , (r) ((0r)rer(ma))

is a quasi-isomorphism, as both the source and the target compute RIcris(Xo,,/p JAZ), by
[CK19, Proposition 5.13] and Lemma 4.14, respectively.

(iv) The bottom horizontal arrow of (4.36) is constructed as follows. Similarly to the map (4.1.2)
in Lemma 4.9, for varying 7 € T'(X, A), we have p-equivariant maps

((DE,A(R) oy DE,A(R)) (id, Ar) (DgA(R) oy DE,A(R)) (4.38)

with oy =14 37,4 (jiijl)!(f)T)j, which induce a gp-equivariant quasi-isomorphism

Kosp,. ,(r) ((8r)rerm.a)) = muKospy () (r — Drerzay) (4.39)

(cf. [CK19, Proposition 5.34]). Moreover, the I's p-equivariant map (4.31) constructed in
Lemma 4.17, induces a morphism

U KOSDZ,A(R) ((%’ - 1)7-€T(E,A)) — Ny KOSBI(RZ,A,OO)((’VT - 1)T€T(E,A))- (4'40)

Then, we define the bottom horizontal arrow of (4.36) as the morphism induced by the com-
posite of (4.39) and (4.40). The so constructed morphism makes the diagram (4.36) commute,
it is compatible with the morphism (4.35), under the identifications (4.22) and (4.33), and, by
the previous points, it is a quasi-isomorphism.

Taking the filtered colimit hi>n of the quasi-isomorphisms fx » A constructed in (4.35), putting

SA
everything together, using that ®ﬁ:ﬁs commutes with filtered colimits, we obtain the desired quasi-
isomorphism
fx 0 Rlaris(X0 /p/ Adsis) @y, Br = lim K (Rs; A o) 2 RUp, (Xc).
s A

where we denoted K (Rx A o0) := L1 R cond(I's A, Br(Ry A,00))-

It remains to show that the morphism fx depends functorially on X = Spf(R). For this, it suffices
to prove that the filtered colimit lim, =K (Rx A,00) depends functorially on R, compatibly with the

X
cris

constructed morphism from the complex RIqis(X0,, /p JAZ. ) (i.e. the filtered colimit TLHE, A of the

morphisms defined in (4.34)). We study separately the latter filtered colimit in the case X is smooth
or non-smooth, and show that it reduces to a simpler filtered colimit.*®

e Suppose X is smooth. In this case, given a finite set A as in Notation 4.12, for each pair
(A7) with A € A and 0 < i < d, we have
tri = (PH)™ - uy,; for unique ny; € Z>o and uy; € R* (4.41)

where ¢ € Q¢ is the unique element such that Z -q = > .\ Z - gy inside Q (see [CK19,
(5.26.2)]). We recall that p-th power roots of p in O¢ are fixed (Notation 3.8). Then, for
sufficiently large finite sets ¥ C R* (containing the uy ;s as in (4.41)), denoting Ry, o :=
Ry, g o, we have natural surjections

Ry Ao = By oo (4.42)

38We thank Teruhisa Koshikawa for suggesting the following idea.
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given by assigning the images of p-th power roots of wy;. The maps (4.42) induce an

isomorphism
lim K (Ry,p,00) — lim K (R o) (4.43)
SA 5

as both sides of (4.43) compute RI'p,(X¢).

e Suppose X is non-smooth. We choose an étale map X — Spf (REO) as in Notation 4.12.
Then, by Remark 4.13, given a finite set A containing \g, for each pair (\,4) with A € A and
0 <14 < d, either the image of ) ; in R lies in R, or it cuts out an irreducible component
of the special fiber of X, and there exists a unique 0 < ¢’ < r), (depending on ¢) such that

tri = Ur )z, trg for a unique uy y,; € R* (4.44)

(see |[CK19, (5.27.1)]). Then, for sufficiently large finite sets ¥ C R* (containing the invert-
ible t);’s in R and the uy y,;’s as in (4.44)), we have natural surjections

Rs A 00 = B3 {2o},00 (4.45)

given by assigning the images of p-th power roots of ¢y ; in the case the image of ¢y ; in R
lies in R*, or by assigning the images of p-th power roots of uy ,; in the complementary
case. The maps (4.45) induce an isomorphism

lim K (Ry A 00) — im K (Ry {1} 00)- (4.46)
SA =

For later reference, we note here that for a finite set A as in Notation 4.12 containing Ag,
and for sufficiently large finite sets X, for any A € A we have a commutative diagram

Ry (2,00
Ry A00 Jf (4.47)
\
RE,{)\Q},OO'

Here, the bottom diagonal arrow is (4.45), the top diagonal arrow is defined similarly to the
latter (with A in place of Ag), and the vertical arrow is the isomorphism defined as follows.
For (), %) such that the image of ¢y ; in R does not lie in R*, the relation (4.44) implies that
there exists a unique 0 < i’ < ry, (depending on i) such that, for any integer m > 0, we
have

/pm™ _  (m) 1/p™ . : (m) X
tk,i = Uy Noi t)\w., in Ry A0 for a unique Uy xoi € RZ,A,oo

using that t}\{g,n is a unit in Ry A o0[1/p] and Ry Ao is integrally closed in Ry a oo[1/p].

Then, the vertical arrow of (4.47) is defined by sending, for m > 0 and (A,4) as before,
the element ti/fm in Ry ()},00 to the image of ugf?;\)oi : tiﬁp;,n in Ry [)},00; this defines an

(m)

isomorphism as the u, o ;’s are invertible.

Now, let g : X' = Spf(R’) — X = Spf(R) be a map of affine p-adic formal schemes over Spf(O¢),
with X and X’ equipped with data as in Notation 4.12, for some sets ¥ and Ag with Ag = {M\o} in
the case X is non-smooth and A = () in the smooth case, resp. ¥’ and Aj with Aj = {)\}} in the case
X’ is non-smooth and A = () in the smooth case. Then, for a sufficiently large finite set ¥’ ¢ R'™,
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there exists a canonical map g~ : Spf(R’ %7 Ay) = Spf (RS A,) of p-adic formal schemes over Spf(O¢)
making the following diagram commute

X’ &l X

| l (4.48)

Spf(R'2 97 Spf(RY
pf( 2/,/\6) —— Spf( E,AO)'

In fact, suppose X and X’ are non-smooth (in the other cases one can argue similarly), then by
Remark 4.13, for 0 < i < d, we have the following relation in R’

(DA Axn.ioj
trg,i = (P70)" 07 -y e H (tay 4) "0
0<j<ry,

for unique 1y, ; € Zxo, ur, n i € R, and ay,;j € Z>o not all positive; hence, we take ¥’ C R'™
containing a copy of ¥ and the units uy, », ; for 0 <7 < d.

For a sufficiently large finite set ¥/ € R', the diagram (4.48) induces a morphism of Galois
covers

!
Xewr Ay oo T XCS A0

| |

X, — X¢
which in turn induces a map lim, K (Rxp¢,00) — limg, K(R/E’,Aé,oo)' The latter map composed with

the isomorphism (4.43) (in the case R is smooth, and similarly for R') or the isomorphism (4.46)
(in the case R is non-smooth, and similarly for R'), induces a map

lim K (Rs,p00) = lim K (R o o0) (4.49)
T A G

which does not depend on the choices of A\g and A: this follows from the commutative diagram (4.47)
(and a similar diagram for R’). By construction, the map (4.49) fits in the following commutative
diagram

RTeris(Xog /p/Adris) — limg,  K(Rs,a00)

! |

RFCrlS(xbc/p/Aéls) — @E/,A/ K(R,E/7Alvoo)
where the top, resp. bottom, horizontal arrow is the filtered colimit liiga A Tesp. h_n}zf, AL of the
morphisms defined in (4.34). This concludes the proof. O

4.2. The comparison with the Hyodo—Kato cohomology. Now, we have all the ingredients
to conclude the proof of Theorem 4.1.

Proof of Theorem j.1. First, let X € Mgs gegs; i-6. X a qcgs semistable p-adic formal scheme over
Spf(O¢). We want to show the statement for X = Xo. Combining Theorem 4.3 with Theo-
rem 3.2(i), and recalling Remark 2.32, for any compact interval I C [1/(p — 1), 00) with rational



54 GUIDO BOSCO

endpoints, we have a natural isomorphism
RPB} (%C) (RFHK(%C) L . Blog,I)NZO- (4.50)

Twisting by the Frobenius, and recalling that ¢ is a (UF—semilinear) automorphism on the Hyodo—
Kato cohomology, we deduce that (4.50) extends to any compact interval I C (0, 00) with rational
endpoints. Then, passing to the derived limit over all such I, by Lemma 2.41 we have a natural
isomorphism
RliLnRFBI (%C) ~ RFB(%C)
1
and then, by [Bos21, Corollary A.67(ii)|, which applies observing that Biog s is a nuclear F-vector

space, and recalling that RI'yx(X¢) is representable by a bounded complex of F-Banach spaces
(see Theorem 3.15(ii) and its proof), we obtain a natural isomorphism

RUp(X¢) ~ (RTuk(Xc) @%" Biog) V="
where Elog = R@I Bigg,1. Now, we claim that the natural map

(RTpk (Xc) @4 Biog) V=" — (RTuk (Xc) ®%® Blog) V=" (4.51)

is an isomorphism. In fact, recalling that Bi,g = B[U]| and Biog,; = Br[U], both the source and
the target of (4.51) identify with the complex RI'nk(X¢) ®L' B via the operator exp(N - U) on the
latter tensor product (cf. Lemma 7.6; note that the monodromy N is nilpotent on R'pk(X¢), by
Theorem 3.15(ii), in particular such operator is well-defined).’

Next, let X be a qcgs rigid-analytic variety over C'. Consider a simplicial object e of Mg geqs
such that ,, — X is a éh-hypercover. To show that for such X we have an isomorphism as in
(4.1), since the B-cohomology satisfies éh-hyperdescent, we have

RT5(X) = limy RTp(tc) (4.52)

and then, using that the Hyodo—Kato cohomology satisfies éh-hyperdescent as well, it suffices to
show that the natural map at the top of the following commutative diagram is an isomorphism

hm[n]eA(RFcnS( nOc/p/O ) Q ®Lﬁ. Blog)N:O SN (RFHK(X) ®I};l Blog)N_O

T T (4.53)

hm[n]EA(Rchs( n Oc/p/o ) Qp ®LF. B) - RFHK(X) ®Lﬁ‘. B.

Here, arguing as above, the vertical arrows are the isomorphisms defined by the operator exp(N -U)
(recall that the monodromy N is nilpotent on RT'gk(X), by Theorem 3.15(ii), in particular such
operator is well-defined).”” We note that the bottom horizontal arrow of the diagram (4.53) is an
isomorphism thanks to [Bos21, Corollary A.67(ii)| (which applies recalling that B is a Fréchet space

39We observe that, in the case when X¢ is the base change to C of a rigid-analytic variety defined over K, such
identifications may be not ¥x-equivariant. However, in this case, the map (4.51) is ¥x-equivariant.

4OSimilarly to Footnote 39, in the case when X is the base change to C of a rigid-analytic variety defined over K,
such isomorphisms may be not ¥k-equivariant. However, in this case, the top horizontal arrow of the diagram above
is ¥k -equivariant.
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and each RT qis(U° .0c /p JOY )Qp is representable by a complex of nuclear F-vector spaces, and using

(3.16)). Then, we deduce that the top horizontal arrow is an isomorphism as well, as desired.*!
Lastly, for a X connected, paracompact, rigid-analytic variety over C, choosing a quasi-compact
admissible covering {Up, },en of X such that U,, C U,41, using Theorem 3.15(ii), the same argument
used above to show that the top horizontal arrow in (4.53) is an isomorphism reduces us to the
previous case.”? ]

5. Bj;-COHOMOLOGY

Our first goal in this section is to compare the B(J{R—Cohomology with the de Rham cohomology.

5.1. The comparison with the de Rham cohomology. In the smooth case, the following result
is essentially already contained in [Bos21, §6], and relies on Scholze’s Poincaré lemma for IB%:{R.

In the following, we denote by RI'4g(X) the de Rham cohomology endowed with the Hodge
filtration (Definition 2.16).

Theorem 5.1. Let X be a connected, paracompact, rigid-analytic variety defined over K. Then,

we have a natural isomorphism in D(Modz’l&d)
dR

RT 51 (Xc) =~ RPqr(X) Q%" Bl (5.1)
compatible with filtrations, and the action of Y .

Proof. Assume first that X is smooth. By [Bos21, Lemma 2.17, Corollary 6.12, Lemma 6.13, Lemma

5.6(ii)| we have an isomorphism in D(ModSOhd)
dR

RT gy (Xo) ~ RT(X, Q% @ Bjg)

compatible with filtrations. Then, in this case, the statement follows from [Bos21, Theorem 5.20].
The general case follows by éh-hyperdescent, using [Bos21, Corollary A.67(ii)|, and observing, for

the compatibility with filtrations part, that the filtration on RT'qr(X) is finite, Proposition 2.18 (as

X is also assumed to be of finite dimension, §1.7). O

The same argument and references used in the proof of Theorem 5.1 also show the following
result, which generalizes [Bos21, Theorem 1.8(ii)] to the singular case:

Theorem 5.2. Let X be a connected, paracompact, rigid-analytic variety defined over K. Then,
we have a natural isomorphism in D(ModSOhd)

RT proct (X, Bin) = Fil°(RT4r (X) @%® Bagr)-

41N the case X is a qcgs smooth rigid-analytic variety over C, we can use the following alternative argument. We
first note that the complex RI'g(X) is bounded: for this, as X is qcgs, we can reduce to the case X is a smooth
affinoid over C, in which case the claim follows from the identification RT'g(X) = Ln; Rl prost (X, B) (Lemma 2.42(ii))
and the vanishing H}, s (X,B) = 0 for i > dim X (see the proof of Lemma 2.40). Therefore, we can replace the limit
limp,jea appearing in (4.52) by a finite limit lim,jea_,, for a sufficiently big integer m. Then, using that also the
complex RT'uk(X) is bounded (Theorem 3. 15(11)) the top horizontal arrow in (4.53) is an isomorphism using that
®I;3' commutes with finite limits.

42Recall that any rigid-analytic variety is assumed to quasi-separated and of finite dimension, §1.7.
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5.1.1. Compatibility. Our next goal is to prove that the comparison of Theorem 5.1 is compatible
with the comparison of Theorem 4.1.

Theorem 5.3. Let X be a connected, paracompact, rigid-analytic variety defined over K.

(i) (Hyodo-Kato isomorphism over Bi;) We have a natural isomorphism in D(ModsB‘,’lﬁd)
dR

Ry (X¢) @%® Biy — RTqr(X) @K" By (5.2)

(11) (Compatibility) The isomorphism (5.1) of Theorem 5.1 is compatible with the isomorphism
(4.1) of Theorem /.1, i.e. we have a commutative diagram as follows

RTp(Xc) —— (RTuk(Xc) @%® Biog) V="

J |

RT ¢ (Xo) —— RTqr(X) ®§* By

where the left vertical map is induced by the inclusion B — IB%;;R, and the right vertical map s
induced by (5.2).

We refer the reader to Theorem 5.20 for a version of Theorem 5.3 for rigid-analytic varieties
defined over C.

5.2. The comparison with the infinitesimal cohomology over B:R. To prove Theorem 5.3

we will relate the B('IR—cohomology of Definition 2.38 to the infinitesimal cohomology over BJLR in
a way that is compatible with the comparison between the B-cohomology and the log-crystalline
cohomology over Agis (following from Theorem 4.3).

5.2.1. The infinitesimal cohomology over B:{R and its filtrations. We begin with some recollections
on the infinitesimal cohomology over Bd+R of rigid-analytic varieties, introduced in [Guo21].

Definition 5.4 (Infinitesimal cohomology over BJR)' Let X be a rigid-analytic variety over C.
Given an integer m > 1, denote B(;FR’m = B(J{R/fm.
The infinitesimal site (X/ BJ_R’m)jnf of X over B(TRM is defined as follows:
e the underlying category has objects the pairs (U, T') where U is an open subspace of X and
U — T is an infinitesimal thickening of adic spaces with T" an adic space of topological finite
presentation over B:{R,m, and morphisms (U, T) — (U’,T") with U — U’ an open immersion
and T'— T" a compatible map of adic spaces over B;{R mi
e the coverings are given by the families of morphisms {7(Uz-, T;) — (U, T)} with U; — U and
T; — T coverings for the analytic topology.
The infinitesimal site of X over BCTR is defined as the direct limit of sites (in the sense of [AGVT7I,
Exposé VI, §8|)
(X/Byg)int := im(X/Bgg ., )int-

m
The infinitesimal structure sheaf Ot on (X/ BJR)inf is the sheaf with values in Mod®" sending

Bir
(U, T) to Op(T), and the infinitesimal cohomology of X over B;‘R is defined as
RUint(X/Byg) := RU((X/Bg )ints Oint) € D(MOdg’f;)-
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One can also define a big infinitesimal site version of the (small) infinitesimal sites defined above
(cf. [Guo2l, Definition 2.1.2]).

Definition 5.5 (Infinitesimal filtration). Let X be a rigid-analytic variety over C. We define the
infinitesimal filtration on the infinitesimal cohomology of X over B(J{R as the N°P-indexed filtration

Filf ¢ RTine(X/Bigr) = RU((X/BJR)int: Tint)

inf

induced on the i-th level by the subsheaf J. C Ojyf on (X/ B;{R)inf, where Jin¢ is the kernel ideal
of the natural map from the infinitesimal structure sheaf Oj,¢ to the pullback, on the infinitesimal

site, of the analytic structure sheaf of X.
We recall that the infinitesimal cohomology over B(;FR satisfies éh-hyperdescent:

Lemma 5.6. The presheaf
Rig? — D(Modgﬁi) 1Y — RTine(Y/B3R)
satisfies éh-hyperdescent.
Proof. The statement follows from [Guo21, Theorem 6.2.5]. O

On the other hand, the pieces of the infinitesimal filtration on the infinitesimal cohomology over
BCTR (Definition 5.5) do not satisfy éh-hyperdescent in general.*® For this reason, we introduce the
following filtration on the infinitesimal cohomology over BSFR that is closer to the Hodge filtration
on the de Rham cohomology (Definition 2.16) and it will be crucial in the formulation of the
semistable conjecture for proper (possibly singular) rigid-analytic varieties over C' (see Theorem
7.4). The following definition is based on Proposition 2.14 (and Remark 2.15).

Definition 5.7 (Hodge filtration). Let X be a rigid-analytic variety over C. We define the Hodge
filtration on the infinitesimal cohomology of X over B:{R as the N°P-indexed filtration

Filfjq, RTine(X/BiR)

given on the i-th level by the cohomology on X of the hypersheaf on Rigq ¢, associated to the
presheaf

RigSm® — D(Mod<1) : YV v Fill ¢ RT;(Y/Bin)-

+ i
BdR

In the smooth case the Hodge filtration on the infinitesimal cohomology over Bg’R (Definition 5.7)
agrees with the infinitesimal filtration (Definition 5.5).

43Similarly7 the pieces of the infinitesimal filtration on the infinitesimal cohomology over C do satisfy éh-
hyperdescent. In fact, supposing the contrary, by [Guo21, Theorem 1.2.1(i)] and Proposition 2.14 we would have, for
any rigid-analytic variety X over C, a natural filtered isomorphism between the infinitesimal cohomology of X over
C and the de Rham cohomology of X over C' (Definition 2.16). Now, assuming that X is a complete intersection
affinoid, there is a natural filtered isomorphism between the infinitesimal cohomology of X over C' and the cohomology
of the analytic derived de Rham complex of X over C, [Guo21, Corollary 5.5.2]; but, the graded pieces of the latter
do not vanish if X is not smooth (recalling that the i-th graded piece of the analytic derived de Rham complex of
X over C can be identified with a shift of the i-fold wedge product of the analytic cotangent complex of X over C),
instead, by Proposition 2.18, the graded pieces of the de Rham cohomology of X over C' eventually vanish.
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Proposition 5.8. (Hodge filtration in the smooth case) Let X be a smooth rigid-analytic variety
over C'. We have a natural isomorphism of filtered objects

Fil{ s RDine(X/Bgg) — Filfiq, Rlins(X/Big)-

inf

We will prove Proposition 5.8 in the next subsection, together with the following already an-
nounced comparison of the BIR—cohomology with the infinitesimal cohomology over B(TR'

Theorem 5.9. For any rigid-analytic variety X over C, we have a natural isomorphism in D(Mod‘;ﬁ‘d)
dR
RT gy (X) ~ RUing(X/B{g) (5.3)

compatible with filtrations, endowing the B;‘R—cohomology with the filtration decalée (Definition 2.9)
and the infinitesimal cohomology over B;fR with the Hodge filtration (Definition 5.7).

5.2.2. Proofs. We want to prove Theorem 5.3, Proposition 5.8 and Theorem 5.9.

As a first step toward Theorem 5.3, we need to construct a natural map from the log-crystalline
cohomology over Acis to the infinitesimal cohomology over B:{R'

Lemma 5.10. Let X be a semistable p-adic formal scheme over O¢, and let X = X denote its
generic fiber. Then, there exists a natural morphism

RTais(Xog /p/ Adis) — RTine(X/BJR)- (5.4)

cris
Proof. We can assume that X is affine. We note that we have a natural isomorphism

RFCriS (xoc/p/AX ) >~ chris (X/AX )

cris cris

Then, it suffices to construct, for each integer m > 1, a morphism of big sites
f+ (X/Big ) iNe — (X/A%;0)cris

recalling that the restriction functor from the big topos the small one preserves cohomology (see
[Guo21, Corollary 2.2.8] for the infinitesimal topos). We define f via the continuous functor sending
i — Spf(A) in the big log-crystalline site (X/A%;)cris to e — Spa(A @4 B(;rR,m) in the big
infinitesimal site (X/ BIR,m)INF (forgetting the log structures). One checks that f is a well-defined
morphism of sites, with the help of [Sta20, 00X4, 00X5]. O

cris

Before proving Theorem 5.3, we will show the following intermediate compatibility result.

Proposition 5.11. Let X be the generic fiber of a qcgs semistable formal scheme X defined over
Spf(O¢). Let I = [1,r] C (0,00) be an interval with rational endpoints. Then, the isomorphism
(4.2) is compatible with the isomorphism (5.3), i.e. we have a commutative diagram as follows

RFB] (X) - ]%Fcris(:%:OC/}O/‘A>< ) ®%:ris By

J |

RT i (X) ———— RDyui(X/Bjy)

where the left vertical map is induced by the inclusion By — IB%(J{R, and the right vertical map is
induced by the morphism (5.4) constructed in Lemma 5.10.



RATIONAL p-ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES 59

To show Proposition 5.11, we will prove Theorem 5.9 going over the same steps as in the proof
of Theorem 4.3. We begin with the first step, corresponding to Lemma 4.9.

Lemma 5.12. In the setting of Notation 4.4, for any integer m > 1, we have a B:{Rm-lmear
quasi-isomorphism

L pt ~ ~
KOSAinf(R)(al, . ’8d)®AindeR & — KOSB(TR/Sm(R) (81, ooy 0q) — Ly KOS(]B(;LR/Film)(Rw)(Vl_L ceyya—1)
compatible with the quasi-isomorphism (4.12).
Proof. Since p and t differ by a unit in B:{R/Sm, as in the proof of Lemma 4.9 we can reduce to
showing that the element pu kills Hzond(F,Ainf(Roo)n_int ® Asne B(;FR/ﬁm) for all 7 € Z. Let Ny =

At (Roo)™ 1. We proceed by induction on m > 1. Since ¢ is a non-zero-divisor in Ajt(Reo) O Noo,
we have the following exact sequence

0— Noo ®4., C(m) = Noo ®4 B(;FR emtl & Ny ® A B:{R/ﬁm — 0

which allows us to reduce to the case m = 1. Then, it suffices to show that the element ¢, — 1

inf inf

kills Héond(f‘,@Jr(Roo)n'im) for all ¢ € Z, which follows from [Schl3a, Lemma 5.5] (and [Bos21,
Proposition B.3|). O

The following byproduct of Lemma 5.12 will be useful later on.

Corollary 5.13. In the setting of Notation 4.4, for any i > 0, we have a B;R-linear quast-
1somorphism

é~max(i—0,0)Q;S(J{R = Ryl RPBIR (X) <55)

(R)

where °

B:er(R) = KOSBCTR(R) (81’ te ’8(1).

Proof. The statement follows combining Lemma 4.8, Lemma 5.12, and Lemma 2.41. In fact, by
induction on i > 0, we can reduce to showing (5.5) on graded pieces. (|

As done in §4.1.3, in order to construct a functorial isomorphism, we need to introduce more
general coordinates. For this, we resume here the setting of [CK19, §6.3].%*

Notation 5.14.
e Let X = Spa(A, A°) an affinoid space over Spa(C, O¢) that is the base change to Spa(C, O¢)
va an affinoid space Xo = Spa(Ao, Aj) defined over Spa(L, Op,), for some finite subextension
F C L C C, and admitting an étale Spa(L, O )-morphism
Xo — Spa(L(Ty, ..., Tp, TEY, .. .. TN (To -+ T—p), O (To, ..., T, T2, TEY /(To - - Tr—p?))
for some 0 <r < d, and q € Qxg.
Assume, in addition, that there are finite subsets Uy C (A§)* and ¢ C A§ N Aj such
that the L-linear map
L<(X$1)ue\llov (Xa)a650> - AO: Xur—u, Xq—a, (5'6)
is surjective. In particular, there are finite subsets ¥ C (A°)* and Z C A° N A* such that
the C-linear map

C<(X1:Ltl)u6\117 (Xll)a65> - Aa Xy — u, Xo — a, (57)

44\We warn the reader that our notation slightly differs from loc. cit..
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is surjective.*’

e We consider the affinoid perfectoid cover
C{(X uew, (Xa)aez) = CUXFP ucw, (X377 )aez) (5.8)
with Galois group
~ | TLE
Pz = oz Zo(1) 2 2y .
We denote by (7V4)ucwuz the canonical generators of I'y =.

The base change of (5.8) along the surjection (5.7) gives the following affinoid perfectoid
pro-étale cover of X

Xy 2,00 = Spa(Ay = 00, AY

)— X

75700
with Galois group I'y =.
e Given M any pro-étale period sheaf of §2.3.1, we set

M(AF = o) = M(Xy 5 00)
and we regard it as a condensed ring.

Remark 5.15. As observed in [CK19, §6.2 and §6.3|, for any smooth rigid-analytic variety X over
C, the affinoid spaces Spa(A, A°) of Notation 5.14 form an basis for the analytic topology of X.

The following result should be regarded as the analogue of Lemma 4.14 over B;‘R.

Lemma 5.16. In the setting of Notation 5.1/, we have a filtered quasi-isomorphism

Rrinf(X/B;fR) = Q.D\I/,E(A)/BIR = KOSD\I,YE(A) ((8u)u€\117 (aa)aeE) (59)
where Dy =(A) = @m>1 Dy = m(A), and, for each m > 1, Dy z=.,(A) is the B(TR/Em-algebm
representing the envelope of

Spa(A) — Spa(Bp /€™ (Xy ' uew, (Xa)acz)) over Spa(C) < Spa(Bg/E™). (5.10)
Here, 0, := ﬁ()(u) =X, % for a € WUZE, and the right-hand side of (5.9) in endowed with
the infinitesimal filtration, defined on the i-th level, for i > 0, as follows:
1% () . ymax(i—e,0) e
Fll QD‘II,E(A)/B;—R = J D\I/,E(A)/BIR (511)
where J :=1im Jy, with Jy, the ideal corresponding to the closed immersion (5.10).
Proof. The statement follows from [Guo21, Theorem 4.1.1, Theorem 7.2.3]. O

Keeping the notation of the above lemma, we state the following result.

Lemma 5.17. In the setting of Notation 5.1/, for any sufficiently large ¥ and =, we have an
isomorphism in D(Mod?&d)
dR n
. ~ O® [ ]
QD\II,E(A)/BIR _QAO/K ®L BdR (512)
compatible with filtrations, where the left-hand side is endowed with the infinitesimal filtration (5.11),
and the right-hand side is endowed with the tensor product filtration.

45The descent (5.6) of (5.7) to L is needed in [CK19, Lemma 6.3.8], which we will use in Lemma 5.17 below.
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Proof. We consider the BIR—algebra ODy =(A) defined as the completion of
(Ao ®F Bi) ®% Dyz(A) — Ag

Bin
along its kernel. Then, we have the following natural
Dyz(A) — ODy =(A) — Ay @7 By (5.13)

and, denoting by Q:QD Bt the de Rham complex associated to ODy =(A) over B:{R, we
dR

v,=(4)/
consider the natural maps of complexes

2

. +
v,=(A)/Biy - QOD\I’,E(A)/B(TR - QAO/K 1 Big- (5.14)
We claim that the zigzag (5.14) is a filtered quasi-isomorphism. As in [BMS18, Lemma 13.13], it
suffices to check that, for sufficiently large ¥ and =, we have
Dy =(A) = (A @] Bip) [(Xu = Wucimp(n...2]s ODwz(A) = (A @F Bip) [(Xu —Wucwiz]-

The first isomorphism follows from [CK19, Lemma 6.3.8], observing that the completed tensor
product of Tate L-algebras, appearing in loc. cit., agrees with the solid tensor product ®7. The
second isomorphism follows from the first one, using that the completion of Ay ®7 Ag — Ap along
its kernel is isomorphic to Ao[(u ® 1 — 1 ® u)yeqry,..13]- O

We proceed by constructing in coordinates a natural map from the log-crystalline cohomology
over Agis to the infinitesimal cohomology over BIR, with an eye to the compatibility between (4.2)
and (5.3) that we want to prove. For this, we first need to relate the setting of Notation 4.12 to the
one of Notation 5.14.

Notation 5.18. In the setting of Notation 4.12, we put Spa(4, A°) = X := X¢, and
V= {tO'}O'EZ U U,\eA{t/\J);Fla s 7t)\,d}7 Hi= U)\eA{t)\,lu e 7t)\,7“>\}-

These choices satisfy the assumptions of Notation 5.14, therefore in the following we can retain the
notation of loc. cit. using such choices.

Lemma 5.19. In the setting of Notation 5.18, there is a natural morphism

Dsn(R)/Acie Dy 2B

which, under the isomorphisms (/.22) and (5.9), is compatible with the morphism (5.]) constructed
m Lemma 5.10.

Proof. We need to construct, in the setting of Notation 5.18, for each integer m > 1, a natural map
Dy a(R) = Dyzm(A) (5.15)

compatible with the natural maps to A.*° By [CK19, §6.5], there exist a p-adically complete ring
of definition Dy = ,,(A)o of Dy = m(A), and a commutative diagram of log rings as follows

(AR s.A @A Acris/P" Mg 5 4) — (R/p, MR)

| |

(D‘I’H (A)O/pnvN)a — (R/p7MR)'

91—

46This is done in [CK19, §6.5], which we rephrase here in a slightly different way, proceeding as in the proof of
Lemma 4.17.
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Here, R/p is equipped with the pullback of the canonical log structure Mpr on R, and the ring
AE]f,E7 A @4, Acris/p" is endowed with the pullback of the log structure Mgf& A On AEHC& A- More-
over, Dy = m(A)o/p" is equipped with the pullback of the log structure on Dy = ,,(A)o associated to
the following pre-log structure: as in Lemma 4.17, we set N := (hgp)_l(MiEﬁE, A) Where h&P denotes
the morphism of groups associated to the natural morphism of monoids A : MiEf,E, A — Mg; the
argument of [CK19, §6.5] shows that the natural map MELE’A — Dy = m(A)o uniquely extends to
amap N — Dy =zm(A)o. The resulting surjective map of log rings at the bottom of the diagram
(4.32) is exact by construction, hence, the universal property of the log PD envelope Dy, A (R)/p"
gives the desired natural map Dy A(R)/p"™ — Dw,zm(A)o/p". Since both Dy =, (A)o and Ds; a(R)
are p-adically complete (for the latter, recall [CK19, Lemma 5.29]), we obtain a map (5.15) as
desired. g

We can finally prove the main results of this section.

Proof of Theorem 5.9. The argument of will be analogous to the one in the proof of Theorem 4.3,
in order to prove the compatibility stated in Proposition 5.11.

As both the B:R—cohomology, together with its filtration decalée, and the infinitesimal coho-
mology over BIR, together with its Hodge filtration, satisfy éh-hyperdescent (for the infinitesimal
cohomology, see Lemma 5.6 and Definition 5.7), it suffices to prove the statement éh-locally on X
in a functorial way. Thus, by Proposition 3.10, we can place ourselves in the setting of Notation
5.18, with sufficiently large ¥ and =.

Fix m > 1. As in Lemma 4.8, we have a quasi-isomorphism

Next, we claim that we have a commutative diagram as follows, whose arrows are natural quasi-
isomorphisms

Kosa,,.,(r), ((Oni)1<i<a) @48, Bip/&™ — mKosgt /pumy(r, ) (a7 — Di<i<a)

l l (5.17)

KOSD\I,YE,M(A) ((au)uellluE) — KOS(BIR,/ Fﬂm)(A;Em)((’Yu - 1)uE\IILIE)-

(i) The right vertical map of (5.17) is a quasi-isomorphism since, by Lemma 4.8, both the target
and the source are quasi-isomorphic to the complex RT(X¢, L Rv. (B /Fil™)).

(ii) The top horizontal arrow of (5.17) is the quasi-isomorphism obtained combining Lemma 5.12
with (4.37).

(iii) The left vertical map of (5.17) is induced by the one constructed in Lemma 5.19. We observe
that both the target and the source of this map are derived &-adically complete.’” Then, by
the derived Nakayama lemma, it suffices to show that such a map is a quasi-isomorphism
for m = 1. In this case, both the target and the source compute the de Rham cohomology
RT4r(X¢). The former follows reducing the quasi-isomorphism (5.12) mod &. For the latter,
we observe that (for m = 1) by [CK19, Proposition 5.13|, and Proposition A.3, the source

47For the latter, one can use for example the quasi-isomorphism of part (ii) combined with [BS15, Proposition
3.4.4, Lemma 3.4.14].
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~L
computes (chris(:{(’)c/p/ACXris)@A
quasi-isomorphism
~L ~ ~
(RTeris(X0g /p/ Adris)® A Oc)g, — Rlogar(X)g, — RTar(Xc).

(iv) To construct the bottom horizontal arrow of (5.17), we first note that, similarly to (4.39), we
have a quasi-isomorphism

.Oc)q,, and by [Beil3, (1.11.1) and (1.8.1)] we have a

Cris

cris

Kospy, = () (Bu)uewiz) = me Kospy, - 4y (7w — Duewiz) - (5.18)
Next, we define a natural I'y =-equivariant B;fR " -linear map
Dy zm(A) — (Bip/Fil™)(Aj = ) (5.19)
via sending X, to [(u,u'/?,...)], which induces a morphism
Kospy = ,(4) (u = Duewnz) = neKosgr spimyag . (= Duew). (5.20)

Then, we define the bottom horizontal arrow of (5.17) as the composite of (5.18) and (5.20).
The so constructed map makes the diagram (5.17) commute and, by the previous points, it is
a quasi-isomorphism.

Now, taking the filtered colimit lim gz over all sufficiently large ¥ and Z, of the constructed
bottom horizontal quasi-isomorphism of (5.17), and then passing to the limit R@m, using the
quasi-isomorphism (5.16) combined with Lemma 2.41, and recalling Lemma 5.16, we obtain the
desired quasi-isomorphism: such morphism is functorial since taking instead the filtered colimit of
lim g over all sufficiently large ¥ (and = = (}), of the bottom horizontal quasi-isomorphism of (5.17),
we obtain the same morphism. This finishes the proof of (5.3).

For the compatibility with filtrations part, we need to use in addition the compatibility with
filtration stated in Lemma 5.16, Lemma 5.17, and Corollary 5.13. O

Proof of Proposition 5.11. By the proof of Theorem 5.9 above, we can reduce to checking the com-
mutativity of the following diagram

DA;; (R) — Acris(RZ‘,A,oo)

J |

Dy zm(A) — (le_R/ Film)(A$,E,oo)

where the top horizontal arrow is (4.31), the left vertical arrow is (5.15), the bottom horizontal arrow
is (5.19), and the right vertical arrow is induced by the composition Ayjs <— BC]LR —» BCTR /Fil™. In

turn, we can reduce to verifying the commutativity of the following diagram

AQpsna — Ai(Rs A 00)

l !

Ainf((Xqitl)uE‘Ily (Xa)a€E> — Ainf(A—\};

,:,co)'

This is clear as both the composition maps from A, ¢ \ to Aje(A§ = ) send X to [(X, Xfl/p, IR
for any 7 € XU{(A\, i) : A e A, 1 <i <d}. O
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Proof of Proposition 5.8. We may assume X qcqs. We want to show that, given ¢ > 0, for any
éh-hypercover Y, — X of qcgs smooth rigid-analytic varieties over C', the natural map

Fill ¢ Rt (X/Blg) — [l%mA Fill ¢ RTint(Yn/BiR) (5.21)
nje

is an isomorphism. For this, we observe that, by the proof of Theorem 5.9 (recalling Remark 5.15),

for smooth rigid-analytic varieties over C' the infinitesimal filtration on the infinitesimal cohomology

over B;{R naturally identifies with the filtration decalée on the B:{R—Cohomology, and the latter

satisfies éh-hyperdescent. O

Before proving Theorem 5.3, we state and prove a version of the latter for rigid-analytic varieties
defined over C.
Theorem 5.20. Let X be a connected, paracompact, rigid-analytic variety defined over C.

(i) (Hyodo-Kato isomorphism over Bi;) We have a natural isomorphism in D(Modsé’ljd)
dR

RTyk(X) ®%" B, — RLine(X/BJR). (5.22)

(11) (Compatibility) The isomorphism (5.1) of Theorem 5.1 is compatible with the isomorphism
(4.1) of Theorem /.1, i.e. we have a commutative diagram as follows

RIp(X) —— (RIuk(X) @ Biog) V="

J |

RT . (X) ——— Rlins(X/BR)

where the left vertical map is induced by the inclusion B — IB%IR, and the right vertical map is

induced by (5.22).
Proof. For part (i), as in the proof of Theorem 3.15(iii), we can reduce to showing the statement
locally for X the generic fiber of X € Mg qcqs- For this, by Theorem 3.2, which applies thanks to
Remark 3.9, we have a natural morphism in D(Modsgkd)

dR

Reris(X0,./p/ Op), ©F" Bl = Bleris(X00 /p/Adkis) @48, Bir — BTt (X/Bgr)  (5.23)
which is an isomorphism modulo . Here, the right arrow of (5.23) is the one induced by (5.4).
Since both the source and the target of (5.23) are derived £-adically complete, we conclude, by the
derived Nakayama lemma, that (5.23) is an isomorphism, as desired.

Now, part (ii) is clear from Proposition 5.11 and the construction of (5.22) in part (i). O

We are ready to prove Theorem 5.3.
Proof of Theorem 5.5. For part (i), we first observe that we have a natural isomorphism
RUint(Xco/Bin) ~ RT4r(X) @%* Bl (5.24)

For this, with an eye to the compatibility of part (ii), by the same ingredients used in the proof
of Theorem 5.1, we can reduce to showing (5.24) éh-locally, using Lemma 5.16 and Lemma 5.17.
Then, part (i) follows from Theorem 5.20(i)*® combined with the isomorphism (5.24).

48T avoid confusion, we warn the reader that in Theorem 5.3 the rigid-analytic variety X is defined over K,
instead in Theorem 5.20 the rigid-analytic variety X is defined over C.
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For part (ii), by Theorem 5.20(ii), we are reduced to showing the compatibility between (5.1) and
(5.3), under the isomorphism (5.24). For this, in the setting of Notation 4.4, one readily reduces to
check the commutativity of the following diagram

Dy=(A) ———— ODyz(A) +—— Ay &% Bix

Y=’

| l | o

BIR(A&;,E,OO) —— OBJR(AY = ) «— Ao ®% By

U = 00

Here, the top row is the zigzag (5.13) of Lemma 5.17, and the bottom row, coming from Scholze’s
Poincaré lemma, is constructed, in the condensed setting, in [Bos21, Corollary 6.12].
O

6. SYNTOMIC FARGUES—FONTAINE COHOMOLOGY

In this section, we define a cohomology theory for rigid-analytic varieties over C, called syntomic
Fargues—Fontaine cohomology, which is close in spirit to Bhatt—Morrow—Scholze’s syntomic coho-
mology theory for smooth p-adic formal schemes over O¢. In a stable range, we compare it with the
rational p-adic pro-étale cohomology. Our definition is global in nature, it doesn’t require neither
the existence of nice formal models, nor smoothness, and it extends to coefficients. Moreover, it has
a close relationship with the Fargues—Fontaine curve, as we show in §6.2.

Definition 6.1. Let X be a rigid-analytic variety over C. Let ¢ > 0 be an integer. We define the
syntomic Fargues—Fontaine cohomology of X with coefficients in Q,(i) as the complex of D(Mod‘f@)pnd)
given by the fiber

Ry pp(X, Qy(i)) == Fill RT 5(X)#=*" = fib(Fil' RT5(X) £ Fil’ RT3 (X))

where RI'p(X) is endowed with the filtration décalée from Definition 2.9.

6.1. The comparison with the p-adic pro-étale cohomology. The announced comparison
between the syntomic Fargues—Fontaine cohomology and the p-adic pro-étale cohomology will rely
on the following result.

Lemma 6.2. Let X an analytic adic space over Spa(C,O¢). Let i > 0 be an integer. We have the
following exact sequence of sheaves on Xprogt

0— Qi) - Fil' B2 "L Fil'B — 0 (6.1)

where Fil' B = t'B.

Proof. The statement follows from the combination of (2.1) and (2.2) for i = 0, recalling that

p(t) =p't. O
Now, let X be a rigid-analytic variety over C. Via the exact sequence (6.1) of sheaves on the

pro-étale site X|;o¢y we have a natural morphism

RUsyn pr (X, Qp(z)) — RD'proct (X, @p(z)) (6.2)

where we are implicitly using v-descent, Proposition 2.37.

Theorem 6.3. Let X be a rigid-analytic variety over C. Let i > 0 be an integer.
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(i) The truncation 7<% of (6.2) is an isomorphism in D(Moda)pnd), i.e. we have

7= Rl ynpr (X, Qp(4)) — 75" Rl proe(X, Qp(1)).
(1) We have a natural isomorphism in D(Modfd)pnd)
RT gy pr (X, Qp(i)) ~ ﬁb(RFB(X)‘P:pi — RFB:R(X)/Fili).
Proof. For part (i), recalling Definition 2.9, we have a natural isomorphism
rSUFil Ly RoB = 75" Ra, Fil' B
which, taking cohomology, induces
7SUFil' R0p(X) 5 75'RT, (X, Fil' B).

Then, the statement follows from the exact sequence (6.1).
For part (ii), considering the natural map of fiber sequences

RTgyn rr(X,Qp(i)) — Fil' RT5(X) o gy RI'p(X)
l J J (6.3)
RUp(X)#?=" — 5 RT(X) —2_=1, Rrp(X)
we deduce that it suffices to construct a natural map
RT e (X)/ Fil' — fib(RT5(X)/ Fil’ w71 pr B(X)/ Fil%) (6.4)

and show that it is an isomorphism. Endowing the source, resp. the target, of (6.4) with its natural
(finite) filtration, induced by the filtration decalée on RI' 5+ (X), resp. RI'p(X), we see that we
dR

can reduce to showing that, for 0 < j < 4, there is a natural map
gr Ly Ra.Bly — fib(gr’ L, Ro, B el gr! L Ro,B)

that is an isomorphism, or equivalently, applying Proposition 2.7(ii), that there is a natural map

759 Rav, gr’ IBS(';R — ﬁb(’i‘SjRa* gr’ B Li_1> S Rav, gr! B) (6.5)

that is an isomorphism. For this, combining the exact sequences of sheaves (2.1), (2.2), and (6.1),
we have the following exact sequence of sheaves on X4t

0 — B,/ Fil' Bj, — B/Fil' B 2L B/Fil'B — 0 (6.6)

where Fil' B}, = t/BJ; and Fil' B = t'B. Then, observing that (6.6) is compatible with filtrations,
we have, for 0 < j < 4, the following exact sequence of sheaves on X0t
0 — gr’ Bi; — gr’ B kAt N gr’ B — 0. (6.7)

Now, the exact sequence (6.7) induces a natural map (6.5) as desired, that we want to prove to be an
isomorphism. Thus, we want to show that the map op™ —1: R/ a, gr! B — R/ a, g1’ B is surjective,
or equivalently that the map R/*'a, gr/ B, — R/, g1/ B, induced by (6.7), is injective: up to
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twisting, it suffices to observe that, for j = 0, the left map in (6.7) is given by the inclusion in the
direct product (recall (2.13))

gr? Big — gr’B = H Bis/ tordy (t)IB;fR
YE[YFr|

corresponding to the classical point V (¢) € |Ygp|l. This concludes the proof of part (ii).
O

6.2. Fargues—Fontaine cohomology and nuclear complexes on the curve. In this subsec-
tion, we first reinterpret the main comparison theorems proved in the previous sections in terms of
the Fargues—Fontaine curve (Theorem 6.17): such results were conjectured by Le Bras, and proven
by him in some special cases, cf. [LB18b, Remark 1.2, Conjecture 6.3|, and are related to work of
Le Bras—Vezzani, [LBV21]. Then, in Theorem 6.19, we naturally attach to any qcgs rigid-analytic
variety over C' a quasi-coherent complex on the Fargues—Fontaine curve FF, whose cohomology is
the syntomic Fargues—Fontaine cohomology (Definition 6.1); we conclude by showing that in the
proper case such complex is perfect.

6.2.1. Quasi-coherent, nuclear, and perfect complexes on FF. We will rely on results of
Clausen—Scholze, [CS20al, [CS], and Andreychev, [And21], to talk about quasi-coherent, nuclear,
and perfect complexes on the adic Fargues—Fontaine curve FF.

Let us start by recalling some notations from §A.3.

Notation 6.4. Given a condensed ring R, we denote by Perfr C D(Mod%ﬁmd) the oco-subcategory
of perfect complexes over R, [And21, Definition 5.1].

Given a pair (A, AT) with A a complete Huber ring and A" a subring of A°, we denote by
(A, AT)q the associated analytic ring, [And21, §3.3]. We write D((A, A" )a) for the derived oo-
category of (A, A™)a-complete complexes, and Nuc((A4, A*)a) for the oo-subcategory of nuclear
complexes. Note that, in the case AT = Z, we have D((A,Z)a) = D(Mod3"?) in the notation of
§1.7.

Given Y an analytic adic space, we denote by QCoh(Y") the oo-category of quasi-coherent com-
plexes on Y, we write Nuc(Y') for the oo-subcategory of nuclear complexes on Y, and Perf(Y') for
the oo-category of perfect complexes on Y, §A.3.

The following construction will be used to define a lift of the B-cohomology theory to a cohomol-
ogy theory with values in the co-category of quasi-coherent complexes on the adic Fargues—Fontaine
curve FF = Ypr /¢?, called Fargues—Fontaine cohomology.

Construction 6.5. We write

Yrr = U Yrr, 1
1C(0,00)

with Ygp,; = Spa(Br, Bf) for varying I C (0,00) compact intervals with rational endpoints.
By [And21, Theorem 3.27], we have natural maps of analytic rings

(Br,Z)a — (BI’B;F)I
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for varying I C (0,00) compact intervals with rational endpoints. Such maps induce base change
functors

o ®%BI,Z)I (BI’ B?)l : D((B[, Z)l) - D((B[, B;r).)
and then, by analytic descent for quasi-coherent complexes, Theorem A.20, they induce a functor

COAd(SOth) = Icl(lénoo) D((B[, Z).) —_— Icl(l(r)noo) QCOh(YFF’I) = QCOh(YFF) (68)

with source the co-category of coadmissible solid modules over B,* and target the co-category of
quasi-coherent complexes on Ygp.

In order to move to the study of quasi-coherent complexes on the Fargues—Fontaine curve, we
need to make the following definitions.

Definition 6.6. We define the co-category of quasi-coherent p-complexes over Ypr as the equalizer

QCoh(Yir)? := eq(QCoh(Yer) “’ﬁd QCoh(Yir))

that is the oo-category of the pairs (€, pg), where £ is a quasi-coherent complex on Ygp, and
g *€ ~ &£ is an isomorphism.

We define Nuc(Yrp)? (resp. Perf(Ygp)?®) as the full co-subcategory of QCoh(Ygr)? spanned by
the pairs (€, p¢), with € a nuclear (resp. perfect) complex on Ygp.

Definition 6.7. We define the co-category of coadmissible solid p-modules over B as the equalizer
CoAd(Solidp)¥ := eq(CoAd(Solidp) %ﬁd CoAd(Solidp))

that is the oo-category of the pairs (M, @), where M is a coadmissible solid module over B, and
OmMm "M >~ M is an isomorphism.

We define CoAd(Nucp)? (resp. CoAd(Perfp)?¥) the oco-category of coadmissible nuclear (resp.
perfect) p-modules over B as the full oco-subcategory of CoAd(Solidp)? spanned by the pairs
(M, prm) with M in lim;c (g o0) Nuc((Br, Z)a) (resp. in lim;c(g ) Perfp, ).

Now, recalling that the action of ¢ on Ygrp is free and totally discontinuous, [F'S21, Proposition
I1.1.16], it follows formally from the analytic descent for quasi-coherent complexes, Theorem A.20,
that we have an equivalence of oo-categories

QCOh(YFF)W =~ QCOh(YFF/(pZ). (69)
Thus, from (6.8) we obtain a functor
gFF(_) : COAd(SOth)SO — QCOh(FF) (6.10)

with target the co-category of quasi-coherent complexes on the Fargues—Fontaine curve.

Next, we focus on nuclear and perfect complexes on FF. We invite the reader to compare the
following result with [FF14, Theorem 7.18].

Proposition 6.8 (Nuclear complexes on the curve as coadmissible p-modules over B).

The terminology adopted here comes from [ST03, §3].



RATIONAL p-ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES 69

(i) The functor Epp(—), defined in (6.10), induces an equivalence of co-categories

CoAd(Nucg)? — Nuc(FF) (6.11)
which restricts to an equivalence of oco-categories
CoAd(Perfp)? — Perf(FF). (6.12)

(ii) Given & € Nuc(FF), let (M;(€))rc(0,00), %) be the coadmissible nuclear p-module over B
corresponding to £ via the equivalence (6.11). Let M(E) := Rlimc(,00) M1(E). Then, there
is a natural identification in D(Moda);id)

RT(FF, ) = fib(M(£) 25 M(€)).

Proof. For part (i), we first observe that, for any compact interval I C (0, ) 1th rational end-

points, the base change functor — ®I(B,,Z). (Br, B} )a : D((Br,Z)a) — D((Br, B} )a) induces an

1 . |4
equivalence of co-categories”

Nuc((By,Z)a) — Nuc((Br, Bf )u). (6.13)

In fact, by Theorem A.17(ii), Nuc((Br,Z)a) is generated, under shifts and colimits, by the objects
Hom(Z[S], Br), for varying S profinite sets; then, as, thanks to Corollary A.12, nuclearity is pre-
served under base change, by Proposition A.15 we deduce that such objects also generate, under
shifts and colimits, Nuc((By, Bf )u). Then, we have an equivalence of co-categories

CoAd(Nucg)? — Nuc(Yrp)?. (6.14)
Now, by analytic descent for nuclear complexes, Theorem A.21, we have
Nuc(Yep)? ~ Nuc(Yep/?) (6.15)

which combined with (6.14) implies the equivalence (6.11). Such equivalence restricts to (6.12) by
analytic descent for perfect complexes, Theorem A.23.

Part (ii) follows from part (i), as we now explain. In fact, for any & € QCoh(FF), using the
equivalence (6.9), we have the following identification

RI(FF, &) = Homgconrr) (O, €)

-1
= fib(Homqcon(vip) (O: €|vir) —— Homqcon(ver) (O Elvir))
-1
where
RF(YFF, 5|YFF) = R hmIC(O,oo) HomQCOh(YFF,[) (0, 6|YFF,I)'
Now, assuming £ € Nuc(FF) as in the statement, thanks to the equivalence (6.13), we have
Homqcoh(ver 1) (Os Elver ;) = Homnuevep. 1) (Os Elvig ;) = Homnue((B;,2)) (B, M1(€)) = Mi(E).

Hence, the statement follows, observing that all the oco-categories appearing above are naturally
enriched over D(Modeﬁild). O

Perfect complexes on FF are well-understood. Let us recall the following characterization due to
Anschiitz—Le Bras.

50Such equivalence follows from Theorem A.22, however we give here a self-contained proof.
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Proposition 6.9 (JALB21, Proposition 2.6]). Each £ € Perf(FF) is quasi-isomorphic to bounded
complex of vector bundles on FF.

In addition, perfect complexes on FF are closely related to Banach—Colmez spaces, as we now
recall.

Definition 6.10 (|[LB18a, Définition 2.11]). The category BC of Banach—Colmez spaces over C
(for short, BC spaces) is the smallest abelian subcategory of sheaves of Q,-modules on the v-site

Spa(C, O¢), stable under extensions and containing the v-sheaves Q, and (Aé)o.

In the following, we denote by
7 : FF, — Spa(C, O¢),
the natural morphism of v-sites, sending an affinoid perfectoid S € Spa(C,O¢), to the relative
Fargues—Fontaine curve FFg € FF,,.

Proposition 6.11 (JALB21, Corollary 3.10, Remark 3.12|). We have an equivalence of categories
R7, : Perf(FF) = D®(BC) (6.16)

where the right-hand side denotes the bounded derived category of Banach—Colmez spaces over C.

6.2.2. Fargues—Fontaine cohomology. We are almost ready to define the Fargues—Fontaine co-

homology together with its filtration. First, in order to prove [LB18b, Conjecture 6.3]|, we want to
extend the definition of the B-cohomology to dagger varieties over C.

In the following, we abbreviate D(B) = D(Mod$™?).
Definition 6.12 (B-cohomology of dagger varieties). Let X be a dagger variety over C. Denote
Fp € Shv™P(Rigg ¢, D(B))
the hypersheaf defined by the B-cohomology RI'p(—). Via Construction 3.18, we define
RT(X) := RU(X, FL) € D(B)

and we endow it with the filtration induced by the filtration décalée on the B-cohomology of
rigid-analytic varieties over C'. We give analogous definitions replacing the B-cohomology with the
Br-cohomology, for varying I C (0,00) compact intervals with rational endpoints.

Remark 6.13 (Comparison with the Hyodo-Kato cohomology in the dagger case). We note that the
main comparison theorems proved in §4 for the B-cohomology (and the Bj-cohomology) of rigid-
analytic varieties extend to the dagger case, thanks to the properties of the solid tensor product.
In particular, a version of Theorem 4.1 holds true for X a qcgs dagger variety over C: in fact, by
the proof of loc. cit. we can reduce to the case X is a smooth dagger affinoid over C', which follows
from the statement of loc. cit. using Lemma 3.24 (which applies thanks to Proposition 2.42(i)) and
the fact that the solid tensor product commutes with filtered colimits.

In order to define the Fargues—Fontaine cohomology, we will apply the functor (6.10) in the
following situation.

Lemma 6.14 (Coadmissibility of B-cohomology). Let X be a qcgs rigid-analytic/dagger variety
over C. Let i > 0. The pair

((Fil’ RT3, (X)) 1c (0,00)> @) (6.17)
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defines a coadmissible nuclear @-module over B. Here, the complezes RI'g,(X), for I C (0,00)
compact intervals with rational endpoints, are endowed with the filtration décalée (Definition 2.9).

Proof. First, we recall that ¢(t) = pt, and p is invertible in B;. Next, let us assume i = 0. To show
that the pair (6.17) is a coadmissible solid ¢p-module over B, we need to check that

RT,(X) @5 Br =~ RT'p,(X) (6.18)

for any I C J C (0,00) compact intervals with rational endpoints: this follows for example from
Theorem 4.1 (and Remark 6.13).%!

In order to prove the nuclearity of (6.17) for ¢ = 0, we can use again Theorem 4.1, Theorem
3.15(ii), and the fact that nuclearity is preserved under base change, Corollary A.12. Alterna-
tively, and more directly, the nuclearity can be checked as follows. By Theorem A.17(i) and éh-
hyperdescent, we can reduce to the case when X is a smooth affinoid rigid space over C. Then,
by Proposition 2.42, and the fact that nuclearity can be checked on cohomology groups thanks to
Theorem A.17(iii), using [BMS18, Lemma 6.4] we can reduce to the assertion that each complex of
solid Br-modules RI',0¢t (X, Br) is nuclear, which was shown in Lemma 6.15.

It remains to show that the isomorphism (6.18) is compatible with the filtration décalée, and to
prove the nuclearity of the filtered pieces. Proceeding by induction on i > 0, we can check this on
graded pieces using Proposition 2.7(ii), again with the help of Theorem A.17, Proposition 2.42, and
Lemma 6.15 for the nuclearity. g

The following lemma on the nuclearity of the cohomology of the rational pro-étale period sheaves
was used above.

Lemma 6.15. Let X be a gcgs analytic adic space over Spa(C,O¢). Let I C (0,00) be a compact
interval with rational endpoints, and let m > 1 be an integer. Given B € {Br, Bl /Fil™} we write
B = Bgpa(0) for the corresponding condensed period ring. Then, we have

RT 106t (X, B) € Nuc((#,Z)a).

Proof. Picking a simplicial proét-hypercover U, — X such that all U,, are affinoid perfectoid spaces
over Spa(C,O¢), by proét-hyperdescent and Theorem A.17(i) (applied to the Banach Qp-algebra
), it suffices to check that for any affinoid perfectoid space U over Spa(C,O¢) we have that
RT 506t (U, B) € Nuc((#,Z)a). We note that, by [Bos21, Proposition 4.7] and [Bos21, Corollary
4.9], we have RI'p106t (U, B) = B(U)[0] concentrated in degree 0 (as it can be checked on on S-valued
points, for any x-small extremally disconnected set S). Thus, by Remark A.18, we are reduced to
prove that B(U)[0] € Nuc((Qp,Z)a), which follows [Bos21, Corollary A.50] observing that B(U) is
a Qp-Banach space. O

proét

Finally, we can give the following definition.

Definition 6.16. Let X be a qcqs rigid-analytic/dagger variety over C. We define the Fargues—
Fontaine cohomology of X, denoted

Hrr(X) € QCoh(FF)

as the quasi-coherent complex on the Fargues—Fontaine curve FF,| endowed with filtration Fil* Hpp(X),
associated, via the functor &pp(—) defined in (6.10), to the filtered coadmissible solid p-module over
B given by (6.17). For i € Z, we denote by Hpp(X) its i-th cohomology group.

51Trivializing the monodromy action.



72 GUIDO BOSCO

Using Definition 6.16 we can now reformulate, in terms of the Fargues—Fontaine curve, the com-
parison theorems proven in the previous sections.

Theorem 6.17 (cf. [LB18b, Conjecture 6.3]). Let X be a qcgs dagger variety over C. Let i > 0.

(i) The quasi-coherent complex Hpp(X) on FF is perfect, and its cohomology groups are vector
bundles on FF. We have a natural isomorphism

Fr(X) = E(Hjk (X)) (6.19)

where E(Hiy (X)) is the vector bundle on FF associated to the finite (p, N)-module Hiy (X)

over F'. If X is the base change to C' of a rigid-analytic variety defined over K, then (6.19) is
G -equivariant.
(i) The completion at oo of (0.19) gives a natural isomorphism

ir(X)% = Hiy(X/B{g) (6.20)

inf
where RUing(X/BJ) is defined, via Construction 3.18, from Definition 5..
Proof. Part (i) follows from Theorem 4.1 (combined with Remark 6.13), Theorem 3.30(i) and Lemma

7.6. Part (ii) follows from Theorem 5.20 (which extends to the dagger case similarly to Remark
6.13). 0

Remark 6.18. Let X be a qcgs dagger variety over C' and let i > 0. Recalling that the functor from
finite ¢-modules over F to vector bundles on FF induces a bijection on isomorphism classes, [FS21,
Theorem 11.0.3], we deduce from Theorem 6.17(i) that the vector bundle Hip(X) determines, up
to isomorphisms, the ¢-module structure on Higy (X).

Using Theorem 6.17(i), we can also recover from Hip(X) the (¢, N)-module structure on Higy (X),
up to isomorphisms: in fact, denoting ¥ = Gal(C/F), by [FF18, Proposition 10.3.20(2)] we have

a natural isomorphism of (¢, N)-modules over F

Hipc (X) = (HO(FF \{oo}, Hyp (X)) ®B, Biog[1/1]) "
observing that, since (6.19) is an isomorphism of %F—equivariant vector bundles on FF, we have a
% s-equivariant isomorphism HO(FF \{oo}, Hgp(X)) = (Hijk (X) @ 5 Biog[1/t])#=1V=0.

Next, we state the main result of this subsection.

Theorem 6.19. Let X be a qcgs rigid-analytic/dagger variety over C. Let i > 0. Consider the
quasi-coherent complexr on FF defined by

Heyn (X) (1) := Fil' Hpp(X) @ O(i).
We have
RI(FF, Hoyn (X)(4)) = Rl gyn pr (X, Qp(1)). (6.21)

If X is a proper rigid-analytic variety over C, the complex Heyn(X)(i) is perfect, in particular the
complexr RIsyn pr(X,Qp(4)) identifies with the C-points of a bounded complex of Banach—Colmez
spaces.
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Proof. By Proposition 6.8(ii), which applies thanks to Lemma 6.14, we have
RT(FF, Hoyn(X)(i)) = (R (Yiw, Hogn (X) (1) i) = BT (Y, Hoyn(X)(0)]v3p))
= fib(RT (Y, Fil' Hpp(X) |vip ) L N RT(Yer, Fil' Her(X) |vip)
— fib(Fil' RT5(X) 2% Fil' RU (X))

where in the last step we used in addition Lemma 2.41. This shows (6.21).

Next, assume X proper. To show that Heyn(X)(i) is a perfect complex, using the derived
Beauville-Laszlo gluing, Lemma 6.20, we can reduce to showing that, for I C (0,00) a compact
interval with rational endpoints, the complexes RT o4 (X, Br[1/¢]) and Fil* RT B, (X) are perfect.

First, we note that such complexes are bounded thanks to Proposition 2.40. Then, to prove that the

complex RT'pro¢t (X, Br[1/t]) is perfect, we can apply Theorem 4.1 combined with Theorem 3.30(i)

(or, alternatively, [Sch13b, Theorem 3.17]), and for the complex Fil* RT" B} (X)) we use Proposition
R

6.21 below.

Finally, we note that, by Proposition 6.11, the complex RIgy, pr (X, Qp(r)) identifies with the C-
points of a bounded complex of Banach—Colmez spaces, as desired (in fact, with the same notation as
in Proposition 6.11, for £ € Perf(FF), we have R7.(€)(Spa(C, O¢)) = RI'(FF, ), by the v-descent
result [F'S21, Proposition I1.2.1] combined with Proposition 6.9). O

We used the following derived version of the classical Beauville-Laszlo gluing.

Lemma 6.20 (Derived Beauville-Laszlo gluing). Let R be a commutative condensed ring, let f € R
be a non-zero-divisor, and denote by R the f-adic completion of R. We have a natural equivalence
of co-categories

Perfp ~ PerfR[l/f] XPerfﬁ[l/f] Perfﬁ.

Proof. By |Bhal6, Proposition 5.6(2), Example 5.10], we have a natural equivalence of co-categories
Perfp(s) > Perfp/f)(x) XPerf g 1100 Perfﬁ(*) . In order to carry such equivalence into the condensed
setting, we recall that, for any commutative condensed ring A, we define the condensification functor,
[And21, Definition 5.8|, as the composite
DA
Cond 4 : D(Mody(,)) — D(Mod(f()) ——— D(Mod$™).

Then, the statement follows observing that Cond, preserves perfect complexes, and applying
[And21, Lemma 5.10]. O

We also used the following finiteness/degeneration result on the BSFR—cohomology of proper rigid-
analytic varieties over C'. As we will see, part (i) follows from results of Guo, instead part (ii) relies
crucially on a combination of Conrad—Gabber’s spreading out for proper rigid-analytic varieties and
a generic smoothness result recently proved by Bhatt—Hansen, [BH22|, which allow us to reduce the
statement to the case when X is the base change to C' of a proper smooth rigid-analytic variety
over a discretely valued subfield of C.

Proposition 6.21. Let X be a proper rigid-analytic variety over C.
(i) For all i € Z, the cohomology group H;CTR (X) is a finite free module over B(;FR.
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(ii) For alli,r € Z, the natural map
H*'(Fil" RFBIR(X)) — H%;R(X) (6.22)
18 injective. Equivalently, for all i,v € Z, the natural map
fBIR(X) /Fil" — HY(RT B, (X)/Fil")

is an isomorphism, where Fil" H]Z'S,Jr (X) :=im(H'(Fil" RT z+ (X)) — H;SJF (X)).
dR dR dR
Proof. Part (i) follows from [Guo2l, Theorem 1.2.7(vi)] combined with Theorem 5.9. Next, we
prove part (ii) and give at the same time an alternative proof of part (i). We first note that the
equivalence of the two assertions in part (ii) immediately follows considering the long exact sequence
in cohomology associated to the exact triangle

Fil” RT s (X) = RT s (X) = RT s (X)/Fil"

We will use that, by [BMS18, Corollary 13.16], there exists a proper flat morphism f: X — S of
rigid-analytic varieties over a discretely valued subfield L C C such that X is the fibre of f over a
point 7 € S(C); we note that we may assume S = Spa(A, A°) to be a smooth affinoid over L. Then,
the map 7 corresponds to a map A — C of affinoid L-algebras, and, by the (formal) smoothness of
A over L, the latter map lifts to a map A — B;R. Now, we divide the argument in several cases.
(a) In the case S is a point, we have that X is the base change to C' of a proper rigid-analytic

variety X defined over a discretely valued subfield L C C. Then, by Theorem 5.1, we have a
natural filtered quasi-isomorphism

RU4r(X) ®F Bip ~ RT B (X). (6.23)

Here, we used that, as X' is proper, the cohomology groups of RI'gr(X) and its filtered pieces,
are finite-dimensional over L: in fact, by Proposition 2.14, there exists a proper éh-hypercover
Xo — X with each A}, smooth over L; then, by cohomological descent, we can reduce to the case
X is smooth, which follows from [Kie67]. Then, part (i) is clear from the quasi-isomorphism
(6.23), and part (ii) follows from the compatibility with filtrations of (6.23) and the degeneration
of the Hodge-de Rham spectral sequence for X

H™/(X,, ) = Hig(X) (6.24)

(see [Sch13a, Corollary 1.8| for the case X is smooth, and [Guol9, Proposition 8.0.8| for the
case X is singular).

(b) In the case f : X — S is smooth, denoting by Rfyr.Ox := Rf*Q:v/S the relative de Rham
cohomology of f endowed with its Hodge filtration R f*Q)ZJ g» we claim that we have a filtered
quasi-isomorphism

Rfir+Ox @4 By ~ RT 5 (X) (6.25)

compatible with (6.23) in the case S is a point. For this, by Theorem 5.9 and Proposition 5.8,
it suffices to show that we have a B$R—linear map

Rfar+Ox ®4% Bl — Rlint(X/Big) (6.26)

which is a quasi-isomorphism compatible with filtrations, where the right-hand side is endowed
with the infinitesimal filtration. Arguing as in the proof of [BMS18, Theorem 13.19|, we can
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construct (6.26) on a hypercover of X’ by very small smooth affinoid spaces over L in the sense

of [BMS18, Definition 13.5],°* using in addition Lemma 5.16.> We note that the constructed

map (6.26) is a quasi-isomorphism after applying the functor — ®If3+ B;R /€, recalling that we
dR

have a natural quasi-isomorphism
RFinf (X/BJ_R) ®Ié;rR BJ_R f ~ RFdR(X)

by [Guo2l, Theorem 1.2.7(i), Theorem 1.2.1(i)]; then, in order to show that (6.26) is a quasi-
isomorphism, using the derived Nakayama lemma, it suffices to check that both the source and
the target of (6.26) are derived ¢-adically complete: for the source, we note that each R’ fyg +Ox
is a coherent Og-module with (integrable) connection, in particular it is a locally free Og-module
(see [And01, Corollaire 2.5.2.2]); for the target, we can use for example the Cech-Alexander
complex computing the infinitesimal cohomology over BIR, [Guo21, Proposition 4.1.3]. To
prove that the quasi-isomorphism (6.26) is compatible with filtrations, proceeding by induction
on the index ¢ > 0 of the filtrations, it suffices to check the compatibility on graded pieces,
which follows from Lemma 6.22.

Now, to prove part (i), using the quasi-isomorphism (6.25), it suffices to recall that each
R fqr+Ox is a finite projective A-module, as we have seen above. For part (ii), using the
filtered quasi-isomorphism (6.25), it suffices to recall that, thanks to [Sch13a, Theorem 8.8] and
[SW20, Theorem 10.5.1], for all i, j € Z the relative Hodge cohomology Ri_jf*Qi,(/S is a finite
projective A-module, and that the relative Hodge-de Rham spectral sequence

R0, ¢ = Rfar.Ox
degenerates.

(c) In the general case, we will use that R fprost«Zyp is a bounded Zariski-constructible complex of
sheaves on S, in the sense of [BH22, Definition 3.32, Remark 3.38], thanks to [BH22, Theorem
3.10, Theorem 3.36].

We denote by v : Sprosr — Sé the natural morphism of sites, and we set
DdR(prroét *Zp) = RV*(prroét *Zp ®%p OdeR,S)

where the sheaf OBpgr,s on Sproé; is defined as follows:”* we consider Scholze’s sheaf OIB%&FR g
on Spre¢t (see e.g. [Bos2l, Definition 6.6]) and we put (’)]B%;;dR’S = OB:{RS[logt]; then we
define the sheaf OB,qr as the completion of the sheaf OIB%; qr[1/t] with respect to the filtration
given by Fil" ((’)B;dR[l /1) =25z t=7 (ker §)"+7 OIB%;dR, and we equip OBpgr with the induced
filtration; we endow OBpgqr with an action of ¢, extending the one on OIB%(TR g, by setting
g(logt) = log(x(g)) +logt for all g € ¢y, where x : ¥, — Z,; denotes the cyclotomic character.
We will use crucially that

R, OBygr s =Os and R'v.OBqrs =0 for all i >0 (6.27)

as it formally follows from [Sch13a, Proposition 6.16(ii)].

52[ . the affinoid spaces Spa(Ao, Ag) of Notation 5.14 for r =0, ¢ = 1, and E¢ = 0.

53In the case S is a point, the stated compatibility with (6.23) follows from the proof of Theorem 5.3 (see in
particular the commutative diagram (5.25)).

54Cf. Fontaine’s definition of the presque de Rham period ring Bpar, [Fon04, §4.3]. Cf. also the upcoming work
of Bhatt—Lurie, [BL].
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We claim that we have a natural filtered quasi-isomorphism
Dar(Rforost «Zp) @4 Blz ~ RT s, (X)- (6.28)

For this, we argue by induction on dim(S). For the base case dim(S) = 0, we have that S
is a disjoint union of points, hence we can reduce to the case S is a point; then, by the de
Rham comparison theorem for proper (possibly singular) rigid-analytic varieties defined over
L, [Guol9, Theorem 1.1.4], together with (6.27), we have a natural filtered quasi-isomorphism
Dar(R forost «Zp) ~ RI'qr(&X), and the claim follows from the filtered quasi-isomorphism (6.23)
of part (a).

For the inductive step, using Proposition 2.14, picking a proper éh-hypercover Xy — X with
each X, smooth over L, we can reduce to the case X is smooth over L. In the latter case, by
[BH22, Theorem 2.29], the maximal open subset S’ C S such that f’: f~1(S’) — S’ is smooth is
a dense Zariski-open subset; in particular, the Zariski-closed complement Z := S\ S’ is nowhere
dense in S, and hence we have dim(Z) < dim(S). Then, if n is contained in Z, restricting f
over Z, the claim follows from the inductive hypothesis, by proper base change [BH22, Theorem
3.15, Theorem 3.36]; if 7 is contained in S’, by the smoothness of the restriction f’ of f over
S’, the claim follows again by proper base change from the filtered quasi-isomorphism (6.25) of
part (b), observing that in this case, by the relative de Rham comparison ([Sch13a, Theorem
8.8] combined with [SW20, Theorem 10.5.1]), and (6.27), we have a filtered quasi-isomorphism

Dar (R frost +Zp) ~ Rvu(RfiR ,Ox ®p, OBpar,s) ~ Rfig.Ox.

Now, to show part (i), using the quasi-isomorphism (6.28), it suffices to prove that, up to
replacing S by a suitable Zariski locally closed subset containing 7, the cohomology groups
of Dar(R fprost «Lp) are finite projective A-modules. For this, recalling that R fprest«Zyp is a
bounded Zariski-constructible complex of sheaves on S, and using [BH22, Lemma 3.35|, we can
suppose that R" foroet «Zyp is a Zy-local system on Spre¢r for all n € Z; next, we note that the
latter Zy-local systems are de Rham (in the sense of [Sch13a, Definition 8.3]), in fact, by [LZ17,
Theorem 3.9, (iv)|, to show this condition it suffices to check the de Rhamness (in the sense
of Fontaine) of the stalks (R" foroet«Qp)y at geometric points g over classical points y of S 0
which follows from the de Rham comparison theorem for proper rigid-analytic varieties defined
over L, [Guol9, Theorem 1.1.4]. Then, recalling (6.27), by [LZ17, Theorem 3.9, (iv) and (i)],
the cohomology groups of Dyr (R fprost «Zp) are finite projective A-modules, as desired.

For part (ii), using the filtered quasi-isomorphism (6.28), it suffices to check that, up to replac-
ing S by a suitable Zariski locally closed subset containing 7, the spectral sequence associated
to the filtered complex Dagr (R fprost «Zp), i-e.

Hi_j(grj DdR(prroét*Zp)) = Hi(DdR(prroét*Zp))7

degenerates. For this, by the same argument used above to show part (i), using in addition
[LZ17, Theorem 3.9, (iii)], we can suppose that all the terms of the spectral sequence above are
vector bundles on S, in which case the degeneration can be checked on stalks at classical points,
where it follows from the degeneration of the spectral sequence (6.24) of part (a).

0

55We note that, since f : X — S is proper, we have (R™ forost «Qp)g = Hposr (X X5 7,Qp): in fact, the natural
map (R fprost «Zp)g — R fprost «(X Xs Y, Zy) is an isomorphism, as it follows from [Hub96, Proposition 2.6.1] reducing
the latter map mod p.
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The following lemma was used in the proof above.

Lemma 6.22. Let X be a smooth rigid-analytic variety over C. For any r > 0, we have a natural
quasi-isomorphism
r ~ 1 Y
gr” RT 1 (X) =~ P Rr(x, Q%) (r —i)-il.
0<i<r
Proof. First, we note that, by Proposition 2.7(ii), we have gr" RFB: (X) ~ RI(X,7<"Ra,O(r)).
R
We want to show that we have a natural identification
<" R, O(r) ~ @) Qi (r —i)[—i]. (6.29)
0<ei<r
We may assume that X is a smooth affinoid over C, and then, by [Elk73, Theorem 7 and Remark

2|, we can further assume that X is the base change to C' of a smooth affinoid defined over a finite
extension of K. In this case, (6.29) follows from [Bos21, Corollary 6.12]. O

6.3. Comparison with [BMS19]. In this subsection, we compare the syntomic Fargues—Fontaine
cohomology for rigid-analytic varieties over C, Definition 6.1, and the syntomic cohomology for
semistable p-adic formal schemes over O¢ defined (in the smooth case) by Bhatt—Morrow—Scholze,
[BMS19, §10]. In particular, we show that the syntomic Fargues—Fontaine cohomology can be locally
recovered from the Aj,¢-cohomology together with its Nygaard filtration. The results proved here
are not used in the rest of the paper, but we hope they will be useful for future reference.

As the main comparison results of this subsection will be proven in the semistable case, we begin
by recalling the definition of the A;,¢-cohomology, as well as the Nygaard filtration on it, in the latter
setting. We will phrase the definition of the Nygaard filtration in terms of the décalage functors of
Definition 2.2, as this will be convenient for the desired comparison.

Definition 6.23 (Nygaard filtration on Aj,s-cohomology). Let X be a semistable p-adic formal
scheme over O¢, and let X denote its generic fiber, regarded as an adic space over Spa(C,O¢).
Denote by v/ : Xprost — Xeét,cond the natural morphism of sites.”"

(i) We define the Ajn¢-cohomology of X as the complex of D(Mod%’i:f)
RT 4, (X) := RT(X,AQx), where AQx := Ln,Rv,Ajy.

(ii) Given an integer ¢ > 0, consider the function ¢; : Z — Z,j +— max(i — 7,0). We endow the
Ajns-cohomology of X with the Nygaard filtration whose i-th level is given by

Fily R[4, ,(X) := RT(X,Fil\y AQx), where Fily, AQx := L(ns, ¢ 0 1) RV Ains.

Remark 6.24. In the Definition 6.29 above we implicitly used that the functor ns, ¢ 07, (—) preserves
quasi-isomorphisms. To check the latter assertion we observe that, as & = /¢ ~' (1), we have

M6:,€ © M = Mdip © N30 1 (1) © Ml = Meispn © N6, 1 (1)

where ¢; : Z — Z,j +— max(i,j). Then, since both &; and —J; are non-decreasing functions, we
conclude by Proposition 2.4.

56Here, the site Xet,cond is defined similarly to [Bos21, Definition 2.13].
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The lemma below, combined with [BMS19, Proposition 9.10], shows that the Nygaard filtration
defined above is equivalent to the one of [BMS19] (in the smooth case).

First, we recall that AQx comes equipped with a Frobenius, [CK19, (2.2.5)]: in fact, the Frobenius
automorphism of Aj,¢ induces a ¢4, -semilinear map

p: AQyx — AQx.

Lemma 6.25. Let £ := ©(§). Under the notation of Definition 6.23, the Frobenius ¢ : AQx — AQx
factors functorially over a ¢4, -semilinear quasi-isomorphism

sending the Nygaard filtration (Definition 6.23) on the source to the filtration décalée (Definition
2.9) on the target.

Proof. Let AQ&Sh denote the presheaf version of AQy, [CK19, §4.1]. Given an integer ¢ > 0, it
suffices to observe that the Frobenius automorphism of A;,¢ induces a quasi-isomorphism

g h h h
©* Filjyy AQ™ ~ L(n;, g0 175)14(2§S ~ Ln%éAQgS
where we used that o(p) = € - and we denoted ¢; : Z — Z, j — max(i, j). O

Remark 6.26 (Frobenius action on Nygaard filtration). The Frobenius automorphism of Aj,¢ induces
a @4, -semilinear map

Filk () : Filiy AQx — & © AQx.

We are almost ready to define the syntomic cohomology of Bhatt—Morrow—Scholze in the semistable
reduction case. We shall use the following notation.

Notation 6.27. We consider the Breuil-Kisin—Fargues module over Aj,¢
1
Ainf{l} = E(Ainf ®Zp Zp(l))

([BMS18, Example 4.24]) and, given i € Z, for any Ajpe-module M we denote by
M{i} = M @, Ame{1}*'
its i-th Breuil-Kisin—Fargues twist.

Definition 6.28 (Bhatt—Morrow—Scholze’s syntomic cohomology, cf. [BMS19, §10]). Fix notation
as in Definition 6.23. Let ¢ > 0 be an integer. We define

. i . if—1 .
RTuyn s (X, Z,(i)) := fib(Filiy BT 4, (X){i} 295 RO, (2){i))

where Fili; RT 4, .(X){i} denotes the Breuil-Kisin-Fargues twisted i-th level of the Nygaard filtra-
tion on the Ajys-cohomology of X, and we write ¢{i} for the tensor product of Fily/(¢) (Remark
6.26) with the Frobenius of Ajn¢{i}.

Next, we want to compare Definition 6.28 with Definition 6.1. Recalling that the Fargues—
Fontaine curve FF has a presentation given by the quotient of Ygp |1 via the identification ¢ :
Yrr.s1,1) = Yrr,s,[pp), We will define a Nygaard filtration on the B[y p)-cohomology of rigid-analytic
varieties over C, and we will explain how to recover the syntomic Fargues—Fontaine cohomology
from the latter.

Similarly to Definition 6.23, we can give the following.
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Definition 6.29 (Nygaard filtration on Bj-cohomology). Let X be a rigid-analytic variety over C
and denote by « : X, — X¢hcona the natural morphism of sites. Let I = [1,7] C (0,00) be an
interval with rational endpoints. Given B € {B ],IB%(J{R}, we write B = Bgpa(0),o6 -

We endow the #-cohomology of X with the Nygaard filtration whose i-th level is given by

Fily RT 4(X) := RT(X, Fily; Ln;Ra,B), where  Fill, L, Row.B := L(ns, ¢ o ) R B.
Remark 6.30. In the Definition 6.29 above, we used Remark 6.24 together with the fact that, by
the choice of the interval I, the elements t and p differ by a unit in Bj.

We note that the Nygaard filtration on the B(;FR—cohomology agrees with its filtration décalée,
since the elements ¢t and & generate the same ideal in B(;FR. Moreover, we recall that the latter
filtration has a more explicit expression in coordinates, as shown in Corollary 5.13. In a similar
vein, we have the following result.

Lemma 6.31. Let X = Spf(R) be a semistable p-adic formal scheme over O¢ as in Notation 4./,
and let X = Xc denote its generic fiber. Let I = [1,r] C (0,00) be an interval with rational
endpoints. For any i > 0, we have a Br-linear quasi-isomorphism, compatible with Frobenius,

grx(=e003, gy = Filyr RT g, (X) (6.30)
where QIBI(R) := Kosp,(r)(01,--.,0a), in the notation of §/.1.2.

Proof. For i = 0, the statement follows combining Lemma 4.8 and Lemma 4.9. Arguing by induction
on i > 0, to show the statement in general it suffices to check (6.30) on graded pieces.
We begin by observing that the natural map

(LneRv,By)/ Filjy — (L Rv,BR)/ Filly (6.31)
is an isomorphism. In fact, we can reduce to showing that, for each j > 0, the natural map
gri: L RvuBr — g Lin R B, (6.32)

is an isomorphism (here, the graded pieces gry, refer to the Nygaard filtration Fily,). For this,
since we can replace Lmn; with Lne on both sides of (6.32) (recall that we have an isomorphism
Br/¢ = Bjz/€, and the elements ¢ and ¢ generate the same ideal in BJy), by Proposition 2.7(ii),
the claim reduces to the isomorphism

gl{v B; = gr’ Bz
where we denote by gr}. the graded pieces for the {-adic filtration Fily, on Bj.
Now, the desired statement, i.e. the quasi-isomorphism (6.30) on graded pieces, follows from the

quasi-isomorphisms (5.5) of Corollary 5.13 using that, for any j > 0, the natural map Br(R)/ -
Bi:(R)/& is an isomorphism. O

On the other hand, we have the following local description of the Nygaard filtration on the
Ajne-cohomology.

Lemma 6.32. Let X = Spf(R) be a semistable p-adic formal scheme over O¢ as in Notation /..
For any i > 0, there is an Ajne-linear quasi-isomorphism, compatible with the Frobenius,

Filj\/ RFAmf (:{) = gmaX(ii.’O)q_Q;hnf(R)
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where q-0% (R) denotes the logarithmic q-de Rham complex defined as””

. - 0 1?)
q_QAinf(R) T KOSAinf(R) <8q lqu(X1)7 Tt 8q logq(Xd)>
with ¢ = [g] € Ajnt.
Proof. For i = 0 the statement follows from [Kos22, Theorem 8.1, Theorem 7.17|. The general case

follows by induction on ¢ > 0, computing the graded pieces of the filtrations, using Lemma 6.25 and
Proposition 2.7(ii) (cf. [BMS19, Remark 9.11]). O

The following proposition can be regarded as a refinement of Lemma 6.31.

Proposition 6.33 (cf. [LB18b, Proposition 3.12|). Let X be a qcgs semistable p-adic formal scheme
over Oc, and let X = X denote its generic fiber. Denote by
v Xproét - Xét,cond A Xét,cond - xét,cond
the natural morphisms of sites, and let V' : Xprost — Xeét,cond be their composition.
Let I = [1,7] C (0,00) be an interval with rational endpoints. For any i > 0, the natural map
Filyy L, RV, Ains — R\ Fily L, R, By

. . . . 5
induces a quasi-isomorphism®®

Filj, RT 4, (X) @4 B; — Filj, RT'p, (X).

Proof. We can reduce to the case X = Spf(R) is a semistable p-adic formal scheme over O¢ as in No-
tation 4.4. The statement for ¢ = 0 is essentially contained in Lemma 4.9. In fact, combining Lemma
4.8 and the quasi-isomorphism (4.13) in the proof of Lemma 4.9, we have a quasi-isomorphism

-1 va—1
RFBI(X):KOSBI(R)( n goo vy : )

Therefore, using Lemma 6.32 for ¢ = 0, and recalling that ¢ and pu = ¢ — 1 differ by a unit in By, it
suffices to check that the natural map

n—1 Ya—1 n—1 Ya—1
KOSAinf(R)<q_1""’ q_l>®i;fB[—>KOSBI(R)<q_1,..., g—1

is a quasi-isomorphism; this can be done as in the proof of (4.17) in Lemma 4.9. Finally, the
statement in general follows arguing by induction on ¢ > 0, calculating again the graded pieces of
the filtrations. O

We can finally state and prove the main result of this subsection, which in particular tells us
how the syntomic Fargues—Fontaine cohomology can be locally recovered from the A;,¢s-cohomology
together with its Nygaard filtration.

Proposition 6.34. Let X be a rigid-analytic variety over C. Denote I = [1,p| and I' = [1,1]. Let
i >0 be an integer.
(i) We have a natural isomorphism in D(Modgpnd)

. 1 —i-1
RTgyn rr(X, Qp(i)) ~ fib(Filiy RT 5, (X) Z— RT'g,, (X)).

57See also [Kos22, §7.3] for the construction of the logarithmic q-de Rham complez in a more general setting.
5SHere, we use the fact that p and ¢ differ by a unit in B;.
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(11) Assume that X is the generic fiber of a qcqs semistable p-adic formal scheme X over Oc.
Then, we have a natural isomorphism in D(Modjé?pnd)

. o) . n 1
RTgn 15 (X, Qi) ~ fib(Filiy RT 4, (X){i} ®§* B, 2071

In particular, there is a natural morphism
RUsyn BMs (X, Zp(i)) — Rlsyn pr (X, Qp(7)).

Proof. For part (i), using the isomorphism

POL R a1 &%, Br).

RT'p,(X)/Filly = BRI 5+ (X)/Fil’
dR
coming from (6.31), we have a natural isomorphism

fib(Fili, RT s, (X) 22—4 RT B,/ (X)) = fib(RT 5, (X)#~"" — RT st (X)/ Fil) (6.33)
where
RTg,(X)#=*" := fib(RT'5,(X) 2L—L RT5 (X))
Then, combining (6.33) with Theorem 6.3(ii), it remains to show that the natural map

i

RTp(X)#="" — RI'p, (X)#=P (6.34)

is an isomorphism. For this, in the notation of §6.2, we observe that by Proposition 6.8 the source
of (6.34) is computed by the cohomology of Hrr(X)® O(i) € Nuc(FF). But the latter cohomology
also computes the target of (6.34), using the presentation of the curve FF as the quotient of Yy |1
via the identification ¢ : Ypg 11] = Ygp [pp)- This concludes the proof of part (i).

For part (ii), by part (i) and Proposition 6.33 we have a natural isomorphism in D(Mod&’pﬂd)

RUgyn pr(X, Qp(i)) = fib(Fillyy RT 4, (X) @4 By —ﬂRPA (X) @4 Bp). (6.35)

On the other hand, trivializing the Breuil-Kisin—Fargues twists we can rewrite the fiber in the
statement of part (ii) as

fib(Filj RT 4, (X) @4 By ©—= RT4,,(X) ®4" By) (6.36)

where €= ©(§). We conclude observing that, writing p = ut with « unit in By, the multiplication
by u' map induces an isomorphism between the fiber in (6.36) and the fiber in (6.35).
O

6.4. Comparison with [CN20]. In this subsection, we show that, in high degrees, the syntomic
Fargues—Fontaine cohomology does not agree with the syntomic cohomology for smooth rigid-
analytic varieties over C' defined by Colmez—Niziot.

Notation 6.35. Let X be a smooth rigid-analytic variety over C. Let ¢ > 0 be an integer. We
denote by RIgyn on(X, Qy(i)) the syntomic cohomology of X with coefficients in Q,(i) of Colmez-
Niziot, defined in [CN20, §4.1].
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Ezxample 6.36. Let X = IP% be the rigid-analytic projective line over C'. We claim that

Hs:))yn,FF (X7 Qp(o)) = C/Qp7 HSyn,CN(Xa QP(O)) = 0. (637>

For this, applying Theorem 6.3(i), combined with Theorem 4.1, for the syntomic Fargues—Fontaine
cohomology, and [CN21a, Corollary 5.5] for the syntomic cohomology of Colmez-Niziol, we obtain
respectively

Hsgyn,FF(Xa Qp(0)) = (Hix(X) @p B) /(¢ —1), Hsgyn,CN(Xv Qp(0)) = (Hi (X) @ B ) /(9 — 1)
where we used that Hj, (X) = 0. Now, the map ¢ — 1 is surjective on Hfy(X) ® B

s (see e.g.

[ON17, Remark 2.30]). Instead, observing that Hzy (X) is a one-dimensional ¢-module over F with
slope 1 (by Theorem 3.29(i), and [CLS99, Théoréme 3.1.2]°"), we deduce that the vector bundle
on the Fargues-Fontaine curve FF associated to Hi (X) is isomorphic to O(—1); hence, we can
identify (Hy(X) @ B)/(¢ — 1) with H'(FF,O(—1)), thus showing (6.37).
7. APPLICATIONS
In this section, we gather the results we have obtained so far, giving some applications.

7.1. Fundamental diagrams of rational p-adic Hodge theory.

Theorem 7.1. Let X be a qcgs rigid-analytic variety defined over K. We have a 9x -equivariant
pullback square in D(Modald)

R prost(Xo, Qp) ——— (RI'nk(Xco) ®LF' Biog[1/t])N=0¢=1
Fil’(RTqr(X) @ Bgr) ——————— RT4r(X) @%™ Byr.

Proof. First, we note that we can rewrite the fundamental exact sequence (2.4) of p-adic Hodge
theory on the pro-étale site X¢ pro¢t as a pullback square

Q, —— B[1/t)¥=1
| l

+
BdR E— BdR‘

Then, the statement follows combining Theorem 4.1, [Bos21, Theorem 6.5] (together with Theorem
5.2 for the singular case), as well as the compatibility proven in Theorem 5.3. In fact, by Theorem
4.1, using that X is qcqgs, we have

RTprogt (X, B[1/1]#=") ~ RTp(X)[1/t]?=" ~ (RTuk (X¢) @%" Biog[1/]) V=0
where in the last step we used that ®Ilg' commutes with filtered colimits. O

We invite the reader to compare the following result with [CN21a].

59n this case, in order to deduce that H7x(X) has slope 1, it is sufficient to use the weak Lefschetz theorem for
crystalline cohomology, [Ber73].
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Theorem 7.2. Let X be a connected, paracompact, rigid-analytic variety defined over K. For any
1 >0, we have a Yy -equivariant isomorphism in D(Moda);ld)

TS R proer (X, Qp(i)) 2 75 fib((RThk (X¢) @™ Biog) ™ =0¢=P" _, (RTgr(X) @%* BL,)/ Fil').
Proof. This follows combining Theorem 6.3, Theorem 4.1, Theorem 5.1 and Theorem 5.3. U

In some special cases, we can explicitly compute the cohomology groups of the de Rham contri-
bution in the fiber sequence of Theorem 7.2.

Proposition 7.3. Let X be a rigid-analytic variety over K. Let i > 0, and denote
dR(X, i) := (RTqr(X) @™ Biy)/ Fil'.

(i) If X is proper, for any j > 0, we have a Y -equivariant isomorphism in Modi?hd

HI(AR(X, 1)) = (HJp(X) ®x Biy)/Fil'.
(i) If X is a smooth affinoid or Stein space, for j > i we have H/(dR(X,i)) = 0, and for 0 < j < i
we have a Yy -equivariant exact sequence in Modi?hd
0— (¥ (X¢)/imd)(i — j — 1) — H(dR(X, 7)) — H)p(X) @% Bjp/t77 7! — 0.
Proof. One can argue similarly to the proof of [Bos21, Corollary 6.17|. Part (i) follows from (the
proof of) Proposition 6.21(ii). For part (ii), using Tate’s acyclicity theorem for affinoid spaces, and
Kieh!’s ayclicity theorem for Stein spaces (which hold true in the condensed setting, [Bos21, Lemma

5.6(i), Lemma 5.9]), and relying crucially on the flatness of the K-Fréchet space Bjy (and its filtered
pieces) for the solid tensor product ®% ([Bos21, Corollary A.65]), we have

dR(X, i) ~ [0(X) ®% Biz/t' — QYX) &% Big/t" ' — - —» Q" HX) &% Bii/t]
from which one readily deduces the statement. O

7.2. Proper spaces. In this subsection, we prove a version of the semistable conjecture for proper
(possibly singular) rigid-analytic varieties over C'. We remark that in the smooth case the following
result is already known, [CN2la, Theorem 5.8|; however, already in the latter case our proof is
different from loc. cit. as it does not rely on Fontaine-Messing syntomic cohomology.

Theorem 7.4. Let X be a proper rigid-analytic variety over C. For each i > 0, we have a natural
1somorphism ‘ ‘

Hg (X, Qp) ®q, Biogl1/t] = Hjk (X) ®j Biog[1/1] (7.1)
compatible with the actions of the Frobenius ¢ and the monodromy N, and inducing a natural
isomorphism

H (X, Qp) ®g, Bar = Hiy(X/Big) @ gt Bar (7.2)
compatible with filtrations. In particular, we have a natural isomorphism
H (X, Qp) 2 (Hi(X) @ Buog[1/1])7~ V=" N Fil° (Hjy (X/Bg) @+ Bar). (7.3)

Here, the filtration on H} .(X/BJy) is defined by
Fil* H ¢ (X/Bjg) := im(H'(Fil* RTint(X/Biy)) — Hiy(X/BJg))

where RUin¢(X/BiR) is endowed with the Hodge filtration (Definition 5.7).
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Proof. Let us fix ¢ > 0. By the properness of X, using Scholze’s primitive comparison theorem,
and the finiteness of the Qp-vector space H (X, Q,), [Sch13b, Theorem 3.17|, we have a natural
isomorphism of vector bundles on the Fargues—Fontaine curve FF

Hgt (X7 Qp) ®Qp OFF = g(Hpi)roét (X7 Be)v Hf)roét (Xv B(J{R)) (74)

where the right-hand side of (7.4) denotes the vector bundle on FF associated to the B-pair
(H! os(X,Be), Hi (X, BlR)) with B, = B[1/¢]#='. We claim that (7.4) is naturally isomorphic

proét proét(
to the vector bundle on FF associated to the B-pair

(Hi(X) ® Biog[1/t]) ="~ Fil’(H'(X/B{y) ® s+ Bar)). (7.5)

For this, using Theorem 4.1, and the perfectness of Rk (X) over F proven in Theorem 3.30(i)
(combined with Proposition 3.26), we have a natural isomorphism

Rrproét(Xy Be) . (RFHK(X) ®ﬁ‘ Blog[l/t])NZO’@:1' (76)

Taking cohomology of (7.6), by Lemma 7.5 combined with Lemma 7.6, we have a natural isomor-
phism

Hyoet (X, Be) & (Hiik (X) © Biog[1/]) V=% (7.7)
Moreover, by Theorem 5.9 and Proposition 6.21, we have a natural isomorphism
Hy o0 (X, Bly) = FIC(H'(X/Bfy) @1 Ban). (738)

Hence, the desired claim follows combining the isomorphisms (7.7) and (7.8), and the compatibility
shown in Theorem 5.20(i).

Now, we are ready to prove that we have a natural isomorphism (7.1) as in the statement. From
what we have shown above, applying H(FF, —) to (7.4) we obtain (7.3), from which we deduce
that we have a natural Bjog[1/t]-linear injective map

H (X, Qp) ®q, Buogl1/t] — Hi (X) ® - Biog[1/1] (7.9)

compatible with the actions of the Frobenius ¢ and the monodromy N. To conclude that (7.9) is
an isomorphism, we observe that

dimg, H (X, Q) = dimp Hijk (X).

For this, we note that dimg, HZ (X, Q,) is equal to the rank of the vector bundle (7.4) on FF, and
hence, from what we have shown above, it is equal to the rank of the vector bundle associated to
the B-pair (7.5); but the latter is a modification at co of the vector bundle on FF associated to the
finite (¢, N)-module Hiy (X) over F', whose rank is dim z Hpy (X).

Lastly, we have that the isomorphism (7.1) induces an isomorphism (7.2) which is compatible
with filtrations, recalling again Theorem 5.20, Theorem 5.9, and Proposition 6.21. O

We used the following general results.

Lemma 7.5. For any finite o-module (V,¢) over F, the map
¢ —1:V®pB[l/t] =V @3 B[1/t]

1S surjective.
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Proof. 1t suffices to show that for any sufficiently big integer m, the map
gD—l:V@Ft_mBHV@Ft_mB (7.10)

is surjective. For this, we consider £ := £(V, ¢) the vector bundle on the Fargues—Fontaine curve
FF associated to (V, ), and, for any integer m, the vector bundle £(m) := £ ® O(m) on FF. Note
that we have

RT(FF, E(m)) = [H(Yer, Elypr) L HO(Yir, €lvip)]
—VerBX Lve,B|

Then, since for any integer m sufficiently big such that the vector bundle £(m) has non-negative
Harder-Narasimhan slopes, one has H'(FF,&(m)) = 0, we deduce that (recalling that ¢(t) = pt)
for any such m the map (7.10) is surjective, as desired. O

Lemma 7.6. For any finite (¢, N)-module (V, ¢, N) over F', we have a short ezact sequence
0= V@sB35V @5 Biog > V&g Biog — 0 (7.11)

where, recalling that Biog = B[U] (Definition 2.27), the morphism « is induced by the isomorphism
of finite p-modules over 3

N -~ —1)y . .
exp(N-U): V@B — (V& Biog) V=0 z Z ( j') NI (x)-U’.
Jj=0 '

Proof. For any finite (¢, N)-module (V, ¢, N) over F', the monodromy operator N has finite nilpo-
tency index. If the nilpotency index is 1, i.e. N = 0 on V, the statement follows from the exactness
of the sequence (7.11) for V = F'. The statement in the general case follows by induction on such
nilpotency index (cf. the proof of [CDN20b, Lemma 3.20]). O

7.3. Smooth Stein spaces. In this subsection, our goal is to prove the following result, Theorem
7.7. We remark that it could be deduced from Theorem 7.2, Proposition 7.3(ii) and the theory of
Banach—Colmez spaces, as done in [CDN20b]. However, we give here a more direct proof using the
relative fundamental exact sequence of p-adic Hodge theory.

Theorem 7.7 (cf. [CDN20b|, [CN21b]). Let X be a smooth Stein space over C. For anyi > 0, we

have a commutative diagram in Mod%’iid with exact rows

0 — QY(X)/kerd — H o (X, Qp(i) — (Hijc(X) @% Biog) V=097 — 0

| | !

0 — QI Y(X)/kerd — Qi(X)4=0 y Hip(X) ———— 0.

7.3.1. Recollections on Banach—Colmez spaces. As a preparation for the proof of Theorem
7.7, we need further reminders on the category of Banach—Colmez spaces BC (Definition 6.10).

Recall that we denote by
7: FF, — Spa(C,O¢),

the natural morphism of v-sites.
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We remark that the equivalence of derived categories (6.16) in Proposition 6.11 does not preserve
the natural t-structures. In fact, Le Bras showed that suitably changing t-structure on the source
of (6.16) one can pass to the category of BC spaces:

Proposition 7.8 ([LB18a, Théoréme 1.2|). The category of Banach—Colmez spaces BC is equivalent,
via the functor Ty, to the full subcategory of Perf(FF) having as objects the perfect complexes F
concentrated in cohomological degrees [—1,0] such that H=Y(F) has negative Harder—Narasimhan
slopes and HO(F) has non-negative Harder—Narasimhan slopes.

In the following, for £ a vector bundle on FF, we denote the BC spaces
HO(FF, &) :=1.£, HYFF,E) := R'7,E. (7.12)
Let us recall that Colmez defined a Dimension function on BC spaces (|Col02, §6])
Dim = (dim, ht) : BC - N x Z
where dim is called dimension and ht height.Y In terms of the Fargues-Fontaine curve, the function
Dim is characterized by the following properties:
(i) The function Dim is additive in short exact sequences;
(ii) For any vector bundle £ on FF, denoting by deg(&) the degree of £ and by rk(€) its rank,
x(€) := DimH°(FF, £) — Dim H!(FF, £) = (deg(&),rk(E)) (7.13)
where x(€) is the Euler-Poincaré characteristic of € (see e.g. [FF18, Préface, Remarque 4.6]).
Remark 7.9 (BC spaces vs. condensed Q,-vector spaces). Let £ be a vector bundle on FF. In

the following, we will need to consider the cohomology groups of £ on FF as condensed Q,-vector
spaces. For this, we denote by

i FFproét - Spa(C, OC)proét
the natural morphism of (small) sites, and we define
H(FF,&):= f.£, H'(FF,&):=R'f.E.
Note that the condensed structure on such cohomology groups is just the “shadow” of the structure
of BC spaces (7.12). As an example, we have the identification H°(FF, O(—1)) = (AL)?/Q, as BC
spaces, which restricted to the site Spa(C, O¢)prost gives the identification HY(FF, O(-1)) = C/Q,
as condensed Q,-vector spaces.

We are ready to prove the main result of this subsection.

Proof of Theorem 7.7. Let X1 be the smooth Stein dagger space associated with X (via [GKO00,
Theorem 2.27]). Choose {Ug}neN a Stein covering of X, and denote by {U,, }.en the corresponding
Stein covering of X (i.e. set Uy, := ﬁ;ﬂ) Fix n € N, and let V1 := U}, Our first goal is to show that
we have a diagram as in the statement replacing X with V1.

Denoting by @h Vi, the presentation of a dagger structure on V corresponding to V1 (recall
Lemma 3.22(i)), for Ml a sheaf on the big pro-étale site Rige 041, We set

Coroct (VT M) := colim RT(V},, M).
R proet(V7 ) Cf(L)GII{InR (Vha )

60We refer the reader to [LB18a, §7.2] for the relation between Colmez’s original definition of Espace de Banach
de dimension finie and Definition 6.10.
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With this definition, by the relative fundamental exact sequence of p-adic Hodge theory (2.4), we
have the following commutative diagram with exact rows

e — H L (VT,Q,) — H (VI B.) 25 H (V1 Bar/Bjg) — -

proét proét proét
= (VB Vi, Bar) 25 HI (V1 Bar/B,
- proet( ’ dR) proet( dR) — proet( ’ dR/ dR) -

from which we obtain the following diagram with exact rows

0 — cokera;_; — Héroét(VT,Qp) — kera; —> 0

l | l (7.14)

0 — coker 81 — Héroét(VT,]Bj{R) — ker §; — 0.

By [Elk73, Theorem 7 and Remark 2|, we may assume that V1 is the base change to C' of a smooth
dagger affinoid VJ defined over a finite extension L of K. Then, using Theorem 4.1 together with
the perfectness of Rk (V1) over F' (Theorem 3.30(i)), Lemma 7.5 and Lemma 7.6 in order to com-
pute Hémét(VT,IB%e), and relying on [Bos21, Corollary 6.17(ii)| to determine H pmet(V Bar/Blg),
recalling the compatibility proven in Theorem 5.3(ii), we have the following commutative diagram
with exact rows

0— (HIZ{K(VT) ®F Blog[l/t])N:Q@:l — HIZ)roet(VT7B6) > 0 0

b b J

0 —— Hig(V) @r Bar/t By —— H' o(VI, Bar/Bgr) — (Q{(VT)/kerd)(—i —1) — 0.

proét

We claim that
kerv; = (Hip (V1) ®p Blog)N:O"":pi and  cokery; = 0. (7.15)

For this, we consider the vector bundle &(Hij(VT)) on the Fargues-Fontaine curve FF asso-
ciated to the finite (¢, N)-module Hiy (V1) over F. By Theorem 3.30(ii), the vector bundle
& = E(Hij (V1)) ® O(i) has non-negative Harder—Narasimhan slopes, in particular H!(FF, &) = 0,
and we have the short exact sequence

0 — H°(FF,&) — H°(FF \{co}, &) — EN[1/t]/EL — 0.
Note that such short exact sequence identifies with the short exact sequence
0 = (Hig (VN @ 5 Biog) V=" — (Hig (V1)@ 1 Biog [1 /1) V="~ B Hip (Vi) @1 Bar/t "By — 0

thus proving the claim (7.15).



88 GUIDO BOSCO

Then, twisting by (¢) the diagram (7.14), putting everything together we deduce that, for each
n € N, we have a commutative diagram with exact rows

0 — QLU Kerd — iy (UL Qu0)) — (i (UR) 9% Buog) V=05 — 0

l l (7.16)

0 — QYU kerd — QF(U})?=0 s Hip (U}) —————— 0.

Now, since we have

RFproét (X7 Qp(l)) = RFproét (XTv Qp(z)) =R lﬂl Rrproét (U:La @p(l))

and similarly
RTuk(X) = Rlim RTuk(U)),  RTar(X) = Rlim RT4r(U})
n n
(see Proposition 3.26 and cf. [CN20, Proposition 3.17]), recalling the property [Bos21, Corollary
A.67| of the solid tensor product, the statement follows taking the inverse limit of (7.16) over n € N,
observing the following R' lim vanishing statements.

e Using that {U, }nen is a Stein covering of X, by the condensed version of the Mittag-Leffler

criterion for Banach spaces, [Bos21, Lemma A.37|, we have that
R'lim Q' (Uf) = R' lim Q*(U,,) = 0.
n n

e Since HQR(Uﬁ), for varying n € N, are finite-dimensional condensed C-vector spaces, we

have that ,
R'lim Hip (U]) = 0.
n
e Lastly, we have _
R'lim(Hfy (U) © Biog) V=7 = 0. (7.17)
n
The claim (7.17) is essentially contained in the proof of [CDN20b, Lemma 3.28] (that we
write here in slightly different terms). By the Mittag-Leffler criterion for condensed abelian
groups,’! it suffices to show that in the inverse system {(HIZ_IK(UTTL) ® i Biog) V0T frm ),
for each n € N there exists k > m such that, for every m > k, the image of the maps f,m
are equal to the image of f,;. For this, recall that, for &, = E(HI’{K(UJ)) ® O(i), we have
HY(FF,€&,) = (HI’_IK(UJL) ®p B)$=P (trivializing the monodromy), and H'(FF,&,) = 0.
Considering the Euler-Poincaré characteristic of &,, by (7.13) we have that
Dim HO(FF, &,) = (deg(&n), tk(En))

we deduce that the BC space H°(FF, £,) has height > 0; moreover, by the characterization
of BC spaces in terms of FF, Proposition 7.8, any BC subspace of H°(FF,&,) has height
> 0. Thus, in the inverse system {H°(FF,&,), fam}, for each n € N the image of the maps

frnm form a chain of BC spaces with decreasing Dimension (for the lexicographic order on
N x Z) and height > 0; in particular, such chain eventually stabilizes, as desired.

611t follows from the Mittag-Lefller criterion for abelian groups, [Gro61, Proposition 13.2.2], applying the latter to
the values on extremally disconnected sets, and using [Sch13a, Lemma 3.18].
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As a consequence of Theorem 7.7 we have the following result.
Corollary 7.10. Let X be a smooth Stein space over C. Then, we have
H}i)roét(X’ Qp) =0
for all i > dim X.

Proof. Using Theorem 7.7, it suffices to prove that HIZ{K(X ) = 0 for all @ > dim X. Thus, by
Corollary 3.16, we can reduce to showing that Hiz(X) = 0 for all i > dim X, which holds true
by Kiehl’s ayclicity theorem for Stein spaces (cf. [Bos21, Lemma 5.9] for the statement in the
condensed setting). O

7.4. Smooth affinoid spaces. In view of Theorem 7.7 and Proposition 7.3(ii), it is natural to
formulate the following conjecture.

Conjecture 7.11. Let X be a smooth affinoid rigid space over C. For any i > 0, we have a
commutative diagram in Mod?@jld with exact rows

0 — QLX) kerd —> Hiy oy (X, Qu(0) — (Hjpe(X) @% Biog) V09— —s 0

| | !

0 — QI1(X)/kerd — Qi(X)d=0 y Hip (X) ————— 0.

The goal of this subsection is to show Conjecture 7.11 for curves.

Theorem 7.12. Conjecture 7.11 holds true for X a smooth affinoid rigid space over C' of dimension
1.

Proof. By [Elk73, Theorem 7 and Remark 2|, we can assume that X is the base change to C' of
a smooth affinoid Xy defined over a finite extension of K, and, without loss of generality, we can
further assume that Xy is defined over K.

We recall that by Theorem 6.3(ii) combined with Theorem 4.1, Theorem 5.1 and Theorem 5.3,
we have, for any ¢ > 0, the following commutative diagram whose rows are exact triangles

RTgyn v (X, Qp(i)) —— (RTuk(Xco) @%" Biog) V=09 — (RT4r(X) @k* B,/ Fil’

| ! |

Fil'(RT4r (X) @™ Biz) ——— RI4r(X) @%® By ——— (RI4r(X) @& BjR)/ Fil’
and, by Theorem 6.3(i), we have an isomorphism 7=/ RTsyn pr (X, Qp(i)) = 7= Rl proet (X, Qp(4)).
Moreover, by Tate’s acyclicity theorem, the bottom exact triangle of the diagram above maps, via

Fontaine’s morphism 6 : BJR — C, to the following exact triangle

OZ1(X)[—~i] — Q*(X) — Q<1(X).
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Then, reducing to the case X is connected, the statement for ¢ = 0 follows immediately using that

B{Zgo’@zl = Qp. For the statement in the case i = 1, taking cohomology of the diagram above and
using Proposition 7.3(ii), it remains to check that
H' (R (X) @" Biog) " ="#7") & (Hij(X) @ Biog) ¥ "7 (7.18)

For this, we note that, since By, is a flat solid F-vector space (by [Bos21, Corollary A.65|, as it is
a filtered colimit of F-Fréchet spaces), we have that H'(RIyx (X) ®%‘ Blog) & Hip (X) ®% Biog-
Then, the isomorphism (7.18) follows from the exactness of the sequences

0 — B — Biog - Bigg — 0 0— B BB 0.

Lastly, the statement for ¢ > 1 follows from Lemma 7.13 below (which implies the vanishing of

Héroét(X, Qp(7)) as X is qeqs), together with the fact that, in this case, H'y (X) vanishes, and, by
Corollary 3.16, H (X) vanishes as well. O

We used crucially the following result.

Lemma 7.13 (Rigid-analytic p-adic Artin vanishing). Let X be a smooth affinoid rigid space over
C. Then, we have
Hi

proét

(X7ZP) =0
for all i > dim X.

Proof. Fix an integer ¢ > dim X. By a result of Bhatt—Mathew, [BM21, Remark 7.4(2)], for any

n > 1, we have the vanishing Hémét (X,7Z/p") = 0.5 Thus, using the exact sequence

0— Rl liLnHIi)r_olét(X7 Z/pn) - H;)roét(X7 ZP) - liLnHéroét(X7 Z/pn) —0
n n

it remains to show that
R'lim H] % (X, Z/p") = 0. (7.19)
n

Considering the long exact sequence associated to the short exact sequence of sheaves on X, 04t

0—Z/p— Z/anrl —Z/p" —0
and using again that Hf)mét (X,Z/p) = 0, we deduce that the transition maps of the inverse system
{H"1 (X,Z/p™)}, are surjective; then, we conclude by the Mittag-Leffler criterion. O

proét

Now, let us at least indicate a possible direction for proving Conjecture 7.11 in dimension higher
than 1.

Remark 7.14 (On the obstruction to proving Conjecture 7.11). Let us assume for simplicity that X
is an affinoid rigid space over C' having a smooth formal model over O¢. In this case, by Theorem
3.15(i) we have in particular that the monodromy action N on the Hyodo-Kato cohomology of X
is trivial. We claim that to prove Conjecture 7.11 it suffices to show that

HYFF, H(X)@O(m)) =0 forall0<n<m (7.20)

62The cited result does not keep track of the condensed structure on H’, 4 (X,Z/p"), however doing this does not

P
pose any problem.



RATIONAL p-ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES 91

where Hpp(X) denotes the n-th Fargues-Fontaine cohomology group of X (Definition 6.16). We
note that, by Proposition 6.8 (applied to Hpp(X) ® O(m) € Nuc(FF) concentrated in degree 0)
and (the proof of) Theorem 4.1, the condition (7.20) is equivalent to the following one®

o —p™ Higg(X) ®'% B — Hygg(X) ®% B is surjective for all 0 < n < m. (7.21)

Before proving the claim, we pause to remark that (7.20) holds replacing X with a dagger structure
XTon X (Remark 3.20), in fact, thanks to Theorem 6.17(i) and Theorem 3.30, the vector bundle

n(XT) on FF has Harder—Narasimhan slopes > —n. Recalling Theorem 3.15(i), this suggests the
following question: can one prove (7.21) using that the Frobenius on the n-th crystalline cohomology
group has an inverse up to p”, [BS22, Theorem 1.8(6)]?

Now, to prove that the condition (7.20) implies Conjecture 7.11, as in the proof of Theorem
7.12, by |Elk73, Theorem 7 and Remark 2|, we can assume that X is the base change to C of a
smooth affinoid Xy defined over a finite extension of K, and, without loss of generality, we can
further assume that X is defined over K. Then, again as in the proof of Theorem 7.12, combining
Theorem 7.2 with Proposition 7.3(ii), for all # > 0 we obtain the following commutative diagram in
Moda);id with exact rows

(Higd (X) 93, B)7 ™ — QLX) (X) — Hyyo(X.Qu0) = (Hige(X) % B)7 —

L | | |
0— HRH(X) —— Q71(X)/d23(X) —— QX)) ————— Hip(X) ———
Here, we used that, for any 0 < j <4, we have
HI((RT i (X) @g* B)P=") 2 (Hip (X) @3 B)P=.

In fact, since B is a flat solid F-vector space (by [Bos21, Corollary A.65]), we have an exact sequence

- ' , . _ . _

0 — (Hip (X) ®% B)/im(p — p') — H’((RTux(X) @ B)*™"") — (Hjjk (X) &% B)¥™" — 0
and the left term vanishes thanks to (7.21). Now, it remains to show that we have
ker oy &2 QX)) / ker d.

From the diagram above, we obtain the following commutative diagram with exact rows
(Hipd (X) @% B)#" — QI71(X)/dQ (X)) —— keraj ——— 0
5 | |
0— HRH(X) —— Q7YX)/d23(X) — Q7Y(X)/kerd — 0.

Then, using the snake lemma, we deduce that we need to show that the map ~; is surjective. For
this, by [F'S21, Proposition I1.2.3] we have the following exact triangle in QCoh(FF)

HiE (X) © O — 1) 5 Hig (X) @ O(1) = 1o (HIR (X)) (7.23)

63Here, we recall [Bos21, Corollary A.65] and we note that we have Rlim;c(0,00) Hiti (X) ®% Br ~ Hii (X) ®% B
by [Bos21, Corollary A.67(ii)], using that Hg (X) is a quotient of F-Banach spaces.
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where (oo 4 1 QCoh(Spa(C)) — QCoh(FF) denotes the pushforward functor. Here, we used Theorem
3.15(iii) and the flatness of C' for the solid tensor product ®% ([Bos21, Corollary A.65]). Taking
the long exact sequence in cohomology associated to (7.23) on FF, recalling Proposition 6.8, from
(7.20) we deduce that ~; is surjective, as desired.

7.5. Remarks about coefficients. In this subsection, we indicate a partial extension of Theorem
7.2 to coefficients. For simplicity, we restrict ourselves to smooth rigid-analytic varieties over C.

Definition 7.15. Let X be a smooth rigid-analytic variety over C'. Denote by v : Xproet — Xeét,cond
the natural morphism of sites. For M a B-local system on X, i.e. a sheaf of B-modules that is
locally on X 04 free of finite rank, we define the B-cohomology of X with coefficients in M as the
complex of D(Mod$e"d)

RT'g(X,M) := Rl¢ cond (X, L Rv.M).
and we endow it with the filtration décalée.

With the definition above, given L a Qp-local system on X, with associated B-local system
M = L ®q, B, tensoring with L. ®g, — the exact sequence (6.1), the same argument used in the

proof of Theorem 6.3(i) shows that we have a natural isomorphism in D(Moda’;d)

TSRl RT (X, M)¥="" = 75 R0 06 (X, L(4)).
Similarly, we have a version with coefficients of Theorem 6.3(ii). Then, combining the same results

cited in the proof of Theorem 5.1 (in the smooth case), which rely on Scholze’s Poincaré lemma for
IB%(J{R, we obtain the following result.

Theorem 7.16. Let X be a connected, paracompact, smooth rigid-analytic variety defined over K.
Let I be a de Rham Qp-local system on Xyroet, with associated B-local system M = L ®q, B, and
associated filtered Ox-module with integrable connection (£,V,Fil*). For any i > 0, we have a
Yy -equivariant isomorphism in D(Mod%?;id)

TSIRT proee (X, L(i)) = 75 fib(RT p(X o, M)¥=" — (RTagr(X, &) @%™ Bf,)/ Fil’).
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APPENDIX A. COMPLEMENTS ON CONDENSED MATHEMATICS

This appendix consists of a miscellaneous collection of results on condensed mathematics that we
use in the main body of the paper.

Notation and conventions A.1. In this appendix, we adopt the same notation and set-theoretic
conventions of [Bos21, Appendix A]. All condensed rings will be assumed to be commutative and
unital.

A.1. Derived p-adic completion and solidification. In this section, we compare the derived
p-adic completion to the solidification.

Notation A.2. Let p be a prime number. In the following, for M € D(CondAb), we denote by

M) := Rlim(M 73 Z/p") € D(CondAb)
neN
its derived p-adic completion. We say that an object M € D(CondAb) is derived p-adically complete
if the natural map
M — M}
is an isomorphism of D(CondAb).

For A a solid ring, we write Modf‘fhd for the symmetric monoidal category of A-modules in Solid,
endowed with the solid tensor product ®%.

Proposition A.3 (cf. [CS20b]). Let A be a derived p-adically complete solid ring. For all cohomo-
logically bounded above complexres M, N & D(Modifhd), we have a natural isomorphism

M) @5 NN s (M @5 N (A1)

Proof. First, we recall that the category Modffhd is generated under colimits by the compact pro-
jective objects ([[;Z) @5 A = (11, Zp) ®%p A, for varying sets I. By hypothesis, we may assume
that M and N are connective; then, writing M = colim,jcaopr My, in D(Mod5"') with M, a direct
sum of objects of the form ([[; Z,) @y, A, the natural map colimpec o (Mp);,)
phism (as it can be checked via a spectral sequence), and similarly for N. Therefore, using that the

solid tensor product commutes with colimits, it suffices to prove the statement for M = M’ ®%p A
and N = N’ ®7, A (concentrated in degree 0), with M’ and N’ objects of Modszc;hd of the form
@jeJ(HIj Zp) for varying sets J and I, for j € J.

In the case A = Z,, using Lemma A .4 the statement readily reduces (cf. the proof of [Bos21,
Proposition A.49|) to the isomorphism [[; Z, ®IZ; [1;Z, = I1;y;» Zp which holds for any sets I
and I’ (see e.g. [Bos21, Remark A.18]).

In general, we want to show that we can reduce to the case A = Z,. We will use that [[;Z, is
flat for the tensor product ®%p, i.e. for any @ € MOdSZO;id we have that [[; Z, ®Ii; (@ is concentrated
in degree 0: for this, writing @ as a filtered colimit of quotients of objects of the form []; Z,, we
can reduce to the case () is derived p-adically complete; in this case, using (A.1) for A = Z,, by the
derived Nakayama lemma, we can reduce to checking the claim modulo p, in which case it follows
from [Bos21, Lemma A.19]|, using that any solid F)-module can be written as a filtered colimit of

N MI;\ is an isomor-
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profinite Fj-vector spaces, [CS20a, Proposition 2.8|. Then, from (A.1) for A = Z,, using that A is
derived p-adically complete, we deduce that

M) = (M’ @z* A)p = (M) @p* A
and similarly for V. Hence, we have a natural isomorphism
M) 4" N) = (M')) @5 (N')) @5 A= (M’ @F" N' @5 A)p = (M ®45" N))
where we used again (A.1) for A =Z,. O

We used crucially the following result.

Lemma A.4. For c € [0,1] we denote (Zp)<. = {x € Zy, : |x| < c}. For any sets J and I;, for

j € J, we have
DIz = tim  [[11@)<s0) (A.2)

jeJ I, f:J=[0,1,f—0 jeJ I;

where the colimit runs over the functions f : J — [0, 1] tending to O (i.e. for every e > 0, the set
{jeJ:|f(j)| > e} is finite) partially ordered by the relation of pointwise inequality f < g.

Proof. We will adapt the proof of [Bos21, Lemma A.53|. It suffices to prove (A.2) on S-valued
points, for all extremally disconnected set S. Let M := @je s11 I Zy,. We note that, thanks to

the flatness of the condensed abelian group M (which follows from Lemma A.5), the derived p-adic
completion of M agrees with its underived p-adic completion hLHnEN M /p™. Then, we have

= lim @Hom (S, HZp/p
nEN jeJ
from which we deduce that

M}(S) = {(gj)jes with g; € €°(S, HIJ, Zp) : Ve >0, g;(S) C Hlj (Zyp)<c for all but finitely many g;}

which, in turn, identifies with

lim HH%O p)<f(i))

f:J=[0,1], f—=0 \jeJ I,

thus showing (A.2). O

The following lemma was used above and in the main body of the paper.

Lemma A.5 (|CS22, Proposition 3.4|). A condensed abelian group M € CondAb is flat if and only
if, for all extremally disconnected sets S, the abelian group M(S) is torsion-free.

A.2. co-category of nuclear complexes. In this section, we collect some general properties and
characterizations of the oco-category of nuclear complexes attached to an analytic ring, which are
due to Clausen—Scholze, focusing in particular on a special class of analytic rings relevant to the
main body of the paper. This section should be read in conjunction with [Bos21, §A.6].
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Notation and conventions A.6. We will denote by ExtrDisc the category of extremally discon-
nected sets.

We recall that an analytic ring (A, M) (in the sense of [CS19, Definition 7.4]) is commutative if A
is commutative (and unital), and normalized if the map A — M([x] is an isomorphism. All analytic
rings will be assumed to be commutative and normalized.

For an analytic ring (A, M), we denote by D(A) the derived co-category D(Mod5™), and we
denote by D(A, M) the derived oco-category of (A, M)-complete complexes in D(A), equipped with
the symmetric monoidal tensor product ®I(A M) For M € D(A, M) we write

Mv = HOHID(A’_/\/[)(]\47 A)
for its dual.

Definition A.7 (|CS20a, Definition 13.10]). Let (A, M) be an analytic ring. A complex N €
D(A, M) is nuclear if, for all S € ExtrDisc, the natural map

(MISTY ®(a.p0) N) () = N(S) (A.3)

in D(AD) is an isomorphism. We denote by Nuc(A, M) the full co-subcategory of D(A, M) spanned
by the nuclear complexes.

Remark A.8. We note that the co-subcategory Nuc(A, M) C D(A, M) is stable under all colimits
(as both the source and the target of (A.3) commute with colimits in N), and under finite limits
(as ®%A ) commutes with finite limits).

In order to recall a useful characterization of nuclear complexes, we need the following definitions.

Definition A.9 ([CS22, Definition 8.1|). Let (A, M) be an analytic ring. A map f: M — N in
D(A, M) is called trace-class if it lies in the image of the natural map

(MY ®(LA,M) N)(*) — Hompa a0y (M, N).

Definition A.10 ([CS20a, Definition 13.12]). Let (A, M) be an analytic ring. An object M €
D(A, M) is called basic nuclear if it can be written as the colimit of a diagram

plplipa .
where P, € D(A, M) are compact objects and f;,, are trace-class maps.

Proposition A.11 (|CS20a, Proposition 13.13]). Let (A, M) be an analytic ring. An object in
D(A, M) is nuclear if and only if it can be written as a filtered colimit of basic nuclear objects.

We deduce the following result.

Corollary A.12. Let f : (A,LM) — (A,N) be a morphism of analytic rings. The base change
functor

- ®%A,M) (BaN) : D(A7M) - D(BaN)
preserves nuclear objects.

Proof. 1t suffices to apply Proposition A.11 observing that the base change functor preserves com-
pact objects and trace-class maps. O

To further study the oco-category of nuclear complexes, we will use the following the definition.
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Definition A.13 (|CS]). Let (A, M) be an analytic ring. We define the trace-class functor
()" : D(A,M) — D(A) : M — M™
where M is defined on S-valued points,®* for S € ExtrDisc, as
MY(S) = (M[S]Y @4 ) M) ()-
Now, we collect some basic properties of the trace-class functor.

Lemma A.14. Let (A, M) be an analytic ring.
(i) The trace-class functor (=) : D(A, M) — D(A) takes values in D(A, M).
(1)) A map f: P — M in D(A, M) with M compact object is trace-class if and only if it factors
through M*.
(iii) An object M € D(A, M) is nuclear if and only if the natural map M*™ — M is an isomorphism.

Proof. For part (i), one can adapt the argument of [Bos21, Lemma A.47(i)]. For part (ii), as in the
proof [Bos21, Lemma A.47(ii)|, the case P = M|[S], with S extremally disconnected set, is clear; for
a general P compact object of D(A, M), we can reduce to the previous case writing P as a retract
of a finite complex whose terms are objects of the form M([S], with S extremally disconnected set
([Sta20, Tag 094B]). Part (iii) follows immediately from the definitions. O

Proposition A.15 ([CS], [And]). Let (A, M) be an analytic ring. For any M € D(A, M), the
object M (and in particular any nuclear object in D(A, ./\/l))b5 can be written as a colimit of shifts
of objects of the form M[S]Y for S extremally disconnected sets.

Proof. Recalling that D(A, M) is generated, under shifts and colimits, by M|T] for varying ex-
tremally disconnected sets T', we can apply the same argument of [Bos21, Proposition A.48]. O

Next, we focus on the categorical properties of the oo-category of nuclear complexes for the
following special class of analytic rings used in the main body of the paper.

Notation A.16. Let F' be a non-archimedean local field, and let A be a solid F-algebra.

For the analytic ring (A,Z)a = (A, M4) from [Bos21, Proposition A.29] (i.e. the analytic ring
structure on A induced from the analytic ring Zg), we denote by Nucy := Nuc((A,Z)a) the full
oo-subcategory of nuclear complexes of Solid4 := D((A,Z)a), and we write ®% for the symmetric
monoidal tensor product ® (4 7),-

Theorem A.17 ([CS]). Let F be a non-archimedean local field, and let A be a nuclear solid
F-algebra.%°
(i) The subcategory Nucy C Solidy is a stable co-category, closed under the tensor product ®k',
finite limits, countable products, and all colimits.
(i) The oco-category Nucy is generated, under shifts and colimits, by the objects Hom 4(A[S], A),
for varying S profinite sets.
(i4i) An object M € Solida lies Nucy if and only if H(M)[0] lies in Nucy for all i.

64Via, the equivalence of oo-categories Cond(D(Ab)) 2 D(CondAb).

65Here, we use Lemma A.14(iii).

66Given a solid F -algebra A we say that it is nuclear if the underlying solid F-module is nuclear in the sense of
[Bos21, Definition A.40] with respect to the analytic ring (F,Z)a (as we will see in the proof below, this is equivalent
to requiring that the complex A[0] € Solidr is nuclear in the sense of Definition A.7). For example, any Fréchet
F-algebra is a nuclear F-algebra by [Bos21, Proposition A.64].
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Proof. First we note that, by [And21, Proposition 2.11], we have M 4[S]"¥ = Hom 4(A[S], A), for
all profinite sets S. Moreover, as the latter objects are flat for the tensor product ®% by [Bos21,
Theorem A.43(ii)], a complex N[0] € Solid4 concentrated in degree 0 is nuclear, in the sense of
Definition A.7, if and only if the solid A-module N is nuclear, in the sense of [Bos21, Definition
A.40].

Thanks to the above observations, part (ii) follows from Proposition A.15 and [Bos21, Theorem
A.43(ii)]. For part (i), the closure of Nucs C Solid4 under finite limits and all colimits was observed
more generally in Remark A.8; for the closure under the tensor product ®ﬁ' and countable products,
taking K-flat resolutions in Nucy (which exist thanks to part (ii)), we can reduce to the statement
of [Bos21, Theorem A.43(i)].

For part (iii), if M € Solid lies Nuc4, then H*(M)[0] lies in Nucy4 for all 4, using again that the
objects M 4[S]V, for varying profinite sets S, are flat for the tensor product ®%. Conversely, passing
to the Postnikov limit, M ~ lim 727" M, by part (i), we can suppose that M is cohomologically

bounded below, and using M ~ h_r)nn TS"M | we can even suppose that M is bounded, and then
concentrated in one degree, in which case the implication is clear. O

Remark A.18. Let A be a nuclear solid F-algebra and let M € Solid4. We have that M lies in Nucz
if and only if M (regarded in Solidr) lies in Nucp. For this, it suffices to recall Definition A.7, and
observe that, by [And21, Proposition 5.35], for all S € ExtrDisc, we have a natural isomorphism
Ma[S]Y 2 Mp[S]Y @%" A.

A.3. Quasi-coherent, nuclear, and perfect complexes on analytic adic spaces. In this

section, we recall some results of Andreychev on quasi-coherent, nuclear, and perfect complexes on
analytic adic spaces, that we need in the main body of the paper.

Notation A.19. Given a pair (4, A1) with A a complete Huber ring and A" a subring of A°, we
denote by (A, AT)g the associated analytic ring, [And21, §3.3].

Theorem A.20 (|[And21, Theorem 4.1]). Let Y an analytic adic space. The association taking
any affinoid subspace U = Spa(A, A*) C Y to the oco-category D((A, AT )a) defines a sheaf of oo-
categories on Y. We define the co-category of quasi-coherent complezes on'Y as the global sections
of such sheaf, and we denote it by QCoh(Y).

Next, we recall that also nuclear objects satisfy analytic descent on analytic adic spaces.
Theorem A.21 (|[And21, Theorem 5.41]). Let Y an analytic adic space. The association taking
any affinoid subspace U = Spa(A, AT) C Y to the co-category Nuc((A, A" )a) defines a sheaf of
oo-categories on Y. We define the oo-category of nuclear complexes on' Y as the global sections of
such sheaf, and we denote it by Nuc(Y).

It turns out that the co-category of nuclear objects associated to an analytic complete Huber
pair does not depend on the ring of definition. More precisely, we have the following result.

Theorem A.22 (|And]). Let (A, A") a pair with A an analytic complete Huber ring and A" a
subring of A°. The oco-category Nuc((A, AT )a) is generated, under shifts and colimits, by the objects
Hom 4 (A[S], A) for varying S profinite sets.

In what follows, given a condensed ring R, we denote by Perfp C D(Modﬁ;?nd) the oo-subcategory
of perfect complexes over R, [And21, Definition 5.1].

Andreychev showed that, passing to dualizable objects, Theorem A.21 implies the following result.
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Theorem A.23 ([And21, Theorem 5.3]). Let Y an analytic adic space. The association taking any
affinoid subspace U = Spa(A, AT) C Y to the oo-category Perf 4 defines a sheaf of co-categories on
Y. We define the co-category of perfect complexes on'Y as the global sections of such sheaf, and we
denote it by Perf(Y).
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