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Abstract. — As a consequence of Efimov’s proof of rigidity of the oo-category
of localising motives [Efi-Rig], Scholze and Efimov have constructed refinements
of localising invariants such as TC™. In this article we compute the homotopy
groups of the refined invariants TC™" (ku ® Q/ku) and TC™*{(KU ® Q/KU).
The computation involves a surprising connection to ¢-de Rham cohomology. In
particular, it suggests a construction of a ¢-Hodge filtration on g-de Rham complexes
in certain situations, which can be used to construct a functorial derived q-Hodge
complez for many rings. This is in contrast to the no-go result from [Wag24], which
showed that such a ¢-Hodge complex (and thus also a ¢-Hodge filtration) cannot
exist in full generality.
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§1. INTRODUCTION

§1. Introduction

This article studies g-de Rham cohomology, refined TC™, and a surprising connection between
the two. This connection enables us to construct, for a certain full subcategory of rings, a
functorial g-Hodge filtration on derived ¢g-de Rham cohomology, and to compute the homotopy
groups of TC™((ku ® Q)/ku) and TC™"* (KU ® Q)/KU).

We'll first introduce the two main characters in §1.1 and §1.2, and then explain their relation
in §1.3. In §1.4, we’ll speculate on how this work should give rise to an interesting cohomology
theory for varieties over Q.

§1.1. ¢-de Rham and ¢-Hodge complexes

In the following, we’ll work over Z for simplicity. Everything in this subsection can (and will,
in the main body of the text) be developed over a A-ring A which is perfectly covered, meaning
that the Adams operations ¢¥™: A — A are faithfully flat; equivalently, A admits a faithfully
flat A-map A — A into a perfect A-ring (see [Wag24, Remark 2.46]).

1.1. The ¢-de Rham complex. — For a polynomial ring Z[z], one can define a g-derivative
(or Jackson derivative after [Jacl0]) ¢-0: Z[x,q] — Z[z, q] via
qr,q) — z,q
q-0f(x,q) = floma) = Fz:q),

qr — T

For example, ¢-0(z™) = [m],2™ !, where [m], == 1+ ¢+ - + ¢™ ! denotes the Gaussian
g-analogue of m. For a polynomial ring in several variables Z[zy,...,z,], one can similarly
define partial q-derivatives q-0; for i = 1,...,n and organise them into a g-de Rham complez,
as was first done by Aomoto [Aom90].

In [Sch17], Scholze observed that, upon completing at (¢ — 1), this construction can be
extended to more general situations as follows: Define a framed smooth Z-algebra to be a pair
(S,0) of a smooth algebra S over Z and an étale map O0: Z[Ty,...,T,] — S. Scholze shows
that the partial g-derivatives can be extended to maps ¢-0;: S[qg — 1] — S[q — 1]. Putting
q-V =31, ¢-0; dx;, one can then construct a (¢ — 1)-complete ¢g-de Rham complex

-V -v -v
0-Qbyz0 = (Sla =11 5 Qkjpla — 11 25 - 25 Q% 5[0 - 11) -
This is a g-deformation of the usual de Rham complex in the sense that ¢-QF /2,0 [(g—1) = QF /7
In general, ¢-Q7% /2,0 is not just a completed base change 2% /2 ®z Zq — 1].
As a complex, ¢-Q2% /2,0 depends on the choice of étale coordinates [1. However, Bhatt and

Scholze proved that as an object in the derived category D(Z[q — 1]), ¢-Q% /7,0 18 independent
of . More precisely, they showed that there exists a functor

q-Q_z: Smz, — CAlg (ﬁ(q_l)(Z[[q — 1]]))

such that ¢-Qg/7 ~ q-{05 ; o, for all framed smooth Z-algebras (S,0). The essential step [BS19,
Theorem 16.22] isA to identify the p-completion (g-€2% /Zﬂ);\ with the prismatic cohomology

5,16/ Zola—1] ©f SplCp] relative to the g-de Rham prism (Zp[g — 1], ([plg)). Here ¢ denotes a
p™ root of unity and ¢ — (p- Using the p-complete result, one can construct the global g-de

Rham complex functor ¢-€2_ 7 in a more or less formal way; we’ll explain this in the appendix
to this paper, in §A.


https://arxiv.org/pdf/2410.23078.pdf#theorem.2.46
https://arxiv.org/pdf/1905.08229.pdf#theorem.16.22
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1.2. The ¢g-Hodge filtration. — It’s a natural question whether the g-de Rham complex
can be equipped with a g-analogue of the Hodge ﬁl‘pration. For a framed smooth Z-algebra
(S,00), there’s an obvious guess: We could define Fily 4, - /2,0 to be the complex

((a=1'8Ta =11 = (¢ = /70 plg — 1] = -+ = Liygla — 1 = -+ = Qylla — 1])

This g-Hodge filtration is a g-deformation of the Hodge filtration on the usual de Rham complex
in the sense that Filj yq, q—Qg/ZE/(q —1) = Filfjq, {057, where the quotient is taken in filtered
abelian groups, with (¢ — 1) in filtration degree 1.

The question then becomes: Can this filtration be made functorial as well? As it turns
out, this is most likely not the case. To formulate a precise objection, let us introduce another
construction: The g-Hodge complex of (S,0) is the complex

1) ¢V 1) ¢V V¢V .,
g-Hdgl g o = (an—lu%%uq—lﬂ @Dev,  (aDa S/Zﬂq—lﬂ)

given by multiplying all the differentials in the de Rham complex by (¢ — 1). Observe that if
the ¢g-Hodge filtration could be made functorial, then the same would be true for the ¢g-Hodge
complex, as it can also be obtained as

~ 1 . (=1 1. (¢-1)
q_Hdgg/Z7D = COhm (Fllngg q_Qg/Z,D q—> Flléing q_QE/Z,D q—> .- ) .
(¢—1)

The ¢g-Hodge complex was first introduced (with different notation) by Pridham [Pril9] and
was studied by the second author in [Wag24], where the following result was shown:

1.3. Theorem (see [Wag24, Theorems 4.28 and 5.1]). — Let (S,0) be a framed smooth

Z-algebra and let q—Wmﬂg/Z denote the m™ q-de Rham-Witt complez as introduced in [ Wag24,

Definition 3.15].

(a) For every m € N the cohomology of q—Hdgg/Z,g/(qm — 1) is independent of the choice of
O. More precisely, there’s an isomorphism of differential-graded Z[q|-algebras

A

H* (q—Hdgg/Zﬂ/(qm - 1)) = (q_Wmﬂg/Z)(q—l) ’

where the differential on the left-hand side is the Bockstein differential. Under this
isomorphism, for all d | m the projection q—HdgE/Zﬂ/(qm -1) — q—Hdgg/Zﬂ/(qd -1
induces the Frobenius on q-de Rham—Witt complexes.

(0) (S,0) — ¢-Hdgg,; o cannot be extended to a functor ¢-Hdg_z: Smz — ﬁ(q,l)(Z[[q —1])
in such a way that the identifications from (a) also become functorial.

Theorem 1.3 is by all means a weird result. Part (a) promises functoriality and a wealth of
extra structure. But then part (b) shows that functoriality of the ¢-Hodge complex (and thus of
the g-Hodge filtration) is impossible, at least not in a way compatible with the extra structure.

1.4. Remark. — It’s not known to the authors whether the ¢-Hodge complex can be made
functorial in a way that’s incompatible with the extra structure, but we consider this unlikely.

In this article, we would like to propose the following partial fix for this lack of functoriality.


https://arxiv.org/pdf/2410.23078.pdf#theorem.4.28
https://arxiv.org/pdf/2410.23078.pdf#theorem.5.1
https://arxiv.org/pdf/2410.23078.pdf#theorem.3.13
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1.5. The ¢-Hodge filtration, revisited. — In the following, dR_ 7 denotes the p-complete
derived de Rham complex (that is, the p-completed non-abelian derived functor of the de Rham
complex), Fill”‘{dg dR_/z, its derived Hodge filtration, and ¢g-dR_ 7z, denotes the p-complete
derived ¢g-de Rham complex.

Let R be a p-torsion free p-complete ring which is a quasiregular quotient over Z, and
such that the Frobenius on R/p is semiperfect. We’ll introduce the technical terms in 3.1; for
now, we remark that these assumptions ensure that dRg/z, and ¢g-dRp/z, are actual rings and
Filfjqg dR gz, is a filtration of dRg/z, by a descending chain of ideals. After (¢ — 1)-completed
rationalisation, the ¢g-de Rham complex becomes a base change of the de Rham complex (see
Lemma A.3) and so

¢-dR gz, ®zjq-1) Qlg — 1] ~ (dRg/z, ®z Q)¢ — 1].

Observe that the left-hand side carries two filtrations: The Hodge filtration and the (¢ — 1)-adic
filtration. We can combine both of them into one and then define:

1.6. Definition. — The ¢q-Hodge filtration FilZ_Hdg q-dRp/z, is the preimage of the combined
Hodge- and (¢ — 1)-adic filtration under ¢-dRpg/z, — (dRpg/z, ®z Q)[g — 1]. The derived
q-Hodge complex of R over Zj, is the ring

. : -10 (¢—1) .41 (g—1) A
q-Hdgg/z, = colim(Fil; 4, ¢-dRRg/z, — Fil; pge ¢-dRpgjz, — -+~ 1)’

A priori, it seems outrageous to hope that Fil;“,Hdg q-dRp/z, would be a well-behaved
construction, and indeed, usually, it’s not true that the ¢-Hodge filtration is a g-deformation of
the Hodge filtration. For example, this provably fails if R is a p-torsion free perfectoid ring
(that’s essentially how Theorem 1.3(b) is proved). However, we’ll show the following:

1.7. Theorem (Theorem 3.10(b)). — Suppose that, in addition to the assumptions of 1.5,
R admits a lift to a p-complete Ei-ring spectrum Sg such that R ~ Spg ®Sp Zy. Then
Filz_Hdg q-dRpz, is a g-deformation of the Hodge filtration Fill*{dg dRp/z,-

1.8. Remark. — Let us stress that Fil;’;_Hdg q-dRp/z, is completely functorial in R. The
choice of a lift Sg is not part of the functoriality and the condition from Theorem 1.7 is really
just an existence condition.

1.9. Remark. — Thanks to Burklund’s breakthrough on the existence of E;-structures on
quotients [Bur22], it’s easy to construct examples of rings R that satisfy the condition. For
example, if B is a p-complete perfect -ring and (z1,...,z,) is a Koszul-regular sequence in B
such that B/(z1,...,x,) is p-torsion free, then R = B/(z{",...,z%") admits such a lift S as
soon as «; > 2 for all i.('Y) We’ll explain how this works in 3.11.

Let us also remark the following curious consequence: If R = Ajy¢/d is a perfectoid ring,
then we’ve claimed above that the ¢-Hodge is ill-behaved. However, it becomes well-behaved as
soon as one passes to the nil-thickenings Ajf/d®, a > 2.

(D This assumes p > 3. In the case p = 2, we need all a; to be even and > 4 for Burklund’s result to apply.
Interestingly, the conclusion of Theorem 1.7 is still true for p = 2 if we only assume a; > 2. This will be shown
in Theorem 3.10(a).
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In the situation of Remark 1.9, everything can be made explicit: The derived g-de Rham
complex is the prismatic envelope

¢(z1") p(z7m) }A
[p]q Y [p]q

and the ¢g-Hodge filtration is the preimage of the (z{*,...,2%", ¢ — 1)-adic filtration on the
completed rationalisation. If v(—) := (—)?/p denotes the p-adic divided power, then ¢-dRp/z,

q-dRp/z, ~ Blq - 1]]{
(pyg—1)

contains lifts of the iterated divided powers (™ (z$*) for all n > 0. What Theorem 1.7 essentially
says in this case is that if «; > 2 then we can always find such a lift that also lies in the ideal
(z{, ..., 2% g — 1)P" after completed rationalisation.

It’s possible to give an elementary proof of Theorem 1.7 in this case and we’ll do so in §5.3.
For general R, we’ll derive Theorem 1.7 instead from a homotopy-theoretical result. We let
ku and KU denote the connective and the periodic complex K-theory spectrum. We also let
B € mo(kuh? 1) is the Bott element and t € m_o(ku™ 1) the complex orientation generator for

which 1 + $3t classifies the standard representation of S on C.

1.10. Theorem (Theorem 3.22). — Let kup = (ku ® Sg);, and KUg = (KU ® Sg),,. Then
the spectra TC™ (kug/ku), and TC™ (KUgr/KU), are concentrated in even degrees and their
even homotopy groups are given as follows:

T4 (TC™ (kug/ku))) = Fil} 4, ¢-dRp sz, T2« (TC™(KUR/KU),) = g-Hdgp 5 [57].

Here q—cﬁ\{R/Zp denotes the completion of the q-de Rham complex at the q-Hodge filtration and
the isomorphisms identify ¢ — 1 = [t.

1.11. The ¢-de Rham complex and ku. — The connection between ku and ¢g-de Rham
cohomology'?), of which Theorem 1.10 is an instance, was discovered by Arpon Raksit. In
unpublished work, reviewed in [DM23, Remark 4.3.24], he showed

grd TP (ku[z]/ku) ~ q_QZ[m]/Z,D and gl TC™ (KU[z]/KU) ~ q—Hngm/ZEI .

Here grgv refers to the 0™ graded piece of the even filtration as introduced in [HRW22] and
O: Z[x] — Z[x] is the identical framing.

To the authors’ knowledge, this computation doesn’t imply Theorem 1.10 yet. Instead, the
heart of our proof is another unpublished result, which we learned from Arpon Raksit, who in
turn learned it from Thomas Nikolaus: There exists an S'-equivariant equivalence of E;-ring
spectra

THH(Zy[G,]/Slq — 1)) — 720 (k')

(see Theorem 3.18). This equivalence allows us to construct a map
1 - A
vy s TC(R[G]/S]q — 11)) — TP (kug/ku))

(see 3.19). Via the [BMS19]-approach to prismatic cohomology, one can show that the left-hand
side computes the g-de Rham cohomology of R, except with a Frobenius twist and completed at

(1-DWe wish to propose the following slogan for this connection: “g-de Rham cohomology is the de Rham
cohomology of a lift along ku — Z”, similar to how crystalline cohomology is the de Rham cohomology of a lift
along Z, — F,. Here “de Rham cohomology over ku” is realised as TC™ (—/ku) or TP(—/ku), equipped with
their even filtrations.


https://arxiv.org/pdf/2304.04739.pdf#page=39
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the Nygaard filtration. The rest of the proof of Theorem 1.10 proceeds as follows: We massage
this map until its domain is really ¢-dRp/z,, then we verifiy that it is an equivalence up to
completion at some filtration (which can be done modulo (¢ — 1)), and finally we identify the
filtration (via comparison with the rationalisation).

1.12. Higher chromatic deformations? — In fact, for the purpose of Raksit’s computation,
there’s nothing special about ku. For any even periodic E-ring spectrum E with connective

cover e ~ T5o(FE), Raksit computes gr, TP(e[x]/e) to be a certain deformation of Q2

attached to the formal group law of E, and grl, TC™ (E[z]/E) is again a “Hodge-variant” of
this. As for the ¢-de Rham complex and the g-Hodge complex in 1.1 and 1.2, these deformations
depend on a choice of coordinates, so it’s not clear whether they can be defined functorially.
But we suspect that they show up in the picture that we’ll sketch in §1.4 (see 1.22 specifically).

§1.2. Refined THH and TC™

In the following, we use the notation and conventions for symmetric monoidal co-categories
from 1.25. Recall the following notion due to Gaitsgory and Rozenblyum (see [GR17, Defini-
tion 1.9.1.2], which is different but equivalent):

1.13. Definition. — A presentable stable symmetric monoidal co-category & is rigid if the
following two conditions are satisfied:

(a) The tensor unit 1 € £ is compact.

(b) €& is generated under colimits by objects of the form X ~ colim(X; — X2 — ---), where
each X,, — X,, .11 is trace-class, that is, induced by a morphism 1 — X){H ® X, (see §2.2).

A deep result of Efimov [Efi-Rig] shows that whenever & is rigid, the oo-category Mot of
localising motives over £ (introduced in [BGT16]) is rigid as well. The following construction,
due to Scholze and Efimov, uses this to construct refinements of localising invariants. As we’ll
see, these refinements often contain a lot more information than the original invariant.

1.14. Refined localising invariants. — Suppose E: MotlgOC — D is a symmetric monoidal
localising invariant whose target is not rigid. Then there exists a unique localising invariant

E*f that fits into a diagram

MotfgQC —E .p

Ere\f\\\\) T
Drig
where D''& — D is the universal functor from a rigid symmetric monoidal co-category. We call
E*t the refined invariant of E.

If k is an Eo-ring spectrum, we can consider £ ~ Mody(Sp). Then topological Hochschild ho-
mology relative to k, THH(—/k): Moti® — Mody,(Sp)BS" is an example of a localising invariant
with rigid source but non-rigid target. We let THH™!(—/k) denote its refinement. In this case
the ridificitation (Mody(Sp)B5")™# is the co-category of nuclear objects in Ind(Mody(Sp)BS"),
as introduced in Definition 2.8.(3) If k is complex orientable and t € 7_5(kP") is a complex

(-9 Here we use that Modk(Sp)BS1 is locally rigid: Its tensor unit isn’t compact, but Mody (Sp)le still satisfies
Definition 1.13(b), because it is compactly generated and all compact objects are dualisable. In general, Drie s
not Nuc(Ind(D)), but its full sub-co-category generated under colimits by Q>o-indexed diagrams in which all
transition maps are trace-class.


https://people.mpim-bonn.mpg.de/gaitsgde/Book/Vol1.pdf#subsubsection.1.9.1.2
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orientation generator, then taking S'-fixed points induces a symmetric monoidal equivalence
1 1 ~
(—)hS : Modk(Sp)Bs — MOdkhSl (Sp)é\

between k-modules with S'-action and #-complete kbS'-modules (see Lemma 4.7). Scholze
and Efimov then define the refined TC™ relative to k, TC'(—/k), to be the composi-
tion of THH™ (—/k) with this equivalence. This identifies the rigidification of Mody(Sp)B~"
with Efimov’s oco-category Nuc(k:hsl) of nuclear khSl—modules, defined as the full sub-oco-
category of Ind(Mod,,s1 (Sp);') generated under colimits by sequential ind-objects of the form
“colim”(M; — My — - --) such that each M,, — M, is trace-class.

1.15. Remark. — The refinement procedure from 1.14 offers a lot of flexibility, even if
we stick to THH, since the refinement is very sensitive to the choice of £. For example, if
C is a complete non-archimedean algebraically closed field, one can look at the refinement
THH;%C(—; Zy) of the functor

/\ .

1
THH(—, Zp)i MOtl(gg — MOdTHH(OC;Zp) (SpBS )p N

that is, we refine (p-completed) absolute THH, but only accept motives over O¢ as input.(!-4)
Scholze and Efimov [Sch24] have sketched a computation of THH;%C (C;Zyp) (or TC/_(’;gf(C i L),
which is equivalent by Lemma 4.7), by reducing the problem to the known computation of
THH(O¢/p*; Zy) for all o > 1.

The result is still vastly different from THH™ (C';Z,), where we would allow all localising

motives as input—which brings us to the main question that motivated this work.

§1.3. What’s THH"™(Q)?

We’ll explain in §1.4 why the answer to this question should be interesting, but let us already
remark that it has to be non-trivial: While THH(Q) ~ Q, one has THHref(Q)I/)\ # 0 for all
primes p. Indeed, this follows fromTheorem 1.19, but also from Scholze’s and Efimov’s result
in Remark 1.15. But actually computing THHref(Q), or just its p-completions, is a highly
non-trivial task: We’ll explain in §4.1 how to reduce this to a computation of THH(S/p®) for
all sufficiently large «, but computing these spectra seems out of reach.

Scholze and Efimov have suggested that a more approachable goal would be to compute
the base change THH™ (Q) ® MU ~ THH™ (MU ® Q)/MU) and then to attack the original
question—to the extent in which that’s possible—via Adams—Novikov descent. Since MU is
complex orientable, this contains the same information as TC™ ™ (MU ® Q)/MU). While we
still don’t know what happens for MU, the purpose of this article is to give an answer for ku.
To formulate the result, we need the notion of killing a pro-idempotent algebra, which we review
in §2.3, as well as the following ad-hoc construction.

1.16. More ¢g-Hodge filtrations. — We wish to define a g-Hodge filtration on ¢-dRz/p0)/z,
(since Z/p“ is not p-torsion free, it doesn’t fall within the scope of 1.5). Let Z,{z} be the
free p-complete perfect d-ring on a generator = and let Z,{z}- — Z, be the unique d-ring map
sending x +— p. Then Z/p® ~ Zp{zr}o/z* @%p{m}m Zy, and so it makes sense to define

Fil 14y ¢-AR(z/pe) /2, = Filj 1ag 4Rz, (o} oo /22 /2 @5 0} [a—17 Zola — 1] -

(Y Historically, THH;‘é o (=3Zp) is the first refined invariant considered by Scholze and Efimov.
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For av > 2 (the case p = 2 needs « even and > 4), this is a reasonable object, as Theorem 1.7
and Remark 1.9 show that it’s a g-deformation of the usual Hodge filtration on dRz/pe)/z, -
For an arbitrary m € N with prime factorisation m = [], p®», we put

Fil] g ¢-dR(z/m)/z = || Filjt1ag ARz /po0) /2, -
P

One can then also define the g-Hodge completed derived de Rham complex q—(ﬁ{(z /m)/z and
the derived q-Hodge complex q-Hdgz, ) /7.

1.17. Theorem (Theorem 4.20). — TC™'((ku® Q)/ku) and TC™™ (KU ® Q)/KU) are
concentrated in even degrees. Moreover, their even homotopy groups are described as follows:

(a) 2. TCT™((ku ® Q) /ku) = A}, where A}, is the idempotent nuclear graded Z[J3][t]-
algebra obtained by killing the pro-idempotent “lim) Fil;‘_Hdg ¢-dR(z/m)/z-

(b)  mo TCT™ (KU ® Q)/KU) = Axy[S*!], where Axy is the idempotent nuclear Z[q — 1]-
algebra obtained by killing the pro-idempotent “lim}, - ¢-Hdgz /) /7-

1.18. Remark. — Burklund [Bur22] showed that there exists a compatible system of E-
structures on S/m for m ranging through a coinitial subset of N°P| where N is the poset of
positive integers ordered by divisibility. Then TC™™((ku ® Q)/ku) itself is the idempotent
nuclear kuS’-algebra obtained by killing the pro-idempotent “lim” TC™ ((ku®S/m)/ku). This
is more or less formal, except for the following input: For fixed myg, the base change functor

— ®S/m S/moi RMOdg/m(Sp) — RMOdg/mO (Sp)

is trace-class as a morphism in the co-category PrISjw of stable compactly generated oco-categories
and left adjoint functors that preserve compact objects. We’ll explain the argument in §4.1.
An analogous conclusion holds for TC™" (KU ® Q)/KU).

After that, the proof of Theorem 1.17 essentially reduces to a computation of the homotopy
groups Ty TC™ ((ku ® S/m)/ku), and then further to the case where m = p® is a prime power.
This is the origin of the constructions in §1.1: We realised that the S'-equivariant Ei-equivalence
THH(Zy[Cp]/S[q — 1) ~ 750(ku'“?) constructed by Thomas Nikolaus could be used to show
that mo TP ((ku/p®)/ku) is the derived ¢g-de Rham complex of Z/p®, completed at some filtration.
An investigation of that filtration and a generalisation of our argument then naturally lead us
to Definition 1.6 and Theorem 1.7.

Theorem 1.17 provides a description of the desired homotopy rings, but it relies on the
g-Hodge filtrations on ¢-dRz/pey/z,- In §5.3, we’ll show that these guys can be explicitly
understood. This leads to a much more explicit description of Aj, and Aky in terms of
rings of overconvergent functions on certain adic spaces. For simplicity, we’ll work with
TCf’ref((ku;\ ® Q)/ku)) and TC*’ref((Ksz,\ ® Q)/KU)) instead. Let us first formulate the
result for KU;,\, as it is easier to state. We put

Aku,p = m TC™ ™ ((KU) ® Q)/KU))

SO T2 TC_’ref((KUI/D\ ®Q)/KU)) = Aky p[8*!]. Let also X = SpaZy[qg— 1] ~ {p=0,¢ =1}
be the “Tate locus”(!?) where p or ¢ — 1 is invertible. Then Axu,p has the following description,
confirming a conjecture of Scholze and Efimov.

(-5 Following Clausen—Scholze, we’ll call an adic space Tate (rather than analytic) if, locally, there exists a
topologically nilpotent unit.
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1.19. Theorem. — Let Z C X denote the union of the closed subsets Spa(Fp(g—1)), Fplg—1])
and Spa(Qp(Cpn ), Zy[Cpn]) for alln > 0. Let Z1 denote the overconvergent neighbourhood of Z
in X and O(Z1) the nuclear Zy[q — 1]-algebra of overconvergent functions on Z. Then

Axu, = 0(ZY).

In Fig. 1 we show a picture of ZT. It should be reminiscent of Scholze’s famous prismatic pic-
ture (a nice depiction of which can be found in [HN20, p. 4]), but the rays are “overconvergently
blurred” and the “origin” {p = 0,¢ = 1} has been removed.

=

Figure 1: The analytic spectrum of Agy , = O(Z1).

Since Z' visibly contains the entire infinitesimal neighbourhood of {p = 0} except for
the “origin”, we see that TC*’ref((KUZ/,\ ® Q)/KUp)» # 0. In particular, it follows that
THHref(Q);\ # 0, as we’ve claimed above.

To formulate a similar geometric result for ku;,\, consider the ungraded ring Z|[3, t]@m with
its (p, t)-adic topology. We wish to encode the graded (p,t)-complete ring Z,[3][t] in terms
of an action of G,, on Spa Z[B,t](Am), as usual—but we have to be careful: Since we wish
that ¢ is a topologically nilpotent elements in non-zero graded degree, we can only act by
units v “of norm |u| = 1”. More precisely, we have to replace G,, by the “adic unit circle”
T := Spa(Z[u*!], Z[uT']).

With this modification, everything works (as we’ll elaborate in §5.2): Declaring § and t to
have degree 2 and —2, respectively, determines an action of T on SpaZ[f, t]f\n £ and we can
identify Z,[3][t] with the structure sheaf on (SpaZ[, t]&t))/ T, where the quotient is always
taken in the derived (or “stacky”) sense. We also let X* := Spa Z[ﬁ’t]@;,t) ~ {p=0,6t =0}
Since p and St are homogeneous, X* inherits an action of T. Putting

Aﬁuyp = Tou TC_’ref((kul/)\ ® Q)/kuﬁ) ,

we see that Af,  is a graded Zp[B][t]-module, hence we can regard it as a quasi-coherent sheaf
on (Spa Z[ﬁ,t]?p t))/']l‘. As we’ll see, it is already a sheaf on the open substack X*/T. Then

Aﬁu,p can be described as follows:

10
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§1.4. SYNTHESIS: A NEW COHOMOLOGY THEORY FOR Q-VARIETIES

1.20. Theorem. — Let Z* C X* be union of the T-equivariant closed subsets {p = 0} and
{[p"]ku(t) = 0} for allm >0, where [p"|xu(t) == ((1 + Bt)P" —1)/B denotes the p™-series of the
formal group law of ku. Let Z*1 denote the overconvergent neighbourhood of Z*. Then Z*1
inherits a T-action and

Altmp = OZ*JL/']T .

§1.4. Synthesis: A new cohomology theory for Q-varieties

Let us end with a bit of speculation. It should be possible to adapt the formalism of even
filtrations from [HRW22] to TC™**{(—/ku). For a smooth variety X over Q, the graded
pieces gr¥, TC™' ((ku ® X)/ku) should define a cohomology theory RI',(X) together with a
filtration Fil* Rk, (X). Morally, this should be the “g-Hodge-filtered ¢g-de Rham cohomology
of X7.(16) Similarly, we can also put a filtration on TC™"(—/KU). By 2-periodicity, the
information contained in the associated graded is already fully captured by the O graded
piece grd, TC™ ™ (KU ® X)/KU) = RI'ky(X). Morally, R['xy(X) should be the “g-Hodge
cohomology of X

These cohomology theories could be very interesting: Even though the input X is rational,
their output will also contain non-trivial p-complete information. This article can be viewed as
a computation of the coefficients of Fil* RI',(—) and RI'ky(—).

1.21. Relation to ¢-de Rham/¢-Hodge cohomology — We expect that for a framed
smooth Z-algebra (S,0) as in 1.1, the value of Fil* Ry, (—) on the generic fibre Sg == S ®z Q
should be

Fil* Ry (Spec Sg) ~ Fil} g ¢-28 /2.0 @5 At

where the coordinate-dependent g-Hodge filtration is defined as in 1.2. Similarly, we expect
RIku(Spec Sg) ~ ¢-Hdgg)z 0 ®7f, 17 Aku

The philosophy is that after base change to the “period rings” Ay, and Aky, the constructions
from 1.2 become functorial, but also only depend on the generic fibre. We hope to study these
questions in future work.

But let us already point out that Fil* Ry, (—) is still far from the finest possible information
that one can squeeze out of refined THH.

1.22. Higher chromatic refinements. — First off, a finer cohomology theory should arise
from working with TC~*!(—/MU), or directly with the absolute THH**!(—). We would be very
interested in seeing the calculation for MU or any higher chromatic base like BP(n) or E,,. The
heart of our approach is the S'-equivariant E;-equivalence THH(Z,[(,]/S[q— 1), ~ 750 (kutcr)
from 1.11. This has conjectural higher chromatic analogues (see [Dev23, Conjecture 2.2.18]),
but even assuming those its not clear to us how to proceed. It would also be nice to see Raksit’s
deformed de Rham complexes from 1.12 appear.

We should also point out that THH™ (Q) is an E..-algebra over the K-theory spectrum
K(Q), which vanishes upon K(n)-localisation for n > 2. Due to the delicate nature of the
refinement, this doesn’t mean that the answer over a higher chromatic base would be trivial,

(1-6)Note that the naive g-de Rham cohomology of Q-varieties (obtained, for example, by applying Theorem A.1
for A = Q) would just be a (¢ — 1)-completed base change of ordinary de Rham cohomology. So RI'ku(X) also
gives a non-trivial answer to what the g-de Rham cohomology of X is supposed to be.
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and TC™"(—/MU) should still contain strictly more information than TC™"f(—/ku), but
that information will necessarily be rather subtle.

1.23. Habiro refinements. — There’s another direction in which the theory can be refined:
THH(—) naturally takes values in the oco-category CycSp of cyclotomic spectra, so we can lift
its refinement THH™ (—) to a functor with values in the rigidification (CycSp)"™€. This doesn’t
work over ku, since ku is not a cyclotomic base.)

However, already over ku, we can take into account that the S'-action on THH(—/ku) can
be enhanced to a genuine action with respect to the finite subgroups C,, C S'. In particular,
for all m € N, we can consider the symmetric monoidal functor

1
(THH(—/ku)éCm)h(S /Cm) : MOt{?uC — MOd(ku<I>Cm)h(Sl/Cm) (Sp)@szl)/ﬁ

given by first taking geometric Cp,-fixed points and then the usual homotopy fixed points for
the residual S'/C,,-action. These functors can then be fed into the refinement machine from
1.14. Via the resulting refinements, we expect that RI'xy(—) naturally descends from Z[q — 1]
to the Habiro ring H = limy,cn Z[q](\qm_l). In particular, its ring of coefficients Aky should
admit a Habiro descent Aky satisfying Axy = Axu ®%, Z[q — 1].

In [W-Hab], we’ll show that whenever the g-Hodge filtration is a g-deformation of the Hodge
filtration, ¢-Hdgpg; admits a functorial descent to the Habiro ring. This descent satisfies a
derived analogue of Theorem 1.7 and a version of Theorem 1.10 for the functors above (more

precisely, a version for genuine Cp,-fixed points).

§1.5. Overview of this article

1.24. Leitfaden. — §2 is a collection of technical results that will be needed later. In §3 we
study the ¢-Hodge filtration on g-de Rham cohomology and the derived g-Hodge complex: §3.1
contains the constructions. In §3.2 we show that the g-Hodge filtration is often a g-deformation
of the Hodge filtration and explain the connection to ku. In §§3.3-3.4 we study some formal
properties of the ¢-Hodge filtration/complex and explain how to globalise the constructions
(that is, define them over Z rather than Z,).

In §4, we compute 7, TC™™ ((ku ® Q)/ku) and 7, TC™™ (KU ® Q)/KU). In §4.1 we
explain how, in general, the computation of THH™! ((k ® Q)/k) reduces to a computation of
THH((k®S/p*)/k). In §4.2 we do the computation for k¥ = ku and k¥ = KU. Finally, in §5, we
make the g-Hodge filtration on ¢-dRz/pa),z,, explicit enough to derive the simpler descriptions
of Theorems 1.19 and 1.20.

1.25. Notation and conventions. — Throughout the article, we’ll use the following
notation and conventions:

(a) oo-categories. We freely use the language of co-categories. We let Sp denote the oco-
category of spectra. For an ordinary ring R, we let D(R) denote the derived oo-category
of R. We often implicitly regard objects of D(R) as spectra via the Eilenberg—-MacLane
functor H, but we’ll always suppress this functor in our notation. For a stable co-category
C, we let Home¢(—, —) denote the mapping spectra in C. The shift functor and its inverse
will always be denoted by ¥ and ¥~! (even for D(R)), to avoid confusion with shifts in
graded or filtered objects.

(D But it could be interesting over MU.

12
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Symmetric monoidal co-categories. If no confusion can occur, we denote the tensor
unit by 1 and the tensor product by ®. If C is symmetric monoidal, we let Alg(C) and
CAlg(C) denote the co-categories of Ej-algebras and E-algebras in C, respectively.

Whenever we consider a symmetric monoidal co-category C which is stable or pre-
sentable, we always implicitly assume that the tensor product commutes with finite colimits
or arbitrary colimits, respectively. In the presentable case, we let Home(—, —) denote the
internal Hom in C and XV := Hom, (X, 1) the dual of an object X € C.

Graded and filtered objects. For a stable co-category C, we let Gr(C) and Fil(Sp)
denote the oo-categories of graded and (descendingly) filtered objects in C. An object with a
descending filtration is typically denoted Fil* X = (--- « Fil" X « Fil""1 X « ...) and
we let gr* X denote the associated graded. We say that a filtered object Fil* X is complete
if 0 ~ lim,,_,~ Fil" X, and an exhaustive filtration on X if X ~ colim,,_._ Fil® X. The
shift in graded or filtered objects is denoted (—)(1), to avoid confusion with the shift in
homotopical /homological direction. We’ll always try to distinguish between graded/filtered
degree and homotopical/homological degree.

Sometimes we also consider ascending filtrations; these will typically be denoted
Fil, X = (--- = Fil" X — Fil"™' X — ...) and the associated graded by gr, X.

Condensed mathematics. Whenever we use condensed mathematics, we work in the
light condensed setting. We’ll distinguish between the words static (“un-animated”) for
a spectrum concentrated in degree 0, and discrete (“un-condensed”) for a condensed
spectrum with the discrete topology.

Derived quotients. For an E;-ring spectrum R, a homotopy class x € m,(R), and a left or
right R-module M, we let M /x denote the cofibre of the multiplication map x: X" M — M.

For several homotopy classes x1,...,z,, we let M/(xz1,...,2,) = (--- (M/x1)/x2- - ) /2.
Observe that if M is an ordinary module over an ordinary ring R, then M/(z1,...,z,)
agrees with the usual quotient only if (z1,...,2,) is a Koszul-regular sequence on M, but

we’ll never use the notation in a case where this is not satisfied.

Completions. For an E,,-ring spectrum R, finitely many homogeneous homotopy classes
x1,..., Ty € Tx(R), and and an R-module spectrum M, we let

Meay,..zp) = lim M (e, ... a7)

denote the (x1,...,x,)-adic completion of M. Since it only depends on the ideal I =
(x1,...,2r) C me(R), we often just write M; (or (=)} for longer arguments). If R is an
ordinary ring, this recovers the notion of derived I-completion; in particular, all completions
in this article will be derived. For the p-completions of Z and the sphere spectrum S we
omit the hat and just write Z, and S,.

We let Modz(Sp)s € Modg(Sp), or D;(R) C D(R) for ordinary rings R, denote the
full sub-oco-category spanned by the I-complete objects, that is, those M for which M ~ M I
The following fact will be used countless times: If M is (z1,...,x,)-complete, and the
homotopy groups of M/(x1,...,x,) vanish in some degree d, then also the homotopy
groups of M must vanish in degree d.

Completed tensor products. To ease notation, we introduce the convention that
—®pg — denotes a p-, (¢g—1)-, or (p, ¢ — 1)-completed tensor product depending on whether
R satisfies the same kind of completeness. Also — ®kuh51 — denotes a t-completed tensor

product, and — ®Z[6] (7] — denotes a t-completed graded tensor product.

13
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If R is an ordinary ring and I C R a finitely generated ideal, then M € D(R) is
called I-completely flat if M @Y% R/I is static and a flat R/I-module. Similarly we define
p-completely étale/smooth ring maps.

(h) Completed de Rham complexes. Again, to ease notation, we introduce the convention
that whenever R is p-complete, all de Rham, g-de Rham, or ¢-Hodge complexes of R will
be implicitly completed at p. We also let dr r/k denote the Hodge-completed derived de
Rham complex of R over k. If R is a p-complete ring, then according to our convention,
dr r/k Will additionally be completed at p.

1.26. Acknowledgments. — We would like to thank Peter Scholze and Sasha Efimov for
proposing this question and explaining many technical points of the theory. Moreover, it was
Scholze who pointed out that the filtration on ¢-dR z/p«) /z,» that we found in the homotopy
groups of TC™ ((ku/p®)/ku), should indeed be canonical, despite the second author’s initial
conviction that this couldn’t possibly be true—this observation is what sparked Definition 1.6!
Special thanks are also due to Sanath Devalapurkar and Arpon Raksit for generously sharing
and explaining their unpublished results on the connection between g-de Rham cohomology
and ku.
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§2. TECHNICAL PRELIMINARIES

§2. Technical preliminaries

In this section, we prove a few technical statements that will be needed later in the text. We
advise the reader to skip this section and only read the necessary parts as they come up later.

§2.1. Lifting properties of spherical Witt vectors

Recall that Lurie’s spherical Witt vector construction [L-Ell;;, Example 5.2.7] shows that any
p-complete perfect d-ring A = W(Ab) admits a unique lift to a p-complete connective E.-ring
Sa satisfying A ~ Sy ®§p L.

2.1. Lemma. — The Tate-valued Frobenius (see [T'C18, Definition IV.1.1]) Sa — Sf” can be

equipped with an S'-equivariant structure, where Sy receives the trivial S'-action and SZC” the
residual S1 ~ S'/Cy-action. In particular, the augmentation THH(S4) — Sa can be upgraded
to a map of Ex-algebras in cyclotomic spectra and THH(—/S,4) carries a natural cyclotomic
structure.

Proof. Equivalently, using the Tate-fixed point lemma [TC18, Lemma I1.4.2], we must construct
a factorisation of the Tate-valued Frobenius through an E,,-map

tCp\h(St/C, I\ A

SA—>(SAP) (st/ p)z(S‘;‘S )p_

The é-ring Frobenius on A lifts uniquely to an Es-map ¢4: Sq — S4. From the trivial
Sl-action we obtain an E,-map Sy — SII}‘S ' splitting the usual limit projection. Now we claim

that the composition
Sa 245, — s — (8§
provides the desired factorisation. By the universal property of spherical Witt vectors [L-Elly,
Definition 5.2.1(c)], this can be checked on my(—)/p. But then both the Tate-valued Frobenius
and our map are given by the usual Frobenius (—)P: A — A/p.
The upgrade of the augmentation THH(S4) — S4 to a map of E-algebras in cyclotomic
spectra follows immediately from the universal property of THH on E,.-ring spectra. Then

THH(~/Sa) ~ THH(—) ®rHp(s,) Sa obtaines a cyclotomic structure, as desired. O

2.2. Lemma. — Suppose R is a p-complete p-torsion free ring and Sg is a connective
p-complete E1-ring spectrum satisfying R ~ Sg @gp Zy. If A — R is map from a perfect d-ring,
then the Eq-structure on Sg refines to an Ei-structure in S o-modules.

The proof needs two preliminaries.
2.3. Lemma. — We have m«(Sg) = m+«(S) ®z R as graded rings.

Proof. As graded abelian groups this easily follows from Sg ®§p Zy. Indeed, choose a two-term
resolution 0 — P — Q — R — 0 by free abelian groups. Let Sp be a free S-module on a
basis of P and define Sg similarly. Then we can lift the above short exact sequence to a
sequence Sp — Sg — Sgr with nullhomotopic composition. Choosing a nullhomotopy gives
a map cofib(Sp — SQ);,\ — Sg, which is an equivalence after — ®§p Z,. Since that functor is
conservative on p-complete connective spectra, we deduce cofib(Sp — SQ)Q ~ Sg, whence the
desired description of m.(Sg).
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To pin down the multiplicative structure, observe that m.(Sg) is a graded 7, (S)-algebra
and a graded mo(Sgr) = R-algebra, so its enough to check that any € R = 7y(Sg) commutes
with 7, (S). Fix such an x and consider the induced map S[z] — Sg from the free E;-algebra
on a generator x. Then it suffices to check that z commutes with 7. (S) in 7, (S[z]), which is
clear since S[xz] refines to an Ey-ring spectrum. O

2.4. Lemma. — Let LES and LIE1/SA denote the cotangent complex for E1-algebras in Sp and
Mods , (Sp), respectively, as defined by Lurie. If T is any Eq-algebra in Mods , (Sp), then the
canonical base change map
E E
LTl/S ®sP@ 4 Sa — LTI/S 40
induced by — Qgsorgs, Sa: rBiModr(Sp) — rBiModr(Mods, (Sp)), becomes an equivalence
after p-completion.

Proof. The idea is that A being a perfect d-ring implies that S4 is p-completely formally étale
over S in the sense that THH(S4);, ~ Sa. Indeed, this follows from the same argument as
[BMS19, Proposition 11.7].

To turn this idea into a proof, first recall from [L-HA, Theorems 7.3.4.13 and 7.3.5.1] that
the cotangent complex L%S can be described as the fibre of the multiplication map for 7',

Lijs = ibT@T — T),

regarded as an object in the bimodule co-category Modg1 (Sp) ~ rBiMod7(Sp). An analogous
description exists for cotangent complexes of E;-algebras in Mods , (Sp). So we must show that

ﬁb(T@T — T) ®SZP®SA Sp — ﬁb(T@SA T — T)

is an equivalence upon p-completion. The base change functor — ®gorgs, Sa transforms
tensor products over S into tensor products over S4, so it will be enough to check that
T ®S?4P®S 4 Sa — T is a p-complete equivalence. But we’ve seen that

A ~
(SA ®SZP®SA SA> ~ THH(SA);)\ — Sy
P
is an equivalence, and so tensoring with T finishes the proof. O

Proof of Lemma 2.2. By Lemma 2.3, Si is quasi-commutative in the sense of [L-HA, Defini-
tion 7.5.1.1]. We'll now inductively lift the truncations 7<,Sg to an E;-algebra in Mods, (Sp).
For n = 0 this clearly works since R is a A-algebra. Now suppose we’ve constructed a lift for
some n > 0. We can write 7<,+1Sgk as a square-zero extension of 7<,Sg, which is classified by
a map of 7<,Sr-T<,Sgr-bimodules
Eq

Tﬁn

sn/s — 2" M0 i1(SR).

Since Sy is quasi-commutative, the bimodule structure on 2”+27rn+1(SR) factors through the
multiplication map 7<,S? ® 7<,Sp — R°® ® R — R (which is E;). Moreover, m,41(Sg) is
derived p-complete. Thus, the extension is equivalently described by an R-module map

A
Eq n+2
(LKnSR/S ®T<RS(I)QP®T<71§R R)p Y m41(SR) -

Using Lemma 2.4, this map is equivalently given by a morphism LE<1 Sn/Sa ¥ 271, (Sg) of
T<nSRr-T<nSgr-bimodules in Mods, (Sp). Thus we’ve lifted 7<,4+1Sr — T7<nSk to a square-zero
extension of Eq-algebras in S 4-modules, as desired. O
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§2.2. NUCLEAR OBJECTS

§2.2. Nuclear objects

The notion of nuclearity plays an important role in our main results (Theorems 1.17, 1.19,
and 1.20). In this subsection we briefly recall the necessary definitions and compare the nuclear
categories of Clausen—Scholze and Efimov.

2.5. Setup — Let C be a presentable symmetric monoidal co-category. By Lurie’s adjoint
functor theorem*!), C admits an internal Hom Hom,(—, —), characterised by the “Hom-tensor

adjunction” Home (X, Hom, (Y, 7)) ~ Home(X ® Y, Z) for all X,Y,Z € C. We denote by
XV = Hom¢(X, 1) the dual of X and by evy: X ® XV — 1 the natural evaluation morphism.

2.6. Definition. — A morphism ¢: X — Y in C is called trace-class if there exists a
morphism 7: 1 — XV ®Y in such a way that ¢ is the composition

X~XQ12% xox'eoy &X%, v,

We’ll often call n the classifier of .

Trace-class morphism have a number of nice properties. We’ll often use the properties from
[CS22, Lemma 8.2] as well as the following lemma.

2.7. Lemma. — Let F':C — D be a symmetric monoidal functor between presentable
symmetric monoidal co-categories. By abuse of notation, we use (—)V to denote both the dual
Home(—, 1¢) in C and the dual Homp(—, 1p) in D. Then:

(a) There exists a natural transformation F((—)V) = F(—)V.

(b) If X =Y is a trace-class morphism in C, then F(X) — F(Y) as well as YV — XV are
trace-class again and the morphisms F(XY) — F(X)" and F(YV) — F(Y)V from (a) fit
into a commutative diagram in D of the following form:

FY") — F(XY)

P
-
-
-
-
-
-

F(Y)! —— F(X)"

Proof. The natural transformation from (a) is adjoint to F((—)") ®p F(—) = 1p, which is in
turn given by applying F to the evaluation (—)Y ®¢ (=) = l¢.

Now let X — Y be trace-class in C with classifier 1¢ — XV ®¢ Y. If we apply F to the
classifier and compose with the morphism F(X") — F(X)" from (a), we obtain a morphism
Ip — F(XV)®p F(Y) — F(X)Y ®p F(Y), which shows that F(X) — F(Y) is trace-class. If
we compose the classifier with Y — YV instead, we obtain 1¢ — XV ®cY — XV ®: YV,
which shows that YV — XV is trace-class. The diagonal dashed arrow in the diagram is given
as follows:

FY)®pF(leg) — FY) '@ F(XV®cY)~FY)"®p F(Y)®p F(XV) — F(XV).

Here we use the classifier 1 — XV ®¢ Y and the evaluation map for F(Y). O

(2D Recall from 1.25 that we always assume — ® — commutes with tensor products in both variables, so the
adjoint functor theorem is applicable.
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2.8. Definition. — Assume additionally that C is stable, compactly generated, and the
tensor unit 1 € C is compact.

(a) An object X € C is called nuclear if every morphism P — X from a compact object P is
trace-class.

(b) An object X € C is called basic nuclear if X ~ colim(X; — Xy — ---), where each
Xpn — Xpq41 is trace-class.

We denote by Nuc(C) C C the full sub-co-category spanned by the nuclear objects.

2.9. Theorem. — Let C be a presentable stable symmetric monoidal co-category such that C
is compactly generated and the tensor unit 1 € C is compact.

(a) Nuc(C) is stable and closed under colimits and tensor products in C.

(b) Nuc(C) is wi-compactly generated and the wi-compact objects are precisely the basic
nuclears.

(¢) If F:C — D is a symmetric monoidal colimit-preserving functor into another presentable
symmetric monoidal co-category, then F restricts to a functor F: Nuc(C) — Nuc(D).

Proof. Parts (a) and (b) are [CS22, Theorem 8.6]. For (c), just note that since F preserves
trace-class maps by Lemma 2.7(b), it follows that F' preserves basic nuclear objects and thus
all nuclear objects by (b). O

2.10. Remark. — If C is a small stable symmetric monoidal co-category, then Theorem 2.9
can be applied to Ind(C). Since every trace-class map in Ind(C) factors through a compact
object by [CS22, Lemma 8.4], we see that the basic nuclear objects in Ind(C) are of the form
“colim”(X; — Xy — --+), where each X,, — X,, 11 is trace-class in C.

If C is a presentable stable symmetric monoidal co-category, one can still make sense of
Nuc(Ind(C)) without running into set-theoretic problems. Indeed, if  is a sufficiently large
regular cardinal such that C is k-compactly generated and 1 is k-compact, the same argument as
in [CS22, Lemma 8.4] shows that every trace-class morphism in C factors through a k-compact
object. Then every basic nuclear object is equivalent to one in which each X, is k-compact
and so the basic nuclear objects in form an essentially small co-category. We may then define
Nuc(Ind(C)) as Ind,, (—) of the co-category of basic nuclear objects.

Finally, let us compare Efimov’s and Clausen—Scholze’s notions of nuclear modules.

2.11. Nuclear modules a la Efimov and a la Clausen—Scholze. — If R is an E,-ring
spectrum and [ C 7« (R) a finitely generated homogeneous ideal, Efimov defines the oo-category
of nuclear Rr-modules to be

Nuc(R;) := Nuc(Ind(Modg(Sp)7))

(which is set-theoretically ok thanks to Remark 2.10). We’re mainly interested in the case
R ~ k" ~ (k")) where k is complex orientable and ¢ € m_o(kM") is any orientation
generator, and in the case where R is an ordinary ring.

In the latter case, there’s another candidate for a well-behaved category of nuclear Ry-
modules: To the Huber pair (}A%I, }ARI), Clausen and Scholze associate a derived oco-category
of solid Rr-modules D(Rya) (see 5.1), which satisfies the assumptions of Theorem 2.9. In
[Efi-Lim], Efimov constructs a fully faithful strongly continuous functor

Nuc(D(éL.)) — Nuc(Ry).
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§2.3. KILLING PRO-IDEMPOTENT ALGEBRAS

§2.3. Killing pro-idempotent algebras

There is a well-established notion of killing an idempotent algebra object in a symmetric monoidal
oo-category (see for example [CS24, Lecture 13] for a nice review). Here we would like to do
the same, but in an ind-setting.

2.12. Setup. — Let C be a presentable symmetric monoidal stable co-category. In the
following, we’ll ignore the set-theoretic difficulties that come with applying Pro(—) and Ind(—)
to the large oo-category C.(2-2)

A pro-idempotent algebra object in C is a pro-object A = “lim}_; A; € Pro(C), where I is
always assumed to be cofiltered, equipped with a morphism 1 — A such that the induced
morphism A — A® A is a pro-equivalence. Here A ® A ~ “hma‘,j)e]x[(Ai ® A;) denotes the
extension of the tensor product on C to Pro(C). Since C is presentable, it admits an internal
Hom, which we denote Hom,: C°P? x C — C. By passing to ind-oco-categories, this extends to a

functor
Ind(Hom,)
AN

Pro(C)? ® Ind(C) ~ Ind(C°?) ® Ind(C) Ind(C),

which, by abuse of notation, we still denote Hom.. Explicitly,

4H0mc( ElemJ Y Cl?élfI(n Zk) = (j,k()jg}]lglxKHomc (¥5:21) -
2.13. Lemma. — Let j,: Ind(C)* — Ind(C) be the inclusion of the full sub-oco-category of
ind-objects X for which Hom,(A, X) ~ 0. Then j. admits a left adjoint j* given by

7*(X) ~ cofib(Hom¢ (A, X) — Home (1, X)) .

Furthermore, there’s a unique symmetric monoidal structure on Ind(C)? in such a way that j*
becomes symmetric monoidal and j. lax symmetric monoidal.

Proof. Since Hom¢ (1, X) ~ X, we get a natural transformation 7: idpqcy = j*. It’s clear
that 7 is an equivalence for objects in Ind(C)#, hence the image of j* contains Ind(C)4. Using
pro-idempotence, we also see Hom. (A, j*(X)) ~ cofib(Hom(A® A, X) — Hom(A4, X)) ~ 0,
hence the image of j* is precisely Ind(C)4. Now in general, if D is an oo-category with an
endofunctor L: D — D and a natural transformation n: idp = L such that nL: L = Lo L and
Ln: L = Lo L are both equivalences, then L: D — L(D) is a left adjoint of L(D) C D. In the
case at hand, we've already checked that 7j* is an equivalence. Via the tensor-Hom,-adjunction,
this implies the same for j*n, finishing the proof that j* is left adjoint to j,.

To show that j* is symmetric monoidal and j, lax symmetric monoidal, it’s enough to
show that 7 induces equivalences j*(X ®Y) ~ 7*(j*(X)®Y) for all X,Y € Ind(C); see [L-HA,
Proposition 2.2.1.9]. Equivalently, the canonical morphism

Hom, (4, Home (A, X) ® YY) — Home (4, X)®Y

induced by 1 — A must be an equivalence. To see this, first observe that this morphism has a
left inverse given by

Hom (4, X)®Y ~ Home (A, Home(4, X)) ® Y — Hom, (A, Home (4, X) ®Y)

(221 all cases of interest, we can safely replace C by its k-compact objects C* C C for some large enough
regular cardinal x (usually x = w1 is enough).
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using idempotence of A and Y ~ Hom,(1,Y’). Now, in general, let M € Ind(C) be an ind-object
for which Homg(A, M) — M has a left inverse.(>*) Using this left inverse, we can exhibit
Home(A, M) — M as a retract of Hom-(A, Homq(A, M)) — Hom.(A, M). But the latter is
an equivalence by pro-idempotence of A, so already Hom.(A, M) — M must be an equivalence.
This finishes the proof. O

2.14. Construction. — By the symmetric monoidality statements from Lemma 2.13, we see
that j*(1) is an E-algebra in Ind(C). By construction, it sits inside a cofibre sequence

« s AV -

colim” A7 — 1 — j*(1),
where (—)Y := Hom(—, 1) denotes the dual in C. We say that j*(1) is obtained from 1 by
killing the pro-idempotent algebra “limj_; A;.

In general, 7%(1) is not an idempotent E-algebra in Ind(C); it is idempotent if and only
if AV = “colim;¢ rop AY is an ind-idempotent coalgebra in the sense that AY — 1 induces an
equivalence AV ® AV ~ A in Ind(C). In the following lemma we’ll study a special situation in
which this is the case.

2.15. Lemma. — Suppose for all i € I there exists an object j — i such that A; — A; is
trace-class. Let AY := “colim/_; AY. Then the canonical map X ® AV — Hom,(A, X) is an

equivalence for all X € Ind(C). In particular:
(a) AV is a ind-idempotent coalgebra object with trace-class transition maps.

(b) 7*(1) is an idempotent nuclear B -algebra in Ind(C), Ind(C)? C Ind(C) is precisely the
full sub-co-category of j*(1)-modules, and — ® 7*(1) ~ j*(—).

(¢) If F:C — D is any symmetric monoidal functor of presentable symmetric monoidal
oo-categories, then F(5%(1)) is obtained by killing the pro-idempotent algebra F(A).

Proof sketch. We can construct an inverse of X ® AV — Hom (A4, X) as follows: Fix some
i € I, choose j — i such that A; — A; is trace-class and let 1 — A; ®A;/ be the corresponding
classifier. Then consider the composition

Homg (A;, X) — Home(4;, X) @ 4@ A — X ® A .

In the first map, we tensor Hom;(A4;, X) with the classifier above. In the second map we use
the evaluation Hom,(A;, X) ® 4; — X. It’s straightforward but a little tedious to check that
X ® A} — Home(4;, X) — X ® AY and Home(A;, X) — X ® A} — Home(A;, X) agree with
the transition maps in the ind-objects X ® AV and Hom.(A, X), respectively; we’ll omit the
argument. Proving that these maps assemble into an inverse map X ® AY — Hom,(A, X)
requires a non-trivial argument, since we’re working in an oco-category, but there’s an easier
way to show that X ® AY — Hom,(A4, X) is an equivalence: Equivalences are detected by
7o Hompyq(c)(Z, —), where Z ranges through all compact objects of Ind(C); now any morphism
from a compact object factors through X ® A} or Home(A;, X) for some i € I.

To show (a), plug in X ~ AV: We obtain AY ® AV ~ Homy(A, AY) ~ (A® A)Y. This
proves ind-idempotence, because (A ® A)Y ~ AV follows by dualising A ~ A ® A. The dual
transition maps Ay — A, are trace-class by Lemma 2.7(b) below. This shows (a).

(2380, intuitively, M is an “A-module”.
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For (b), since we've shown that AV is an ind-idempotent coalgebra, it follows that j*(1) is
ind-idempotent as well. Also AV is a nuclear object in Ind(C), since every map Z — A" factors
through a basic nuclear object and is therefore trace-class. Since 1 is nuclear too, it follows
that 7%(1) is nuclear. X ® j*(1) ~ j*(X) follows immediately from the above equivalence
X®AY ~ Home(A, X). Since j,: Ind(C)?* — Ind(C) is lax monoidal by Lemma 2.13, it factors
through Ind(C)* — Mod j«(q)(Ind(C)). Since j*(1) is idempotent, Mod (1) (Ind(C)) € Ind(C)
is the full sub-co-category spanned by the objects of the form X ® j*(1). Hence we also
get an inclusion Ind(C)4 C Mod;j«()(Ind(C)). On the other hand, every object of the form
X ® j*(1) ~ j*(X) is contained in Ind(C)#. This finishes the proof of (b).

To show (c), we only need “colim}.; F(A}) ~ “colim]_; F(A;)V. If Aj — A; is trace-class,
Lemma 2.7(b) below provides a map F(A;)” — F(AY) in the reverse direction. By a formal
argument as above, this is enough to show the desired equivalence. O

§2.4. Burklund’s E;-structures on quotients and square-zero extensions

At several points throughout the text, we need to consider Ej-algebras of the form S/p® ®S/p*2.
In this subsection we’ll prove an abstract result which shows that these guys are often trivial
square zero algebras and then deduce some nice consequences.

For the abstract setup, let C be a stable Eo-monoidal co-category and v: Z — 1 be a
morphism in C such that 1/v" admits a right-unital multiplication. Fix n > 3, so that 1/v"
admits a preferred Eg-algebra structure by [Bur22, Theorem 1.5]. The same theorem shows
for all m > 2 that 1/v" ® 1/v™ admits a preferred E;-algebra structure in the E;-monoidal
oo-category LMody /,n (C).

2.16. Lemma. — Suppose I is ®-invertible and m > 2n.

(a) 1/v"® 1/v™ agrees with the trivial square-zero extension 1/v™ @ (I /v™) as an E;-
algebra in LMody s, (C). Under this identification, the multiplication 1/v"®@1/v™ — 1 /"
becomes the augmentation map 1/v"™ @ X(ZO™ /v™) — 1 /v".

(b)  Forall£>=m > 2n, the map 1/v" ® 1 /vt — 1/v" ® 1 /0™ agrees with the map of trivial
square-zero extensions induced by v/=™: IO /v — T®™ Jy™, as maps of Eq-algebras in

LMody ,n (C).

2.17. Remark. — The bound m > 2n doesn’t seem optimal and the author suspects that
Lemma 2.16 might already be true for m > n.

2.18. Remark. — Since the E;j-algebra structures on 1/0™ and 1/v" refine to Es-algebra
structures, the multplication map in Lemma 2.16(a) is canonically a map of E;-algebras, and
the identification with the augmentation also happens as Ej-algebra maps (as we’ll see).

2.19. Corollary. — If T is ®-invertible, m > 2n, and £ > m + n, then the morphism
1/v"®1/vt — 1/o" @ 1 /0™ factors through the tensor unit 1/v™ as a map of Ei-algebras in
LMod 4y (C).

Proof. By Lemma 2.16(b), it’s enough to check that v*=™: Z®!/y" — T®™ /y" is zero in
LMody /,n (C) for £ = m + n. This reduces to v": Z®"/v™ — 1/v™ being zero in LMody /., (C).
Since 1/v" ® —: C — LMody /,» (C) is left adjoint to the forgetful functor, this is equivalent to
v™: I®" — 1 /0™ being zero in C, which is true by construction. O
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Proof of Lemma 2.16. Recall [Bur22, Constructions 4.7 and 4.8]: Let C := Def(C, Q) be
Burklund’s deformatlon of C, which stably Eo-monoidal and comes with Es-monoidal functors
v:C — C and (=)™=': C — C. Let furthermore 1 == v(1) denote the tensor unit of C and
Z=x"1! v(XZ), so that there’s a map v: | deformmg v. Note that 7 is still ®-invertible,
so it’ll be enough to check the assertions for v: 7-1.

Burklund constructs his E;-structure on 1 /0™ using the obstruction theory from [Bur22,
Proposition 2.4] in C (with its underlying E;-monoidal structure). Hence the E;-structure on
il /0" ® 1 /0™ is obtained via Burklund’s obstruction theory in the E;-monoidal co-category
LMod]l/N (C) Now we claim that for all £ > 2 and all £ > m > 2n,

— Fi~n ®k ¥ )~n o T /~m
() mo Homy o, (z 2T /®) TS @1/ ):0.

Believing (X) for the moment, (b) as well as the first part of (a) immediately follow. Indeed,
in the case £ = m, (K) combined with [Bur22, Remark 2.5] shows that the E;-structure on
1 /" ® 1 /0™ is unique, so it has to be the trivial square zero structure. For general £ > m, the
same argument shows that the Ej-map 1/"® 1/9¢ — 1/3" ® 1/3™ is unique, proving (b). It
remains to show the second part of (a). This follows again from the same kind of arguments,
as we’ll see below.

To show (K), we use that 1/5"®—: C — LMod]l/~ (C) is left adjoint to the forgetful functor,

that 1/0" @ 1/5™ ~ 1/3" @ B(Z®™ /"), and that 7 is @-invertible. The left-hand side can
then be rewritten as follows:

o0 Homg(z%—%@%, 1/ @ (@8 /m))
= 110 Hom > (2% 270tk g jym )@wo Hom s (2% 17@tk—m 11/“'")
1

=7 H0m5<2_€k+2k_21/(X) /v ) @ o Hom5<2_£k+m+2k_lu(Y), i/f)’”) )

where X ~ (B7)®% and YV ~ ()8 ™) According to [Bur22, Lemma 4.8], both summands
on the right-hand side vanish as soon as ¢k —m —2k+1 > n. This is true under our assumptions
>=m >2n, k>2 and n > 3 and so we’ve proved (X). Vanishing of the first summand also
shows that 1/2" ® i/?}m — ﬁ/?}” is unique, and so it has to be the augmentation map. O

Let’s finish this subsection with two nice applications. In the following, we’ll always equip
S/p* with a Burklund-style E;-structure.

2.20. Corollary. — Let p > 3 be a prime and o > 3. Then S/p3* ®S/p* — S/p** @ S/p®
factors through S/p* as Eq-algebras. The same conclusion holds for p =2 if « is even and > 6.

Proof. This follows immediately from Corollary 2.19. 0

2.21. Corollary. — Let p > 3 be prime and o > 3. Then the base change functor
- ®g/p3a S/pai RMOdS/p3a (Sp) — RMOdS/pa (Sp)

1s trace-class in Préw. The same conclusion holds for p =2 if a is even and > 6
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Proof. As we’ve seen in the proof of Lemma 4.5, it’s enough to show that S/p® is compact in
RMods e (Ind(LMods /3 (Sp”))). We'll show that the multiplication S/p** ® S/p* — S/p*
exhibits S/p® as a retract of the compact object S/p?>* ® S/p®. This map has a section, given
by the unit map S/p® — S/p?* ® S/p%, so we must equip the latter with the structure of a
map of S/p3*-S/p*-bimodules. But we know from Corollary 2.20 that the Ej-algebra map
S/p**®S/p* — S/p**®S/p* factors through S/p* — S/p* ®S/p®, which provides the desired
structure of a bimodule map.

This shows that S/p® is a retract of S/p** ® S/p® in RMods e (LMods 0 (Sp)). Since all
objects in sight are compact on underlying spectra, we may pass to the full sub-oo-category
RModspe (LModg 3« (Sp™)) and then also to RMods e (Ind(LModg /s« (Sp“))). O
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§3. Derived ¢-Hodge complexes

We've explained in §1.1 why the ¢-Hodge filtration on a ¢-de Rham complex in coordinates can
probably not be made functorial; at the very least, not in a way as to preserve the rich ¢g-de
Rham—Witt structure. In this section, we’ll give an ad-hoc construction of a functorial ¢g-Hodge
filtration on certain derived g-de Rham complexes (Construction 3.5). At first, this construction
will seem hopelessly naive—and indeed, it often gives nonsensical results. However, as we’ll see
in Theorem 3.10, in many more cases the filtration actually behaves as desired! In such cases,
we can define a derived q-Hodge complex and show that it satisfies all expected properties.

This section is organised as follows: In §3.1, we’ll construct the desired ¢g-Hodge filtration
in a p-complete setting. In §3.2 we show that it is often a g-deformation of the usual Hodge
filtration. In §3.3, we derived some formal properties. Finally, in §3.4, we explain how to
construct a g-Hodge filtration and derived g-Hodge complexes in the global setting.

§3.1. The ¢-Hodge filtration on ¢-de Rham cohomology

Throughout §§3.1-3.3 we fix a prime p and work in a p-complete setting. In particular, all
(¢-)de Rham or cotangent complexes will be implicitly p-completed. Let us also fix a p-complete
d-ring A which is p-completely perfectly covered in the sense defined below.

3.1. Rings of interest. — A d-ring A is called p-completely perfectly covered if the map
A — A into its p-completed colimit perfection is p-completely faithfully flat. By [Wag24,
Remark 2.46], an equivalent condition is for the Frobenius ¢: A — A to be p-completely flat.
Since perfect §-rings are p-torsion free, it follows that A must be p-torsion free too.

Throughout, we will consider quasireqular quotients over A: These are p-complete rings R
for which the cotangent complex Lg/4 (which we always take to be implicitly p-completed)
has p-complete Tor-amplitude over R concentrated in degree 1. Additionally, we’ll usually
assume that for R, = R®a Ao the quotient Ro, = Roo/p is semiperfect, meaning that the
Frobenius (—)?: Rs — Roo is surjective. An important special case are A-algebras of perfect-
reqular presentation: These are the quotients R = B/J, where B is a p-complete relatively
perfect 0-A-algebra (by which we mean that the relative Frobenius ¢p /A B ® 4,0 A — Bis an
isomorphism) and J C B is an ideal generated by a Koszul-regular sequence. We’ll sometimes
refer to B/J as a perfect-reqular presentation of R.

The reason for restricting to rings R as above is the following lemma.

3.2. Lemma. — Let R be a p-torsion free quasireqular quotient over A.

a) The de Rham complex dR /4, its Hodge-completion &RR 4, every degree in the completed
/ /
Hodge filtration Fill*{dg CTI\%R/A, and the g-de Rham complexr q-dRp/4 are all static and
p-torsion free.
b) The un-completed Hodge filtration Filjj,, dRp, 4 is static in every degree if and only if Rso
Hdg /
is semiperfect.

Proof. To show that every degree in the completed Hodge filtration is static and p-torsion
free, just observe that the same is true for the associated graded grijy, dRp/a ~ X7° AN*Lg A
because our assumption on R guarantees that X 1Lp /4 is a p-completely flat module over the
p-torsion free ring R. To show that the (¢ — 1)-complete object g-dR g /A 1s static and p-torsion
free, it will be enough to show the same for ¢-dRp/4/(¢ — 1) >~ dRp 4. Now all assertions
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about dRpg/4 and its Hodge filtration can be reduced to the corresponding assertions about
dRRg, /4. Vvia base change along the p-completely faithfully flat map A — As. Furthermore,
since A is a perfect d-ring, L4z, ~ 0, and so we may as well consider dRg_ /z,-

To see that dRp_ /7, is static and p-torsion free, it suffices to check that its modulo p
reduction dRg_ /7, /p ~dRR_ /F, is static. The latter admits an ascending exhaustive filtration,
the conjugate filtration, whose associated graded ¥~* A\*Lg_ JE, 25T N Lg_, /Z, /p is static
in every degree since ¥7!L Roo/Z, 18 p-completely flat over the p-torsion free ring Roo. This
shows that dR7_ /r, is indeed static and we've finished the proof of (a).

For (b), we've already seen that dRp__ /z,, and the associated graded of the Hodge filtration are
static and p-torsion free in every degree. Hence Fill*{dg dRp,, /z, is degree-wise static if and only
if it consists of sub-modules of dRy__ 7, which must be p-torsion free to. Thus Filjjq, dRg_ /7,
is degree-wise static if and only if the same is true for Fill"fldg dRg../z,/p ~ Filjjqg dRE_ /r,- In
the case where R is semiperfect, this holds by [BMS19, Proposition 8.14]. Conversely, assume
Filfjqg AR /r, is degree-wise static. If Fily WdR%__ /r, denotes the Nygaard filtration on the
derived de Rham—Witt complex, then

FilR WdR%__/r,/p Fil}- ' WdRz%,, sv, = Filfiy, dRE_/k,

holds by deriving [BMS19, Lemma 8.3], so inductively it follows that WdRp__ /7, and each step
in its Nygaard filtration must be static too. By definition, Filyy WdRE__ /r, is the fibre of

WdRg., jr, ~ WdRz,, s, — WdRR/z, /0",

so each of these maps must be surjective. Then ¢: WdRz_ r, — WdR%_ /r, must be sur-
jective as well. Since WdRz_/r, /p ~ dRR_ J/F, — Roo Is surjective by our assumption that
Fﬂ%{dg dR%, /F, is static, we conclude that the Frobenius on Roo/p must be surjective too. [

3.3. Remark. — In the case where R = B/J is of perfect-regular presentation over A,
everything can be made explicit: dRr/4 ~ Dp(J) is the (p-completed) PD-envelope of J,
the Hodge filtration is just the PD-filtration, and the ¢g-de Rham complex ¢-dRp/4 is the
corresponding ¢-PD-envelope in the sense of [BS19, Lemma 16.10].

3.4. Remark. — For p > 3, the F,-algebra constructed in [Gul21] can be lifted in a
straightforward way to a p-complete Z,-algebra R. This gives an example of a p-torsion free
quasiregular quotient over Z,, whose reduction modulo p is not semiperfect.

3.5. Construction. — Suppose R is a p-torsion free quasiregular quotient over A such that
R /p is semiperfect. By Lemma A.3, after rationalisation, dRp/4 and ¢-dRp/4 are related
via a functorial equivalence

¢-dRp/a ®zg-1] Qg — 1] = (dRpgja ®2 Q)¢ — 1] .

Observe that (dRr/4 ®z Q)[g — 1] carries two multiplicative filtrations: the Hodge filtration on
dRpg/4 and the (¢ — 1)-adic filtration. These can be combined into one multiplicative filtration,
which we’ll call the combined Hodge- and (q — 1)-adic filtration. Formally, it is is given by
taking the tensor product of the filtered objects Filjjq, dRg/4 and (¢ — 1)*Q[g — 1] and then
passing to degreewise (¢ — 1)-completions.

Using the combined Hodge- and (¢ — 1)-adic filtration, we can now give the main construction
of this section:
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a) The q-Hodge filtration Fil¥ 114, ¢-dR /4 is the preimage (in the underived sense) of the
q-Hdg /
combined Hodge and (g — 1)-adic filtration under ¢-dRz/4 — (dRr/4 ®z Q)[q — 1].

From the ¢g-Hodge filtration, the following related objects can be constructed:

(b) The g-Hodge-completed derived q-de Rham complex q—&ER/A is the completion of g-dRg /4
at the ¢-Hodge filtration.

(¢) The derived q-Hodge complex of R over A is the ring

. . g (=1 r. w (¢—1) A
¢-Hdgp, 4 := colim (Fllg,Hdg q-dR R4 SN Fll}],Hdg q¢-dRp/a 1 e ) D)’

3.6. Remark. — For any filtered object X = Fil® X D Fil' X D --- with completion )?, any
filtration step Fil” X is the preimage of Fil” X under X — X. Thus, in Construction 3.5(a),
we could have taken the combined Hodge- and (g — 1)-adic filtration on (dRp 14 ®z Q)g — 1]
as well, or even its completion with respect to that filtration.

In the case where R = B/J is of perfect-regular presentation, after completion at the Hodge
filtration, Dp(J) ®z Q becomes simply (B ®z Q). Thus, the g-Hodge filtration on q-dRp/4 is
equivalently the preimage of the (J, ¢ — 1)-adic filtration on the ring (B ®z Q)’}[¢ — 1].

3.7. Remark. — To define the derived ¢-Hodge complex we could have used Filj 4, ¢-dRg/4
as well. Indeed, by design, elements in Fil" ¢-dR /4 become divisible by (¢ —1)" in q-Hdgp 4,
so after passing to the (¢ — 1)-adic completion the filtration converges.

Our ultimate goal is to compare the g-Hodge filtration to the usual Hodge filtration. The
starting point is the following easy lemma.

3.8. Lemma. — If R is a p-torsion free quasi-reqular quotient over A and R, is semiper-
fect, there exists a canonical injection the canonical projection ¢-dRg/4a — dRpg 4 induces a
degreewise injective morphism of filtered objects

where the quotient is taken in filtered objects, with (q — 1) sitting in filtration degree 1. In other
words, we get injections Filj 4, ¢-dRp/a/(¢ — 1) Filgfﬁldg q-dRg/a — Filfge dRR/a for all n.

Proof. The assumptions guarantee that the Hodge filtration on dRp/4 is the preimage of the
induced filtration on dRp/4 ®z Q. Indeed, by Remark 3.6 it’s enough to check this after
completion, and then we simply observe that the map on associated gradeds is injective: It is
the rationalisation map

S ALra =X " ALra®zQ,

and each 7" A" L4 is a p-completely flat module over the p-torsion free ring R. It follows
that the composition Filj g, ¢-dRr/4 — ¢-dRp/a — dRp/a factors through Filjjy, dRg/ for
all n, which yields the desired morphism of filtered objects. To show injectivity, we need to
check

(g—1) FilZ,ﬁhg q-dRp/a = Filj yqe ¢-dRpja N (¢ — 1) ¢-dRp/a -

This immediately reduces to the analogous assertion for the combined Hodge- and (¢ — 1)-adic
filtration on (dRp/4 ®z Q)[g — 1], which is straightforward to check. O
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3.9. Definition. — We’ll say the gq-Hodge filtration Fil:’;_Hdg q-dRg/4 is a g-deformation
of the Hodge filtration Filfldg dRp/4 if the morphism of filtered objects in Lemma 3.8 is an
isomorphism

(Fily tag 9-dRg/a) /(¢ — 1) — Filfiq dR R4 -

In general, the g-Hodge filtration is not a ¢-deformation of the Hodge filtration. We’ll see an
explicit counterexample in Example 3.14 below, but there’s also a meta-mathematical objection:
If the g-Hodge filtration were well-behaved in general, we could use quasi-syntomic descent
to define it for all A-algebras. This would provide a way of making the filtration from 1.2
coordinate-independent, but this is very likely impossible, as we’ve discussed in §1.1.

With this in mind, the following theorem shows that the ¢-Hodge filtration ¢s a g-deformation
of the Hodge filtration in surprisingly many cases.

3.10. Theorem. — Let R be a p-torsion free quasireqular quotient over A such that R is
semiperfect. Suppose that one of the following two assumptions is satisfied:

(a) There exists a perfect-reqular presentation R = B/J, where the ideal J C B is generated by
a Koszul-reqular sequence of higher powers, that is, a Koszul-regular sequence (z{?,. .., x&r)
with o; = 2 for all 1.

(b) The ring Roo admits a lift to a p-complete connective E;-ring spectrum Sg_, satisfying
Ro ~ Spg., s, L.
Then Fily pag ¢-dR /4 is a g-deformation of Filfig, dR /4.

Theorem 3.10 will be proved in §3.2. We’ll now make three comments about the existence
of E;-lifts as in Theorem 3.10(b) and then give two examples for the theorem.

3.11. On E;-lifts I. — Since A, is a perfect d-ring, A = W(AZO) Thus, [L-Elly,
Example 5.2.7] shows that A, admits a unique lift to a p-complete connective E,-ring
spectrum S4_ satisfying Aoo ~ S, @sp Zy,. Explicitly, Sa_ is given by Lurie’s spherical Witt
vectors and satisfies 74 (Sa_ ) = 7«(S) ®z Ao as graded-commutative rings. If B is relatively
perfect over A, then B, = B&®4 A is a perfect d-ring as well, hence it also admits a p-complete
Eo-lift Sp o

It can be shown (see Lemma 2.2) that any E;-lift Sg_ as in Theorem 3.10(b) automatically
refines to an E;-algebra in S4__-modules, or, if R = B/J is of perfect-regular presentation, even
to an Ej-algebra in Sp_-modules.

3.12. On E;-lifts II. — For p > 3, Burklund’s breakthrough [Bur22] shows that the condition
from Theorem 3.10(a) implies the existence of such an E;-lift Sg__, and so Theorem 3.10(b)
implies (a). The same conclusion holds in the case p = 2 if all «; are even and > 4.

Indeed, if p > 3, each Sp__ /x; admits a right-unital multiplication, because the relevant ob-
struction @Q1(x;) is 2-torsion and hence vanishes after p-completion. Then [Bur22, Theorem 1.4]
shows that Sp_/x;" admits an Ej-algebra structure in Sp_-modules for all ; > 2. Hence

SRe =SB, /77" ®sp__ -+ ®sp SBo/Tr"

is a lift as desired. If p = 2, then Sp__/z? admits a right-unital multiplication by [Bur22,

Remark 5.5] and we can perform the same construction, provided all «; are even and > 4.
Somewhat surprisingly though, Theorem 3.10(a) is true without such a modification at

p = 2. This cannot simply be explained by the existence of Eq-lifts that are not covered by
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Burklund’s theorem: If B := Zo{x}? is the free 2-complete d-ring on a generator x, then Sp__ /22
can’t be equipped with an E;-structure, because there exists an Eo-map Sp_ — Sy sending
x — 2, so any Eq-structure would base change to an E;-structure on S/4.

3.13. On E;-lifts ITI. — In light of Theorem 3.22 below, it is tempting to replace the
existence of an E;-lift Sp__ to the sphere spectrum in Theorem 3.10(b) with the existence of a
lift kup_ to the connective complex K-theory spectrum. This can’t work! By [HW18], such an
E1-lift always exists, but in Example 3.14, we’ll see an instance where the ¢-Hodge filtration is
not a g-deformation of the Hodge filtration.

It seems possible that an Eo-lift of Ry, to ku is sufficient to guarantee that the g-Hodge
filtration is a g-deformation of the Hodge filtration, as in this case it is expected (but so far
conjectural) that we have an S'-equivariant version of Pstragowski’s perfect even filtration
[Pst23] available on TC™ (kug,, /ku);

3.14. Example. — Let us give an example of Theorem 3.10(a) to get a feeling for why
passing to higher powers results in the ¢-Hodge filtration being better behaved. We’ll see a
much refined version of this analysis later in Lemma 5.23.

Let A = Z,{x}] be the free p-complete d-ring on a generator = and let R = Z,{z}) /= for
some « = 1. Then ¢-dRp/4 is the ¢-PD envelope

p(x%) }A
[Plq (p,g—1)
If the ¢-Hodge filtration were to be a g-deformation of the Hodge filtration, then Filingdg q-Dqa

would need to contain a lift 5,(x®) of the divided power v(z) := x*?/p. Certainly, ¢-D, itself
contains such a lift; namely, the g-divided power

ay . d)(:na) — 5(x™

The problem is that v,(z®) is usually not contained in FﬂZfHdg q-D.. By Remark 3.6, we can

4-Do = Ty} lg — 1]1{

express FilgﬁHdg q-D,, as the preimage of the ideal (z%, ¢ — 1)? in the completed rationalisation
Qu(8(z),82%(x),.. . )z,q — 1] of ¢-D4. So our task is to modify ~,(z%) by elements from the
ideal (¢ —1) ¢g-D,, such that the result is contained in (z®, ¢— 1)? after completed rationalisation.

Write [p], = pu + (¢ — 1)P~!, where u =1 mod ¢ — 1. In particular, u is a unit in g-D,.
After completed rationalisation, we can rewrite y,(z®) as

TP 1OP _ 1\p—1
oLt ([gq - 1>5<xa) “ont ((u‘1 -1)- u‘2(q;) +0((a - 1>”)>5($"‘> :

Here O((¢ — 1)?) denotes “error terms” which are divisible by (¢ — 1)P. Observe that these
error terms are contained in (z%,¢ — 1)P, so we can safely ignore them. Also z°?/[p], is clearly
contained in (z%,q — 1)P. The term (u~! — 1)§(2®) is contained in (¢ — 1) g¢-Dq, so we can just
kill it. This leaves the term u=2(q — 1)P~1§(z®)/p.

If « = 1, there’s nothing we can do: No modification by elements from (¢ — 1) ¢-D,, will
ever get rid of a non-integral multiple of the polynomial variable §(z). This shows that for
« = 1, the ¢g-Hodge filtration on ¢-D,, is not a g-deformation of the Hodge filtration. For o = 2,
however, we have §(22?) = 22P§(x) + pd(x)?. Now the term 2P (z)u=2(q —1)P~!/p is contained
in (z2,¢ — 1)? and so

Ta(2?) = 7q(2%) — (' = 1)d(2?) +u™?(q — 1) 716 ()?
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is contained in Filé{Hdg q-D,, and satisfies §,(2?) = 2% /p mod q — 1, as desired. For o > 3,

we can similarly decompose 0(xz®) into a multiple of 2P(@=1) and a multiple of p.

3.15. Example. — An example for Theorem 3.10(b) that is not covered by Theorem 3.10(a)
is the case A = B = Zy[z];, with d-structure defined by d(z) = 0, and R = Z,, with

B — R sending x — 1. Then B lifts to an E.-ring spectrum Sp given by p-completing the
flat polynomial ring S[z], and B — R lifts to an E.-map Sp — S,. Base changing along
Sp — Sp,, yields a lift of R, even as an E-ring. In this case, ¢-dRp/4 is the ¢-PD envelope

a? — 1"
q-D = Zp[ﬂ:][[ql]]{} .
[Pla (p.a—1)
It follows for example from [Pril9, Lemma 1.3] that this ring contains elements of the form
(z—1)(x—q)- - (x—q"1)/[n],! for all n > 1. After completed rationalisation, these elements
are visibly contained in the ideal (z —1,¢ —1)". Hence they belong to Filj 14, g-dR /4 and
lift the usual divided powers.

§3.2. The ¢-Hodge vs. the Hodge filtration

It’s possible, but not at all trivial, to continue the analysis of Example 3.14 for higher divided
powers and to give an elementary proof of Theorem 3.10(a). The argument will be explained in
§5.3. In this subsection, we’ll give a completely different proof of Theorem 3.10(b), which implies
Theorem 3.10(a) in the cases covered by Burklund’s result (see 3.12). So far, the elementary
proof is the only argument that also covers the remaining cases for p = 2. It also gives us
finer control over the ¢g-Hodge filtration, which will be crucial in our proof of Theorem 1.19 in
§5.4. On the other hand, through the more abstract proof that we’re going to present now, the
relation between ¢-Hodge filtrations and TC™"f(— /ku) will become apparent.

We keep the notation from §3.1. The first step in the proof of Theorem 3.10(b) is a formal
reduction to the case where A is a perfect -ring.

3.16. Lemma. — Let A — A’ be a p-completely flat morphism of 0-rings, where A’ is also
p-completely perfectly covered. Let R be a p-torsion free quasiregular quotient over A such that
Roo is semiperfect and let R .= R®4 A'. Then the canonical map

Fil} 1144 ¢-dR g4 ®apg—1] A'lg — 1] — Fil} 14, ¢-dRpr a0
s an equivalence.
Proof. This is not completely automatic since we have to be careful with completions. Fix n.
Since A — A’ is p-completely flat and Filj jyqg ¢-dR R4 is p-torsion free, being a submodule
of ¢-dRp/4, we see that — ®A[[q—1]] A'[q — 1] can be replaced by — ®IA[[q—1]] A'lg — 1]. By
Remark A.6, the canonical map ¢-dRr/4 — (dRg/4 ®z Q)[g — 1]/(¢ — 1)" already factors

through p_NdRR/A[[q —1]/(g = 1)" for sufficiently large N. Since Filj y4, ¢-dRR/4 contains
(¢ —1)" g-dR R 4, we can also express it as a pullback of Afg — 1]-modules

| g
N n—1 ) . N
p- @ FillHdg dRR/A(q -t ——p” dRR/A[[q —1]/(¢—-1)"

1=0
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It will be enough to show that the pullback is preserved under the (p, ¢ — 1)-completed derived
tensor product — ®i[[q—1}] A'[q —1]. To this end, let P denote the derived pullback (that is, the
pullback taken in the derived oo-category D(A[q — 1])) and recall that derived tensor products
preserve derived pullbacks. It is then enough to check that H_;(P) ®I;1Hq—1]] A'[lq — 1] is static.
We claim that H_;(P) is p™-torsion for sufficiently large m. Believing this for the moment,
p-complete flatness of A — A’ guarantees that H_1(P) ®i A’ is static. Since it is also p™- and
(¢ — 1)"-torsion, the completion doesn’t change anything and we’re done.

To prove the claim, observe that the cokernel of ¢-dRg 4 — p NdRp /4 must clearly be
pN-torsion. Hence the cokernel of the right vertical map

q-dRpja — p NdRp/alg — 1]/(¢ — 1)"

is p"V-torsion. Since m_1(P) is a quotient of that cokernel (explicitly the quotient by the
bottom left corner of the pullback diagram), we conclude that H_;(P) is p™"-torsion too, as
desired. O

3.17. Replacing A by Ay. — Whether Fil} 4, ¢-dRp/a/(q — 1) — Filjjqy dRp/4 is an
equivalence can be checked after p-completed basechange along the p-completely faithfully flat
map A — A (and similarly for the completed filtrations). By Lemma 3.16 this amounts to
replacing A and R by A and Ry,. Thus, from now on we assume A to be a perfect d-ring and
R is a p-torsion free quasiregular quotient over A such that R := R/p is semiperfect. Since A
is perfect, we can (and will, whenever it is convenient) replace ¢-dRp/4 and dRp/4 by their
absolute variants ¢-dRg/z, and dRg/z,.

The crucial input in the proof of Theorem 3.10(b) is the following result that we learned
from Arpon Raksit, who in turn learned it from Thomas Nikolaus.

3.18. Theorem. — If we equip THH with its natural S* action and ku'“r with its residual
St ~ S1/Cy-action, then there is an S*-equivariant equivalence of Ei-ring spectra3)

THH (Z,[¢,)/S]a — 11),, = 70 (kn') ,

where p, denotes a primitive p™" root of unity and q — Cp- Modulo q — 1 = Bt, this equivalence
recovers the underlying S*-equivariant Eq-equivalence of the S'-equivariant Eo -equivalence
THH(F,) ~ 750(Z°?) from [TC18, Corollary 1V.4.13].

Here 3 € my(ku) denotes the Bott element and ¢ € m_y(ku™") is a complex orientation class,
which can be chosen in such a way that 1 + St € wo(kuhs 1) corresponds to the standard repre-
sentation of S' on C. If we denote this class by ¢, then the E;-equivalence from Theorem 3.18
sends q — q.

Proof of Theorem 3.18. We learned the following argument from Sanath Devalapurkar. Let
us first construct an S'-equivariant E.-map S[¢ — 1] — ku'“?, where the left-hand side
receives the trivial S! action and the right-hand side the residual S' ~ S!'/Cj-action. It’s
enough to construct an S'-equivariant Eo.-map S[q — 1] — kut“r, or equivalently, an E,,-map

(3‘1)Conjecturally, there should even be an E.-equivalence. The second author has been informed that
Devalapurkar and Raksit have some ideas on how to make the E;-equivalence from Theorem 3.18 into an Eo-
equivalence, using their forthcoming work [DR] on an Eo.-equivalence of cyclotomic spectra THH(Z,) =~ 750(5'¢?),
where ] = T;o(LK(l)S).
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S[q — 1] — (kubCr)h(s'/Cp) ~ ku™" . Since ¢ € mo(ku"®") is a strict element, there exists an
Eoo-map S[¢] — ku"® " which factors over the (¢ — 1)-completion S[q] — S[q — 1] and so we
obtain the desired map.

Now let us construct an Eo-S[q — 1]-algebra map Z,[(,] — ku'“?. To this end, observe that
Zp|Cp) is the free (¢ — 1)-complete Eo-S[g — 1]-algebra satisfying [p], = 0. Indeed, since [p], =0
holds in Z,[(p], it certainly receives an Es-S[g — 1]-map from the free guy. Whether this map
is an equivalence can be checked modulo (¢ — 1), where it reduces to the classical fact that F)
is the free Ey-algebra satisfying p = 0. Since 7y (ku'“?) = 7, (ku*® 1) /[plq, we get our desired
Es-S[q — 1]-algebra map Z,[¢,] — ku'“?. It induces S'-equivariant E;-S[q — 1]-algebra map

THH(Z,[]/S[q — 1]);, — THH (ku' /S[g —1]); — ku',

where the arrow on the right comes from the universal property of THH(—/S[¢ — 1]) on
Foo-S[q — 1]-algebras.(*?) is the usual augmentation (which is an S'-equivariant Eo.-S[q — 1]-
algebra map). Since the left-hand side is connective, the above composition factors through an
Sl-equivariant Ei-S[q — 1]-algebra map THH(Z,[(,]/S[q — 1]) — 70 (ku'c?) .

We wish to show that this map is an equivalence. This can be checked modulo (g—1), so it will
be enough to prove that modulo (g — 1) we obtain the usual equivalence THH(F,) ~ 75 (Z'?).
To this end, observe that by the universal property of Z,[(,] and F,, as free Es-algebras, the
Eoo-map kut“» — ZtCr fits into a commutative diagram of Eq-algebras

which on the level of underlying spectra exhibits the bottom row as the mod-(¢ — 1)-reduction
of the top row. Using the same recipe as above, the bottom row induces an S'-equivariant map
of Eq-algebras THH(F,) — 7>0(Z,). This map necessarily agrees with the underlying E;-map
of the S'-equivariant E..-equivalence THH(F,) ~ 75¢(Z'“?). Indeed, the latter is uniquely
determined by a non-equivariant E..-map F, — 7?50 we only need to check that this agrees,
as an [Eo-map with the one above. But I, is the free Eg-algebra with p = 0, so there can be
only one such Es-map. ]

Using Theorem 3.18, we’ll relate the ¢-Hodge-completed ¢g-de Rham complex to TC™ (—/ku).

3.19. The ku-comparison I. — With notation as in 3.17, let kug = (ku®SR)$. Consider
the following diagram of S'-equivariant right modules over THH(Zy[(,]/S[q — 1]);:

THH(S) ® THH(Z,[¢,)/Sl — 1)) “Z*™ THH(SR)'? @ ku'™” — (THH(Sg) ® ku)'*

| |

THH(R[G)/S[q — 1])) -----------=mmmmmemme oo . THH (kug /ku)iC»

(2)In particular, this map THH(ku'“? /S[g — 1]); — ku'“" is not the usual augmentation, as the augmentation
would only be S'-equivariant for the trivial S*-action on ku®“».
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Here the top-left map is induced by the cyclotomic Frobenius ¢: THH(Sg) — THH(Sg)!“» and
the map from Theorem 3.18. The left vertical map is an equivalence after p-completion, so the
bottom dashed arrow exists uniquely. After taking S!-fixed points and using the Tate fixed point
lemma [TC18, Lemma I1.4.2], the bottom dashed map induces a right TC™(Z[(,]/S[q — 1]),-
module map

vl TC™ (R[] /Slq - 1])7 — TP(kug/ku); .

This looks promising because the left-hand side is almost of the form used in [BMS19, §11.2]
to construct Frobenius-twisted Breuil-Kisin cohomology. The only difference is that we’re
working relative to S[¢ — 1], with ¢ — (,, rather than relative to S[z], with z — (, — 1. But
this difference is inconsequential, as the following lemma shows.

3.20. Lemma. — We have an isomorphism of graded Z,[q — 1]-algebras

(T (516o)/Sla — 11),) = Zplla = 111w 1]/ ut = [p]y)

where t is our usual complex orientation class in degree —2 and u is a generator in degree 2.
More generally, the spectrum TC™(R[(p]/S[q — 1]),, is concentrated in even degrees and

s (TC* (RIS /Sla - 1]])2) = Fily, Ag[)gp]/zp[[q_u]

is the completion of the Nygaard filtration on Frobenius-twisted prismatic cohomology of R[(p]
relative to the q-de Rham prism (Zylq — 1], [plq). Furthermore, after localisation at u, we get
the actual g-de Rham cohomology of R on my:

mo(TC™ (RIG)/STa — 1) [2]],,,1)) = -dRpyz,

Proof sketch. Observe that the arguments from [BMS19; BS19] go through verbatim if we just
replace base change along S[z] — S[z'/P™] with base change along S[q — 1] — S[¢'/?™ —1].
Then the first isomorphism is the analogue of [BMS19, Proposition 11.10], the second is the
analogue of [BS19, §15.2] and the final one is the analogue of the Frobenius descent from
[BMS19, §11.3]. 0

3.21. The ku-comparison II. — Using 3.19 and Lemma 3.20, we see that wg) induces
a map from the Nygaard-completed Frobenius-twisted g-de Rham cohomology of R into
mo(TP (kug/ ku);)\). To promote this to a map from the actual g-de Rham cohomology, we need
to show that the generator u from Lemma 3.20 is sent to a unit. This can be checked modulo
(g — 1). Using the compatibility with THH(F,) ~ 75(Z'“?) from Theorem 3.18, we're reduced
to checking that the cyclotomic Frobenius qﬁhsl: TC™(F,) — TP(F,) sends the eponymous
element u € 12 TC™(F,) to a unit. But in fact, u is sent to =1 € my TP(F,).

Therefore, ¢§g1) factors through a map of right TC™(Zy[(,]/S[g — 1]),-modules

_ A
Yr: TC (R[Cp]/S[[q - 1]]) [%](p,q_l) — TP(kuR/ku);\ )
3.22. Theorem. — Let kug be as above and let KUp = (KU@SR);}. Then the spectra

TC™ (kug/ku), and TC™(KUg/KU)} are concentrated in even degrees and mo(yr) induces
graded Zy[q — 1]-linear isomorphisms

Fil? g ¢-dR gz, — m24 (TC™ (kug/ku)?) |
¢-Hdgp)z,[65'] — mu (TC™ (KUR/KU);) .
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3.23. Remark. — A priori THH(kuR/ku)I/)\ is only an Eg-ring spectrum, so it doesn’t
make sense to ask for multiplicativity in Theorem 3.22. However, if Si refines to an Es-ring
spectrum, then the map ¥ respects E;-S[q — 1]-algebra structures and so the isomorphism
from Theorem 3.22 will be one of graded rings.

To prove Theorem 3.22 we analyse the filtration on mo(TP(kug/ku);) coming from the Tate
spectral sequence (which we’ll call the Tate filtration) and relate it to the ¢g-Hodge filtration.
This is the content of Lemmas 3.27 and 3.28. Then we compute 7y(1)g) modulo (¢ — 1) in
Lemma 3.29. Once we have this, Theorem 3.22 will be an easy consequence.

3.24. Completion issues. — To analyse the filtration on m(TP(kug/ku);), we would like
to compare filtrations along the rationalisation map TP(kug/ku) — TP(kur ® Q/ku ® Q).
The problem with this is the p-completion: It would kill the right-hand side, but without
p-completion, the left-hand side is a rather pathological object. There are at least two ways to
overcome this problem:

(a) If R = B/J is of perfect-regular presentation, we can consider kup = (ku ® Sp);y and
promote kug to an Ej-algebra in kug-modules by Lemma 2.2. Then the same argument
as in [BMS19, Proposition 11.7] shows THH(kup/ku) — kup is an equivalence after
p-completion, hence TP(kugr/ku), ~ TP(kugr/kug),. But TP(kug/kup) is already p-
complete, so we can simply work relative to kug.

(b) We can use solid condensed mathematics.

We'll follow strategy (b), since it allows us to prove Theorem 3.22 in the most generality (and
condensed mathematics will show up anyway in our proof of Theorem 1.19).

3.25. Solid condensed recollections. — Let Cond(Sp) denote the oo-category of (light)
condensed spectra, that is, hypersheaves of spectra on the site of light profinite sets as defined
by Clausen and Scholze [CS24]. The evaluation at the point (—)(x): Cond(Sp) — Sp admits a
fully faithful symmetric monoidal left adjoint (—): Sp — Cond(Sp), sending a spectrum X to
the discrete solid condensed spectrum X.

If X is a p-complete spectrum, then X is usually not p-complete in Cond(Sp) because (—)
doesn’t commute with limits. After passing to p-completions, we still get an adjunction on
p-complete objects (=) : Sp) = Cond(Sp)) :(—)(x) and the left adjoint is still fully faithful
because the unit is still an equivalence. For readability we’ll make the following abusive
convention: If X is a p-complete spectrum, we’ll identify X with X' ]/3\, otherwise we identify X
with the discrete condensed spectrum X. In particular, we’ll regard ku as a discrete condensed
spectrum, but kugr as a p-complete one.

One can develop a theory of solid condensed spectra along the lines of [CS24, Lectures 5-6].
Consider the condensed spectrum Ps = cofib(S[{co}] — S[NU {c0}]). Let 0: Ps — Ps be the
endomorphism induced by the shift map (—)+1: NU{oo} — NU{oo}. Recall that a condensed
spectrum M is called solid if

1 — o*: Homg(Ps, M) — Homg(Ps, M)

is an equivalence, where Homg denotes the internal Hom in Cond(Sp). We let Spy € Cond(Sp)
denote the full sub-co-category of solid condensed spectra. Then Sp, is closed under all limits
and colimits, hence the inclusion admits a left adjoint (—)™: Cond(Sp) — Sp,. It satisfies
(M®N)" ~ (M"® N)", which allows us to endow Spg with a symmetric monoidal structure,
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called the solid tensor product, via M ®" N := (M ® N)". The solid tensor product has the
magical property that if M and N are p-complete and bounded below, then M ®® N is again
p-complete; see [CS24, Lecture 6] or [Bos23, Proposition A.3].

For every Ec-algebra k in Spg, we let —®} — denote the tensor product on Mody(Spy). We
can then consider topological Hochschild homology inside the symmetric monoidal oco-category
Modj (Spg)- This yields a functor

THH(—/ka): Alg(Mod(Spg)) — Mody(Spa)®" .

We also let TC™(—/ka) := THH(—/ka)™" and TP(—/ka) := THH(—/ke)®". Since every dis-
crete spectrum is solid, we can regard ku as an E.-algebra in Spg. Since kup ~ limy>o kugr/p®
is a limit of discrete condensed spectra, it must be solid as well, hence it defines an object in
Alg(MOdku(Spl))'

3.26. Lemma. — Then condensed spectrum THH(kug/kua) is the p-completion of the
discrete condensed spectrum THH(kupg/ku).

Proof. By the magical property of the solid tensor product,
THH(kug/kus) ~ kupg ®;u%p®;ukuR kup

is again p-complete. Hence we get a map THH(kuR/ku)Z/)\ — THH(kug/kua). Whether this
map is an equivalence can be checked modulo p?. Since ku/p admits a right unital multiplication
(in fact an E;-ku-algebra structure by [HW18]), Burklund’s result [Bur22, Theorem 1.5] shows
that ku/p® admits an Eo-ku-algebra structure, and so we may regard kug/p® ~ kug R, ku/ p?
as an Ej-algebra in the E;-monoidal oo-category RMody, /3 (Spe). Since kug/ p3 is discrete and
the inclusion of discrete objects into all condensed spectra preserves tensor products, we obtain

THH (kug/ku)) /p® ~ (kug/p°) ®Okur/p®)P®y, 3 (kur/p?) (kug/p®) ~ THH(kug/kua)/p*. O

3.27. Lemma. — The Tate filtration on mo TP (kug/kua) is the preimage of the Tate filtration
on mo TP((kugr ®" Q)/(ku @™ Q)a) under the rationalisation map

TP (kug/kua) — TP ((kup @" Q)/(ku @" Q)a) -

Proof. As both filtrations are complete, it’s enough to check that the map on associated gradeds
is injective. By (¢ — 1)-completeness, this can, in turn, be checked modulo ¢ — 1 = ft. Since ¢
is invertible, reducing modulo (¢ — 1) amounts to base change along ku — Z. So we reduce
to the same question about HP(R/Zs) — HP(R ®Y Q/Qa) (according to our convention in
3.25, Z and Q are regarded as discrete condensed rings, whereas R is a p-complete condensed
ring). The same argument as in Lemma 3.26 shows that HH(R/Za) ~ HH(R/Z);. Hence
moHP(R/Za) = &RR/ZP and this isomorphism identifies the Tate filtration with the Hodge
filtration. Similarly HH(R ®" Q/Qa) ~ HH(R/Za) ®7 Q ~ HH(R/Z),, ®7 Q. Thus we obtain
that 7o HH(R ®@" Q/Qu) = (&RR/Zp ®z Q)fjgq is the completion of ({RR/ZP ®z Q at its Hodge
filtration, and the Tate filtration gets again identified with the Hodge filtration.

So it’ll be enough to check that the Hodge filtration on CTI\%R/ZP is the preimage of the Hodge

filtration on dR r/z, ®z Q. This follows from the argument in the proof of Lemma 3.8. O
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3.28. Lemma. — There exists an isomorphism

7o TP ((kug ®" Q)/(ku ®" Q)n) = (AR gz, ®2 Q)figgle — 1]

in such a way that the Tate filtration becomes identified with the combined Hodge- and (¢—1)-adic
filtration from Construction 3.5. Furthermore, mo(1r) becomes identified with the canonical

map q-dRpg;z, — ((TRR/ZP ®z Q)fiagla — 1]

Proof. Note that the polynomial ring Q[] is the free Eo-Q-algebra on a generator 5 in degree
2. Hence we get an Eoo-map Q[f] — ku®"™ Q and an E;-map R®Y Q[8] ~ Sp ®" Q[S] — kug.
Both maps are equivalences, as one immediately checks on homotopy groups. It follows that

THH((kur ®" Q)/(ku ®" Q)u) ~ HH(R/Za) ®7, Q5] ~ HH(R/Z), ®7 Q[A].
By lax monoidality of (—)®", we get a map

TP(R/Z), &) QUBI(1) — TP((kup ®" Q)/(ku®® Q)u) -

The THH-computation above shows that on 7y this map is an equivalence up to completion at
the Tate filtration. Hence indeed mo TP ((kug @" Q)/(ku ®" Q)u) = (dRp/z, ®z Q)tiqgle — 11,
where ¢ — 1 = ft, and the Tate filtration becomes the combined Hodge- and (¢ — 1)-adic
filtration.

It remains to show that my(1)r) agrees with the canonical map. To this end, recall our
assumption that R := R/p is semiperfect. This implies that A, == W(Rb) — R is surjective.
If J = ker(Ain — R) and Agys == Dy, (J) denotes the p-completed PD-envelope of J,
then it’s well-known that dRp/z, ~ dRp/a,,, =~ Acrys- ) So mo(yr) appears as a map
q-dRR/z, — (Acrys ®z Q)fiagla — 1]- Since the right-hand side is rational and (¢ — 1)-complete,
mo(¢r) factors through (q—dRR/ZP ®7z Q)(Aq_l) ~ (Aays ®z Q)[qg — 1]. In total, we're given a
map

(Acrys Xz @) [[q - 1]] - (Acrys ®z Q);-\Idg [[q o 1]]

and we must show that it is the obvious one. To see this, observe that the un-p-completed
PD-envelope Agrys of J C Ayy¢ is contained in Ay r ®7 Q. Thus, the obvious map is uniquely
characterised by the following two properties:

(a) It is a map of Aint[q — 1]-modules.
(b) It is continuous with respect to the (p,q — 1)-adic topology on either side.

It’s clear from the construction that my(¢g) also satisfies (b). To see (a), since Ay is a
perfect d-ring, it lifts uniquely to a p-complete connective Eo-ring spectrum Sy, .. Then
THH(S4,,,) — Sa,,, is an equivalence after p-completion by the same argument as in [BMS19,
Proposition 11.7] and so THH(Sg),y ~ THH(Sg/Sa,,); - Thus, we can redo the constructions
from 3.19 and 3.21 and work relative to Sy, , everywhere. This yields the desired Ai¢[g — 1]-
linearity.

Here we’ve implicitly used two facts: First that the E;-algebra structure on Sg refines
to an Ej-algebra in Sy, -modules; this is shown in Lemma 2.2. Second, we've used that
THH(—/Sa,,,) admits a cyclotomic structure; this is shown in Lemma 2.1. We should also

(3-3)Indeed, the first equivalence follows from At being a perfect 6-ring. For the second, note that dRR/a;,; 18
p-torsion free and contains divided powers for all z € J, as can be seen from dRyz,z[.] — dRg/a, . Hence there’s
a map Acys — dRpys,,,, and this map is an equivalence modulo p by [BMS19, Proposition 8.12].
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remark that the cyclotomic Frobenius in 3.19 introduces a Frobenius-twist, so that Wo(wg)) is
not Ajn¢[g — 1]-linear, but only semi-linear with respect to the Frobenius on A,¢. However,
this twist gets untwisted in 3.21634 g0 (YR) really is Ajy¢[g — 1]-linear. O

This finishes our analysis of m(1)r) after rationalisation. Let us now compute it after
reduction modulo (¢ — 1).

3.29. Lemma. — Let WdR_ g, denote the p-typical derived de Rham-Witt complex of F,-
algebras and let R == R/p. Then modulo (q — 1), the map mo(Yr) can be canonically identified
with .

WdRE/Fp =~ dRR/Zp — dRR/Zp .
Proof. 1f we reduce the maps 1/1%” and ¥p from 3.19 and 3.21 modulo (¢ — 1) = ft, we obtain

maps @%) and 1) R sitting inside a commutative diagram

—(1
—A o
_—

TC™(R), HP(R/Z),
[
TC-(R)[L])

where ¢ is the cyclotomic Frobenius. We know that mo(HP(R/Z),) = dRp /z,- According to

[BMS19, Theorem 8.17], mo(TC™ (R);)) = mﬁ /F, is the Nygaard-completed de Rham-Witt
complex of R. Furthermore, the Frobenius-descent from [BMS19, §11.3] (except that we're
working absolutely, not relative to S[z] or S[g — 1]) shows that the left vertical map can be

identified with the Frobenius ¢: WdRg/r, — WdRE/r, on mp. So mo (1r) really appears as

a map WdRg/p, ~ dRp/z, — dr R/z,- 1o show that it is the indeed the obvious such map,
we can use the same argument as in the proof of Lemma 3.28: The obvious map is uniquely
determined by Aj¢-linearity and continuity; the former property is obviously satisfied for
T (@R), whereas the latter follows since we can again work relative to Sy ]

inf *

Before we continue with our proof of Theorem 3.22; let us mention the following curious
observation.

3.30. Remark. — Recall the usual equivalence dRp/z, ~ WdRE/p,. For p > 3, it’s
straightforward to check that the Hodge filtration is contained in the Nygaard filtration, and
so we get a map dr R/Z, — mﬁ /F,- This map is an equivalence because it reduces to an
equivalence modulo p; see [BMS19, Theorem 8.17].

However, for p = 2 this argument breaks down and the author suspects that in the case
R = Zo{z}oo/x (where Zo{x}s denotes the free 2-complete perfect J-ring on a generator ) the
Hodge and Nygaard filtrations are incommensurable. But in the presence of an E;-lift Sg, such
a pathology cannot occur. Even better: We get an equivalence on the level of spectral

Indeed, recall from [TC18, Corollary 1V.4.13] there exists a map Z — THH(F,) of S
equivariant Es.-ring spectra. It is an equivalence after (—)tcp and induces an S!'-equivariant
map (THH(Sg) ® Z)*“» — (THH(Sg) ® THH(F,))!“” of spectra. After taking S!-fixed points,
this yields a map

c: HP(R/Z)) — TP(R),, .

(-9 This probably not clear from the construction alone, but it becomes apparent from [BMS19, §11.3].
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On 7y, we obtain a map mo(c): CTP\{R/ZP — mﬁﬂpp. The same Sy, ,-trick as in the proofs of
Lemmas 3.28 and 3.29 shows that the map my(c) must be induced by the usual equivalence
dRRg/z, ~ WdR%R/r, after passing to completions on both sides (so in particular, the completions
must be compatible). The same argument as above then shows that 7y (c¢) must be an equivalence.
Thus ¢ must be an equivalence as well, as both sides are even periodic and the periodicity
generators are already detected in Z'C» ~ THH(F,)!r.

Proof of Theorem 3.22. Consider mo(¢'r): ¢-dRp/z, — mo(TP(kug/ku);). By Lemmas 3.27
and 3.28, the g-Hodge filtration on ¢-dR gz, is the preimage of the Tate filtration under mo (YVR).
This immediately implies that mo(¢r) factors through an injective map

¢-dR 7, — mo(TP(kug/ku)h) .

To show surjectivity, we only need to check that the image of this map is dense. This can be
checked modulo (¢ — 1), where it follows from Lemma 3.29.

By the usual comparison between the homotopy fixed point and Tate spectral sequences,
we see that e, (TC™ (kug/ku))) agrees for all n > 0 with the n'® step in the Tate filtration

on mo(TP(kug/ku),) ~ ¢-dRp /2,5 S0 We can upgrade this equivalence to the desired filtered

equivalence .
FﬂZfHdg q_dRR/Zp ~ Tk (TC_ (kUR/ku)é\) .

Using the base change formula THH(— ®yx, KU/KU) ~ THH(—/ku) ®x, KU we obtain

TC (KUg/KU)) ~ TC—(kuR/ku)g[;]; )

Since ¢ — 1 = [t, we may as well complete at (p,q — 1). Via the above computation of
m2+(TC™ (kug/ku);)), we see that mo(TC™ (kug/ku),[1/4]) arises from q—cfl\%R/Zp by adjoining
elements (¢ —1)""wy, for all w;, € Filj 4, qf(ﬁ\% R/z,- After completion at (p, ¢—1), this precisely
yields the g-Hodge complex ¢-Hdgp/7,, from Construction 3.5(c). To finish the proof, it remains
to check that in this case (p, ¢ — 1)-completion commutes with passing to homotopy groups and
to establish the evenness assertions. This will be done in Lemma 3.31 below. O

3.31. Lemma. — The spectra TC™ (kug/ku); and TC™ (KUgr/KU); are concentrated in
even degrees. Furthermore, (¢ — 1,p) is a regular sequence in . (TC™ (kug/ku),[1/5]), so
(p, g — 1)-completion commutes with passing to homotopy groups.

Proof. The ku"® "module spectrum TC™ (kug/ ku);\ is t-complete, so it’s enough to check that
TC™ (kug/ku)/t ~ THH(kug/ku); is even. This is a connective ku-module, hence S-complete.
So we can further reduce to THH(kug/ku), /8 ~ HH(R/Z),), which is even with 7y, given
by X7 A" Lg/z,; see [BMS19, Lemma 5.14] and observe that the proof goes through in our
situation as well even though R need not be quasiregular semiperfectoid.

That m2.(TC™ (kug/ku),[1/8]) is (¢ — 1)-torsion free, or equivalently, t-torsion free, follows
since (TC™ (kug/ku),[1/8])/t ~ THH(kugr/ku),[1/8] is even, as we've just checked that
THH(kug/ku); is even. Furthermore, to see that the homotopy groups of THH (kupg/ku),[1/4]
are p-torsion free, it’s enough to check the same for THH (kug/ ku)z/,\. Since this is S-complete,
we can again reduce to THH(kug/ku);, /8 ~ HH(R/Z),), and then we win since ™" A" Lz,
are p-completely flat modules over the p-torsion free ring R. This shows that (¢ — 1,p) is a
regular sequence, as desired. Then TC™ (KUg/KU); ~ TC_(kuR/ku);\[l/ﬁ]E\pvq_l) must again

be even, since (p, ¢ — 1)-completion commutes with passing to homotopy groups in this case. [J
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Proof of Theorem 3.10(b). By Lemma 3.16, we can reduce to the case where A = A is a
perfect 0-ring. Then R = R. Furthermore, Filjjq, dR_ 4 ~ Filjjq, dR_ /7 and then the same
follows for the derived g-de Rham complexes with their ¢-Hodge filtration. So we may as well
work relative to Z,. Since ¢ — 1 = ft, we see that under the equivalence from Theorem 3.22 we
get an identification

Fill! y4g ¢-dR gz, /(¢ — 1) Fill gk g-dR gz, = mon (TC™ (kug/ku)j /8)

But on homotopy groups, TC™ (kug/ku);, /8 ~ HC™(R/Z), recovers the Hodge filtration on
dr Rr/z,- This shows that Filj yq, ¢-dR Rr/z, 18 @ g-deformation of Filfjy, dr R/Z,-

To show that the same holds true before completing the filtrations, thanks to Lemma 3.8 we
only need to prove that Filj 4, ¢-dRp/z, — Filjjqg dRg/z, is surjective in every degree. So let
w € Filjggy dRpg/z,. We know that Filj g, ¢-dR Rr/z, contains a lift @ of w. We also know that
q-dRp/z, contains a lift w of @. Then @ = w + (¢ — 1)7 for some 7 € q—&RR/ZF. Choose an
approximation n € g-dRpg/z, of n such that n — 7 lies in the n*® step of the completed ¢-Hodge
filtration. Then w + (¢ — 1)n € Filj g, ¢-dR gz, is a lift of @, as desired. O

§3.3. Some formal properties of derived ¢-Hodge complexes

In this subsection we show a few easy results about Fil;",Hdg ¢-dRR/4 and ¢-Hdgp, 4. We start
with a result which is very convenient to streamline arguments.

3.32. Lemma. — Let Fil* M € Mod4_1)*z[4—1](FilD(Z)) be a filtered module over the
(q — 1)-adically filtered ring (¢ — 1)*Z[q — 1] such that for all n < 0, Fil* M ~ Fil® M, and for
all n > 0, Fil" M is (q — 1)-complete and the multiplication (¢ — 1)": Fil® M — Fil® M factors
through Fil" M as Z[q — 1]-modules. Then M is also (¢ — 1)-complete in the filtered sense, with
(q — 1) sitting in filtration degree 1.

In particular, this applies to Fil} 4, ¢-dRp/a, as (¢ —1)" ¢-dRp/a C Filj gge ¢-dRp/a-
Proof of Lemma 3.32. For all n, we obtain

Fil" M = lim Fil" M/(q — 1) Fil" M > lim Fil" M/(q — 1) Fil" " M .
(> >

The first equivalence is the assumption that Fil™ M is (¢ — 1)-complete, the second equivalence
follows from the factorisation assumption. In combination, this precisely says that Fil* M is
(¢ — 1)-complete in the filtered sese. O

Next, we’ll show base change and a Kiinneth formula. We'’ve already seen in Lemma 3.16
that the ¢-Hodge filtration satisfies base change along p-completely flat maps of d-rings. We’ll
now show that the flatness hypothesis can be removed as long as the g-Hodge filtration is a
g-deformation of the Hodge filtration.

3.33. Lemma. — Let A — A’ be a morphism of p-complete §-rings such that A’ is also
p-completely perfectly covered. Let R be a p-torsion free quasiregular quotient over A such that
R is semiperfect. Suppose that the derived base change R’ = R@% A’ is static and p-torsion
free.

(a) R is again a quasireqular quotient over A’ and R is semiperfect (so we can define
Fﬂ;—Hdg q_dRR’/A’ cmd (J‘Hng//A/) .
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Furthermore, suppose that the q-Hodge filtration on q-dRg/4 is a g-deformation of the Hodge
filtration. Then:

(b) The q-Hodge filtration on q-dRp/ 4/ is again a q-deformation of the Hodge filtration and
the canonical base change morphism

Fﬂ;Hdg q_dRR/A ®IA[[(1—1]] A/ [[q — 1ﬂ i> Fﬂ;Hdg Q‘dRR'/A/ .

is an equivalence. On the left-hand side the tensor product is degreewise (p, q—1)-completed.

(¢c) The canonical base change morphism for derived q-Hodge complexes is also an equivalence
Q‘Hng/A ®i[[q—1]] A/[[q — 1ﬂ i> Q‘Hng//A’ .

Proof. Part (a) is almost trivial: Our assumptions imply that R'/p ~ R/p ®ﬁ /p A’/p and that
S7'Lp/a/pis a flat R/p-module. Then XLy a/p ~ X Ly a/p ®i/p A’/p is a flat module
over R'/p, proving that R’ is a quasiregular quotient over A. Furthermore, it’s clear that
Ego =R ® Aoo /p Al /p is semiperfect again.

Next we show (b). To show that the g-Hodge filtration on ¢-dRp/ /4 is a g-deformation of
the Hodge filtration, we only need to check that Fil} 4, ¢-dRp//a//(q — 1) — Filfig, dRpr/ar is
degreewise surjective. Since the usual Hodge filtration satisfies derived base change, we have
Filfiqg dRprjar ~ Filfig, dR g 4 ®Y% A’; the right-hand side must be static by (a). The desired
surjectivity now follows since already

(Fﬂ;—Hdg q-dRR/a ®I,f1[[q—1]] A'lg— 1]])/(‘1 — 1) — Filfjg; dRR/a ® A’

is degreewise surjective by our assumption on R. To show the base change equivalence, observe
that both sides are (¢ — 1)-complete as filtered objects by Lemma 3.32. So we may reduce
both sides modulo (¢ — 1) in the filtered sense, and then we obtain the base change morphism
Filfjqg dRp/a ®Y% A — Filfjqe dRprjas for the ordinary Hodge filtrations, which we know to be
an equivalence. This proves (b).

To show (c¢), recall from Remark 3.7 that we may as well use the un-completed ¢-Hodge
filtration in the definition of the derived g-Hodge complex. Since we know the latter to satisfy
base change by (b), we’re done. O

3.34. Lemma. — Let Ry and Ry be p-torsion free quasireqular quotients over A such that
R1 0o and Ro o are semiperfect. Suppose that R == Ry @I;‘ Ry is static and p-torsion free.

(a) R is again a quasireqular quotient over A and R is semiperfect (so we can define
Filj qag ¢-dRp/a and ¢-Hdgg4).

Furthermore, suppose that the q-Hodge filtrations on g-dRg, /4 and g-dRRg, 4 are q-deformations

of the respective Hodge filtrations. Then:

(b) The g-Hodge filtration on q-dR g4 is again a q-deformation of the Hodge filtration and
we have a canonical Kiinneth equivalence

Fil} 114 4-dR R, /4 ©,— 1) afg—1) Filit1ag &R pyja — Fil g5 ¢-dR R4 -

Here the tensor product is taken in filtered objects and degree-wise (p,q — 1)-completed;
(g — 1)*AJq — 1] denotes the (¢ — 1)-adic filtration on Alq — 1] (which agrees with the
q-Hodge filtration Filj yq, ¢-dR a/4)-
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(¢) Likewise, for derived q-Hodge complexes there is a canonical Kinneth equivalence
q-Hdgp, /4 ®IA[[q_1]] q-Hdgp, 4 — ¢-Hdgpa -

Proof. Again, (a) is almost trivial: Since R;/p ®I;1/p Ry /p is static and £ 'Lg, /4/p is flat over

R1/p, we see that X~ 1Lp, /A/P ®IA Ip Ry /p must be static again. The same conclusion holds if
we reverse the roles of Ry and Ry. Hence both summands in

Lrja ~ (Lp,/a ®% R2) ® (R1 ® Li,/a)

have p-complete Tor-amplitude concentrated in degree 1, so R is a quasiregular quotient over
A again. Also Reo = Ry 00 ®a_ /p Ry «is clearly semiperfect again.

To show that the g-Hodge filtration on g-dR g/ 4/ is a g-deformation of the Hodge filtration,
we only need to check that Fil_yq, ¢-dRr/a/(q — 1) — Filfjg, dR g 4 is degreewise surjective.
But Filfjq, dRg/4 =~ Filfjq, dRR, /4 ®% Filfjqg dRp,/4 and so surjectivity for R follows from
surjectivity for R; and Ry. By Lemma 3.32, the Kiinneth equivalence from (b) can be checked
after reducing both sides modulo (¢ — 1) as filtered objects. Then we get the usual Kiinneth
equivalence for the Hodge filtration. This shows (b). As in the proof of Lemma 3.16, thanks to
Remark 3.7 we can deduce (c) as a formal consequence of (b). O

Finally, we’ll introduce yet another filtration.

3.35. The conjugate filtration. — Let R be a p-torsion free quasiregular quotient over A
such that R is semiperfect. We will construct an ascending filtration Fil® (¢-Hdgp /4/(@—1))
on ¢-Hdgr/4 /(g — 1), which we’ll call the conjugate filtration, whose associated graded is
gr%onj(q—Hng/A/(q —1)) ~ dR%/y ~ X" A"Lgja. This gives some justification to our
proposal that ¢-Hdgp,4 should be a g-deformation of Hodge cohomology.

To construct the conjugate filtration, let’s consider the p-completed localisation of the
filtered object Fily j4, ¢-dRR/4 at the element (¢ — 1), sitting in filtration degree 1, as always:

. A . . 1 -1 A
Fil? 114, q—dRR/A[q_%]p ~ colim (Fﬂ;Hdg g-dRpya L Bl L g-dR g ) .
p

Let ¢-Hdg5, /A denote the degree-0-part. It’s completely formal to see that the filtered object
above is the (¢ — 1)-adic filtration on ¢-Hdgp 4[1/(q — 1)]5. In particular, if we complete the
filtration (or in other words, take the localisation in the category of complete filtered objects),
then we obtain the (¢ — 1)-adic filtration on ¢-Hdgg, 4[1/(¢ —1)],. By passing to the associated
graded, it follows that

. (¢—1) (¢—1)
g-Hdgpr/a/(g — 1) ~ colim (grngg ¢-dRp/a — &rgndg ¢-dRrja — .. ) -
P
This representation as a colimit yields an exhaustive ascending filtration on ¢-Hdgg /4 /(g—1)

via Fil%onj(q—Hng/A/(q — 1)) = gry j1aq -dRp/a. It remains to check:

3.36. Lemma. — If the q-Hodge filtration on q-dRg,4 is a g-deformation of the Hodge
filtration, then the associated graded of the conjugate filtration on q—Hng/A/(q —1) is indeed
given by

grs™ (¢-Hdgpya/(q—1)) ~ dR} 4 ~ 57" ALga .
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Proof. The filtered localisation Filf 14, ¢-dRp/a[1/(¢ — 1)];) can similarly be promoted to
a doubly filtered object, with one ascending (“horizontal”) and one descending (“vertical”)
direction. The associated graded in the vertical direction is Fil™(¢-Hdgp /4/(q — 1)) by
construction. For any doubly filtered object, it doesn’t matter in which order one passes
to the associated graded. Passing to the associated graded in the horizontal direction first,
we get (Filj g, ¢-dRR/a)/(q — 1) =~ Filjjq, dRp 4. In the vertical direction we then obtain
8Ty ARRja ~ X7 A" Lpja ~ dR%/A, as desired. O

§3.4. Global ¢-Hodge complexes

In the same way as an integral g-de Rham complex can be defined for arbitrary animated rings
(see Appendix A), we can also globalise the constructions from Construction 3.5.

3.37. Construction. — Let A be a A-ring which is p-torsion free for all primes p and such
that all Adams operations ¥?: A — A are p-completely faithfully flat. Let R be an A-algebra
such that for all primes p, R is p-torsion free, the p-completion ﬁp is a quasiregular quotient
over Ep, and its base change Rp,oo = ﬁp ®Zp Ap,oo satisfies that Rp,oo /p is semiperfect.

(a) We define the q-Hodge filtration on g-dRg,4 to be the pullback

Fil} 4 ¢-dR R4 H Fil} g4 ¢-dRR, /4,
p

: l

Filfig 4 1) ((dRR/A ®z Q) g — 1]]) — Filfag 1 <<H dRz,/4, ®z @> [q — 1])
p

taken in the oo-category CAlg(FilD(A[g — 1])) of filtered E-algebras in the derived
oo-category D(A[g — 1]). Here Filfyyy, , ;) denotes the combined Hodge- and (¢ — 1)-adic
filtration as in Construction 3.5.

The existence of the right vertical map in the diagram above follows directly from the definition
of the g-Hodge filtration on ¢-dRg3,, 1, . Via the pullback square from Construction A.11, we
can regard Fil;’]‘,Hdg q-dRp/4 as a filtration on the global ¢-de Rham complex ¢-dR /4, as the
notation suggests.

As in the p-complete case, the global g-Hodge filtration can be used to construct two more
objects of interest:
(b) The q-Hodge-completed derived q-de Rham complex q—&l\{R/A is the completion of ¢-dR /4

at the ¢-Hodge filtration.

(¢) The derived g-Hodge complex of R over A is the E-A[q — 1]-algebra

. . e (=1 r. o (¢=1) A
g-Hdgp, 4 = colim (Fﬂg,Hdg g-dR gy L Fill g, g-dRg a2 -..)(q_l)
3.38. Remark. — As in Remark 3.7, it doesn’t matter whether we use g-dRp,4 or its
g-Hodge completion q—cﬁ{R/A in Construction 3.37(c).

3.39. Lemma. — Let A and R be as in Construction 3.37. If, for all primes p, the q-Hodge
filtration on q-dRR 4, is a q-deformation of the Hodge filtration on dRR /2, (for exzample,
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this is true if each Ep satisfies one of the two conditions of Theorem 3.10), then the q-Hodge
filtration on g-dRpg/4 is a q-deformation of the Hodge filtration on dRg/4.

Proof. Upon reducing modulo (¢ — 1) in Fil(D(A[g — 1])) (or in FilDAlg4p,_7), the pullback
square from Construction 3.37(a) becomes the usual arithmetic fracture square for the Hodge
filtration on the derived de Rham complex dRpg/4. ]

3.40. Remark. — It’s straightforward to show that the global ¢-Hodge filtration satisfies
the obvious analogues of Lemmas 3.33 and 3.34. Furthermore, we can construct a conjugate
filtration on ¢-Hdgp/4/(¢ — 1) in the same way as in 3.35 (except that the localisation won’t
be p-completed), and then the same argument as in Lemma 3.36 shows

grs”™ (¢-Hdgpya/(q— 1)) ~ dR} 4 ~ 57" ALga,
provided the g-Hodge filtration is a ¢-deformation of the Hodge filtration.

3.41. Upgrade to derived commutative A[q — 1]-algebras. — It’s straightforward to lift
Fﬂ;’ing q-dR /4 functorially to a (¢ — 1)-complete object in the co-category of filtered derived
commutative Alq — 1]-algebras Fil DAlg 4,1y, as defined in [Rak21, Construction 4.3.4]. Here
(¢ — 1) sits in filtration degree 1, as usual.

Indeed, as in A.12, it’ll be enough to lift the three components of the pullback from
Construction 3.37(a) to FilDAlg 4p,_qp- For all p, Filj 4, ¢-dRE, /4, is just an ordinary ring
together with a descending filtration by ideals, so there’s a unique way to promote it to an
object of Fil DAlg 4,_17. The same reasoning applies for each Filz‘Hdgﬂ_l) (dRz,/2, ®zQ)[q—1].
Finally, to equip Filz"Hdg’ q,l)(dR r/A ®z Q)[g — 1] with such a structure, we can first reduce to
the case of smooth A-algebras S (and then pass to animations). In the smooth case, we can use
a cosimplicial argument as in A.12 to reduce once again to the case of ordinary rings equipped
with a descending filtration by ideals.

This argument also provides a functorial lift of ¢-Hdgp /4 toa (¢ — 1)-complete object in
derived commutative A[q — 1]-algebras.
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§4. Refined TC™ of Q

In this section, we’ll compute m, TC™" (ku ® Q/ku) and 7, TC™*[(KU ® Q/KU). In §4.1,
we explain what one has to do to compute THH*!(k ® Q/k) for any Eo-ring spectrum k. In
§4.2 we’ll show how to do these computations for k£ = ku or k = KU. The computation will
make heavy use of the ¢-Hodge filtration on derived g-de Rham complexes, even though it is no
longer present in the final result.

Throughout §4 and §5, we’ll often use the notion of killing a pro-idempotent algebra object.
This is a variant of the usual notion of killing idempotent algebras and we’ll review it in §2.3.

§4.1. A recipe for computing THH™ (k ® Q/k)

Fix an E-ring spectrum k. Let Prlg,w C Pry denote the oo-category of presentable stable oo-
categories and left adjoint functors as well as its non-full sub-co-category spanned by compactly
generated stable co-categories and compact objects-preserving functors. Let Catgerf be the
oo-category of small idempotent-complete stable co-categories. It’s well-known that passing to
ind-oco-categories and restricting to compact objects provides inverse equivalences

Ind: Catgerf % Prlg’w (=)
and we’ll freely pass back and forth between them. Let’s also fix the following;:

4.1. Compatible E;-structures on S/m. — According to [Bur22, Theorem 1.5], for every
prime p > 3 there exists a tower of Ej-algebras (--- — S/p* — S/p3 — S/p?). For p = 2 there’s
a similar tower (--- — S/4* — S/43 — S/4?). Let’s fix such a tower for every prime. For
convenience, let’s call a positive integer m high-powered if in its prime factorisation m = [[,, p®»
we have either a, = 0 or o, > 2 for all odd primes and either g = 0 or ay is even and > 4.
We let N* denote the set of high-powered positive integers, partially ordered by divisibility.
Through our choice of tower for every prime, we obtain a preferred E;-algebra structure on

S/m ~ HS/pa”

for every m € N¥ These assemble into a functor S/ — : (N¥)°P — Alg(Sp).

”
me(Né)op

Alg(Sp). In particular, “lim;e(Né)op THH((k ®S/m)/k) is pro-idempotent in Modk(Sp)BSI.

4.2. Lemma. — The pro-system “lim S/m is not only pro-idempotent Sp, but also in

Proof. Let A := “hm:ne(Né)OP S/m. We have a unit map A ~ S® A — A® A. Since, again

by Burklund’s result, for all m € N? the Eq-structures on S/m2 refine to Eq-structures in a
compatible way, we also get a multiplication map A® A — A in Pro(Alg(Sp)). The composition
A— A® A — A is clearly the identity. To see that AQ A — A — A® A is the identity
as well, we use Corollary 2.20 to see that S/mf ® S/m? — S/m* ® S/m? factors through
S/m? — S/m* ®S/m? for every m € N¥. O

Thanks to Lemma 4.2, we can now formulate an explicit description of THH™! (k ® Q/k).

4.3. Theorem. — THH" (k® Q/k) is an idempotent Eoo-algebra in Nuc(Ind Mody (Sp)BS").
Its underlying Eoo-algebra in Ind(Modk(Sp)BSI) is obtained by killing the pro-idempotent algebra
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“hm;;ze(Né)op THH((k ® S/m)/k). In particular, there exists a cofibre sequence of nuclear S*-

equivariant k-module spectra

“colim” THH ((k ®S/m) /k)" — k — THH™ (k® Q/k),
meN

where (=) = Homy g4 pyest (—, k) denotes the dual in S'-equivariant k-module spectra.

Efimov has explained several computations of refined invariants in various talks; see for
example [Efi24, Talk 6]. For instance, to compute HC ™' (Q[z*']/Q[x]), one has to “cut away”
the oco-category of z>°-torsion objects in D(Q[z]). The x*°-torsion objects can be resolved
by the system “lim,-, DL, (Q[x]/2™), which leads to a similar cofibre sequence as we claim
in Theorem 4.3. One crucial input for this approach to work is that the transition functors
DL, (Q[x]/z™) — DL, (Q[x]/z™) become trace-class for m > 2n.

Our strategy to prove Theorem 4.3 is entirely analogous: Let Spg denote the oo-category of
rational spectra and let Sp*®*® C Sp be the kernel of Sp — Spg- Applying THH™ (k ® — /k) to

tors

the cofibre sequence Sp™® — Sp — Spg in Préﬂw yields a cofibre sequence

THH™ (Sp'™) @ k — k — THH™ (k © Q/k)

in Nuc(Ind Mody(Sp)B5'). The goal is then to identify the left term in this cofibre se-
quence with the corresponding term in Theorem 4.3. To do that, we’ll resolve Sp'®* by
“lim? _, LMods/,,(Sp“), analogous to what Efimov does with “lim} -, DY, (Q[x]/z™). Again,
there will be a trace-class property to check.

It’s clear that for all m € N? the forgetful functor LModg /m(Sp*) — Sp* lands in Sp¥NSptors,

Hence it extends to a functor Ly, : Ind(LMods,,(Sp*)) — Sp'*™.
4.4. Lemma. — The induced functor

L: coliRI]? Ind(LMods,,, (Sp*)) — Sp"*®
me

s an equivalence Prlg. Here the colimit on the left-hand side is taken along the forgetful functors
LModsg/4(Sp”) — LModg/,,(Sp”) for all d,m € N? such that d divides m.

Proof. The presentable co-category Sp'®™® is compactly generated, with a generating set given

by {3"S/m}nent nez- Clearly, each X"S/m is in the image of LMods,,, (Sp*) — Sp'°™®, hence
L is essentially surjective.

To show that L is fully faithful, let R denote its right adjoint. We’ll verify that the
unit u: id = Ro L is an equivalence. By construction, Ind(LModg,,(Sp*)) — Sp*® and
Ind(LModg,4(Sp®)) — Ind(LMods/,,(Sp“)) preserve compact objects. Since the inclusion
PrISjw C Pr¥ preserves colimits, we conclude that L preserves compact objects too. Hence R
preserves filtered colimits. Therefore it’s enough to check that uy;: M — RL(M) is an equiv-
alence for M ranging through a set of compact generators of colim,, ¢y Ind(LMods/,, (Sp“)).
We may thus restrict to the case M € LModg/,,, (Sp*) for some mg € N?. For all m € N, the
functor Ly, : Ind(LModg,,, (Sp*)) — Sp'°*s has a right adjoint R,,. It follows formally that

RL(M) ~ colim Ry,Ly,(M).

meN?, mo|m
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We compute that Ry, Ly, (M) ~ Homg(S/m, M) ~ Homg,,,((S/m)/m, M) ~ ="M /m holds
in Ind(LMods/,,(Sp”)). Since M is a left S/mg-module the multiplication mq: M — M is zero.
It follows formally that M =~ colim,,cn¢, 1o |m %=1 M/m holds in colim,, ¢y Ind(LMods,,, (Sp*))
and so upr: M — RL(M) is indeed an equivalence. O

4.5. Lemma. — For every fized mo € N¥, the base change functor
— ®s/m S/mo: RMods /,,(Sp) — RMods /y,,, (Sp)
1s trace-class in Préw for all sufficiently large m € N¥.

Proof. Recall from [L-HA, Remark 4.8.4.8] that RMods,,(Sp) is dualisable in Pr¥ with dual
LModg /m(Sp). Therefore, the base change functor is always trace-class in Prlg. The witnessing
functor Sp — LModsg/,, (Sp) ® RMods/p,, (Sp) =~ RMods /mopgs/m, (SP) is the classifier of S/mq
as a right module over S/m°P ® S/my, or equivalently, a S/m-S/mg-bimodule. If we work in
PrIg’w, then RModsg,,(Sp) will no longer be dualisable, but we can still form

Hompréw (Rl\/[odg/m(Sp)7 Sp) ~ Ind(Fung (RModg/m(Sp)“, Spw)) ~ Ind (LModg/m(Spw)) ,

where we’ve used [L-HA, Theorem 4.8.4.1]. Using [L-HA, Theorem 4.8.4.6], we still have a
functor in Prg,

Sp — Ind(LMods ,,(Sp*)) ® RMods /y,, (Sp) ~ RMods /y,, (Ind (LMods,, (Sp*)) ) ,

that classifies S/mg has a right S/mg-module in Ind(LMods,,(Sp)). For the desired trace-class
property to hold, this functor needs to be contained in Prlgyw. That is, we need S/my to be a
compact object in RModgp,, (Ind(LModsg,,, (Sp*))). To this end, it will be enough that S/mq
is a retract of S/mo ® S/mg. Indeed, the object S/mg € Ind(LMods/,,(Sp®)) is compact(*1)
and so S§/mg ® S/mo must be compact in RMods,, (Ind(LModsg,,, (Sp“))).

Consider the multiplications y1: S/mg® S/mo — S/mg and pz: S/mZ @ S/mg — S/mo. It
will be enough to show that the canonical map fib(uz) — fib(p1) vanishes as a map of right
S/m°P ® S/mo-modules for sufficiently large m, because then S/m2 ® S/mg — S/mo ®S/mg
factors through po, which exhibits S/my as the desired retract. As right modules over S/mg we
have fib(1) ~ X 71S/mg ~ fib(u2) and the canonical map fib(u1) — fib(z) is multiplication
by mg. Hence it vanishes in RMods;, (Sp) =~ RModsy,, (Sp*®) =~ Sp*"® ® RMods /yy,, (Sp).
Using Lemma 4.4 and the fact that the Lurie tensor product commutes with colimits in either
factor by [L-HA, Remark 4.8.1.24], we have

8" ® RMods , (Sp) > colim <Ind (LMods), (Sp*)) ® RMods )y, (Sp)> .
me

Hence fib(pz) — fib(u1) must already vanish in Ind(LModsg,,,(Sp*)) ® RMods/y,, (Sp) for

sufficiently large m, which is what we wanted to show. O

4.6. Remark. — The implicit bounds in Lemma 4.5 can be made explicit; see Corollary 2.21.
This crucially uses that the E;-structures on S/m are constructed Burklund-style, as recalled
in 4.1. By contrast, the proofs of Lemmas 4.4 and 4.5 work for any choice of compatible
E;-structures on S/m, m € N, and they can be carried over to other bases than S, where

(4-DBy contrast, S/my is usually not compact in LModsg ., (Sp).
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such compatible systems might be easier to construct. For example, over MU (or ku, KU, ...)
there’s another construction due to Jeremy Hahn of a compatible system of E;-MU-algebras
MU/m, m € N.

Proof of Theorem 4.3. Fix a coinitial subcategory {mq < mj « ---} C N¥ such that the base
change functors — ®s/p,., S/m;: RModgp,, ., (Sp) — RModg/,, (Sp) are trace-class in Prlsjw
for all ¢ > 0. Such a subcategory exists by Lemma 4.5. Combining Lemmas 4.4 and 2.7(b),
we see that Sp'® =~ colim;>o Ind(LMods ,,, (Sp)) is a resolution in PrISjw with trace-class
transition maps. It follows that the underlying object of Spg in MotlgOC ~ Nuc(MotISOC) is the
idempotent nuclear E-algebra obtained via Lemma 2.15(b) by killing the pro-idempotent
algebra “lim RModsg/,,,(Sp). Since idempotents admit a unique E,.-algebra structure, this
must also be true as Eo.-algebras.
By Lemma 2.15(c), the symmetric monoidal functor

THH™ ((k ® —)/k) : Mot — Mody,(Sp)®*"

preserves killing pro-idempotents with trace-class transition maps. This shows the desired
description of THH™! ((k ® Q)/k). O

§4.2. The cases k = ku and k = KU

If k is a complex orientable E.-ring spectrum, then computing THHref(k: ®Q/k) together with
its Sl-action is equivalent to computing TC ™" (k ® Q/k). This is due to the following lemma.

4.7. Lemma. — Ifk is a complex orientable Eo-ring spectrum, equipped with trivial S*-action,
then taking S'-fized points defines a symmetric monoidal equivalence

(—)"5": Mody (Sp)P5" = Mod, .51 (Sp)7 -

Here t € m_o(k™S") denotes a chosen complex orientation and Mod, .51 (Sp); denotes the

symmetric monoidal co-category of t-complete KBS _module spectra together with the t-completed

tensor product — ®kh51 —.
Proof. By construction (—)hs " s lax symmetric monoidal. To see that it is strictly symmetric
monoidal, we must check whether M hst ®kh51 NbBST (M ®, N )hS1 is an equivalence. As
both sides are t-complete, this can be checked modulo ¢, where it follows from [HRW22,
Lemma 2.2.10] for example.

For formal reasons, (—)"% " admits a left adjoint L which can be described as follows: We
first have a symmetric monoidal functor const: Sp — SpP° 1, sending a spectrum X to itself
equipped with the trivial S'-action. It induces a functor Mod, 51 (Sp) — Mod, 51 (SpBSl).
Then L is given as the composition of this functor with the base change

— ®unst k: Mod, g1 (SpBSl) — Mody, (SpBSl) ~ Modk(Sp)BS1 .

In particular, on underlying k-modules, L is simply given by (—)/t. Since (—)/t is conservative
on t-complete khsl-modules, it follows that L must be conservative too. Furthermore, the
counit ¢: L((—)") = id is an equivalence, as follows from [HRW22, Lemma 2.2.10]. Thus
(—)bS " must be fully faithful. We conclude using the standard fact that an adjunction in which
the right adjoint is fully faithful and the left adjoint is conservative must be a pair of inverse
equivalences. O
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We'll now explain the computation of 7, TC™"f (ku ® Q/ku) and 7, TC™™ (KU ® Q/KU).

4.8. Battle plan. — For ease of notation, in the following we’ll write ku/m :=ku® S/m
and KU/m := KU ® S/m, where it is understood that the E;-structure is always base changed
from S/m. By Theorem 4.3 and Lemma 4.7, there exists a cofibre sequence

“colinél” TC™ ((ku/m)/ku)v — kY — TC ™ (ku ® Q/ku)
meN

(where now (—)Y := Hom, 51 (-, kuhs 1) denotes the dual in ku™ 1—modules) and a similar one
for KU. We will thus proceed in three steps:

(a) We compute the homotopy groups of TC™ ((ku® S/m)/ku) and TC™ (KU ® S/m)/KU)
using Theorem 3.22. This will be achieved in Corollary 4.14.

(b)) We compute the homotopy groups of the dual modules TC™ ((ku ® S/m)/ku)" and
TC™((KU®S/m)/KU)V. This leads to a preliminary description of the homotopy rings
7 TC™ " (ku ® Q/ku) and 7, TC™™(KU ® Q/KU) in Theorem 4.20.

(¢) We derive the simpler description of Theorem 1.19 via a careful analysis of ¢-Hodge
filtrations. This will be the content of §5.

4.9. Reduction to the p-complete case. — Decomposing m = prap into prime powers,
we have

TC™ ((ku®S/m)/ku) ~ HTCf (ku®S/p*?)/ku),

so we may reduce to the case where m = p® is a high-powered prime power. Let us also
remark that TC™ ((ku/p®)/ku) is automatically p-complete. Indeed, it is (3, t)-complete and
TC™ ((ku/p®)/ku)/(5,t) ~ HH((Z/p™)/Z) is p“-torsion, hence p-complete.

4.10. Reduction to the p-torsion free case. — Now let Z,{z}~ be the free p-complete
perfect d-ring on a generator = and let Sz ;) be its unique lift to a p-complete Eoc-ring
spectrum (see 3.11). By [Bur22, Theorem 1.5], there exists a tower of Ei-algebras in Sy (4. -
modules

(- = Szehn/o" — Sz, /0 — Sgyp00/2?)

for p > 3; the case p = 2 needs powers of x? instead.

The unique map of perfect d-rings Z,{zr} — Z, sending x +— p lifts uniquely to an
Eco-map Sz, (z},, — Sp and we're free to choose our tower of Ej-algebras (S/p®)a>2 in such
a way that it arises via base change from the tower (Sz, (11, /7%)a>2 above.(*?)  Putting
kug, (21, = ku® Sz, (53..);, we can now compute TC™ ((ku/p®)/ku) via base change. Taking
into account that TC™ (—/kug, (2., ), =~ TC™ (—/ku), (see the argument before Lemma 3.27),
we obtain

TC™ ((ku/p®) /ku) ~ TC™ ((kug, o)., /2%) /K1) Okug, (.. KU,

where the tensor product is (p, t)-completed.

“4-21n fact, if we use Burklund’s construction, this will be automatically satisfied. Indeed, with notation as in
Burklund’s paper, there is a unique morphism v1l¢ /3™ — vle /" of Ei-algebras in Def(C, Q) for all m > n > 2.
v: T — L. This is because [Bur22, Lemma 4.8] guarantees that 74 Hompet(c,0)(v((2Z)®™*),v1c /™) vanishes
not only in degree * = (2 — m)k — 2, which guarantees vanishing of the relevant obstructions, but for m > n the
homotopy groups also vanish in degree * = (2 — m)k — 1, which guarantees uniqueness of all nullhomotopies.
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4.11. Construction. — The considerations in 4.10 suggest to define a g-Hodge filtration on
the g-de Rham complex of Z/p® via base change from Z,{z}~ /2% By Lemma 3.16, we may as
well base change the ¢g-Hodge filtration on ¢-dRz, (4} /20)/z,{z}- Concretely, this leads to the
following definition:

(a) The g-Hodge filtration on q-dRz/pa)/z, 18

. — . AL
Filg pag ¢-dR(z/pe) 2, = Filg nag 4-dR(z, (2} /20 /2, 1} © o} g—1] Lola — 1] -

We remark that the filtered object Fil;‘_Hdg q-dR(z/pe)/z, 1s degreewise static with injective
transition maps. Indeed, this can be checked modulo (¢ — 1) (in the filtered sense, with (¢ — 1)
sitting in filtration degree 1) and we have (Fily yq, ¢-dRz/pey/z,)/(q@ — 1) =~ Filfiq, dR(z/pey /2,
by construction.

As in the p-torsion free case, we will also need to consider the following two related
constructions:

(b) The g-Hodge-completed derived q-de Rham complex q—(ﬁ{(z/pa)/zp is the completion of
q-dR z/pa)/z, at the g-Hodge filtration.

(¢) The derived q-Hodge complex q-Hdgz/p0) /7, 1 defined as

. 0 = (¢=1) @1 = (¢—1) A
colim (Fﬂq,Hdg g-AR(z/p0 /2, ~— FilL 14, 4-AR (2p) /2, --.)(p o
Observe that the un-completed colimit contains an element p*/(q — 1), hence it would have
been enough to just complete at (¢ — 1).

4.12. Remark. — A priori, Construction 4.11 depends on the choice of writing Z/p® as the
base change Z,{z}/z* @Iip{x} Zp, but it turns out that the g-Hodge filtration on ¢-dR z/pa),z,
is, at least in a suitable sense, canonical:

4.13. Lemma. — If A — Z, is any map from a p-completely perfectly covered §-ring and R
is a p-torsion free A-algebra which admits a perfect-reqular presentation R = B/J, where the
ideal J = (x7*,...,28") is generated by a Koszul-reqular sequence of higher powers, then for

any map of A-algebras R — 7 /p®, the induced map

¢-dRp/a — ¢-dRz/pe)/z,

is compatible with q-Hodge filtrations. Moreover, the q-Hodge filtration on q-dR(z/pey/z, is the
smallest mutliplicative filtration with this property.

Proof. We can first use Lemma 3.16(b) to reduce to the universal case A = Zy{z1,...,z,},
R = Zp{z1,...,z;}/(x7,...,28") and then Lemma 3.34(b) to reduce to r = 1. Suppose
Zp{z1} — 7, sends z1 — ap®, where (a,p) = 1. In order to have a map Z,{z1}/2" — Z/p%,
we must have a3 > a. Then the map Zy{z1} — Z,{r} sending z1 — az” induces a map
Zp{x1} /2]t — Zp{x}/x* and so the desired compatibility of ¢-Hodge filtrations follows from
functoriality in the p-torsion free case.

This shows that for (A, R) — (Z,Z/p®) as above, ¢-dRr/4 — q-dRz/pa)/z, Preserves
g-Hodge filtrations. Since the ¢-Hodge filtration on ¢-dRz/pe),z, is basechanged from such a
map, it must automatically be minimal with this property. O
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It would be desirable to get compatibility also for A-algebras R that satisfy the condition
from Theorem 3.10(b), but the author doesn’t know how to do that without additionally
assuming existence of an Ej-algebra map Sp.. — S/p®. It would also be nice to generalise
the argument above to more rings than just Z/p®, ideally removing the p-torsion freeness
assumption from Theorem 3.10(a), but again, the author doesn’t know how to do that in
general. The argument above crucially needs that we have strict control over the nilpotent
elements in Z/p®.

The upshot of 4.9, 4.10, and Construction 4.11 is the following.

4.14. Corollary. — Forp > 3 and o > 2, or p = 2 and « is even and > 4, the spectra
TC™ ((ku/p®)/ku) and TC™ ((KU/p*)/KU) are concentrated in even degrees and we have

T2% TC™ ((ku/pa)/ku) = Fﬂ;—Hdg q—&f{(z/pa)/zp y
mox TC™ ((KU/PQ)/KU) = Q‘Hdg(z/pa)/zp [5i1] .

Proof. 1t’s enough to check evenness modulo t, so we may pass from TC™ to THH. Since
THH((ku/p®)/ku) is connective, we may further pass to THH((ku/p®)/ku)/8 ~ HH((Z/p“)/7Z),
which is indeed even. This shows evenness for THH((ku/p®)/ku) and then the same follows for
THH((ku/p®) /kw)[1/8] ~ THH((KU/p®)/KU).

Thanks to 4.10, we get a map Fil} 4, ¢-dR(z/pey/z, — T2+ TC™ ((ku/p®)/ku). Whether this
is an equivalence can be checked after reducing (¢ — 1) in the filtered sense, and then we recover
the well-known fact that the even homotopy groups of TC™ ((ku/p®)/ku)/s ~ HC™ ((Z/p*)/Z)
are Filfjg, (ﬁ{(z /p>)/Z,- LThe claim that the even homotopy groups of

TC™ ((KU/p*)/KU) ~ TC™ ((ku/p®)/ku) [%]:

are given by ¢-Hdg/pe)/7, [8*1] follows formally the description of ma, TC™((ku/p®)/ku)
combined with our remark at the end of Construction 4.11(c¢) that completing at (¢ — 1) is
already enough. O

This finishes step (a) of our battle plan 4.8 and we move onwards to step (b). We start with
a general fact (which is usually formulated as a spectral sequence).

4.15. Lemma. — Let k be an even E1-ring spectrum and let M, N be even left-k-modules.
Then the mapping spectrum Homy (M, N) admits a complete exhaustive descending filtration
with graded pieces

gr* Homy, (M, N) ~ %** RHom,, (1) (m2+(M), m24(N)) .

Here ¥%*: Gr(Sp) — Gr(Sp) is the “double shearing” functor and RHom,, ) denotes the
derived internal Hom in graded oy (k)-modules.

Proof. In the usual adjunction colim: Fil(Sp) = Sp :const, the left adjoint is symmetric
monoidal and the right adjoint is lax symmetric monoidal. Furthermore, colim 7>9.(k) ~ k.
It follows formally that colim: LMod,_, )(Fil(Sp)) = LMod(Sp) :const is an adjunction as
well and so Homy (M, N) ~ Hom,_, (x)(7>2«(M), const N). Hence we may define the desired
filration via

Fil" Homy (M, N) := Hom,_, 1) (To24 (M), Too(aqn) (V) -
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This filtration is clearly complete since we may pull 0 ~ lim;, .o T>9(x4) (V) out of the Hom. To
show that the filtration is exhaustive, we need to check that const N =~ colimy,— oo T>2(s4n) (N)
can similarly be pulled out of the Hom. To this end, recall that Fil(Sp) can be equipped with
the double Postnikov t-structure in which objects in the image of 7>92.(—) are connective and
connective objects are closed under tensor products (see [Rak21, Construction 3.3.6] for example
and double everything). Then Mod,_, ) (Fil(Sp)) inherits a t-structure in which 750, (M)
is connective and the cofibres of 7-5(;4y)(IV) — const N get more and more coconnective as
n — —oo. This shows that the colimit can be pulled out.

It remains to determine the associated graded. By construction, the n'" graded piece is given
by gr" Homy (M, N) ~ Hom,_,, (k) (724 (M), 22(*+”)772(*+n) (N)). To simplify this further, let
Sar and Sgy denote the tensor units in graded and filtered spectra, respectively. By abuse of
notation, we identify Sgy with its underlying graded spectrum. Then [L-Rot, Proposition 3.1.6]
shows Fil(Sp) ~ Mods,, (Gr(Sp)); this identifies passing to the associated graded with the
base change functor — ®s, Sgr. Since the Spj-module structure on ZQ(*JF”)WQ(*JFH)(N ) already
factors through Sgj — Sq,, we obtain

HOmTzz*(k) (7'22* (M), 22(*+n)7T2(*+n) (N)) = H0m22*7r2*(k) (Z2*7T2*(M)’ 22(>X<—~_n)7r2(>l<-~-n) (N))
~ N2 Homm*(k) (7T2*(M), T2 (IN) (—n)) .

The first step is the usual base change equivalence for 724 (k) — 724 (k) ®spy Sar = S2* o4 (k),
the second step uses that the shearing functor ¥2*: Gr(Sp) — Gr(Sp) is an E;-monoidal
equivalence (even Eg-monoidal, see [DHL+23, Proposition 3.10], but we don’t need that). Now
the right-hand side is precisely the n'" graded piece of RHom,, . (x)(m2«(M), T24(N)) and so
we're done. O

We'll apply this now in the case k ~ ku™" | so that mox (k) = Z[S][t]. We also let m%[ﬁ][[ﬂ]
denote the graded Z[S][t]-module H_; RHomyyg for all i > 0.

4.16. Corollary. — The spectra TC™ ((ku/p®)/ku)¥ and TC~((KU/p®)/KU)Y are concen-
trated in odd degrees and we have

7_(2041) TC™ ((ku/p") /kw) " = Extygp (Fﬂi'}Hdg 4-dR (z/p0)/2, Z15] M)

T_(2+1) TC™ ((KU/p®) JKU)" = Ext;[[q,l]] (q—Hdg(Z Jpo)/ 20 Lla — 1]]) [61].

Here Filj pqq q—&l\%(z/pa)/zp is regarded as a graded module over Filj 4, q—d/f\{Z/Z ~ Z|[B][t]-

Proof. According to Corollary 4.14 and Lemma 4.15, the spectrum TC™ ((ku/p®)/ku)” admits
a complete exhaustive filtration with associated graded Z]Q"‘(I*“il’q",Hdg q-dR(z/pe) /ZP)V, where
now the dual is taken in graded Z[5][t]. It'll be enough to show that this dual is concentrated
in homological degree —1 (which precisely accounts for the @%H g—1][p+1]-terms). Since Z[B][¢]
is (8, t)-complete as a graded object, the same is true for any dual in graded Z[5][t]-modules,

and so it’ll be enough that
RHomgz g1 (Fﬂ:;-Hdg q-dRz/pe /2, Z[ 5] [[t]]) /(B,t) ~ RHomy (grikldg dR(z/pe) /2, Z)
is concentraded in homological degree —1. Since STT1dg Jﬁ(z/pa)/zp ~ YA Lz/po)/z, = Z]p~,

the n'® graded piece of the right-hand side is precisely RHomyz(Z/p®*,Z), which is indeed
concentrated in homological degree —1. This finishes the proof for TC™ ((ku/p®)/ku).
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The proof for TC™((KU/p*)/KU)" is analogous, except that we need a different ar-
gument to show that the dual (¢-Hdgz/pe)/z,)" in Zg — 1]-modules is concentrated in
homological degree —1. By (¢ — 1)-completeness, it’'ll be enough to check the same for
RHomz (¢-Hdgz/pe) /7, /(q—1), Z). By 3.35 and base change we see that ¢-Hdgz /0) /7, /(¢—1)
admits an exhaustive ascending filtration with associated graded given by ng"fIdg dRz/pey/z,- 1t
follows that RHomgz(¢-Hdgz/pe,z,/(q — 1), Z) admits a descending filtration with associated
graded R@Z(grﬁdg dR(z/pe) /2, 7). This is indeed concentrated in homological degree —1 as
we’ve seen above, so we’re done. ]

We have now all ingredients together to finish the computation. To formulate the result,
we’ll use another ad-hoc construction to define a g-Hodge filtration and a derived ¢g-Hodge
complex for Z/m.

4.17. Construction. — For any high-powered integer m € Nf with prime factorisation
m =[], p®?, we define the q-Hodge filtration on q-dRz/,)/z to be the product

Filg nag -dRzpm) 2 = | [ Filinag a-dRzjper) 2, -
p

In the same way, we define the ¢-Hodge completed derived q-de Rham complex q—&f{(z/m)/z
and the derived g-Hodge complex q-Hdg(z, /7. It’s clear from 4.9 that the conclusions of

Corollaries 4.14 and 4.16 remain true if we replace p® by an arbitrary m € N¥.

We also need to check the following two lemmas, but we’ll postpone their proofs until after
the statement of the main result.
4.18. Lemma. — “lim;E(Né)op Fil;Hdg q-dR(z/m)/z and “lim;;E(Né)op q—Hdg(Z/m)/Z are pro-
idempotent algebras, respectively, in the derived co-categories of t-complete graded Z|[5][t]-
modules and of (¢ — 1)-complete Z[q — 1]-modules.
4.19. Lemma. — “hm:ne(Né)OP Fil;_Hdg q-dRz/m)/z and “hm:ne(Né)op q-Hdg(7,/m) /7, are equiv-
alent to pro-objects with trace-class transition maps.

Here’s the result of our computation.

4.20. Theorem. — TC*((ku® Q)/ku) and TC™™ (KU ® Q)/KU) are concentrated in

even degrees. Furthermore, their even homotopy groups are given as follows:

(a) mu TCT™ ((ku ® Q)/ku) = Af,, where A}, is obtained by killing the pro-idempotent
graded Z|[B][t]-algebra “lim”
exact sequence

e(N¥or Fil;‘_Hdg q—cTR(Z/m)/Z. In particular, there’s a short

0 — 2B — A — “colim” Exthyoyp (Fil} g ¢-AR 2y 2, ZI11E]) — O,

and Af, is an idempotent nuclear graded Z|[[5][t]-algebra.

(b)  Toe TCT™ (KU ® Q)/KU) = Axy[B*'], where Axy is obtained by killing the pro-
idempotent Z[q — 1]-algebra “hm:ne(Né)OP q—Hdg(Z/m)/Zp. In particular, there’s a short
exact sequence

0— ZJqg—1] — Agy — “coéil\rllgl” Ext%[qflﬂ (q—Hdg(Z/m)/Zp,Z[[q — 1]]) — 0,

and Agu is an idempotent nuclear Z]q — 1]-algebra.
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Proof. We use the cofibre sequence of 4.8. To compute TC ™ ((ku ® Q)/ku), we must study
the cofibres of TC™ ((ku/m)/ku)¥ — ku"" for high-powered integers m € Nf. Put

Fil* g-dR,y, = cofib (z[g] [t] — Fil¥ 11ag ¢-AR(z/m) /zp) ,

TC,, = coﬁb(kuhS1 — TC_((ku/m)/ku)> :

Since ku"" and TC™ ((ku/m)/ku) are even spectra, the sequence of double speed Postnikov
filtrations 7'22*(kuh51) — T2 TC™((ku/m)/ku) — 752,TC,, is still a cofibre sequence in
filtered spectra. Applying the construction from the proof of Lemma 4.15, we get complete
exhaustive filtrations on the duals of ku™", TC™ ((ku/m)/ku), and TC,, in such a way that
they fit into a cofibre sequence Fil*(TC;, )Y — Fil* TC™((ku/m)/ku)" — Fil* (ku")V. After
passing to associated gradeds, we get a cofibre sequence of graded ¥2*Z[3][t]-modules

gr*(TC,)Y — E2*(Fil} g, q_(ﬁ?{(Z/p“)/Zp)v — S2Z[B[]Y

where ¥2*: Gr(Sp) — Gr(Sp) denotes the “double shearing” functor. It’s clear from the
construction that the morphism on the right must really be given by %2*(—)Y applied to the
unit map Z[B][t] — Fil} g, q—(ﬁ?{(z/m)/zp. It follows that gr*(TC,,)" ~ ¥2*(Fil* ¢-dR,,)".
Observe that (Fil* g-dR,)V sits in homological degree —1. Indeed, this can be checked modulo
(B,t). Then Fil* ¢-dR,,/(,t) ~ cofib(Z — grf1ag AR (z/m),z) 1s given by YZ in graded degree 0
and Z/m in every other graded degree, so it’s straightforward to see that its graded dual over
Z sits indeed in homological degree —1.

Thus, Fil*(TC,,)" must be the double speed Postnikov filtration, (TC,,)" is concentrated in
odd degrees, and mo.—1((TC,,)") = H_; (Fil*(¢-dR,,,)") as a graded Z[3][t]-module. Combin-
ing this with what Corollary 4.16 tells us about TC™ ((ku/m)/ku)V, we see that the long exact
homotopy sequence of the rotated cofibre sequence TC™ ((ku/m)/ku)¥ — (ku"$")V — $(TC;, )V
breaks up into a short exact sequence of graded Z|[5][t]-modules

0 — Z[B][t] — H_1 (Fil*(¢-dR)") — Extyag (Fﬂ;—Hdg ¢-dR z/m) /2 Z[ 5] M) — 0.

Since TC™"*f((ku ® Q)/ku) ~ “colim) Y(TC,,) by the cofibre sequence from 4.8, it follows

at once that TC™™((ku ® Q)/ku) is concentrated in even degrees and that A fits into the
desired short exact sequence. Furthermore, it’s clear from our considerations above that

(Fil} g ¢-dR(z/myz)" ~ 57! Exty9 (Fﬂf;-Hdg ¢-dR (z/m) /2 Z[ 6] [[t]]) — Z[B][t]

induced by the short exact sequence, is given by dualising the canonical unit morphism
Z[B][t] — Fily pag -dR(z/m)/z- Then the underlying graded ind-Z[B][t]-module of Aj must

really be given by killing the pro-idempotent “lim” _ ( FilZ,Hdg q—(ﬁ\{(z /m)/z- ldempotence

N#)op
and nuclearity of Af, follow from Lemmas 2.15 and 4.1)9. Since idempotents admit a unique
E-algebra structure, it follows that the desired description of A} also holds as an ind-
Z|B][t]-algebra. This finishes the proof of (a), up to the two technical lemmas that we have
postponed.

The proof of (b) is analogous; the only difference is that we need a different argument
why cofib(Z[q — 1] — ¢-Hdgy, /m) /Z)V is concentrated in homological degree —1. This can be

checked modulo (¢ — 1). In the case of a prime power p®, q-Hdgz/pe) /z, carries an ascending
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filtration, given by base changing the conjugate filtration from 3.35, whose graded pieces
are copies of Z/p®. Moreover, q—Hdg(Z/pa)/Zp/(q —1) is a Z/p“-algebra, since q-Hdg(z/pe /2,
contains an element p®/(g —1). Thus, abstractly, ¢-Hdgz/pe) 7, /(@ —1) ~ @y Z/p™. It’s clear
from Construction 4.17 that then also ¢-Hdgz /) /2/(¢ — 1) =~ @y Z/m, and the morphism
Z — q-Hdgz/my/z/(q — 1) surjects onto one of the summands. The rest is an elementary
computation. ]

It remains to show Lemmas 4.18 and 4.19. Neither one is automatic from the corresponding
properties of “hm;’ne(Né)op TC™ ((ku/m)/ku), since m,(—)—or really passing to the associated
graded of the Postnikov filtration—is not a symmetric monoidal functor. To fix this, we’ll work
with the double speed Postnikov filtration instead.

Our starting point is the followng general fact, which is quite similar to Lemma 4.15 (and is

also usually formulated as a spectral sequence).

4.21. Lemma. — Let k be an even Eo-1ing spectrum, let t € ma.(k) be a homogeneous
element, and let M, N be even k-modules. Then the t-completed tensor product M ®; N admits
a complete exhaustive descending filtration with graded pieces

gr* (M &, N) ~ x2* <772*(M) & . m*(N)) .
Here — @k%(k) — denotes the graded t-completed derived tensor product over mwo. (k).

Proof. The filtered spectrum 7524 (M) ®r,, (k) T>2«(IV) defines a filtration on M @, N. This
filtration is exhaustive, since colim: Fil(Sp) — Sp is symmetric monoidal, and complete, since
T224(M) ®r,, (k) T>2+(N) is a connective object in the double Postnikov ¢-structure (see the
proof of Lemma 4.15).

To incorporate the t-completion, we consider 7o (M )®T>2*(k)7>2* (N), where the completion
is the t-adic completion in Fil(Sp), with ¢ sitting in its assigned degree. This now defines
a filtration on M ®; N, which is clearly still complete. It is also still exhaustive. Indeed,
for all n, the cofibre of (724(M) ®r,, k) T>2+(N))—n — M ® N is (2n + 1)-coconnective.
Upon t-adic completion, the coconnectivity can go down by at most 1, and so we see that the
cofibre of (Ts2.(M) ®T>2*(k) Ts24(N))_, — M ® N will still be 2n-coconnective. This ensures
exhaustiveness.

Passing to the associated graded is symmetric and commutes with ¢-adic completion (in the
filtered and graded setting, respectively). Moreover, the shearing functor ¥?* is E;-monoidal
(even Eg, but we won’t need that). Hence

gr*(M ®k N) >~ 22*7'['2* (M) ®22*7T2*(k) 22*772*(]\[) ™~ 22* (Wg*(M) @%Q*(k) 7T2*(N)> . O
Proof of Lemma 4.18. Tt’ll be enough to show pro-idempotence of the sub-systems indexed by
p® for a fixed prime p. In the following, we put Fil* ¢-dRpe = Filj_yq, ¢-dR(z/pe) /7, for short.

Also let A == “lim/,., Fil* q—cff\{pa (the case p = 2 needs « even and > 4 instead). Since each

Fﬂj q—cfﬁpa is a graded Z[5][t]-algebra, we get a unit map Z[F][t] — A and a multiplication
A ®IZ[5] 1] A — A such that the composition

A = Z[B)[t] g A — A% A — A
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is the identity. For the other composition, choose exponents a1, cg and consider the ¢-completed
tensor product

TC™ ((ku/p™* ®xu ku/p*?)/ku) ~ TC™ ((ku/p™)/ku) ®kuhsl TC™ ((ku/p*?)/ku) .

By Lemma 4.21, this has a complete exhaustive filtration with graded pieces given by
»2* (Fil* q—cﬁ\{pm @Iim] [l Fil* q—cﬁ{paz). Observe that this graded completed tensor product is
concentrated in homological degrees [0, 1]. Indeed, this can be checked modulo (3,t), and then
Fil* q—cﬁsnpai/(ﬁ, t) ~ grijag AR (z/pi )z, is given by Z/p®i in every graded degree for i = 1,2.
It remains to observe that Z/p™ ®% Z/p™? is concentrated in homological degrees [0,1]. Tt
follows that the filtration on TC™ ((ku/p®! Qky ku/p*?)/ku) must be the double speed Postnikov
filtration.

By Corollary 2.20, TC™ ((ku/p3® ®xy, ku/p®)/ku) — TC™ ((ku/p** @k, ku/p®) /ku) factors
through the even spectrum TC™ ((ku/p®)/ku) for all o > 3 (the case p = 2 needs « even and
> 6). By passing to the associated graded of the double speed Postnikov filtration, we see that

Fll* q—(iﬁ,p?,a ®£ZJ[B] [[t]] Fll* q—(ﬁ,poc — Fll* q—&ﬁpm ®%[ﬂ] [[t]] Fll* q—(ﬁ,poc .

factors through Fil* q—(ﬂ?{pa. This finishes the proof that A = “lim}, Fil} yq, q—(ﬁ\{(z /p)/Z, 18
pro-idempotent.

The argument for “lim; -, ¢-Hdg(z/pe) /z,, is analogous, except that we work with KU instead
of ku, and to show that ¢-Hdgz/,e1) /Z, ®%[[ a—1] ¢-Hdg(z/pe1) /z, 18 concentrated in homological
degrees [0, 1], we need a slightly different argument: First, we can reduce modulo (¢ — 1).
Then we use that for ¢ = 1,2, ¢-Hdgzpas) /z, carries an ascending filtration, given by base
changing the conjugate filtration from 3.35, whose graded pieces are copies of Z/p®i. Moreover,
q-Hdg(z/pe)/z,/(q—1) is an Z/p~i-algebra, since g-Hdg z0:) /7, contains an element pi /(g—1).
Thus, abstractly, ¢-Hdg(z/e:),7,/(q — 1) ~ @y Z/p™. So we're done since Z/p™ ®% Z/p is
concentrated in homological degrees [0, 1]. O

Proof of Lemma 4.19. As in the proof of Lemma 4.18, we can reduce to the pro-systems indexed
by high-powered prime powers p®. For o > 3 (the case p = 2 needs « even and > 6), it follows
from Corollary 2.21 that TC™ ((ku/p3®)/ku) — TC™ ((ku/p®)/ku) is trace-class in t-complete

kul® 1—modules, hence it must be induced by a map
n: k™ — O ((ku/p*) /ku) "’ ®,_usr TC™ ((ku/p®)/ku)

By Lemma 4.21 (applied to the shift ¥ TC™((ku/p3®)/ku)" to get an even spectrum, then we
shift back afterwa/r\ds), the right-hand side has a complete exhaustive filtration with graded
pieces (Fil} yq, ¢-dR(z/p30)/2,)" ®IZ[5] ] Fil} jag q—(fl\%(z/pa)/zp. As in the proof of Lemma 4.18,
one easily checks that this graded completed tensor product is concentrated in homological
degrees [—1,0]. It follows that the filtration must be given by 7s92,—1(—). Thus, by considering
T>24—1(n) and then passing to associated gradeds, we obtain a morphism

. T V A~ . —~
Z[BIt) — (Fil§ nag ¢-dRz/pte)/2,) ®pgypeg Filjnag ARz pe)2, -
which witnesses that the morphism Filj yq, q—(ﬁ{(z ez, — Fil Hag q—(ﬁ{(z /pe)/z, 18 indeed

trace-class, as desired.
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The argument for ¢-Hdg(z)sq) /Z, q-Hdg(z,/pe) /Z, being trace-class is analogous, ex-
cept that we use KU instead of ku. Moreover, we need a different argument to show that
(¢-Hdg(z/pse)7,)" @Ii[ g—1] 9"Hdg(z/p0)/z, 1 concentrated in homological degrees [—1,0]: First,
we can reduce modulo (¢ — 1). As we’ve seen in the proof of Lemma 4.18, on underlying

abelian groups we get an equivalence ¢-Hdgz /) /7, /(@ —1) ~ @PyZ/p*. An analogous con-
clusion holds for ¢-Hdg(z/,s4),7, /(¢ — 1). Thus, the tensor product modulo (g — 1) becomes

S INZ/p** ®% @y Z/p*, which is clearly concentrated in homological degrees [—1,0]. [
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§5. Algebras of overconvergent functions

In this section we prove Theorems 1.19 and 1.20. The arguments from §4.2 can be immediately
adapted to show that TCf’ref((ku]/J\ ®Q)/ku;) and TCf’ref((KU]/J\ ®Q)/KU,) are concentrated

in even degrees. Moreover,
mx TCT™ (ku) @ Q) /ku)) = Af, . m2. TCT™ (KU, @ Q)/KUY) = Agu,p[87],

where Af,  is obtained by killing the pro-idempotent “lim7, Fil} pag q—(ﬁ\{(z /p)/z, i graded
(p,t)-complete Zy[B][t]-modules and similarly Aky , is obtained by killing the pro-idempotent
“Hm}- o ¢-Hdg(z/pey/z, in (p,q — 1)-complete Z,[q — 1]-modules.®-1)

To make Aﬁum and Ay, more explicit, we must understand the g-Hodge filtration on
q-dR(z/pe)/z,- This will be the content of §5.3. Our methods also yield an elementary proof
of Theorem 3.10(a). The proof of Theorems 1.19 and 1.20 will then be finished in §5.4. But
before we do all that, in §§5.1-5.2 we’ll review Clausen’s and Scholze’s approach to adic spaces
via solid analytic rings [CS24, Lecture 10] and study algebras of overconvergent functions and
gradings in this setup.

§5.1. Adic spaces as analytic stacks

In the following, we’ll use the formalism of analytic stacks from [CS24]. Recall the notion of
solid condensed spectra from 3.25. We let D(Zg) ~ Modz(Spg) denote the derived oco-category
of solid abelian groups. Let also P := Ps ® Z ~ cofib(Z[{occ}] — Z[N U {c0}]) denote the free
condensed abelian group on a nullsequence and let o: P — P denote the shift endomorphism.

5.1. Huber pairs a la Clausen—Scholze. — Recall that to any Huber pair (R, RT) one
can associate an analytic ring (R, R")a in the sense of [CS24, Lecture 1] as follows: First
consider R as a condensed ring via its given topology. For f € R(x) and M € Modg(D(Za))
we say that M is f-solid if

1 — fo*: RHomp(P, M) — RHomp (P, M)

is an equivalence. The inclusion of the full sub-oco-category of f-solid R-modules admits a left
adjoint (=)™, called f-solidification. The underlying animated condensed ring of (R, R*)g is
then defined as
(R,R")2 = colim RA®-/rm
{fi,...fr}CR*

where the colimit is taken over all finite subsets of R, and D((R, R")a) € Modg(D(Za)) is
the full sub-oco-category of solid condensed R-modules that are x-solid for all z € RT C R(x).
In the following, we’ll always work with Huber pairs for which (R, RT)} is just R itself.

The classical notion of affinoid open subsets fits naturally into this formalism. Suppose
we're given fi,..., fr € R(*) generating an open ideal as well as another element g € R(x),
so that U := {z € Spa(R,R") | |filz,---,|frlz < |glz # 0} defines a rational open subset. We
can define an analytic ring O(U,) as follows: The underlying animated condensed ring is the

SOhdiﬁcation (f]/ ) (f / )
1 g)-m,....(Jr/g)-1

-DIn the case p = 2, the pro-systems need to be indexed by a even and > 4, but we’ll ignore this since it
makes no difference
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and we let D(Ua) = D(O(Ua)) € Modpgr/41(D((R, R*)a)) be the full sub-oco-category spanned
by those R[1/g]-modules in D((R, R")a) that are also (f;/g)-solid for i = 1,...,r. If O(U)
is static and quasi-separated, it agrees with the Huber ring from the classical theory of adic
spaces. In practice, this will almost always be the case.

5.2. Adic spaces & la Clausen—Scholze. — Clausen and Scholze associate to any Tate(®2)
adic space X an analytic stack Xy over Zg — AnSpecZg. If X = Spa(R, RT) is Tate affinoid,
we simply put Xg := AnSpec(R, R")q. If U C Spa(R, R™) is an open subset of a Tate affinoid
adic space, choose a cover V' = [[;c; V; — U by rational open subsets and form the Cech nerve
Ve = é.(V — X). Every V,, is a disjoint union of affinoid adic spaces, hence V;, 4 is already
defined. Then we can put Ug = colimp,jcaor Vi m- Finally, if X is an arbitrary Tate adic space,
choose a cover W = HjeJ W; — X by affinoids and form the Cech nerve Wy = é.(W — X).
Each W, is a disjoint union of open subsets of Tate affinoid adic spaces, so Wy, a is already
defined, and we put Xg := colimp,jeaor Win,u-

It can be shown that these constructions are well-defined and independent of the choices
involved. We’ll omit the verification, but let us at least mention the crucial input.

5.3. Lemma. — Let (R, R") be a Huber pair and let Xg :== AnSpec(R, R )a be the associated
affine analytic stack.

(a) IfU,U" C Spa(R,R") are rational open subsets, then
AnSpec O(Ua) X anSpec(r,r+)e AnSpec O(Ug) ~ AnSpec O((UNU")a) -

(b) If R is Tate and U C Spa(R, R") is a rational open subset, then j: Ug — Xga 5 an open
immersion of affine analytic stacks in the sense of [CS24, Lecture 16]. That is, j* admits
a fully faithful left adjoint j satisfying the projection formula.

(¢) If R is Tate and [}y U; — Spa(R,R") is a cover by rational open subsets, then
ie1 Ui m — Xa is a!-cover of affine analytic stacks.

5.4. Remark. — The Tate condition in Lemma 5.3(b) and (c¢) is crucial and it is the reason
why we restrict to the Tate case when we describe adic spaces in terms of analytic stacks.
Without this assumption, (b) will be wrong. For example, if R is a discrete ring, any Zariski-open
also determines a rational open of Spa(R, R), but in this case j* almost never preserves limits,
so it can’t have a left adjoint j.

Proof sketch of Lemma 5.3. Suppose U and U’ are given by |fi],....|fr] < |g] # 0 and
If11, -5 12 < |¢'| # 0, respectively. Using the description of pushouts from [CS24, Lec-
ture 11], it’s clear that O(Ug) ®{JR’R+)_ O(U)}) is the solidification of R[1/(gg’)] at the elements
fi/g and fj/g fori=1,...,7, j=1,...,s. But that’s precisely O((U NU’)a), proving (a).

For (b), assume U is given by |fi],...,|fr] < |g| # 0. Since R is assumed to be Tate,
the open ideal generated by fi,..., f, must be all of R. Hence g will aready be invertible in
R[Ty,...,T.]/(¢T; — fi | i =1,...,7) and this quotient is automatically a derived quotient as
well. It follows that the functor j*: D(Xa) — D(Ua) can also be written as

(L1 T (gL~ fi | i= 1, r).

5-2)To avoid confusion with analytic stacks, we’ll call an adic space Tate rather than analytic if, locally, there
exists a topologically nilpotent unit.
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By [CS24, Lecture 7], the functor (—)[T ] ® of adjoining a variable and then solidifiying can
be explicitly described as RHomy (Z((T~1))/Z[T],—) and so j*(—) ~ RHomp(Q, —), where

(@z Z(T ) 2] i]®‘z'R)/<gT@-—f@- i)

It follows immediately that j* admits a left adjoint ji(—) ~ Q ®%R R+)e - 1t remains to check
the projection formula

31(M) & prye N = 31 (M @rrg) 7*(N)) -

By the same argument as above, @ is already an R[1/g]-module and the functor j* is insensitive
to inverting g. Therefore, it’s enough to check the projection in the case where N is an

R[1/g]-module. When restricting to R[l /g]-modules, j* is just given by successively killing
the idempotent algebras Z((T; ") ® T fi /g BIL/g) for i =1,....7. Now for killing an
idempotent it’s completely formal to see that the left adjoint indeed satisfies the projection
formula. This finishes the proof of (b).

To show (c), since we already know that each j;: U; » — Xa is an open immersion, we can
use the criterion from [CS24, Lecture 18] to verify that [}, U; w — Xa is indeed a !-cover.
That is, if A; == cofib((5;)1O(U;) — R), we need to show A; ®%R,R+). . '®%R,R+). Ay, ~ 0. Using
[Hub94, Lemma 2.6] and an inductive argument as in [CS19, Lemma 10.3], this can be reduced
to the special case where n =2 and Uy = {zx € X | 1 < |f|s}, U2 ={z € X | |f|, < 1}.for some
f € R. This is now a straightforward calculation. O

5.5. Remark. — Let U C X be an open inclusion of Tate adic spaces and let j: Uy — Xg
be the corresponding map of analytic stacks. In the following, if its clear that we’re working
in D(Xa), we often abuse notation and write O instead of j.Op, for the pushforward of the
structure sheaf of Ug. We also use — ®%9X_ Oy, to denote the functor j.j*: D(Xa) — D(Xa).

Let us point out that — ®%9X_ Ou, is not just the tensor product with Oy in the symmetric

monoidal co-category D(Xg). We can already see the difference if X = Spa(R, RT) and U C X
is a rational open given by |fi|,...,|fr| < |g| # 0: In this case,

~®b,. Ova ~ (— &b, Oy) /o ir/os,

In particular, even though Oy ®I@X. Ouv, ~ Oy (see Lemma 5.3(a) and Lemma 5.10(b) below),
it’s rarely true that Oy is idempotent in D(Xg).

Thus, there’s a priori no reason to expect that sheaves of overconvergent functions O+
would be idempotent. In the following, we’ll investigate why idempotence is satisfied in the
situation of Theorems 1.19 and 1.20. Let’s start by introducing a notion of open immersions
for analytic stacks that need not be affine.

5.6. Open immersions of analytic stacks. — We call a map of analytic stacks j: U — X
a naive open immersion if j is a l-able monomorphism and j* ~ j'. Since j is a monomorphism,
U xx U ~ U. Combining this with proper base change, we get j*ji ~ idp () and so jp is fully
faithful. Then the right adjoint j, of 7* must be fully faithful as well.

Using the projection formula and j*ji ~ idp(y), we see that 7Oy — Ox exhibits 7Oy as
an idempotent coalgebra in D(X). Then cofib(jiOy — Ox) must be an idempotent algebra. In
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this way, we can associate to any naive open immersion an idempotent algebra in D(X), which
we call the complementary idempotent determined by U and denote Ox. . It’s straightforward
to check that the forgetful functor i,: Modop, ,(D(X)) — D(X), which is fully faithful by
idempotence, fits into a recollement

Modoy, (P(X)) —*~ D(X) —— D(D)

and so j.Op is obtained from Ox by killing the idempotent algebra Ox.y. As long as it’s
clear that we’re working in D(X), we often abuse notation and just write Oy instead of j,Ox.

5.7. Remark. — Every open immersion of affine analytic stacks in the sense of [CS24,
Lecture 16] is also a naive open immersion.

5.8. Remark. — If A € D(X) is an idempotent algebra, we can define an analytic substack
Uy C X by declaring that amap f: Y — X factors through Uy if and only if f*: D(X) — D(Y)
factors through the localisation D(X)/Moda(D(X)), or equivalently, if and only if f*(A) ~ 0.
However, it’s not true that the constructions U — Ox.y and A — Uy are inverses; it’s not
even clear why D(U4) would coincide with D(X)/ Moda(D(X)).

It’s not obvious what conditions should be put on U and A to make these constructions
mutually inverse (moreover, whatever the condition, it should be satisfied for open immersions
of affine analytic stacks). This explains why we call the notion from 5.6 naive: An honest
open immersion of analytic stacks should be a naive open immersion for which the idempotent
algebra Ox .y meets the putative condition. In the following, we’ll work with the naive notion,
since it is enough for our purposes.

5.9. Lemma. — Let U — U — X be naive open immersions of analytic stacks. Suppose
that U contains the closure of U' in the sense that there exists another naive open immersion
7V — X such that U xx V ~ 0 and Ox.v ®I@X Ox.y ~0. Then Oy ®I@X Oy ~ O
Moreover, the map Oy — Oy is trace-class in D(X) and factors through Ox .y .

Proof. The condition U’ x x V ~ () implies that Oy is in the kernel of the pullback functor
j*:D(X) — D(V) and so Op is an algebra over the idempotent A := Ox.y by 5.6. We
also know that Oy is obtained from Ox by killing the idempotent B := Ox.y. Hence
Oy ~ cofib(BY — Ox). Since B is a B-module, O is an A-module, and A ® B ~ 0, we get
BY ®I(‘9X Oy ~ 0, hence indeed Oy ®I@X Oy ~ Oy

Since the double dual BYY is still a B-module, the same argument shows O} ®%9X Opyr ~ Oy
Hence Oy — Oy is trace-class, with classifier given by the unit Ox — Opyr. We've already
seen that Oy is an A-algebra. The condition A ® B ~ 0 also implies RHom (B, A) ~ 0, since
RHom (B, A) is both an A-module and a B-module. It follows that A is contained in the
image of j,: D(U) — D(X) and hence A is an Op-algebra. This shows that Oy — Oy factors
through A. O

5.10. Lemma. — Let X be a Tate adic space with associated analytic stack Xa — AnSpec Zy,
and let U, U’ C X be open subsets.

(a) The map j: Us — Xa s a naive open immersion of analytic stacks. Moreover, an arbitary
map f:Y — Xa of analytic stacks factors through Uy if and only if f*(Ox.v) ~ 0.
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(b) We have Ug X x, Uy ~ (UNU")a. In particular, Oy ®%9X_ Ouy =~ Oyry and vice versa if
U and U’ are exchanged.

(¢) IfU C U, then Ug contains the closure of U, in the sense of Lemma 5.9.

Proof sketch. Let’s start with (b). In the case where U and U’ are affinoid, Ug X x,Ug ~ (UNU")a
follows essentially by the construction of Xg in 5.2, because we can choose both U and U’ to be
part of an affinoid cover of X (and to prove that said construction is independent of the choice
of cover, we need Lemma 5.3(a)). To show the general case, just cover U and U’ by affinoid
open subsets.

Let’s show (a) next. Let’s first consider the case where X = Spa(R, R") is affinoid and
U C X is a rational open. We've already seen in Lemma 5.3(b) that j: Uy — Xg is a naive
open immersion. Suppose f: Y — Xg is a map of analytic stacks such that f*(Ox.y) ~ 0. If
Y ~ AnSpec S is affine, then the map of analytic rings (R, R™)a — S factors through O(Uy)
if and only if f*: D((R, R")a) — D(S) factors through D(Uy). Since f*(Ox.y) ~ 0, this is
satisfied in our case. This proves the claim in the case where Y ~ AnSpec S is affine. In
particular, Ug X x, AnSpec S ~ AnSpec S. For the general case, write Y as a colimit of affines
to see Ug Xx, Y =Y. Then f: Y — Xg clearly factors through U,.

Now let U and X be arbitrary. Proving that j: Ug — Xg is a naive open immersion formally
reduces to the special case considered above; we omit the argument. Now let f: Y — Xg
be a map of analytic stacks such that f*(Ox.y) ~ 0. Whether f factors through Uy can
be checked locally on Xu. By (b), if Spa(R,Rt) — X is an affinoid open supset, then
Us X xg AnSpec(R, R")g ~ (UNSpa(R, R"))a, so we can reduce to the case where X is affinoid.
As above, we may also assume that ¥ ~ AnSpec S is affine. Let [[,c;U; — U be a cover by
rational open subsets. Then

Ox.v =~ {ilﬁ?}lif}lg(OX\Un ®oxy " POy OX\UM) ;
where the colimit is taken over all finite subsets of I. Since the colimit is filtered and f*(Ox.v)
is detected by the single condition 1 = 0, there exists a finite subset {i1,...,i,} C I such
that already f*(Ox.u;,) Q- ®% f*(Ox-u,,) ~ 0 in D(S). By the criterion from [CS24,
Lecture 18], it follows that [}_; Ui, a X x4 AnSpec S — AnSpec S is a !-cover. We may therefore
replace S by the constituents of this cover, and for each of them it’s clear that they factor
through Ug. This finishes the proof of (a).

Part (c) is a formal consequence: If V := X \ U’, then Vg — Xg is a naive open immersion
by (a), Us X x4 Va =~ 0 follows from (b), and if A == Ox.y ®I{9X. Ox.v, then it’s formal to
see that Mod 4 (D(Xa)) is the kernel of the pullback functor D(Xu) — D(Ua) Xp(wnv)e) P(Va)-
But this functor is an equivalence as U UV = X, and so A ~ 0. U

We can finally show the desired criterion for idempotence.

5.11. Definition. — If X is a Tate adic space and Z C X is a closed subset, the overconver-
gent neighbourhood of Z is the analytic stack

Z" = lim Ua,
U2z
where the limit is taken over all open neighbourhoods of Z. If it’s clear that we’re working
in D(Xa), we often abuse notation and denote by Oz = colimy>z Op € D(Xa) the sheaf of

overconvergent functions on Z. This is in favorable situations, but not always, the pushforward
of the structure sheaf of ZT; see Theorem 5.12(b) below.
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5.12. Theorem. — Let X be a quasi-compact quasi-separated Tate adic space and let Z C X
be a closed subset such that for all points z € Z and all generalisations 2’ ~ z also 2’ € Z.

(a) The ind-object
C[(])SZIH Ov € Ind D(Xa)

is idempotent, nuclear, and obtained by killing the pro-idempotent “lim’, w_, Ow, where
the limit is taken over all open subsets W C X such that ZNW = (. In particular,
Oyt € D(Xa) is idempotent and nuclear.

(b) If for every affinoid open j: Spa(R,R") — X the pullback j*(O,:) € D(R,R")a) is
connective, then pushforward along Z% — Xa induces a symmetric monoidal equivalence
D(Z1) ~ Modo (D(Xa)). In particular, in this case O,y is really the pushforward of the
structure sheaf of Z1.

5.13. Remark. — Following discussions with Ben Antieau and Peter Scholze, we believe
that connectivity in Theorem 5.12(b) can be replaced by the much weaker condition that
Mod;jx(o, )(D(R)) is left-complete should already be enough, using an adaptation of [MM24,
Proposition 2.16].

To prove Theorem 5.12, we send a lemma in advance.

5.14. Lemma. — Let X be a spectral space and let Y, Z C X be closed subsets such that
for z € Z and y € Y there never exists a common generalisation z « x ~» y (in particular
ZNY =0). Then there exist open neighbourhoods U 2 Z and V 2'Y such that U NV = ().

Proof. Fix z € Z. By [Stacks, Tag 0906], y € Y there exist open neighbourhoods U, > z and
Vy 3 y such that Uy, NV, = (). By compactness of Y, there exist finitely many yi,...,y, € Y
such that Y C V, ==V, U---UV,,. Let also U, :== Uy, N---U,,, so that U, NV, = 0. By
compactness of Z, there exist finitely many z1,..., 2y, € Z such that Z C U :=U,, U---UU,,,.
Putting V .=V, N---NV,,_, we have constructed U and V with the required properties. [

Proof of Theorem 5.12. First observe that Lemma 5.14 can be applied to any closed subset
Y C X such that ZNY = (. Indeed, for any common generalisation z « z ~ y, we would
have x € Z, as Z is closed under generalisations, but then y € Z, as Z is also closed under
specialisations.

It follows that in the ind-object “colimf;~, Oy we can restrict to open neighbouhoods of
the form U = X ~ W for some open subset W such that Z N W = (). Indeed, for arbitrary U,
apply Lemma 5.14 to Z and X \ U to get an open neighbourhood W O (X ~\ U) such that
ZNW =0. Then (X ~ W) C U, as desired.

Let Ow = Ox. (x.w) € D(Xa) be the complementary idempotent determined by the open
subset X ~\ W. Since each Oy is obtained by killing the idempotent Ox. 7, our observation
implies that “colimf, Oy is obtained by killing the pro-idempotent “limy _, Ow. For all
such W, applying Lemma 5.14 to Z and W provides another open neighbourhood W/ > W
such that still ZNW’ = (. By Lemma 5.9 and Lemma 5.10(c), Oy — Oy is trace-class and
factors through Ogy. It follows that “lim%mW:@ Ow ~ “lim%mW:@ Oy and that the condition of
Lemma 2.15 is satisfied, so that “colimy,~, Oy is indeed idempotent and nuclear in Ind D(Xa).
Since colim: Ind D(Xg) — D(Xa) preserves idempotents and nuclear objects, it follows that
Oy € D(Xa) is idempotent and nuclear as well. This finishes the proof of (a).
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For (b), note that Z' is clearly compatible with base change and so is O+ by (a) and
Lemma 2.15(c). We may therefore assume that X = Spa(R, R") is affinoid and O is
connective. Then Oz can be turned into an analytic ring using the induced analytic ring
structure from (R, R™)q. It follows that a map f: AnSpec S — AnSpec(R, R )q factors through
Oy if and only if § 2£(Oz1‘). By Lemma 2.15(b), we have Oz ®I(R’R+)_ Ow ~ 0 for all
open W such that ZNW = (. Thus S ~ f*(O,:) implies f*(Ow) ~ 0 for all such W. By
sandwiching open and closed subsets, we get f*(Ox. ) ~ 0 for all open neighbourhoods U 2 Z.
By Lemma 5.10(a), this implies that f factors through ZT ~ limy>z Us.

Conversely, if f factors through ZT, then f*(Ox.y) =~ 0 for all U and thus f*(Ow) ~ 0
for all W as above, using the same sandwiching argument. It follows that S is a module
over the nuclear idempotent ind-algebra obtained by killing “lim} w_, f*(Ow) in D(S). By
Lemma 2.15(c), this is “colim;;~, f*(Opy). Then § is also a module over the honest colimit
colimusz f*(Oy) ~ f*(O1), proving S ~ f*(O1).

In conclusion, this argument shows that ZT ~ AnSpec O is an affine analytic stack and so
D(Z1) ~ Modo , (D((R, R™)a)) follows by construction, as we’ve put the induced analytic ring
structure on Oy;. O

This implies idempotence and nuclearity in the situation of Theorem 1.19.

5.15. Corollary. — Let X := SpaZp[q — 1] ~ {p =0,qg = 1} and let Z C X be the union of
the closed subsets Spa(F,(q — 1)),F,lq — 1]) and Spa(Qp(¢pn), Zp[Cprn]) for alln > 0.

(a) Z is closed and closed under generalisations.

(b) For m,r,s > 1 such that (p — 1)p" > s, let Wy, s C X be the rational open subset
determined by [p"| < [¢?" — 1| # 0, |(¢g —1)°| < |p| # 0. Then Oy is the colimit of the

7

idempotent nuclear ind-algebra obtained by killing the pro-idempotent “limy, ,. . Ow,, .. ..

Proof. Let x € X \ Z. Then |p|, # 0, hence |(¢ — 1)%|, < |p|s for s > 0. Choose such an s.
Moreover, |¢”" — 1|, # 0 holds for all n > 0. Choose n such that (p — 1)p" > s and choose
r > 0 such that |p"|, < |¢?" — 1|,. Then z € Wors. If we can show ZNW,,, s =0, both (a)
and (b) will follow. Indeed, this will imply that X \ Z is open and closed under specialisations,
proving (a). Moreover, X \Z = |, ,. s Wn s and so for any open subset W such that Z NW =10
we must have W, . s O W for sufficiently large n, r, and s by quasi-compactness of W. Hence (b)
follows from Theorem 5.12(a). v

To show ZNW,, ;s =0, let w € Wy, 5. Since (p—1)p"™ > s, we get |(q — )e-Dp' < D]
for all i > n and so |®,:(q)|w = |p|w, where ®,(q) denotes the (p')™ cyclotomic polynomial.
Thus 0 < [p"+"|, < |¢P° — 1|y for i > n. In particular, w ¢ Z. Even better: If U; denotes
the rational open subset determined by |¢?" — 1| < [p"~"*!| # 0 and V denotes the rational
open subset determined by |p| < (¢ — 1)**!| # 0, then the open set (J;,, U; UV contains Z
and doesn’t intersect Wi, s, so indeed Z N W, s = 0. O

§5.2. Graded adic spaces

To deduce idempotence and nuclearity in the situation of Theorem 1.20, let us describe how to
encode gradings in terms of actions of the analytic stack

T := AnSpec Z[u*]q,

where Z[u*!]q is obtained from Z[u*'] by solidifying both u and u~'. Equivalently, Z[u*']q is
the analytic ring associated to the discrete Huber pair (Z[u*!], Z[uT!]).
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5.16. Graded adic spaces via actions of T. — Classically, the grading on Z[3, ] in which
5 and t receive degree 2 and —2, respectively, is encoded by an action of G, := Spec Z[uﬂ]
on SpecZ[3,t]. The action map SpecZ[3,t] x G,, — SpecZ[3,t] corresponds to the ring map
A: Z[B,t] — Z[B,t] ®z Z[ut!] given by A(B) = u?B, A(t) == u"%t.

In our situation, if we want to give g@metric meaning to our computation of Altu,p7 we're
forced to work with the adic spectrum X* := SpaZ|[f, t]é\p,t) instead. But in the map A we
can’t just replace Z[f,t] by its (p,t)-completion, since the tensor product Z[ 3, t](Ap7 n @z Z[u*t]
won’t be (p,t)-complete anymore.

To fix this, consider 7: T — AnSpecZs and let — ®}_ Z[u™']a denote the pullback
7*: D(Za) — D(T). By [CS24, Lecture 7], the process of adjoining a variable and then
solidifying it preserves limits, and so

Z[ﬁ? t]é\p,t) ®%- Z[uil]l = Z[ﬁ) t, uil]é\p,t) :

Thus, we do get an action X§ x T — X simply by (p, t)-completing the map A above. Here
and in the following, all products are taken in the oco-category AnStky, of analytic stacks
over Zg. We let T®: A°P — AnStky, denote the simplicial analytic stack corresponding to the
underlying E;-structure of the Ey-group object T, and we let X} x T®: A°? — AnStky, denote
the simplicial analytic stack corresponding to the T-action on X. Finally, let

BT := colim T" and XJ/T := colim Xj x T".
[n]enor [n]enor
5.17. Lemma. — Let Ox+/r € D(BT) denote the pushforward of the structure sheaf of
Xk/T. Then pushforward along Xk/T — BT induces a symmetric monoidal equivalence of
0o-categories
D(Xg/T) ~ Modog, (D(BT)) .
Proof. The same argument as in 5.16 shows Xz x T" ~ AnSpec(Z[f,t,ui!, .. .,ufl]&t)).
By definition, D(BT) =~ limp,ca D(T") and D(X§/T) =~ limp, ep D(Xg x T"), where the
cosimplicial limits are taken along the pullback functors. Observe that the pushforward functors
et D(XE x T") — D(T") commute with these pullbacks. Indeed, if we would take the limit
along the !-pullbacks, this would follow from proper base change (by passing to right adjoints).
Since Z — Z[u*1] is smooth of relative dimension 1 and Q%[uil]/z = Z[u*!'] du is a free module

of rank 1, [CS19, Theorem 11.6] shows 7' ~ Y717* and so we get commutativity for the
x-pullbacks as well.

It follows that Oxx«,r € D(BT) is given by the degree-wise pushforwards of the structure
sheaves Oxs . n, that is, by Z[B, t,uil,. .., ufl]ajﬂf) € D(T") for all [n] € A. In every degree,
the pushforward induces an equivalence

D(Y: X Tn) i> MOdZ[ﬁ,t,ulil,...,Uil]A (D(Tn)) .

™ A(pit)
Using this observation, D(X5/T) ~ Modo, e (D(BT)) is completely formal. O
5.18. Graded objects and sheaves on BT. — Let G, 7, = G, X AnSpec Zy. By adapting

the usual proof, it’s not hard to show that

D(BGy,74) ~ GrD(Zu) .
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is the oo-category of graded solid condensed abelian groups. Since we have a map of analytic
stacks ¢: BT — BGy,;,, 7., we get a pullback functor ¢*: GrD(Za) — D(BT). In this way, we
can associate to any graded solid condensed Z-module a quasi-coherent sheaf on BT.

We don’t know if ¢* is fully faithful (it probably isn’t), but at least it’s fully faithful when
restricted to the full sub-oo-category GrD(Z) C GrD(Za) spanned by the discrete graded
Z-modules. Indeed, for discrete objects, solidification doesn’t do anything, and so for all
[n] € A the functor D(G], ) — D(T"), given by solidifying url for i = 1,...,n, is fully
faithful when restricted to discrete objects.

The following lemma takes this one step further and allows us to regard the graded Z,[S][t]-
modules Fil} y4, ¢-dR(z/pe)/z, as sheaves on D(BT) without loss of information.

5.19. Lemma. — Let Zp[B][t] € GrD(Z) denote the graded (p,t)-completion of the discrete
graded ring Z[B,t] and equip Mody, gq(Gr D(Z))é\p " with the (p,t)-completed graded tensor
product. Then after (p,t)-completion, c* induces a fully faithful symmetric monoidal functor

N

Modz, (g1 (Gr D(Z)) ,,

— Modox, , (D(BT)) .

Proof. To construct the desired functor, we compose with (p, t)-completion to obtain functors

c* (_)/\p,t
Mody, (511 (Gr D(Za)) ~— Modx(z, (1) (P(BT)) A UN Modog, , (D(BT)).

Note that this composition is symmetric monoidal. Indeed, ¢* is symmetric monoidal; to see

the same for (—)(Ap 1y We need to check that the tensor product in the symmetric monoidal

oo-category Modo, /T(D(BT)) preserves (p, t)-complete objects.(>3) But the pullback functors,
along which the limit Modow, . (D(BT)) =~ limp,jea D(Xg x T") is taken, all preserve (p,1)-
complete objects, because they preserve limits (see the argument in 5.16). Moreover, by the
same argument as for the solid tensor product, the tensor product in D(X§ x T) also preserves
(p, t)-complete objects. Hence we get the same for Mod@?k/T (D(BT)).

Clearly (_)(Ap,t) o c* factors through Modg, g1 (Gr D(Z.))(Apyt). By restricting to the full

sub-oo-category Mody, (g (Gr D(Z))f\p’t), we get the desired functor

A

Modz, (g1 (Gr D(Z)),,

— Modox, . (D(BT)).

We've already seen that this functor is symmetric monoidal. Fully faithfulness can be checked
modulo (p,t), so it’ll be enough to check that Modg, [3(GrD(Z)) — Modx (g, 5} (D(BT)) is
fully faithful. This follows from the fact that ¢*: GrD(Z) — D(BT) is fully faithful, as we've
seen in 5.18. O

5.20. Lemma. — Let X* C X* be the subset SpaZ[B,t]?p H N {p=20,0t =0}. Then X* is
a Tate adic space and its associated analytic stack XF can be written as the following pushout

<5"?’)By contrast, even though the solid tensor product preserves p-complete objects, it’s not true that the graded
solid tensor product on GrD(Za) preserves graded p-complete objects, because being p-complete is not preserved
under infinite direct sums.
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in analytic stacks:

AnSpec(2(8, 1,05 | 218 0y ). —— AnSpee (218, 0| 4], 215, 1),0).

J E |

AnSpec (Z[ﬁ, t]@o,t) [%] L, Z[B, t](\p7t)>. Xz

Moreover, the T-action on X} restricts to an action on X}, and if Ox+ v € D(BT) denotes
the pushforward of the structure sheaf of X} /T, then pushforward along Xz /T — BT induces a
symmetric monoidal equivalence

D(Xz/T) = Modo,, , (D(BT)).

Proof. By 5.2, X} is glued together from rational open subsets of X*. For example, one can
take Uy = {z € X* | |Bt|+ < |pls # 0} and Uy = {x € X* | |p|. < |Bt|» # 0} and then

X: ~ Ul,' l—l(U1ﬂU2). U27..

To show the desired pushout, it’s enough that Y; g :== AnSpec(Z[S, t]@)t)[l/p], Z[8, t]é\p t))l and
Y2,m = AnSpec(Z[B, t](,, , [1/(Bt)], Z[B, t](,, ) )u form a l-cover after pullback to U1,a and Uz a.
This is clear, as Y1 o XX Ui,a ~ Uy a and similarly Y5 g XX Uzm~Usu.

To see that the T-action on X} restricts to an action on XJ, just observe that p and St are
homogeneous elements. The pushout above implies that the pushforward Ox« € D(Zg) of the

structure sheaf of XJ is given by

~ A1 AN
Oxr = 208 W 5] Xays g, ] 20T | ]
the pullback being taken in the derived sense. Now D(Xg x T") ~ Modo, .. (D(T")) holds
for all [n] € A, since the same is true for Y] u, Y2 u, and Y7 a X X Y5 . This finally implies
D(Xg/T) ~ Modo, . (D(BT)), as desired. O

We can finally show idempotence and nuclearity in the situation of Theorem 1.20. To this
end, let Z* C X* be union of the closed subsets {p = 0} and {[p"]xu(t) = 0} for all n > 0, where
[P"]ku(t) = ((1+Bt)P" —1)/B denotes the p"-series of the formal group law of ku. For n,r,s > 1
such that (p — 1)p™ > s, we also let Wy s © X™ be the rational open subset determined by
Ip"| < |[p" ]ku(t)| # 0, |(Bt)®| < |p| # 0. Observe that W, _ is T-equivariant, since it is defined

n,r,s
by homogeneous elements.

5.21. Corollary. — The T-action on X} restricts to an action on the overconvergent
neighbourhood Z*1 of Z*. Moreover, Ozxi/v € D(Xa/T) is idempotent, nuclear, and the
colimit of the ind-algebra obtained by killing the pro-idempotent “lim,, . ¢ OWﬁk,r,s/T'

Proof. The proof of Corollary 5.15 can be carried over to show that Z* N W3 . = 0 and
X*NZ* =Ups Wik, o In particular, the T-equivariant open subsets X* N W _ _are coinitial
among all open neighbourhoods of Z*, because for an arbitrary U D Z*, the complement
X* N\ U is quasi-compact and thus contained in some Wy, .. This shows that Z *T acquires a
T-action.
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Moreover, Theorem 5.12 shows that O «,+ is the colimit of the idempotent nuclear ind-algebra
obtained by killing the pro-idempotent “lim, . Oy . Since Z*1 x T" = limy 52+ (Ug x T),
where the limit is taken over all T-equivariant open neighbourhoods, and since killing pro-
idempotents is compatible with base change in the nuclear case by Lemma 2.15(c), we get that
O z#.t o 18 similarly given by killing “limy, . ; Oy g in D(Xg xT"). Now let A € D(Xg/T)
be the colimit of the ind-algebra given by killing “lim} ;.  Oy% /. Then Lemma 5.9 shows
that all sufficiently large transition maps in this pro-object are trace-class again. Hence A is
idempotent, nuclear, and the base change result from Lemma 2.15(¢) shows that the pullbacks
of A to Xg x T" agree with Oyt pn for all [n] € A. This implies Oyx.1 /1 ~ A, as both of the
maps

OZ*’T/T — OZ*W/T ®%X:</T A— A

become equivalences after pullback to Xy x T™ for all [n] € A. O

§5.3. Understanding the ¢-Hodge filtration for Z/p*

Recall from Construction 4.11 that the g-Hodge filtration on ¢-dRz/pe)/z, is defined via base
change from the g-Hodge filtration on the derived ¢-de Rham complex

Wk,

Let us denote this ring by ¢g-D, for short. In the following, we’ll also write ®,(¢) instead of
[plq, since higher cyclotomic polynomials will appear as well.

¢-dR(z, (2} /zo) /2, (2} = Lpfx}]a — 1}]{ .

5.22. The ¢g-Hodge filtration and lifts of divided powers. — Suppose the ¢-Hodge
filtration on ¢-Dq is a g-deformation of the Hodge filtration on Dy = dR(z, (4} /z0)/2,(c}- We
already know this for p > 3 and all o > 2 as well as for p = 2 and all even o > 4. We know that
D, is the p-completed PD-envelope of (z%) C Z,{z} and the Hodge filtration is precisely the
PD-filtration. Thus, if y(—) := (—)?/p denotes the divided power operation, then Filjjq, Dq
is the p-complete filtered D,-algebra generated by the iterated divided powers ~(™ (%) in
filtration degree p™ for all n > 0.

Since Fil} yq, ¢-Da/(q — 1) = Filfjqy Do, it follows that Fil} y, ¢-Do must be generated as
a (p,q — 1)-complete filtered ¢-D,-algebra by the element (¢ — 1) in filtration degree 1 and
lifts 'Ny(gn) (z%) of (™ (2?) in filtration degree p™ for all n > 0. Thus, to describe the ¢-Hodge
filtration, it will be enough to give a description of these lifts. By construction, the ¢-PD
envelope ¢-D,, contains lifts of divided powers, but it’s not clear at all that these can be chosen
to lie in the required degrees of the g-Hodge filtration.

The following technical lemma shows existence of these lifts along with some structural
information about them, and we’ll even see an explicit recursive construction in the proof.
Moreover, all of this works for o > 2 without any restrictions in the case p = 2.

5.23. Lemma. — For o > 2 and all primes p, there are polynomials Ty, € Zp{x}[q] with the
following properties:

n—1

(a) Tp=2"" mod (¢—1)P~! and T, € (2P, (¢ — 1)P~1)P
(b) T € ((¢'(x), ®,i(q))?, ®pi(q)P )" foralll<i<n—1.
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() Tne(¢"(x), Ppr(q))-
(d) (Tn)* € ITity @i (@) " - ¢-Da
In particular, (T,,)* is contained in the ideal (x*,q — 1)P" and

(Cn)®

~(n) (e
() = iy @i (P

€ Fil? 14y -Da

is a lift of the n-fold iterated divided power v™ (z®) and contained in the (p™)" step of the
q-Hodge filtration.

Proof. We’ll do a proof by induction. For the base case of the induction, n = 0, let I'g := x.
All of the statements are trivial in this case.

For the induction step, we first want to construct the element I';,. For this, let P,, Q,, be
some polynomials in Z[¢] such that p = P, (¢q)(q — 1)(1’*1)1"“71 + Qn(q)®pn(q). Note that such
polynomials always exist, since ®,n(1) = p and ®pn(q) = (¢ — 1)(1)_1)7”71 mod p, so

By (q) — (¢ — 1)~
P

is a unit modulo (¢ — 1)(”_1)1’”_1. Now define

n—1

Ty = (Te1)? + Pu(q) (g — )PP 5(021) = ¢(T1) — Qulq) @y (9)5(Th1)-

Statement (a) follows trivially. For (b) and (c¢), by Lemma 5.24 below it’s enough to check that
p - 'y, is contained in these ideals. We have

p- Fn =D (anl)p + Pn(Q)(q - 1)(p—1)p”*1 (gb(rnfl) - (anl)p)
=p- ¢(ln-1) — Qn(Q)(I)p" (q) (Qb(anl) - (anl)p)-

Now (I';,—1)P and ¢(I',,—1) are contained in each one of the ideals from (b). Indeed, for (I',,—1)?,
this follows from statements (b) and (¢) of the induction hypothesis, and for ¢(I',,—1) this
follows similarly from (a) and (b). Therefore, the first of the two equations above shows that
p- Ty, is contained in each of the ideals from (b). Similarly, using statement (c) of the induction
hypothesis, we get ¢(I';,—1) € (¢"(z), Ppn(¢)) and so the second of the equations above shows
that p- Ty, is contained in this ideal as well. This finishes the induction step for (b) and (c).

It remains to show statement (d). By [BS19, Lemma 16.10], ¢-D,, is (p, ¢ — 1)-completely
flat over Zy[q — 1] and thus flat on the nose over Z[q|. Therefore

To show that (I';)* € @, (q)pnii -q-D,, for 1 <i < n — 1, by the already proven statement (b),

it’s enough to show the same for any element in the ideal ((¢i(;p),q>pi (q))?, @pi(q)P—l)ap”‘l"'
So consider a monomial of the form

(¢ (2)7 @, (g)F) Dy (@)1,
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where j + k = p and £ + m = ap™ 1%, By construction, ¢(z)® becomes divisible by ®,(q) in
q-Dg and so ¢'(z)* € ®,i(q) - ¢-Do. Hence ¢'(z)7* is divisible by ®,i(q) lit/a) 1t will therefore
be enough to show

y |
VaJ YO+ (p—1)m > pit.

This is straightforward: For ¢ = 0, the inequality follows from a(p—1) > p as a > 2. In general,
if we replace (j, k) by (j —1,k+1), the left-hand side changes by at least £ — [¢/a| —1; for £ > 1
and « > 2 this term is always nonnegative. Therefore we may assume j = p, k = 0, and we must
show |pl/a| + (p —1)m > p"~ % If p = 2 and a = 2, this becomes the equality ¢ +m = 2"~
and so the inequality is sharp in this case. If p > 3 or a > 3, we have (p — 1) — |[p/a] =1 >0
and so by the same argument as before we may assume £ = ap™ =% m = 0. The the desired
inequality follows from a(p — 1) > p again.

A similar but easier argument shows that every element in (¢™(x), ®,n(q))“ becomes divisible
by ®,n(q) in ¢-D, and we have an inclusion of ideals (27, (¢ — 1)P~1) ' C (2% q—1)" in
Zy{r}[q]. This finishes the proof of (d) and shows (I'y)* € (2%, q — 1)P". Hence %{n) (x) is
really contained in the (p™)*® step of the ¢-Hodge filtration and it lifts v (z®) by (a). O

apn~

5.24. Lemma. — If J C Zy{x}[q] is any of the ideals in Lemma 5.23(b) or (c), then
Zp{x}[q]/J is p-torsion free.

Proof. Consider the map v;: Zp{x}[q] — Zp{z}[q] given by the i-fold iterated Frobenius
@' Lp{xy — Zyp{a} and g — @i (q). If we replace ¢'(z) and ®,:(¢) in the definition of J by =
and g, respectively, we obtain an ideal Jy C Z,{z}[q| such that

Lpl{x}y/)J = Lp{x}/ o Oz, (aylq)w: Loix}a]-

Now ¢’ is flat by [BS19, Lemma 2.11] and ¢ — ®,i(q) is finite free, as the polynomial @, (q) is
monic. So v; is flat and it suffices to show that Z,{x}[q]/Jy is p-torsion free. But Z,{z}[q] is a

free module over Z, with basis given by monomials in z,(z), §%(x), ... and ¢. By construction,
Jo is a free submodule on a subset of that basis. It follows that Zy{x}[q]/Jo is free over Z,,
hence p-torsion free. O

Finally, as a simple corollary of Lemma 5.23, we get an elementary proof of Theorem 3.10(a).

Proof of Theorem 3.10(a). We already know from Lemma 3.8 that

(Fil} yag ¢-dRRya) /(g — 1) — Filjg, dR /4

is degree-wise injective, so it suffices to show surjectivity. It’ll be enough to show that for

each of the generators of J = (z{*,...,2%") and all n > 0, the n-fold iterated divided power

(M) (%) admits a lift which lies in the (p™)™ step of the g-Hodge filtration. Thus, it’s enough
to treat the case A = Zy{z}, R = Z,{z}/x*, where o > 2. Then Lemma 5.23 finishes the
proof. O

§5.4. Proof of Theorems 1.19 and 1.20

Recall from 2.11 that Efimov [Efi-Lim| constructs a fully faithful strongly continuous functor

Nuc(D(Zy[g — 1]u)) — Nuc(Z,[g —1]) .
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Efimov shows that this functor is an equivalence on bounded objects. Since Aky , is bounded,
it’s therefore contained in the essential image of Nuc(D(Zp[q — 1]a)). Its preimage (and in
fact, the right adjoint to Efimov’s functor) can be explicitly described: Aky , is obtained by
killing the pro-idempotent “lim(., ¢-Hdgz/pe)/z,.- We can regard each ¢-Hdgz/pe) 7, as a
(p, ¢ — 1)-complete solid condensed Z,[q — 1]-module by (p, g — 1)-completing the associated
discrete condensed abelian group. By killing the pro-idempotent “lim( >, ¢-Hdgz/pe),z, in
D(Zplq — 1]m), we get an idempotent nuclear algebra in Ind D(Z,[q — 1]a). Its colimit is the
preimage of Aky .

In the following, we’ll regard Aky , as a solid condensed Z,[¢ — 1]-module. In the same
way, using the formalism developed in §5.2, we’ll regard Aﬁu,p as a quasi-coherent sheaf on
the analytic stack Xj}/T, where X* := Spa Z[B,t](Ap’t). As in §§5.1-5.2, we’'ll also denote
X*=X*{p=0,8t =0} and X :=SpaZy[qg— 1]~ {p=0,g=1}.

5.25. Lemma. — Af  vanishes after (p, 3)-completion and after (p,t)-completion. Axu,p
vanishes after (p,q — 1)-completion. In particular, Aiu,p and Axu p are already contained in

the full sub-oco-categories D(X}/T) ~ Modo 4 (D(BT)) and D(Xa) ~ Modo (D(Za)).

Proof. By Nakayama’s lemma it’s enough to show Aﬁu’p/(p, B) ~ 0 and Aﬁu’p/(p, t) ~ 0. Since
Axup[BF] is a A, p-algebra, this will also show Axuy,,/(p,q —1) ~ 0. Since Af, /t is
concentrated in nonnegative graded degrees, it is automatically S-complete, so it’s already

enough to show A{iu,p/(% B) ~ 0. Now ku — ku/(p, B) ~ F,, is a map of E.-ring spectra, so

we can invoke base change to see TC™™((ku ® Q) /ku)/(p, ) ~ TC™"((F, ® Q)/F,) ~ 0.

It follows that (Altu,p)f\p ) = 0. Using the pullback square from Lemma 5.20 and a version

of the Beauville-Laszlo theorem (see [Wag24, Lemma 2.4] for example), we get

* * L
Aku,p = Aku,p ®(9y;;< /T

O)(*/T
and so Ay, , is indeed a Oy« p-module. The argument for Aky,, is analogous. O

2
n,r,s

”

To finish the proof, we analyse the pro-systems “lim s

Corollaries 5.15 and 5.21.

13 5
Ow,.,.. and “lim; .. Oy 7 from

5.26. Lemma. — For every fired a > 2 and all sufficiently large n, r, s, there exist maps

Owg,./r — Filinag ¢-dRz/pe/2, ®6,  Oxsyrs

Ow,.... — ¢-Hdgz/pe/z, ®Iipuq71]]. Ox
in D(XE/T) and D(Xa), respectively.

Proof. By construction, the g-de Rham complex ¢-dR(z/,e)/z, contains elements of the form
' (d(p*)/Pp(q)) = p*/®pi+1(q) for all i > 0, and p* € Filé_Hdg q—(ﬁ\{(z/pa)/zp. When we regard

—

Filj gag -dR(z/pe)/z, as a graded Zp[B][t]-module, this precisely means that p® is divisible
by t. Hence we have elements of the form

(n+1)a fel fe] N (O
p P o) ") | nos ™
L P € Fil* 1140 ¢-dR 7/
PTal®) — t @pla)  Bpe(q) T TRERIE
for all n'> 0. Similarly, there exist .elements of the ff)rm (B)N /p in Fil; pag q—&f{(z /p)/Z,
for sufficiently large N. Indeed, the ring ¢-dR z/pe)/z, 18 (p, ®p(q))-complete and contains an
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element of the form p®/®,(q). Applying the nilpotence criterion from [BCM20, Proposition 2.5],
we see that ®,(q) is nilpotent in Fil} 4, q—cﬁ\%(z/pa)/zp/p. Then (g — 1)P~! must be nilpotent
as well, and so (¢ — 1) must be divisible by p in Fil pag q—(Tl\%(Z /p)/z, for N > 0.

In particular, as soon as we invert (8t in FilZ_Hdg q-dR(z/pe)/z, /P, we see that p will be
invertible as well, and so

. ™ L i 1R
Fily nag ¢-dRz/pe) /2, ®o+ Oxx/r =~ Filgnag ¢-dR(z/pe) /2, [%] '

/T
Moreover, as soon as p is invertible, [p"]xu(¢) will be invertible for all n > 0. Choosing s > N,
we see that Filj y4, ¢-dR z/pe)/z, contains an element of the form (5t)°/p which is topologically
nilpotent, hence automatically solid. Moreover, for (p — 1)p™ > s and r > (n + 1)«, we get an
element of the form p"/[p"]iu(t), which is again topologically nilpotent and thus solid. Thus,
for such n, r, and s, a map O, p — Filj gy ¢-dR(z/pe)/z,[1/p] exists. The argument in

.S

the ¢g-Hodge case is analogous. O

5.27. Remark. — As a consequence of the derived version of Theorem 1.3(a) that we’ll show
in [W-Hab], ¢-Hdg(z/pe) 7,/ (¢"" — 1) is an algebra over the p-typical Witt vectors Wn (Z/p®).
Since this ring is p®*"-torsion, we already have elements of the form p®*"/(¢?" — 1) in
q-Hdgz/pa)/z, for all n > 0.

5.28. Lemma. — For all fized n, v, s such that (p — 1)p"™ > s and all sufficiently large o > 2,
there exist canonical maps

Fil} 1ag -AR(z/pe) /2, ©6

X3/T OX*/T — wafms/T’

L
q-Hdg(z/p0) /2, 7, [g-1]a OX — OW,n.,..
in D(XE/T) and D(Xa), respectively.
Proof. Let ¢-Do = q-dR(z, (2} /2)/2,{z} @ in §5.3 and let FilZ_Hdg q—ﬁa denote its completed
g-Hodge filtration. It follows from 5.22 that Filf;,Hdg q—ﬁa is generated as a (p,t)-complete

graded Z,[A][t]-algebra by lifts of the iterated divided powers y(?(z%) sitting in filtration
degree 2p?. Thanks to Lemma 5.23, we know that these lifts can be chosen to be of the form

(T'a)*
tr Hzo'lzl (bpi (Q)pd_Z

for Ty € (2P, (¢ — 1)p*1)pd71. The extra t?" in the denominator accomodates for the fact that
this element must sit in degree 2p". Note that the denominators all become invertible in
OW;“,T,S /T> but that’s not enough to obtain the desired map: We must send the generators to
solid elements, to ensure that the map extends over the (p,t)-completion.

By construction, (¢ —1)*/p and p"/[p" ]Jxu(t) are solid. In particular, p”/(t®,:(g)) is solid for
alli=1,...,n. For i > n, we have (p — 1)p'~! > s by assumption. Hence (q — 1)(p_1)pi71/p is
topologically nilpotent in OW&“,T,S s1- 1t follows that ®,i(q) = p(1 4+ w), where w is topologically
nilpotent, and so p"/®,i(q) is solid in Oy 7 for i > n. Therefore the elements P /(i (q))
are solid for all 7 > 1.

By choosing « large enough, we can ensure that for every monomial 2P (q — 1)(p_1)j in the
ideal (zP, (q — 1)1’_1)0‘1#71 we have pi > 2rp? or (p —1)j > sp?. Now (I'g)® is a Z,{z}[q]-linear
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combination of such terms. It follows that the d-ring map Z,{z} — Z, sending x +— p can really
be extended to a map Fili_yq, ¢-Do — Owg, /1 of graded solid condensed Z,[S][t]-algebras.
Via (p,t)-completed base change along Z,{r} — Z, and extension of scalars to Oxsx r, this
yields the desired map

Fil} 14g 4-dR(z/pe)/2, ®6, . Ox* /1 — Ows, 7

/T
The argument in the g-Hodge case is analogous. O

Proof of Theorems 1.19 and 1.20. By Lemma 5.25 and Lemma 2.15(c), we see that Afup I8

the colimit of the idempotent nuclear ind-algebra given by killing the pro-idempotent

“lim” Fil} g 0-dR 202, ®by . O o

/T
in D(Xg/T). By Lemmas 5.26 and 5.28, we see that this pro-system is equivalent to
“lim;’,m OW;LKM/T, which proves Aﬁu,p ~ Oz*vf/qr- The argument for Axy, ~ Ozt is com-

pletely analogous. O

5.29. Remark. — An obvious adaptation of Theorem 4.20 shows that Axy,, and Al"(‘ud!2 are
connective. Therefore the condition from Theorem 5.12(b) is satisfied and so O, and O+ /T
are really the pushforwards of the respective structure sheaves.
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Appendix A. The global ¢-de Rham complex

Let p be a prime. In [BS19, §16], Bhatt and Scholze construct a functorial (p, ¢ — 1)-complete
g-de Rham complex relative to any ¢-PD pair (D, I). This verifies Scholze’s conjecture [Schl17,
Conjecture 3.1] after p-completion, but leaves open the global case. There are (at least) two
strategies to tackle the global case:

(a) One can glue the global ¢g-de Rham complex from its p-completions and its rationalisation
using an arithmetic fracture square.

(b) Following Kedlaya [Ked21, §29], one can construct the global ¢g-de Rham complex as the
cohomology of a global g-crystalline site.

Strategy (a) is what Bhatt and Scholze originally had in mind, but they never published
the argument. It is essentially straightforward, but not entirely trivial. Since all the global
constructions in this paper and the follow-up [W-Hab]| proceed similarly by gluing p-completions
and rationalisations, with no site-theoretic interpretation like strategy (b) in sight, it will be
worthwhile to fill in the missing details of strategy (a). Our goal is to show the following
theorem.

A.1. Theorem. — If A is a A-ring and p-torsion free for all primes p, there exists a functor
q-Q_/q: Smy — CAIg(ﬁ(q_l) (A[[q — 1]]))

from the co-category of smooth A-algebras into the oco-category of (¢ — 1)-complete Eqo-algebras
over Alq — 1], satisfying the following properties:

(@) ¢Q_ja/(q—1) =~ Q_,4 agrees with the usual de Rham complex functor. Moreover, if
A — A’ is a map of Z-torsion free A-rings, there’s a base change equivalence

q-Q_/4 @Ijﬂq_lﬂ Alg = 1] = ¢-Q g an /4 -
Modulo (q — 1) this reduces to the usual base change equivalence of the de Rham complez.

(b)  For every framed smooth A-algebra (S,00), the underlying object of q-Q2g/4 in the derived
oo-category of Alq — 1] can be represented as

a-Qsja ~ Q540
where the coordinate-dependent q-de Rham complex q—QE/A o 45 as in [Sch17, §3].

A.2. Remark. — It will be apparent from our proof (and we’ll give a precise argument in
A.12) that the ¢g-de Rham complex functor lifts canonically to a functor

q—Q,/Ai Smy — (DAlgA[[q—lﬂ)z\qfl)

into (¢ — 1)-complete objects of the the oco-category of derived commutative Alq — 1]-algebras
DAlg 4[4—17 as defined in [Rak21, Definition 4.2.22].

§A.1. Rationalised ¢-crystalline cohomology

Fix a prime p. Then (A,[¢ — 1], (¢ — 1)) is a ¢-PD pair as in [BS19, Definition 16.1] and so
we can use g-crystalline cohomology to construct a functorial (p,q — 1)-complete g-de Rham
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complex ¢-Qg/7, for every p-completely smooth jp—algebra S. We let ¢-dR_ 7, denote its
non-abelian derived functor (or animation), which is now defined for all p-complete animated
2p—algebras. Observe that animation leaves the values on p-completely smooth /Tp—algebras
unchanged, as can be seen modulo (p,q — 1), where it reduces to a well-known fact about
derived de Rham cohomology in characteristic p.

Our first goal is to show that after rationalisation derived g-de Rham cohomology is just a
base change of derived de Rham cohomology relative to Ap. In coordinates, such an equivalence
was already constructed in [Sch17, Lemma 4.1] (see A.7 for a review), but here we need a
different argument: We want a coordinate-independent equivalence, so we have to work with
the definition of the g-de Rham complex via g-crystalline cohomology.

A.3. LeInma. — For all p-complete animated /Tp-algebms R there is a functorial equivalence
of Exo-(Ap ®z Q)[q — 1]-algebras

q-dRp/3, ®zpq—1) Qg — 1] ~ (dRg/z, ®z Q)[g — 1] .

Proof. By passing to non-abelian derived functors, it’s enough to construct such a functorial
equivalence for p-completely smooth A,-algebras S. In this case, we can identify derived (g-)de
Rham and (g¢-)crystalline cohomology:

¢-dRs/4, ~ Rlg-crys(S/ApJg — 1]) and  dRgyi, ~ RTcrys(S/Ap) .

To construct the desired identification between g-crystalline and crystalline cohomology after
rationalisation, let P — S be a surjection from a p-completely ind-smooth 6—/Alp—algebra. Extend
the d-structure on P to P[qg—1] via 6(q) := 0. Let J be the kernel of P — S and let D := Dp(J)
be its p-completed PD-envelope. Finally, let ¢-D denote the corresponding ¢-PD-envelope as
defined in [BS19, Lemma 16.10]. It will be enough to construct a functorial equivalence

¢-D ®z4-11 Qg — 1] =~ (D ®z Q)[g — 1] -

If D° denotes the un-p-completed PD-envelope of J, then P — ¢g-D — ¢-D ®Z[[q—1]] Qg — 1]
uniquely factors through D° — ¢-D ®Z[[q—1]] Q[g — 1]. The tricky part is to show that this
map extends over the p-completion. Since D° is p-torsion free, its p-completion agrees with
D°[t]/(t—p). By Lemma A.5 below, for every fixed n > 0, every p-power series in D° converges
in the p-adic topology on (¢-D ®Z[[q,1]] Qg—1])/(g—1)™, so we get indeed our desired extension
D — ¢-D ®zj4-17 Qg — 1]. ~

Extending further, we get a map (D ®z Q)[q — 1] — ¢-D ®zq—1] Qg — 1] of the desired
form. Whether this is an equivalence can be checked modulo (¢ — 1) by the derived Nakayama
lemma. Then the base change property from [BS19, Lemma 16.10(3)] finishes the proof—up to
verifying convergence for p-power series in D°. O

To complete the proof of Lemma A.3, we need to prove two technical lemmas about (g-)di-
vided powers. Let’s fix the following notation: According to [BS19, Lemmas 2.15 and 2.17], we
may uniquely extend the §-structure from ¢-D to ¢-D ®Z[[q—1]] Q[g — 1]. We still let ¢ and §
denote the extended Frobenius and d-map. Furthermore, we denote by

= J,‘ip an xT) = ¢($) —o(x
7(33)_ P d 'Yq( ) [p]q 6( )

the maps defining a PD-structure and a ¢-PD structure, respectively. Note that v(z) and ~4(x)
make sense for all x € g-D ®Z[[q—1]] Q[¢ — 1] since p and [p], are invertible.
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A.4. Lemma. — With notation as above, the following is true for the self-maps é and vy, of

(q_D ®z Q)&_l):

(a) Foralln>1 and all « > 1, the map § sends (¢ —1)" g-D into itself, and p~*(q¢—1)" g-D
into p~ P+ (g — 1)" ¢-D.

(b) Foralln > 1 and all a > 1, the map v, sends (¢ — 1)" ¢-D into (¢ — 1)"*1 ¢-D, and
p~*(¢ — 1)" ¢-D into p~ P>V (g — 1)""1 ¢-D.

Proof. Let’s prove (a) first. Let x = p~%(q — 1)"y for some y € ¢-D. Since ¢-D is flat over
Zp[lg — 1] and thus p-torsion free, we can compute

5(x) = o(z) —2 (¢ —1)"¢(y) (¢—=1™y"

D portl ppot1

As ¢P — 1 is divisible by ¢ — 1, the right-hand side lies in p~®**1(q — 1)* ¢-D. If a = 0, then
the right-hand side must also be contained in ¢-D. But ¢-DNp~!(¢—1)"¢-D = (¢ — 1)"¢-D
by flatness again. This proves both parts of (a). Now for (b), we first compute

_ _¢(q_1)_ 1) — 2p_11p qyi—2
a1 = D sta -0 =1 (-

Hence v4(q — 1) is divisible by (¢ — 1)2. In the following, we’ll repeatedly use the relation
Ye(xy) = o(y)yqe(x) — 2Pd(y) from [BS19, Remark 16.6] repeatedly. First off, it shows that

(@ =1)"z) = ¢((q—1)"'2)7,(g — 1) — (¢ = )P6((g — 1)" ')

It follows from (a) that §((¢ — 1)"'2) and ¢((q¢ — 1)"'z) are divisible by (¢ — 1)"~!. Hence
74((g — 1)"z) is indeed divisible by (¢ — 1)"™!. Moreover, we obtain

Y (P~ (g —1)"x) = d(p~ ) ((¢ — 1)"x) — (¢ — 1)"PaPé(p~®).

Now ¢(p~®) = p~* and §(p~*) is contained in p~P*+1) ¢-D, hence v,(p~*(q—1)"x) is contained
in p~(®2+1) (g — 1)" ¢-D. This finishes the proof of (b). O

A.5. Lemma. — Let x € J. For everyn > 1, there are elements yo, ..., Yyn € g-D such that
Yo admits q-divided powers in q-D and

Y (x) = yo + Zp_Q(”H*“*PH)(q — 1)ty
=1

holds in ¢-D @z Q, where (™) =~ o ..o~ denotes the n-fold iteration of ~.
Proof. We use induction on n. For n = 1, we compute

:L'p

) = 2 = ) + B (o 0) + 8(a).

Note that x admits ¢-divided powers in ¢-D since we assume = € J. Then 7,(x) admits
g-divided powers again by [BS19, Lemma 16.7]. Moreover, writing [p], = pu + (¢ — 1)P~!, we
find that ([p], —p)/p= (u—1) +p~1(g—1)P"L. Then (u — 1)(y4(x) + §(z)) admits g-divided
powers since v =1 mod (¢ — 1). This settles the case n = 1. We also remark that the above
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equation for v(z) remains true without the assumption x € J as long as the expression ~,(x)
makes sense. _

Now assume (™ can be written as above. We put z; = p— 20" +-+p+1) (g — 1)(p=2)+iy, for
short, so that 4" (z) = yo + 21 + - - - + z,. Recall the relations

(a4 8) = () + 7400 +Z L(2)aw Za5(a+b)25(a)+5(b)—]§1(§>aibp_i.

i=1 p

The first relation implies that v4(yo + 21+ - - + 25 is equal to v4(y0) +v4(21) + - - - +74(2n) plus
a linear combination of terms of the form yg‘o 2t 20 with0< oy <pandag+---+an=p
Now ~,(yo) admits ¢g-divided powers again. Moreover, Lemma A.4(b) makes sure that each
vq(zi) is contained in p~2@ TPt (g — 1)@=D+i+1 oD It remains to consider monomials
Yoozt -z Put m o= max{i | a; # 0}. If ap = p — 1, then all other a; must vanish except
oy = 1. In this case, the monomial is contained in p=2(" '+ +p+) (g — 1)=2+m o p If
ap < p— 1, then we get at least one more factor (¢ — 1) and the monomial y5°2{" - - 22" is
contained in p~2®" P (¢ — 1)P=2)+mA1 o D

A similar analysis, using the second of the above relations as well as Lemma A.4(a), shows
that (u—1)d(yo+21+---+2,) and p~1(g—1)P"16(yo + 21+ - - + 2,) can be decomposed into a
bunch of terms, each of which is either a multiple of (¢ — 1) in ¢-D, so that it admits g-divided
powers, or contained in p~ 2P+ 4P+ (g — 1)7+1 ¢-D for some 1 < i < n+ 1. We conclude that

AP @) = 20" @)) + P2 (3,20 )) + 60 2))
can be written in the desired form. O

The following remark is irrelevant for the proof of Theorem A.1, but it will be used once in
the main text.

A.6. Remark. — There’s also an analogue of Lemma A.5 with the roles of D and ¢-D
reversed. For every € J and n > 1, there’s an infinite sequence yg, 41, ..., € D such that yg
admits divided powers and

(@) = yo + Zp—Q(pi’1+--~+1)(q _ 1))y,

i1

holds in (D ®z Q)¢ — 1]. The proof is very similar to Lemma A.5: We write

(o) = (260 + By ) &

and [p], = pu+ (¢ — 1)P~L. Then we use induction on n > 1. For the inductive step, we first
check that the operations ’y( ), (u—1)8(=) and p~t(g — 1)P~1§(—) all preserve expressions
of the desired form. Then we observe that u is a unit in Z,[¢ — 1] and so multiplication by
p/[plg = u ™t Ym0 p'u" (g — 1)P~ D also preserves expressions of the desired form.

A.7. The equivalence on g-de Rham complexes. — Suppose we're given a p-completely
smooth A,-algebra S together with a p-completely étale framing O0: A,(Ty,...,Tg) — S. In
this case, the g-crystalline cohomology can be computed as a ¢-de Rham complex

qufcrys (S/A\P[[q - 1]]) = Q‘QE/EP,D
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by [BS19, Theorem 16.22]. Similarly, it’s well-known that the crystalline cohomology is given
by the ordinary de Rham complex 7% /A, (recall that according to our convention in 1.25, all

(¢-)de Rham complexes of the p-complete ring S will implicitly be p-completed). In this case,
an explicit isomorphism of complexes

-2, 0 ®zpe-—1) Qg — 1] = ( 5/4, ®r @) [q —1]

can be constructed as explained in [Sch17, Lemma 4.1]: One first observes that, after rationali-
sation, the partial g-derivatives ¢-0; can be computed in terms of the usual partial derivative

0; via the formula
log(q) log(g)" 1
o= £y 180" 5 pyeen) g,
e (q—l n>1n!(q—1)( )

see [BMS18, Lemma 12.4]. Here log(q) refers to the usual Taylor series for the logarithm
around ¢ = 1. Noticing that the first factor is an invertible automorphism, one can then appeal
to the general fact that for any abelian group M together with commuting endomorphisms

g1, ..., 94 and commuting automorphisms hy, ..., hq such that h; commutes with g; for i # j
one always has an isomorphism Kos*(M, (g1,...,94)) = Kos™(M, (h1g1,- .., hqgq)) of Koszul
complexes. (A1)

We would like to show that this explicit isomorphism is compatible with the one constructed
in Lemma A.3. To this end, let’s put ourselves in a slightly more general situation: Instead of
a p-completely étale framing [] as above, let’s assume we’re given a surjection P — S from a
p-completely ind-smooth Ep—algebra P, which is in turn equipped with a p-completely ind-étale
framing O: gp<{Ti}i61> — P for some (possible infinite) set I. Then A,({Ti}ics) carries a
5—Ap—algebra structure characterised by §(7;) = 0 for all i € I. By [BS19, Lemma 2.18], this
extends uniquely to a 5—ﬁp—algebra structure on P. If J denotes the kernel of P — S, we can
form the usual PD-envelope D := Dp(J );,\ and the g-PD-envelope ¢-D as before. Furthermore,

we let fl”l‘) /A, and q—(vlzf D/A,0 denote the usual PD-de Rham complex and the ¢-PD-de Rham
complex from [BS19, Construction 16.20], respectively (both are implicitly p-completed).

A.8. Lemma. — With notation as above, there is again an explicit isomorphism of complexes
4% p/A,0 Oz Qla — 1] = ( /4, ®z Q) la—11-

Proof. This follows from the same recipe as in A.7, provided we can show that the formula for
g-0; in terms of 0; remains true under the identification (¢-D ®z Q)é\q_l) = (D®zQ)[q—1]
from the proof of Lemma A.3. But for every fixed n, the images of the diagonal maps in the
diagram

(P ®zQ)g—1]

— T

(-D®zQ)/(q—1)" — D@z Q)lg—1]/(¢—-1)"

2

are dense for the p-adic topology and for elements of (P ®z Q)[¢g — 1] the formula is clear. [

(A-DWe don’t require h; to commute with g; (and it’s not true in the case at hand).
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A.9. Lemma. — With notation as above, the following diagram commutes:

RIg-crys (S/Ap[q - 1]]) ®Z[[q71]] Qg — 1] Tzﬁ)’ (chrys (S/Ap) &z Q) lg—1]

ZJ % |-

4% 7,0 @zgg1y Qla — 1] o (%2,002Q)le— 1]

Here the left vertical arrow is the quasi-isomorphism from [BS19, Theorem 16.22] and the right
vertical arrow is the usual quasi-isomorphism between crystalline cohomology and PD-de Rham
complezxes.

Proof. Let P*® be the degreewise p-completed Cech nerve of pr — P and let J* C P* be the
kernel of the augmentation P®* — S. Let D® = Dp-(J')Q be the PD-envelope and let ¢-D*® be
the corresponding ¢g-PD-envelope. Finally, form the cosimplicial complexes

M= Opej7, and ¢-M*" = -0 po3, o
In the proof of [BS19, Theorem 16.22] it’s shown that the totalisation Tot(g-M**) of ¢-M**

is quasi-isomorphic to the 0" column ¢g-M%* = q—flj_ DJA,, 0 but also to the totalisation of the
0" row Tot(g-M*Y9) = Tot(¢-D*). This provides the desired quasi-isomorphism

Q‘Q;D/KP,D ~ Tot(g-M**) ~ Tot(¢-D*®) ~ R _crys (S/A[[q — 1]]) .

In the exact same way, the quasi-isomorphism QTD /A, = R crys(S/ ﬁp) is constructed using the
cosimplicial complex M®** in [Stacks, Tag 07TLG]. Applying Lemma A.8 column-wise gives an
isomorphism of cosimplicial complexes ¢-M** ®Z[[q—1]] Qg — 1] = (M** ®z Q)[g — 1]. On 0"
columns, this is the isomorphism from Lemma A.8, whereas on 0" rows it is the isomorphism
from Lemma A.3. This proves commutativity of the diagram. O

§A.2. Construction of the global ¢-de Rham complex
From now on, we no longer work in a p-complete setting.

A.10. Doing §A.1 for all primes at once. — Fix n and put N, := [],c, G e
where the product is taken over all primes ¢ < n. Now fix an arbitrary prime p and let P, D,
and ¢-D be as in §A.1. We’ve verified that the map P — ¢-D — ¢-D/(q — 1)" ®z Q admits a
unique continuous extension

P ——¢D/(¢-1)"®2Q

But in fact, Lemma A.5 shows that this extension already factors through N, !¢-D/(q — 1)",
no matter how our implicit prime p is chosen. This observation allows us to construct canonical
maps dRg, /1, — N, 1 ¢-dRR, /4, /(¢ —1)" for all animated rings R and all n > 0. Taking the
product over all p and the limit over all n allows us to construct a map

[1¢-dRz, /4, ®zpg-1) Qla — 1] — (H dRg, /2, ®z Q> lq —1].
p P
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compatible with the one from Lemma A.3. This map is an equivalence as indicated, as one
immediately checks modulo g — 1.

A.11. Construction. — For all smooth A-algebras S, we construct the g-de Rham complex
of S over A as the pullback

q-Q2s5/4 11495,/4,
p

- |

(251 ®2 Q)g — 1] —— (H 057 @) q— 1]

Here the right vertical map is the one constructed in A.10 above.

Proof of Theorem A.1. We've constructed g-{2g/4 in Construction A.11. Functoriality is clear
since all constituents of the pullback are functorial and so are the arrows between them.
Modulo g — 1, the pullback reduces to the usual arithmetic fracture square for g, 4, proving
¢-Q_a/(q—1) ~Q_4. It’s clear from the construction that a base change morphism

G2 /a @IA[[qfll] Alg—1] — ¢-Q g, a4

exists and that it reduces modulo (¢ — 1) to the usual base change equivalence for the de Rham
complex. In particular, it must be an equivalence as well. This shows (a).

For (b), suppose S is equipped with an étale framing O: A[T1,...,Ty] — S. The same
argument as in A.7 provides an isomorphism q—QZ/A’D ®Z[[q—1]] Qg — 1] = (QE/A ®z Q)[g — 1].
The compatibility check from Lemma A.9 now allows us to identify the pullback square for
q-25/4 with the usual arithmetic fracture square for the complex ¢-Q7 A completed at (g—1).
This shows ¢-{2g/4 ~ q‘Qg/A,D’ finishing the proof. O

A.12. Upgrade to derived commutative AJq — 1]-algebras. — Let us explain how to
lift the ¢-de Rham complex to a functor

q—Q_/AI SH]A — (DAlgA[[q—l]])z\q—l)

into the oo-category of (¢ — 1)-complete derived commutative AJq — 1]-algebras. The key
observation is that all limits and colimits in derived commutative Aq — 1]-algebras can be
computed on the level of underlying Eo-A[q — 1]-algebras by [Rak21, Proposition 4.2.27].
Thus, by compatibility with pullbacks, it’ll be enough to lift the three components of the
pullback from Construction A.11 to derived commutative AJq — 1]-algebras. By compatibility
with cosimplicial limits, it'll be enough to construct functorial cosimplicial realisations of g4,
Qgp/;fp’ and q_Qgp/A\p'

For the latter two, the comparison with (g-)crystalline cohomology easily provides such
realisations. But the same trick works just as well for {2g,4: Let P — S be any surjection from
an ind-smooth-A-algebra (which can be chosen functorially; for example, take P := A[{Ts}ses]),
form the Cech nerve P®* of A — P and let J* C P°® be the kernel of the augmentation
P* — S. Then Qg/4 ~ Tot Dps(J*) holds by a straightforward adaptation of the proof of
[BS19, Theorem 16.22].
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A.13. Derived global ¢g-de Rham complexes. — We let ¢-dR_,4 denote the animation
of ¢-Q2_ 4. For all animated A-algebras R, we call ¢-dRp/4 the derived g-de Rham complex of
R over A. By construction, it sits inside a pullback square

q-dRp/a [14¢-dRz,,a,
p

- |

(dRg/a ®z Q)g — 1] — (H dRg,/a, ®z @) lq —1]

where the right vertical map again comes from A.10. It’s still true that g-dR_/4/(¢—1) >~ dR_ 4
and that ¢-dR_ 4 lifts canonically to (¢ — 1)-complete derived commutative A[g — 1]-algebras
(this follows immediately from compatibility with colimits as explained in A.12).

However, in contrast to the p-complete situation, it’s no longer true that the values on
smooth A-algebras remain unchanged under animation (only the values on polynomial algebras
do). In fact, this already fails for the derived de Rham complex in characteristic 0. For - some
R, this can be fixed by our construction of a g-Hodge-completed q-de Rham complex g-dRp/4
in Construction 3.37(b).
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