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Abstract. — In this article, we’ll introduce a “g-variant” of Witt vectors and
de Rham—Witt complexes. This variant is closely related to the Habiro ring of a
number field constructed by Garoufalidis, Scholze, Wheeler, and Zagier [GSWZ],
to ¢-Hodge cohomology, and to THH(—/ku). While most of these connections will
only be explored in forthcoming work [MW24; W-Hab], the goal of this article is to
provide the necessary technical foundation.
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§1. INTRODUCTION

§1. Introduction

In p-adic geometry, one often encounters the ring of (p-typical) Witt vectors W (k), where k
is an [Fp-algebra. This ring comes equipped with two natural endomorphisms: A Frobenius
F,: W(k) — W(k) and a Verschiebung V,: W(k) — W (k). These satisfy the well-known
relations F, oV, =p =V, 0 F),.

The p-typical Witt vector ring W (k) has a global analogue, given by the ring of big Witt
vectors. This ring still admits Frobenii F,, and Verschiebungen V), for all primes p, but the
commutativity of F}, and V), is lost. The idea that we’ll explore in this paper is that upon
introducing an auxiliary variable g, one can force Fj, and V), to commute “up to g-twist”, without
losing any information.

1.1. ¢-Witt vectors. — Let us now explain this idea in more detail. Fix a positive integer
m, a commutative ring R, and let W,,,(R) denote the ring of big Witt vectors of R with respect
to the truncation set T, := {divisors of m}. Here the terminology is taken from [Hesl5, §1];
we'll review it in 2.5. If d is a divisor of m, then the rings W,,(R) and Wy(R) are related
via a Frobenius Fp,/q: W (R) — Wy(R) and a Verschiebung V,, /q: Wq(R) — Wp,(R). The
Frobenius F,, /4 is a morphism of rings, whereas the Verschiebung V;, /4 is only a morphism of
abelian groups. These morphisms satisfy

Fm/dovm/d:m/d;

however, there is no equally nice formula for the composition V4 0 F;,/q. It can be described
as multiplication by the element V}, 4(1); still, this element is not very explicit. But we can
make it explicit as follows. Let (¢-W,,(R))men be the initial system of Z[g]-algebras equipped
with the following structure:

(a) For all m € N, a Z[qg]-algebra map W,,,(R)[q]/(¢™ — 1) — ¢-W,(R).

(b) For all divisors d | m, a Z[g]-algebra morphism F,, ;: W, — W, and a Z[g]-module
morphism V,, /q: Wqg — Wy,. These must be compatible with the usual Frobenii and
Verschiebungen on ordinary Witt vectors and satisfy

" -1

FrjaoVipa=m/d and Vi, 40 Fyq=[m/d], = P

It’ll be shown in Lemma 2.8 that such an initial system does indeed exist and that ¢-W,,(R) is
given by an explicit quotient of W,,(R)[¢]/(¢™ — 1). We call ¢-W,,,(R) the ring of m-truncated
big q- Witt vectors over R.

1.2. Remark. — Despite the name, ¢-W,,(R) is not a g-deformation of W,,(R). Indeed,
in ¢-Wy,(R)/(q — 1) the condition V,,/q © F,,/q = m/d is enforced. In fact, if (Wy,(R))men
denotes the universal quotient of (W, (R))men such that Frobenius and Verschiebung commute,
then it’s straightforward to check ¢-W,,(R)/(q — 1) = W,,(R), so ¢-W,,(R) is a g-deformation
of W,,,(R) instead.

There’s also a clash of terminology with a construction of Andre Chatzistamatiou. In
unpublished work, he introduces gq- Witt vectors and q-de Rham—Witt complexes of A-rings and
uses them to obtain a partial result towards coordinate-independence of the g-de Rham complex
(see 1.4 and Theorem 1.5 below). In particular, he was able to construct a homotopy equivalence
72,0, = 72,0, Where Oy is the identical framing and [: Z|T] — Z|T] is the
framing that maps T'— T — 1 .


https://arxiv.org/pdf/1006.3125#section.1
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In constrast to our constructions, Chatzistamatiou’s g-Witt vectors and g-de Rham—-Witt
complexes are honest g-deformations of their classical counterparts. The author doesn’t know
whether there is a connection between the constructions in this paper and Chatzistamatiou’s.

g-Witt vectors have a number of nice properties. First of all, it can be shown that the
canonical map W,,(R) — ¢-W,,(R) is always injective (Proposition 2.27), so we really don’t
lose any information by enforcing V;,, /q 0 Fy, /g = [m/d]a. Second, formulas often become easier
than for ordinary Witt vectors. For example, ¢-W,,(Z) = Z[q]/(¢™ — 1) couldn’t be simpler
(Corollary 2.36). Third, it turns out that most constructions with and properties of ordinary

Witt vectors have analogues for g-Witt vectors, as we’ll see throughout §§2-3.

1.3. A theory without restrictions. — The only real exception is that the restriction maps
for ordinary Witt vectors do not extend to maps Res,,/q: ¢-Wi(R) — ¢-Wy(R). In particular,
we can’t define a big ¢-Witt ring ¢-W(R) = limy,en Res ¢-Wi (R). It is then perhaps a little
surprising that the classical theory of de Rham—Witt complexes, as developed by Illusie [I1179]
(building on earlier work of Bloch, Deligne, and Lubkin) for F,-algebras and by Langer-Zink
[LZ04] in an arbitrary relative setting, should have an analogue for ¢-Witt vectors. Nevertheless,
it works, as we’ll demonstrate in §3. What this really shows is that the restrictions weren’t
actually necessary to set up the classical theory: You can take the universal property from
[LZ04] and delete all restrictions from it—this will still give you the same truncated relative
de Rham-Witt complexes. The restrictions were only used a posteriori to combine all the
truncated complexes into one single complex by taking the limit.

Nevertheless, the lack of restrictions can be annoying. But there seems to be at least some
use in considering the limit lim,,en, p ¢-Wp,(R) along the Frobenius maps; see [W-Hab].

We’ve made a point why the study of ¢-Witt vectors and g-de Rham—Witt complexes can be
of independent interest, but the real reason we're interested in them is that they do appear in
nature.("Y) For one, they can be used to construct the generalised Habiro rings of Garoufalidis
and Zagier [GSWZ]. We won’t discuss this here (although the name Habiro ring will appear
again and be defined below), but refer to the forthcoming paper [W-Hab] instead. What we will
discuss is the connection between g-de Rham—-Witt complexes and g-Hodge complexes. Before
we introduce the latter, let’s briefly review the ¢-de Rham complex.

1.4. ¢-de Rham complexes. — Jackson [Jacl0] defined the g-derivative of a function f(T")
via the formula T — H(T)
ql) — f(T
-0f(T) = ———————.
q-0f(T) a T

For example, if f(T) = T™ for some integer m > 0, then ¢-0f(T) = [m], 7™ !, where
[mlg=14+q¢+ -+ g™ ! denotes GauB’s g-analogue of m. Given some base ring A, for a
polynomial ring in several variables A[T},...,T,], one can consider partial q-derivatives q-0;
as well as a g-gradient g-V = Z‘ijzl q-0;dT;: A[Ty,..., Ty, q] — Q}A[Tl,...,Tn]/A [¢]; furthermore,
these can be organised into a ¢-de Rham complez. This was first done by Aomoto [Aom90].
Unfortunately, the g-derivative does not interact well with coordinate transformations and so
there’s no way to make Aomoto’s ¢-de Rham complex independent of the choice of coordinates.
An insight how to fix this came from Scholze [Sch17]: First, he observed that after completion
at (¢ — 1), the ¢g-de Rham complex can be defined in more general situations. A framed smooth

(D1 fact, the definition was guessed from a computation of H° (¢-Hdg}y /(g™ — 1)); see Theorem 1.7 below.
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A-algebra is a pair (R,0), where R is smooth over A and O: A[Ty,...,T,] — R is an étale
map from a polynomial ring; we’ll often call OJ an étale framing and think of it as a choice of
coordinates on Spec R. Using the infinitesimal lifting properties of étale morphisms, one can
show that the g-gradient for A[T7,...,T,] extends to a map ¢-V: R[q — 1] — Q}%/A [q—1].042)
The precise construction will be recalled in 4.8. One can then form the g-de Rham complex of
(R,0)

-V n
- Uyan = (Bl =115l 11 5 - 25 04 g - 11)
One immediately checks ¢-QF, /4D /(g —1)=QF /4> S0 we get a g-deformation of the de Rham

complex. As a complex, ¢-Q7 A0 suffers from the same coordinate-dependence as before.
However, Scholze observed that if Adsa A- -ring, then ¢-Q7, A0 is coordinate-independent as an
object in the derived category D(A[q — 1])! More prec1se1y, Bhatt and Scholze were able to
show the following theorem:

1.5. Theorem (see [BS19, §16] for the essential case). — If A is equipped with a A-structure
and Z-torsion free, then there exists a functor

q-Q_/q: Smy — CAIg(ﬁ(q,l) (A[[q — 1]]))

from the category of smooth A-algebras into the co-category of (q — 1)-complete Eo -algebras
over Alq — 1], such that ¢-Q_;4/(q — 1) ~ Q_,4 agrees with the de Rham complex functor
and for every framed smooth Z-algebra (R, ), the underlying object of ¢-Qr /4 in the derived
oo-category of Aq — 1] can be represented by the complex q—Q}“%/AE.

1.6. ¢-Hodge complexes. — Given a framed smooth A-algebra (R,) as above, one can
also form the g-Hodge complex

1) ~1)¢-V -1)¢V  n
q- Hng/AD = <R[[q_1]] q—>Q}z/Aﬂq 1] e, .. LD QR/Aﬂq—1H>

by multiplying all differentials in ¢-€27, A0 with (¢ — 1). It’s not immediately obvious why that
would be an interesting construction—or even a sensible one—so let’s give some motivation
why one should look at the g-Hodge complex.

The ¢-Hodge complex was first introduced by Pridham [Pri19](*3) who used it to obtain a
partial result towards Theorem 1.5. Many results in Pridham’s paper are proved for the ¢-Hodge
complex first and then deduced for the g-de Rham complex via ¢-£27, A0 = Ng-1) ¢-Hdg}, A
where 7(,_1) denotes the Berthelot-Ogus décalage functor (see [BOT78] or [Stacks, Tag OF7N]).
This is a first hint that q—Hdg’}'}E might be a more fundamental object. A second hint comes
from Wafimuth’s paper [WaB19]: He introduced a version of the prismatic site in characteristic 0
and showed that the cohomology of that site can be computed by a similar complex as above.
A third piece of motivation is the following question:

(X) Can the g-de Rham complez, or some modification of it, be descended along H — Z[q—1]?
Here H denotes the Habiro ring

7'[ _Tlr}gll\]Z[ ]( m 1)

(-2 Here it’s crucial that we complete at (¢ — 1) or the lifting wouldn’t work.

(3)While Pridham used the notation “q/D?{”, we’ve opted for the perhaps more descriptive “g-Hdg”.


https://arxiv.org/pdf/1905.08229v4#section.16
https://stacks.math.columbia.edu/tag/0F7N
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One reason why (X) is a natural question is the general philosophy that whenever you have a
deformation at ¢ = 1, you should try to evaluate it at other roots of unity. In general, it’s not
possible to evaluate arbitrary power series in Z[q — 1] at roots of unity. But for power series
in the Habiro ring it works—by design.(’¥) Some more evidence for the existence of a Habiro
descent as in (X) comes from the construction of generalised Habiro rings in [GSWZ].

While (XI) probably doesn’t work for unmodified ¢-2r /4, there’s reason to hope it works
for g-Hodge complexes. In Theorem 4.28, we’ll show a very promising result, which, for the
sake of simplicity, we’ll restate here in slightly less precise and less general form:

1.7. Theorem (see Theorem 4.28). — For all framed smooth Z-algebras (R,0) and all
m € N, there is an isomorphism of commutative differential-graded Z[q]-algebras

(W) oy — B* (a-Hdghz0/(a™ — 1) -

Here q—WmQE/Z denotes the qg-de Rham—Witt complex from Definition 3.13, (7)/\(]71) refers to
degree-wise (q — 1)-completion, and we turn the cohomology H*(q—HdgE/Zﬂ/(qm — 1)) into a

commutative differential-graded Z[q|-algebra via the Bockstein differential.

1.8. Remark. — There’s a similar isomorphism H*(q—QE/ZE/@p(q)) ~ (QE/Z ®z Z[Cp)))
for all primes p, see [Schl7, Proposition 3.4]. More generally, Molokov [Mol22] relates
H*(q—QE/Zﬂ/[po‘]q) to WpaAQ”é/Z for all @« > 1. But note the shift in the index! This
shift prevents us from, say, relating H*(q—QE/Z’D/[m]q) to WMQE/Z’ and so it’s entirely unclear
whether these results for ¢-de Rham cohomology can be globalised.

In contrast, replacing ¢-Q7F /2.0 with ¢-Hdg, /2,0 and [m], with ¢™ — 1 has the effect of
“introducing another ghost component”, which makes a global result like Theorem 1.7 possible.

Theorem 1.7 looks like ¢-Hdg}, /z,0 could be made coordinate-independent (at least in the
derived category). And even better: The fact that H*(¢-Hdg}p 5 /(¢™ — 1)) is canonically
the (¢ — 1)-completion of something else seems to hint that ¢-Hdg}, /z,0 might indeed be the
(¢ — 1)-completion of an object over the Habiro ring! But something strange goes wrong:

1.9. Theorem (see Theorem 5.1). — There is no functor g-Hdg_ 7 : Smz, — ﬁ(q_l)(Z[[q— 1])
that also makes the identifications from Theorem 1.7 functorial.

Theorem 1.9 is a very unwelcome surprise. It doesn’t rule out that the construction
¢-Hdg}, /2,0 can somehow be made functorial, but such a functor would be very weird and
probably of limited use. In forthcoming work [W-Hab], we’ll explain a partial fix, showing that
a functorial derived q-Hodge complex exists on a certain full subcategory of all commutative
rings, satisfies a derived version of Theorem 1.7, and we’ll relate it to THH(— /ku). Furthermore,
we’ll show that this functor does descend to the Habiro ring, thus giving at least a partial
affirmative answer to question (X).

1.10. Notation and conventions. — As usual, we’ll write [m], =1+ ¢+ -+ ¢™ ! for
the GauBlian g-analogue of an integer m > 0. More generally, if d is any positive divisor of m,
we’ll use the notation

" —1

[m/d]e =1+ q"+ (¢")* -+ (¢")™* ! = Ty

(-D1Tn fact, H can be viewed as as the ring of those power series in Z[q — 1] that can also be Taylor-expanded
around each root of unity.


https://arxiv.org/pdf/1606.01796#theorem.3.4
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We also let ®,,(q) denote the m'™ cyclotomic polynomial. So [p], = ®,(¢) and we’ll sometimes
switch back and forth between these two notations.

Since we’re mostly working with cochain complexes, we’ll use cohomological indexing. We’ll
also use some oco-categoric language. If R is a ring, the derived oco-category of R will be denoted
D(R). If M* is a cochain complex, then its image in D(R) will usually be denoted M. We'll
usually say that a sequence K — L — M in D(R) is a fibre/cofibre sequence instead of writing
that K — L — M — K][1] is a distinguished triangle in the ordinary derived category D(R).
Following Clausen—Scholze, we’ll say that an object M € D(R) is static (“un-animated”) if M
is concentrated in degree 0. Furthermore, we often use the derived quotient notation: If f € R
and M € D(R),

M/Yf == cofib(f: M — M)

denotes the cofibre taken in D(R), or equivalently the cone in D(R), of the multiplication map
f: M — M. For multiple elements fi,..., f, € R, we let

M/(free o) = (o (M) ™) o

In the case where M is static, so that it can be regarded as an R-module, the object
M/%(f1,..., fr) € D(R) has an explicit representative given by the homological Koszul complex
Kosy (M, (f1,..., fr)), which, according to our indexing conventions, we regard as a cochain
complex in nonpositive degrees.

Finally, the notion of derived I-completeness for finitely generated ideals I C R will be
ubiquitous throughout the text. If I = (f) is principal, we say that M € D(R) is derived
f-complete if M ~ lim,>; M/"f" where the limit is taken in the derived oo-category (so it
corresponds to a derived limit in the ordinary derived category). In general, M is called derived
I-complete if it is derived f-complete for all f € I, or equivalently, for all f in a generating
set of I, see [Stacks, Tag 091Q]. We’ll use the following (abuse of) notation: If M € D(R),
we denote its derived I-completion by M; (or ()7 for larger expressions). If, instead, M*
is a cochain complex, then ]\//7}" denotes its degree-wise underived I-completion. However,
whenever we use the latter notation in this paper, it will always be true that M { represents
the derived I-completion of M (which we’ll usually have to justify), so the notation will never
be inconsistent! We also denote by D7(R) the full sub-co-category of D(R) spanned by the
derived I-complete objects.

A complex M € D(R) is called I-completely flat if M ®% R/I is discrete and flat over R/I.
A ring morphism R — S is called I-completely smooth if S is derived I-complete, I-completely
flat over R, and S ®Ié R/I is smooth over R/I. In the same way, the terms I-completely
étale and I-completely ind-smooth/étale are defined. It can be shown that S is I-completely
smooth/étale over R if and only if it is the derived I-completion of a smooth/étale R-algebra,
see [BS19, footnote 6 on page 11].

1.11. Leitfaden of this paper. — The main ideas in this paper are already contained
in the author’s master thesis [Wag21], but here we develop the theory of ¢-Witt vectors and
g-de Rham—Witt complexes in a much more systematic way, in more generality, and most
importantly, without the (¢ — 1)-completeness assumption. This results in quite some additional
work, but also in a much simpler proof of Theorem 1.7, and the additional generality will be
needed in [W-Hab].

In §2, we’ll introduce ¢-Witt vectors and prove many technical results about them that will
be needed later on. If you’re mainly interested in the application to ¢-Hodge complexes, you


https://stacks.math.columbia.edu/tag/091Q
https://arxiv.org/pdf/1905.08229v4#Hfootnote.6
https://arxiv.org/pdf/1905.08229v4#page=11
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may want read up to Proposition 2.14 and then skip the rest of §2.2 as well as §2.3. In §3,
we’ll introduce ¢-de Rham—Witt complexes. The most work in that section goes into proving
that ¢-de Rham—Witt complexes carry a natural choice of Frobenius operators. Again, this is
technical, and if you're willing to take it on faith, you can skip §3.3 to save you some time. In
§4, we’ll study ¢-de Rham—Witt complexes for smooth Z-algebras. This includes a proof of
Theorem 1.7, but we’ll also show that they are degree-wise p-torsion free. Finally, in §5 we’ll
give a proof of Theorem 1.9.

1.12. Acknowledgements. — Due to the unsatisfying nature of Theorem 1.9, I've long
hesitated to turn my master thesis into a paper. With at least a partial fix in sight [M'W24;
W-Hab], I've now finally decided to put these ideas forward. I'd like to thank my advisor Peter
Scholze for his support throughout this project. I'd also like to thank Johannes Anschiitz and
Quentin Gazda for their interest in my work and their encouragement to finally turn this work
into a preprint.

This work was carried out while I was a master/Ph.D. student at the University/Max Planck
Institute for Mathematics in Bonn and I'd like to thank these institutions for their hospitality.
I was supported by DFG through Peter Scholze’s Leibniz-Preis.
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§2. ¢-Witt vectors

In this section we’ll introduce a functor which associates to any ring R a system of rings
(¢-W, (R))men, called the truncated q- Witt vectors of R. After a brief recollection of some facts
about cyclotomic polynomials in §2.1, we’ll give the definition of ¢-W,,(—) and study some
basic properties in §2.2. In §2.4 and §2.6 we’ll study the behaviour of ¢-W,,(—) on A-rings and
under étale ring morphisms.

§2.1. Some technical preliminaries

We record some elementary facts about cyclotomic polynomials that will be used throughout
the text.

2.1. Lemma. — Let m and n be positive integers and let R = Z[q]/(®m(q), Pn(q)). Let
d = ged(m,n). If p is a prime factor of m/d or n/d, then p = 0 in R. In particular, the
ring R vanishes unless m/n = p® for some prime p and some a € Z. In the latter case,

R= ]Fp [q]/(ﬁmin{m,n} (q) .

Proof. Clearly ¢™ = ¢" = 1 in R, hence also ¢ = 1 in R. If p divides m/d, then this implies
¢"/? = 1. But also

in R, because ®,,(q) divides the left-hand side. Thus p = 0, as claimed. The case where p
divides n/d is analogous. This immediately implies the second assertion. For the third one,
assume « > 0 without restriction and use that

Dy (q)”" if p|m
D, (q) = Prpe(q) = o mod
@ ) {q)m(q)(p—l)p if ptm P
holds in this case. O
2.2. Lemma. — Let m be a positive integer. Then the following ideals of Z[q| are equal:

([p]qm/p | p prime factor of m) = (@m(q)) )

Proof. The inclusion “C” is clear, so it suffices to show that [p] m/»/®Pm(q) generate the unit
ideal in Z[q]. If m has only one prime factor, this is trivial because then [p] m/»/®m(q) = 1.
So assume m has at least two prime factors. For any prime factor p of m, let I, be the set of
divisors d | m such that d # m and v,(d) = v,(m). Then

L7 = H Pa(q) -

Cnle) e,

We wish to apply Lemma 2.3 below. To verify the condition, we have to check that for any
choice of elements (d,, € I))p prime factor of m, the ideal (®4,(q) | p prime factor of m) is the unit
ideal in Z[q]. In fact, we claim that there must be prime factor p # ¢ of m such that d, t dy
and dy { dp, so that already ®4,(q) and ®4,(q) generate the unit ideal by Lemma 2.1. Indeed, if
no such p and ¢ exist, then the set {d, | p prime factor of m} would be totally ordered with
respect to division, but then the maximal d,, would have vy(dy,) > ve(ds) = ve(m) for all prime
factors ¢ | m, forcing d,, = m, in contradiction to our assumptions. This shows that Lemma 2.3
can be applied and we’re done. O



§2.1. SOME TECHNICAL PRELIMINARIES

2.3. Lemma. — Let (Ij)jes be finite sets indeved by another finite set J. Let ((xi;)i;e1;)jet
be a J-tuple of I;-tuples of elements of a ring R. Suppose that for any choice of indices
(ij € Ij)jes the ideal (zi; | j € J) is the unit ideal in R. Then (Hijelj x| je J) is the unit
ideal as well.

Proof. We do induction on >, ;|I;|. If [I;| =1 for all j € J, the assertion is trivial. So choose
elements s,t € Iy, © # y, for some index k € J such that |I;| > 2. We claim that the condition
still holds if we remove x5 and z; from the tuple (z;, )i, cr, and add zsx; instead. Indeed, the
only thing we have to check is the following: For any choice of indices (i; € I;);e, j£k, the
ideal (zsz¢,;; | j € J, j # k) is the unit ideal in R. But this follows from

(zs, iy | j €T, j#k) 2 (ws, iy | j €T, j#k) (xe,mi; | j€T, j#k)
and the fact that the right-hand side is R by assumption. O

Furthermore, we’ll frequently use the following technical lemma.
2.4. Lemma. — Let R be a ring. Let Iy, ..., I, be finitely many finitely generated ideals of R
and let f1,..., fs be a finitely many elements of A such that on the level of underlying sets we
have Spec R = J;_; Spec R/I; UUj_, Spec R[1/ fi]. Then the functors

(<) D(R) — D(R) and (-)|4|: D(R) - D(R)

are jointly conservative for j=1,....,r, k=1,...,s

Proof. We do induction on r. The case r = 0 follows from the case r = 1 by choosing I; to
be the unit ideal. So let’s first consider » = 1. In this case we're given a finitely generated
ideal I := I; and elements fi, ..., fs such that Spec R = Spec R/I U J;_, Spec R[1/ fi]. Then
I is contained in the radical of the ideal (f1,..., fs), hence derived (fi,..., fs)-adic completion
factors through derived I-adic completion. So we may assume that I is generated by the fy.

Now let M € D(R). It suffices to show that M; ~ 0 and M[1/fy] ~0forall k=1,...,s
together imply M ~ 0. Write U = Spec R ~\. V(I) and let

RI(U, Op) ~ (HR[ ]HIL[ER[@]H - Rty f])

denote the derived global sections of U, which can be computed by an alternating Cech complex
as indicated. Let M € D(R). Then M ~ RHompg(cofib(R — RI'(U, Op)), M), see e.g. [Stacks,
Tag 091V]. Hence M ~ 0 implies that R — RI'(U, Op) induces an equivalence

RHomp (RI(U, Oy), M) — RHompg(R, M) ~ M .

Applying RHompg (M, —) shows RHom (M ®%RI(U, Oy), M) ~ RHompg(M, M). In particular,
the identity on M factors through M ®% RT'(U, Oy ), which means that M must be a direct
summand of M ®% RT'(U, Oy). Since RT'(U, Oy) is an idempotent E-R-algebra, one can even
show M ~ M ®Y RI'(U, Oy ), but we won't need that. Using the above representation as a Cech
complex, we see that M[1/f;] ~ 0 for all k = 1,...,s implies M ®% RI'(U,Oy) ~ 0. Hence
also its direct summand M must vanish, as claimed.

Now let 7 > 2 and assume that the assertion has been proved for 7 — 1 many ideals. Again,
it’s enough to show that My, ~ 0 and M[1/f;] ~ 0 jointly imply M ~ 0. By the case r =1
it’s enough to show M[1/f] ~ 0, where f ranges through a finite generating set of I,. But
Spec R[1/f] = U;;% Spec R[1/f]/1;UUi—, Spec R[1/(frf)], so the desired vanishing of M[1/f]
follows by applying the induction hypothesis to the ring R[1/f]. O


https://stacks.math.columbia.edu/tag/091V
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§2.2. Definitions and basic properties

2.5. Truncated big Witt vectors a la [Hes15, §1]. — We'll briefly recall the construction
of truncated big Witt vectors, as well as the Frobenius and Verschiebung maps, following
Hesselholt’s exposition.

Let R be an arbitrary commutative, but not necessarily unital ring, and S C N a subset
which is closed under divisors (a truncation set in Hesselholt’s terminology). The (S-truncated)
big Witt ring Wg(R) is constructed as follows: As a set, Wg(R) is given by R. Its ring structure
is uniquely determined by the condition that for all n € S the ghost map gh,,: Wg(R) — R
given by

ghn((mi)ieg) = Z dxz/d
dln

is a morphism of rings and functorial in R.
For us, S will always be the set T}, of positive divisors of some integer m, and we’ll write
Wi (R) = Wr, (R) for short. By [Hesl5, Lemmas 1.3-1.5], for every divisor d | m there are

Frobenius and Verschiebung maps
Frja: Wi (R) — Wg(R) and V4 Wa(R) — Wg(R)

such that [, /4 is a ring map and V;, /4 is a map of abelian groups (in fact, a map of W, (R)-
modules if we equip W4(R) with the W,,(R)-module structure induced by F,;,/q). If n =m/d
and the numbers m and d are clear from the context (or irrelevant), we abuse notation and
write just Fy, == F, /4 and V,, := V5. These maps fulfil the following relations: For all chains
of divisors e | d | m we have

Fd/e 0 Fm/d - Fm/e and Vm/d 0 Vd/e - Vm/e :

Furthermore, if n > 1 is arbitrary and k is coprime to n, then F,, oV, =nand F,oV, = Vo F,,
where we use the abuse of notation we just warned about. Finally, there’s a multiplicative
section of gh,,: W,,(R) — R, called the Teichmiiller lift>")

Tm(=): R — W, (R).
The Teichmiiller lift interacts with the Frobenius and the Verschiebung via the formulas

Fm/dTm(T) = Td(r)m/d and = = Z Vm/de(xm/d)
dlm

for all r € R and all x = (74) ), € Wi (R).

2.6. Remark. — If m = p" is a prime power, then Wyn(R) = W,,41(R) equals the ring of
truncated p-typical Witt vectors of length n+ 1. Furthermore, the Frobenii and Verschiebungen
F, and V), coincide with their p-typical namesakes F' and V, as does the Teichmiiller lift.

Now we can start to define what ¢-Witt vectors are.

2.7. Definition. — Fix a commutative, but not necessarily unital ring R. A ¢-FV -system
of rings over R is a system of Z[q|-algebras (W, )men, together with the following structure:

2-DWe choose 7 (—) over the standard-notation [—] to distinguish between Teichmiiller lifts to W, (R) for
various m, but also to avoid confusion with the elements [m/d],« = (¢™ —1)/(¢* — 1) in Z[q]
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(a) For all m € N, a Z[q]-algebra map W,,(R)[q]/(¢g"™ — 1) — W,.

(b) For all divisors d | m, a Z[g]-algebra morphism F,, /;: W, — W, and a Z[g]-module
morphism V,, /q: Wqg — Wy,. These must be compatible with the usual Frobenii and
Verschiebungen on ordinary Witt vectors (via the morphisms from (a)) and satisfy

Fm/d © Vm/d = m/d and Vm/d © Fm/d = [m/d]qd :

These objects form an obvious category, which we denote CRinquSFV.
2.8. Lemma. — Let R be a commutative, but not necessarily unital ring. The category
CRing(gFV has an inital object (G-Wp, (R))men-. It can be explicitly described as

W (R) = Wy, (R)[q]/Tm ,

where 1, is the ideal generated by the following two kinds of generators:
(a) (¢ —1)im Vinya for all divisors d | m, and
(b) im([d/elgeVinja — VinjeFase) for all chains of divisors e | d | m.

2.9. Definition. — Let R a commutative but not necessarily unital ring and let m be a
positive integer. The ring ¢-W,,(R) from Lemma 2.8 is called the ring of m-truncated big
q- Witt vectors over R.(2-2)

2.10. Remark. — Despite the name, ¢-W,,(R) is almost never a g-deformation of W,,(R).
Indeed, we have V,,/q 0 F;,/q = m/d in the quotient ¢-W,,(R)/(q — 1). This is usually not
satisfied for ordinary Witt vectors, so W, (R) — ¢-W,,(R)/(q — 1) fails to be injective. By
contrast, W,,(R) — ¢-W,,,(R) is always injective, as we’ll see in Proposition 2.27. So enforcing
the condition V,, /4 0 F);, /q doesn’t lose any information.

Proof of Lemma 2.8. If we can show that the Z[g]-linearly extended Frobenii and Verschiebun-
gen Fy,q: Wy (R)[q] — Wy(R)[q] and V,, /4 Wa(R)[q] — W, (R)[q] descend to maps between
¢-W,,(R) and ¢-W,(R), then the claimed universal property will follow in a straightforward
way from the definition. Furthermore, it’s immediate from the definition of I,,, that the Ver-
schiebungen descend as required. So it remains to prove the same for the Frobenii. It’ll be
enough to show Fy(L;,) C I,,,/, for all prime factors p | m.

Let’s first consider generators of the form (¢% — 1)V, sax for z € Wy(R). Depending on
whether n := m/d is coprime to p or not, the relations from 2.5 yield, respectively,

Fy((¢" = DVaz) = (¢* = WVa(Fpz) or  F,((¢" — DVaz) = p(¢” = 1)Vim/p)ar -

In either case, we get an element of I,,,,,. Now let’s consider the second type of generators
of the form [d/e]4eV;, a® — Vi e Faje for some x € Wy(R). Once again we need to do a case
distinction.

Case 1: p divides both m/d and m/e. In this case we can use an easy computation as above

to show that F), sends the element into I,,, /.

(22 Beware that this definition is not consistent with [Wag21, Definition 5.3]. The ring that was denoted
q-Wom (R) there coincides with ¢-W,,(R)(,_), at least under mild hypothesis (namely those of Corollary 2.25);
indeed, this follows from a simple comparison of universal properties. Since we want to develop our theory in a
non-(g — 1)-completed setting (which we’ll need for the upcoming applications [W-Hab; MW24]), it seemed the
right thing to change the notation, despite the confusion this may cause.
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Case 2: p is coprime to both m/d and m/e. Let’s write mg := m/p, dy = d/p, and ey = ¢/p
for short. Using the relations from 2.5, we can compute

Fp([d/e]qevm/dx - Vm/eFd/ex)
= [d/e]qevmo/do (pr) - Vmo/eoFdo/eo (pr)
= [dO/e()]qeO VmO/do (pr) - Vmo/EOFdo/eo (pr) + ([d/e]qe - [do/eO]qeO)vmo/do (pr)

The first summand is contained in I,,,/,, by definition. Regarding the second summand, observe
that our assumptions imply that p is coprime to d/e = dy/ey and therefore the sequences
{1,q°/7 (¢¥/P)2 ..., (¢¢/P)¥ 1} and {1,q% (¢°)2..., (¢°)¥¢ 1} coincide modulo ¢%? — 1 up to
permutation. Thus [d/e]se — [do/eo]qe0 is divisible by ¢%/P —1 = ¢% — 1 and so the second
summand is also contained in L, .

Case 3: p is coprime to m/d, but not to m/e. Put mg := m/p and dy := d/p again. Using
the relations from 2.5, we can compute

F1P([d/€]qevm/dg3 - Vm/eFd/eﬁ)
= [d/e]qevmo/do (pr) - meo/eFd/ex
= p([do/€lge Ving o (Fp) = Ving e Fag je(Fpz)) + ([Pl — P)[do/€lge Ving jao (Fpt) -

The first summand is again contained in I by definition. Regarding the second summand,

m/p
we observe [p] 4, =p mod q% — 1 and so [p] gioldo/elqe = pldo/elqe mod g% — 1. Hence the
second summand is contained in (g% — 1)im Vino/dy» Which is in turn contained in I by
definition. This finishes the proof. O

m/p

2.11. Remark. — The proof of Lemma 2.8 shows that a similar universal property also holds
for every truncated sequence: If S C N is any truncation set (in the sense of 2.5), we define
an S-truncated q-FV -system of rings to be a system (W,,)mes equipped with the structure
from Definition 2.7(a), (b) for all m € S. Then (¢-W,,(R))mes is initial among such systems.
This observation will often be used, as its often easier to verify this “truncated” version of the
universal property.

2.12. Ghost maps and Teichmiiller lifts for ¢g-Witt vectors. — We can construct
analogues of the ghost maps for g-Witt vectors as follows: Recall that the classical ghost map
gh;: W,,(R) — R can be identified with quotienting out the images of all Verschiebungen. For
q-Witt vectors, we compute:

q¢-Wp,(R)/(imV, | p prime factor of m) = W,,(R)[¢]/(Iyn,imV, | p prime factor of m)
R[q]/([pl m/» | p prime factor of m)
Rlq]/®m(q) -

The isomorphism in the second line follows from W,,(R)/(imV, | p prime factor of m) = R
and the third isomorphism follows from Lemma 2.2. Therefore we obtain a canonical projection

12

[12

ghy: ¢-Wi(R) — R[(m],

where R[(n] == R[q]/®m(q) (so that ¢, denotes an m'™ root of unity). The map gh; will be
regarded as the first ghost map. In general, we define

ghyjat ¢-Wimn(R) — R[(4]

12
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as the composition of Fy,,/q: ¢-Wy,(R) — ¢-Wy(R) with ghy: ¢-Wy4(R) — R[(4]. One immedi-
ately verifies that the ghost maps for ¢-Witt vectors are compatible with the ordinary ghost
maps in the sense that

W, (R) — 2o/
W (R) —220% Rc)

commutes. Furthermore, there is also a Teichmiiller lift
Tm(=): R — ¢-W,,,(R)
given as the composition of 7,,,(—): R — W,,(R) with the canonical map W,,(R) — ¢-W,,(R).

2.13. What about Restrictions? — Unfortunately, it turns out that the usual restriction
maps Res,/q: W (R) — Wy(R) do not extend to Z[g]-algebra morphisms between ¢-W,,(R)
and ¢-Wy(R). Indeed, such a morphism would necessarily commute with the Verschiebungen
and thus induce a Z[q]-algebra morphism

R[¢n] = Rlq]/®m(q) — Rlgl/®alq) = R[Cd] ,

which fails to exist even in very simple cases (e.g. m = p® is a prime power, R is not a ring of
characteristic p). So it seems that there are no analogues of restrictions in our theory, and in
particular, there is no ring ¢-W(R) = lim,,en, Res,, P ¢-Wp, (R) of un-truncated ¢-Witt vectors.

In the rest of this subsection, we’ll show that various properties of ordinary Witt vectors
carry over to g-Witt vectors. Our main technical tool will be the following proposition.

2.14. Proposition. — Let R a commutative but not necessarily unital ring and let m be a
positive integer. Let pi,...,p, be the prime factors of m (assumed to be distinct). Then the
following “augmented Koszul complex” is exact:

(Vo —Va;) (Vo;) h
T @q_wm/pmj (R) s (‘D a-Wo/p, (R) — Wy, (R) L R[(m] — 0.
i<j i
2.15. Remark. — For the sake of clarity, let us give a precise description of the “augmented

Koszul complex” in Proposition 2.14. For every subset S C {1,...,r}, put ps = [[;cgpi- Then
the complex above is given by @ 4g_; -Wp,/ps (1) in homological degree i — 1 (so that R[(p]
sits in homological degree —2). Furthermore, the differentials are determined as follows: For a
subset S C {1,...,r} and an element j ¢ S, the component ¢-W (R) — ¢Wp, /ps (R) of

m/psugs)
the differential is given by

+Vp, 0 ¢-W R) — ¢-W R),

m/pspj( m/ps(

where the sign follows a “Koszul-like” sign rule. That is, the sign is +1 if #{i € S | i < j} is
even and —1 if that number is odd.

More succinctly, let T' be the set of all positive integers whose prime factors are a subset
of {p1,...,pr}. Let ¢-Wr(R) = @,cr ¢-Wi(R). The Verschiebungen V), can be viewed as
endomorphisms of ¢-Wp(R) which respect the direct sum decomposition (up to an indexing
shift). One can form the Koszul complex of the commuting endomorphisms (Vj,,...,V},);
furthermore, this comes with a canonical augmentation to R[(r] = @,y R[(:]. The complex
from Proposition 2.14 is then a direct summand of this augmented Koszul complex.
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The proof of Proposition 2.14 that we’ll present avoids most calculations, at the cost of
using some oco-categorical trickery. We don’t know if there is any direct proof that avoids this
heavy machinery. The first step will be to handle the case when m is a prime power, which is
fairly explicit and the only real calculation we’ll have to do.

2.16. Lemma. — Let R a commutative but not necessarily unital ring and let m = p*, a > 1,
be a prime power. Then the following sequence is exact:

0 — ¢-Wyoo1(R) -2 ¢-Wpa (R) 225 R[(pe] — 0.

Proof. Exactness on the right is clear from the discussion in 2.12, so it’s enough to show
that V,: ¢-Wpa-1(R) — ¢-Wya(R) is injective. Let z € Wya—1(R)[q] and assume that the
element V,,(x) € Wpa(R)[q] vanishes in ¢-W,a(R), i.e., Vj(z) is contained in I,». Recall from
Definition 2.9 that the ideal I, has two kinds of generators: First the elements in the image of
(¢% — 1)V, /q for every divisor d | m; then d must be of the form d = p* for 0 < i < a. And
second the elements in the image of [d/e]qe Vi /g — VinjeFaye for every chain of divisors e | d | m;
then d = p* and e = p/ for some 0 < j < ¢ < . We may furthermore assume j < i, as the
corresponding generators are 0 in the case e = d. In total, we see that we can write

V@) = 3 (@ = )Voerilw) + D ([0 Vyi(22) = Vyoos s (50))

0<i<a 0<j<ia

for some y; € W,i(R)[q] and some z;; € W,:(R)[q]. We're free to change z by elements
from Ia-1, so let’s do that to simplify the equation above. If 0 < i < «, then pt | p*
hence z and z — (¢*' — 1)Vye-1-i(y;) agree modulo L,-1. Replacing = by the latter, the
corresponding summand in the equation above cancels, so we may assume y; = 0 for all 0 < < a.
Furthermore, if 0 < j < < «, then p/ | p* | p*~! is a chain of divisors. Consequently, we may
replace x by = — [pi_j]qu Vite—1-i(2ij) = Vipta—1)—j Fjij (2i ;) to assume z; ; = 0. Finally, if we
replace x by x —Zogj<a([p(a_1)_j]qu Fp(2a,5) = Vya—1=i Fpa-1-i (Fpza,j)), then the summands
corresponding to z,; won’t quite cancel, but at least the equation above can be simplified to

Vop(z) = (¢"" = 1)y + ®pa-1(q)z — VpFp(z),

where y = y, and 2z = 20<j<a[p(a_1)_j]qu Zaj-

This is now much easier to work with. We see that V,(x + F,(2)) € Wpa(R)[g] is divisible
by ®,a-1(g). The cokernel of V,,: W,a-1(R)[q] — Wpa(R)[q] is isomorphic to R[q] (using the
well-known analogue of Lemma 2.16 for ordinary Witt vectors) and thus ®,«-1(q)-torsion-
free, since the latter is a monic polynomial. It follows that x + F},(2) = ®,a-1(q)w for some
w € Wya-1(R)[q]. Then

Pyo1(q)Vp(w) = Vp (2 + Fy(2)) = Bpa-i(a) (4"

Since the monic polynomial ®,a-1(q) is a nonzerodivisor in Wya (R)[q] as well, we get V,(w) =
(qpa_1 — 1)y + z. Using that the ring ¢-Wa—1(R) is (qp&_1 — 1)-torsion, we obtain the following
equations in ¢-Wa-1(R):

—1

1y +2z).

Do 1 (q)w = pw = FyVp(w) = (7" = 1) Fp(y) + Fp(2) = Fp(2).

This implies x = 0 in q—Wpaq(R), thus completing the proof that the Verschiebung map
Vi ¢-Wpa-1(R) — ¢-Wpa (R) is injective. ]

14
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To tackle the general case, we will interpret the “Koszul complex” from Proposition 2.14
as an “r-dimensional pushout” in the derived oco-category of abelian groups. This is possible
thanks to the following technical lemma.

2.17. Lemma. — Let 0" = P({1,...,r})° denote the “r-dimensional hypercube category”,
that is, the poset of subsets of {1,...,7}, partially ordered by reverse inclusion (so that {1,...,r}
is the initial object and 0 is the final object). Furthermore, let 7 ="~ {{1,...,7r}} be the
category obtained given by removing the final object of O". Finally, let X: " — Ch(Z) be a
diagram indexed by ['." and valued in the category of chain complezes.

(ar) The colimit colimgerr X (S), taken in the derived co-category D(Z), can be identified with
the total complex of the “Koszul double complex”

TO(X) = (X({l,...,r}) — P XS —...— P XS)— D X(S)),

|S|=r—1 |S|=2 1S|=1

where each complex X (S)s sits in homological bi-degrees (|S| — 1, %) and we employ the
same “Koszul-like” sign rule as in Remark 2.15. Furthermore, this identification of the
colimit can be chosen in such a way that conditions (b,) and (¢,) below are satisfied.

(by) IfY: " — Ch(Z) is another diagram and o: X =Y is a natural transformation (also
valued in Ch(Z)), then the induced map colimgerr X (S) — colimgerr Y (S) is given by
Tot T (X) — Tot T (Y).

(¢r) If X¥:O" — Ch(Z) is another diagram such that X®|-r = X, then the induced map
colimgerr X (S) — X*(0) is given by

Tot T (X) — Tot(X™(0)[0]) = X>(0).

Here X*(0)[0] denotes the double complex obtained by placing X* (D), in homological bi-
degrees (0, %) and the map T (X) — X>(0)[0] ds induced by X ({i}) = X>({i}) — X™(0)
fori=1,...,r in bi-degrees (0, ) and the zero map in all other bi-degrees.

Proof. We prove all three assertions simultaneously using induction on r. The case r = 1 is
trivial. If » = 2, then X : .2 — Ch(Z) is a pushout diagram. By a well-known characterisation
of pushouts in D(Z), we obtain a cofibre sequence
X({1,2}) - XxX({1}) o X({2}) — csoelirng(S) :

Thus, we may identify colimger2 X (S) with the cone of the first map, which is (upon choosing
the right sign convention) precisely 7)(X). Then (az), (b2), and (cs) are easily checked.

Now let r > 2 and assume that (a,_1), (br—1), and (c,—1) are satisfied. We can write " as
a pushout " = (M7 x AY) Urriyqopy (O x {0}), where we view 07! x {0} as the full
subcategory of [J" spanned by those S C {1,...,7} such that r € S, and likewise (0"~! x {1} as
the full subcategory spanned by those S such that r ¢ S. By [L-HTT, Proposition 4.4.2.2], we
may thus compute any ["."-indexed colimit in D(Z) as a pushout of the corresponding colimits
indexed by "1 x {0}, "~! x Al, and 0"~! x {0} respectively. Let’s identify these one by
one. Let Xo = X|rr—1,0;- Applying (a,-1), we see that

lim X (S) ~ Tot T Y (X).
5P gy X () = Tot T X0)
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Next, observe that the inclusion "~ x {1} C "~! x Al is cofinal (it is even right-anodyne,
as the same is true for {1} C A'). Therefore, putting X1 = X|rr-1,1} and using (a, 1) again,
we obtain
colim X (S) ~ Tot T~V (X7).
Serr—lxAl
Moreover, (b,—1) ensures that colimgerr—1, 4oy X (S) — colimgerr—1, a1 X(S5) is identified with
the canonical map Tot 7"~V (Xy) — Tot T~V (X;). Finally, 07! x {0} has a final object,
and thus
coli X(S)~X ;
SeDTJlH;{O} ( ) ({T})
furthermore, (c,—1) implies that colimgerr—1, (o) X(S) — colimgemr—1, 4oy X (5) is identified
with the canonical map Tot T"~1)(Xy) — X ({r}). Putting everything together and using the
r = 2 case, we conclude

colim X (S) = cone (Tot T (Xo) — Tot TV (Xo) @ X({r})) .
The right-hand side is precisely T (X), which settles (a,). Assertion (b,) is an immedi-
ate consequence of (b,_1) and the functoriality of cones. It remains to show that (c¢,) is
true. Using (c¢,—1), we see that colimgerr—1,o; X(5) — X(0) is given by the canonical map
Tot T~Y(Xy) — X (0) and likewise colimgerr—14a1 X(S) — X () is given by the canonical
map Tot T ~Y(X;) — X (). Furthermore, the diagram

Tot TV (Xo) —— X ({r})

| J

Tot 7Y (X)) —— X(0)

commutes in Ch(Z). In particular, its commutativity in D(Z) is witnessed by a trivial homotopy,
and so the map from the homotopy pushout to X (f) is precisely the map Tot T (X) — X (0)
considered in (¢, ). This finishes the induction. O

Proof of Proposition 2.14. Consider the diagram (0" — Ch(Z[q]) that sends ) # S C {1,...,r}
to ¢-W,,/ps(R), where ps = [[;cgpi, and sends () to the complex (¢-W,,(R) — R[(n])
concentrated in homological degrees 0 and —1 (we will frequently use that this complex is
quasi-isomorphic to ker(¢-W,,(R) — R[(n])). Morphisms in 0" are sent to the respective
Verschiebungen. By Lemma 2.17, what we have to show is precisely that this diagram is a
colimit diagram in D(Z), or equivalently, in D(Z[q]).

As a consequence of Lemma 2.4, the following exact endofunctors of D(Z|[q]) are jointly
conservative:

(*)[pl.?.pr], (=), gins_yy foralli 5, (—)[qm/,,éj_1 j;éz'] for all .

So it suffices to check that we get a colimit diagram after applying each of these functors.
Proof after localisation at py - - - p,. After localising p; - - - p,, all occurring Verschiebungen be-
come split injective, with V), having left-inverse p;” 1Fpr In general, by [L-HA, Lemma 1.2.4.15],
a diagram X : 0" — D(Z) is a colimit diagram if and only if the diagram (0"~! — D(Z) given
by S — cofib(X(S) — X(Su{r})) for all S C {1,...,r — 1} is a colimit diagram. In our
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situation, all these maps are split injective, hence the cofibres are just the ordinary quotients.
Furthermore, the new diagram [1"~! — D(Z) still has the property that all transition maps are
split injective, because Fj, commutes with V), for ¢ # j and so the splittings pass to cofibres.
Iterating this argument r times, we reduce to showing that

i = 1,...,7«))[201?%]

is a colimit of the empty diagram "0 — D(Z). This is clear since the quotient above is 0 by
our calculation in 2.12.

Proof after (p;, q"m/Pi — 1)-adic completion. Put p := p; and ¢ := p; for convenience. Let’s first
see what happens after p-adic completion. Note that (—)1/7\ ~ ((— )(p)) After applying (—),),
the Verschiebungen V; for ¢ # p become split injective. Applying [L-HA, Lemma 1.2.4.15] once
again, we can pass to cofibres r — 1 times and therefore reduce our assertion to proving that

(ker(q—Wm(R) 2, R[g‘m])/(im Vb,

(6P (B (Vi | €7 2))) 2 (W (R) (Ve | €£9)) " — RiGul}

is a cofibre sequence. In fact, we only need to show that this is a cofibre sequence after
(qm/ t_ 1)-adic completion. To this end, note that the left and the middle term in the above
sequence can be rewritten as

Cofib  (a- Wiy (R)/ (m Vis | € # €)Y (W, (R)/(m Vi | € 4 £,9)))

coﬁb((q—Wm/g(R)/(lmVe/ | 0 # ¢ p))/\ w — (Wi (R)/(im Vi | £/ # 5710));\)'

After (qm/ t_ 1)-adic completion, these maps are not only split, but actually equivalences.
Indeed, V,Fy is equal to [£],m/pe in the first case and [¢] m/¢ in the second case, and both of
them are units in Z[g]/ (/e —1)" So the first two terms in our would-be cofibre sequence vanish.
Furthermore, we compute

RlGn )y ey ~ (Rlal/*®m()) ~ Rlqlfy i)/ ®nla)

(p,g™/¢—1)

and the right-hand side is 0 because ®,,(q) divides the unit [¢] ./ in Z[q]7 So we

obtain a cofibre sequence for trivial reasons.

Proof after localisation at (qm/pj — 1) for all j # i. Again, we put p = p; for convenience.
Furthermore, the letter £ will be used to denote prime factors # p of m. Note that almost all
terms in our complex are (¢™/* — 1)-torsion for some ¢ # p and thus die in our localisation.
The only surviving terms are

(p,g™/t-1)

Wonsp(B)| g | € # 9| =2 ¢- W (B)| b | € # 0] — BlGal | ot | £ # 7]

-1

and we must show that this is a cofibre sequence in D(Z[q]). Our strategy will be to show that
this sequence is a flat base change of the sequence from Lemma 2.16. To achieve this, write
m = p“n, where « is the exponent of p in the prime factorisation of m; we wish to show

- Won(R)| b | €4 9| = - W (R) @aggy 0 2|0, b | €4 1]
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where 1" is the map that sends ¢ +— ¢". This follows by a comparison of universal properties: Let
T}, denote the truncation set of divisors of m. Then Remark 2.11, together with the universal
property of localisation, shows that (¢-Wy(R) [1 /g™t =1) | ¢ # p])deTm is universal among all
system of rings (Wy)aer,, equipped with a Wy(R)[q,1/(¢™* — 1) | £ # p]/(¢® — 1)-structure
on Wy as well as Frobenii and Verschiebungen satisfying the conditions from Definition 2.7(b).
Consider such a system (Wy)4er,,. Since Wq(R)]q, /(g™ —1) | ¢ # p]/(¢® — 1) vanishes
unless d is of the form d = p'n for some 0 < 7 < «, we see that only W,,, Wp,, ..., Wpe, can
be non-zero. Furthermore, compatibility with the usual Verschiebungen then shows that the
Wi, (R)-algebra structure on Wi, must factor over Wi, (R)/(im Vy | £ # p) = Wi (R). Now
Remark 2.11 again, together with the universal property of base change along 1", shows that the
sequence (q-Wi (R) ®zpq1.4n Z[a,1/(¢™* = 1) | £ # p])i=0.....a is universal among all sequences

of rings (Wpi,)i=0,....a equipped with a Wi (R)][q, /(g™ —1) | £ # p]/(qpin — 1)-structure
on W, as well as compatible Frobenii and Verschiebungen. This finishes the proof of the

isomorphism claimed above, as it is now apparent that both sides satisfy the same universal
property.

So we’ve succeeded in writing the localisation ¢-W,,(R) [(qm/ ¢ —1)71 | £ # p] as a base
change of ¢-Wpa (R) along the flat map ¢". By the same argument, we can do the same for
Wy, /p(R). To reduce to Lemma 2.16, it remains to see that

Rq)/@n(a)| b= | € # p| = Bl)/@pe(0) ®zig) o Z]a, sy | €7 1]

In other words, we must show that ®,(¢") and ®,,(¢) agree up to unit in the localisation
Z[q,(g™/* —1)~1 | £ # p|. This follows inductively from

feuld)  ifeld
QMW)‘{@AfV@Am it 01

for all d | m and noting that ®4(q) is a unit in the second case, because it divides ¢™/* —1. O

Having proved Proposition 2.14, we can now establish a bunch of pleasant properties of the
g-Witt vector functors. We start with the fact that the Verschiebungen are injective, which—at
least to the author—seems not at all trivial from Definition 2.9.

2.18. Corollary. — Let R be a commutative, but not necessarily unital ring. For all positive
integers m and all divisors d | m, the Verschiebung Vi, /q: ¢-Wq(R) — ¢-W,(R) is injective.

Proof. We use induction on m. The case where m is a prime power is clear from Lemma 2.16.
In the general case, we may assume without restriction that m/d = p is a prime factor of m.
Every element = € ker(V,: ¢-W,, ,(R) — ¢-W,,(R)) is p-torsion since 0 = F},V),(z) = pr. Since
the p-torsion part of ¢-W,, ,,(R) maps bijectively to the the p-torsion part of ¢-W,, /,(R) ),
it suffices to see that V,,: ¢-W, ,(R) ) — ¢-Wi(R)(p is injective. Suppose this was wrong;
then cofib(V},) would acquire a nonzero H™".

Now let p1,...,pr denote the prime factors of m, where p, = p. Consider the diagram
X: 0" — Ch(Z) sending ) # S C {1,...,7r} to ¢-W,, . (R)y, where ps = [[;c5 pi, and 0 to
ker(q-W,(R)p) — R[¢m](p)); all morphisms in (0" are sent to the corresponding Verschiebungen.
We know from the proof of Proposition 2.14 that X is a colimit diagram in D(Z). Furthermore,
[L-HA, Lemma 1.2.4.15] tells us that X is a colimit diagram if and only if the diagram
X': 0! — D(Z) given by S — cofib(Vy: =Wy /e (R) () — @ Wy pg (R)(p)) for all S C

18


http://people.math.harvard.edu/~lurie/papers/HA.pdf#theorem.1.2.4.15

§2.2. DEFINITIONS AND BASIC PROPERTIES

{1,...,7 — 1} is a colimit diagram. From the induction hypothesis, we know that these cofibres
are static, except for cofib(V,: ¢-W,, /,(R)py — ¢-Win(R)()), which we're assuming has a
nonzero H~!. Furthermore, X’ maps every morphism in (0"~! to a split morphism, because V),
for p; # p has a left inverse given by p;” lei and these left inverses persist after taking cofibres,
since V}, and F},, commute for p; # p. Therefore, if we pass to cofibres again, then everything
stays static, except for the nonzero Hy, which remains unchanged. Furthermore, the diagram
X": =2 — D(Z) obtained by passing to cofibres still has the property that all morphisms in
[0"~2 are sent to split morphisms, since again the splittings in X’ pass to cofibres. Iterating
this argument 7 times, we see that the nonzero H™! persists, contradicting the fact that the
original diagram X is a colimit diagram. O

Next, we will study the interaction with localisation.

2.19. Corollary. — Let R be a commutative, but not necessarily unital ring, and let m be a
positive integer.

(a) For any multiplicative subset U C Z, we have ¢-W,(R)[U™] = ¢-W,,,(R[U1]).

(b)  For any multiplicative subset U C R, we have ¢-W,(R)[1n(U)~'] = ¢W,,(R[U™!]).
Here 1,,,(—) denotes the Teichmiiller lift from 2.12.

Proof. First let U C Z be a multiplicative subset. Using induction, Proposition 2.14, and the
five lemma, it’s clear that ¢-W,,(R[U™!]) is U-local as an abelian group, hence the canonical
map ¢-W,,(R) — ¢-W,,(R[U~!]) can be extended to a map

Wi (R)[U™'] — ¢-Won (R[UT']) .

That this map is an isomorphism follows again from induction, Proposition 2.14, and the five
lemma. This proves (a).

Now let U C R be a multiplicative subset. As the Teichmiiller lift is multiplicative, it’s clear
that ¢-W,,,(R[U1]) is 7,,(U)-local, hence we get a canonical map

W (R) [t (U) '] — W, (R[UT]) .

That this map is an isomorphism follows from induction, Proposition 2.14, and the five lemma.
To make the induction work, implicitly we also use that the complex from Proposition 2.14
is a complex of ¢-W,,(R)-modules if we regard ¢-W,(R) as an ¢-W,,(R)-algebra via the
Frobenius F, /q: ¢-W,,(R) — ¢-Wy(R); furthermore, this ¢-W,, (R)-module structure identifies
¢-Wa(R)[1(U) 1] with ¢-Wy(R)[7a(U) '], as F,, jq(tim(u)) = 7a(u)™4 for all u € U. This
finishes the proof of (b). O

Now we will study how ¢-Witt vectors interact with torsion. To this end, first we prove a
technical lemma that will be used several times in the discussion to come.

2.20. Lemma. — Let R be a commutative, but not necessarily unital Zy,)-algebra, let m be a
positive integer and let p be a prime number. Assume x € ¢-W,,,(R) satisfies ghy(xz) =0 and
Fy(x) = 0 for all prime factors £ | m such that £ # p. Then x = Vy(y) for some y € ¢-W,,/,(R);
in particular, v =0 if pt m.

Proof. Note that since R is a Z)-algebra, every prime £ # p is invertible in ¢-W,,(R) by
Corollary 2.19(a). Hence every Verschiebung V; for ¢ # p is split injective, with left inverse
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given by ¢~'F,. Furthermore, /~'F, commutes with Vj for £ # ¢'. Now let {1, ..., ¢, be the
prime factors # p of m. By the previous considerations, we can write

q_Wm(R) = Il D E"_)I’r @ Q—Wm(R)/(lm ‘/@17 v 7im Wr) 3

where I; = im(Vy,: ¢-Wo, p (R)/(im Vpy, ..., im Vp, ) — ¢-W, (R)/(im Vp,, ..., im Vp,_,)). Our
assumption gh; (z) = 0 implies € (imV},,...,imV},_,imV}) by 2.12 (we put im V}, = 0 in the
case p{m). On the other hand, Fy(x) =0 for £ € {¢1,...,£,} implies that the projection of x
to I; vanishes for all i. Hence x = V),(y) for some y € ¢-W,,, /,(R)/(im Vp,,...,imV},). By the
same argument as above, this quotient may be regarded as a direct summand of ¢-W,, /,(R)
and so we may regard y as an element of ¢-W,,(R) satisfying x = V},(y), as desired. O

2.21. Corollary. — Let R be a commutative, but not necessarily unital ring. If R is p-torsion-
free, then so is ¢-Wp,(R) for all positive integers m. Likewise, if R has bounded p™-torsion,
then so has ¢-W,(R).

Proof. We may equivalently show the same for the localisations ¢-W,,(R),), as the p>-
torsion part is preserved under this localisation. By Corollary 2.19(a), replacing ¢-W,,(R) by
W (R(,) amounts to replacing R by R,). Hence we may assume that R is a Z,)-algebra.
We show both assertions simultaneously using induction on m. The case m = 1 is clear. Now
let m > 1 and suppose the assertion has been proved for smaller indices. Let x € ¢-W,,,(R) be
a p>°-torsion element. By choosing common bounds for the p™-torsion in R[q]|/®,(¢) (which
is a free R-module) and ¢-W,, ,(R) for all prime factors ¢ | m (including ¢ = p), we find N
independent of x such that p’¥2 vanishes under gh; and under Fy for all £. If R is p-torsion free,
we may choose N = 0. Hence Lemma 2.20 implies pz = V},(y) for some y € W, /p(R). As
V is injective by Corollary 2.18, it follows that y € ¢-W,, ,(R) must be a p>-torsion element.
Thus p™Vy = 0, which implies p?V2 = 0. This shows that ¢-W,,,(R) has p™-torsion bounded by
2N, and is p-torsion free if R is, because in that case we may chose N = 0. 0

A related, but easier assertion is the following.

2.22. Lemma. — Let R be a commutative, but not necessarily unital ring, and let m be
a positive integer. If R is p-torsion-free for all prime factors p | m, then the ghost maps
ghy/at Wi (R) — R[C] for d | m are jointly injective.

Proof. Let x € ¢-W,,,(R) be nonzero; we wish to show that its image under some ghost map is
nonzero. If ghy(x) # 0, we're done; otherwise, 2.12 tells us that = 3"y, a£m Vinja(za) for
some x4 € ¢-W(R). If x4 # 0 but gh;(z4) = 0, we may use 2.12 again to see that x4 can be
written as a sum zq = 3 g, c2a Vase(Ye) for some yo € ¢-We(R). If we successively take the
largest d for which neither 4 = 0 nor gh,(z4) # 0 is satisfied and replace x4 by such a sum,
we will eventually arrive at an expression for x in which every x4 satisfies either z4 = 0 or
ghy (zq) # 0.

Now choose x4 # 0 such that m/d is minimal. Then gh,, ,4(V;,/e(zc)) = 0 for all e # d as
either . = 0 or m/d is not divisible by m/e by minimality. Hence

ghya(®) = ghy, /qa(Vinja(za)) = % ghy(zq) # 0

as ghy(z4) # 0 and R[(y] is finite free over R, which is m/d-torsion-free by assumption. O
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Another consequence of Proposition 2.14 related to Corollary 2.21 is the fact that ¢-W,,(—)
interacts well with derived p-adic completion.

2.23. Corollary. — Let R be a commutative, but not necessarily unital ring. If the derived
p-completion R, of R is static, then q—Wm(R)I/,\ ~ ¢-W,(Rp) for all positive integers m. In
particular, if R is derived p-complete, then so is ¢-W,,(R).

Proof. We use induction on m. The case m = 1 is trivial, as ¢-W;(R) = R. For m > 1,
we use Proposition 2.14 and the induction hypothesis to see that qum(]%E) sits inside an
acyclic complex in which all other terms are derived p-complete (including R,[(y], as this is
finite free over }A%p). Hence ¢-W,, (ﬁp) is derived p-complete itself. Thus the canonical map
W (R) — q—Wm(Ep) induces a map

Wi (R)h — ¢ Wy (R,) .

Morally, the way to see that this is an equivalence should be to apply the five lemma, but we
have to be careful since the derived p-completion on the left is a priori only an object in D(Z).
So instead, we use the proof of Proposition 2.14, the fact that derived p-completion preserves
finite colimits, and the induction hypothesis, to compute

fib(¢-W(R)) — R[(m])) =~ colim g-W,, (R);

~ colim gV, ()

~ fib(q- Wy (R)) — RylGml) ;

here {p1,...,pr} are the prime factors of m and ps = [[;cq ps for all subsets S C {1,...,r}.
Together with R[(p], ~ f{p [Gn] (as R[] is finite free over R), this finishes the proof. O

2.24. Remark. — Corollary 2.23 is true without assuming that ﬁp is static, if we interpret
}A%p as an animated ring and ¢-W,, (ﬁp) as the animation of the m-truncated ¢-Witt vectors
functor. Note that the animation of ¢-W,,(—) agrees with the un-animated version on static
rings. Indeed, this follows via induction on m, using Proposition 2.14 and the fact that

R[¢n] ~ R[q]/“®,n(q) is already a derived quotient.

To finish this subsection, we study completions of the form q—Wm(R)& oty

2.25. Corollary. — Let R be a commutative, but not necessarily unital ring, and let m, n be
positive integers. If the derived p-completions Ep of R are static for all prime factors p | m,
then the derived (¢" — 1)-adic completion q—Wm(R)(Aqn_l) is static too. Furthermore, if R has
bounded p*>-torsion for all p | m, then also the (¢" — 1)*°-torsion of ¢-W,,(R) is bounded.

To prove Corollary 2.25, we must first show the corresponding staticness assertions for

R[Cm] = R[q]/Pm(q)-

2.26. Lemma. — Let R be a commutative, but not necessarily unital ring, and let m, n be
positive integers.

(a) If the quotient m/ ged(m,n) has at least two distinct prime factors, then R[q|/®m(q) is
(¢" — 1)-torsion-free.
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(b) Suppose m/ged(m,n) = p® is a prime power. If the derived p-completion }ABp of R is
static, then the derived (¢ — 1)-completion of R[q]/®m(q) is static too. Furthermore, if
R has bounded p>-torsion, then R[q|/®m(q) has bounded (¢" — 1)*°-torsion.

Proof. Everything is (¢™ — 1)-torsion and (¢ — 1,¢"™ — 1) = (¢&°4(™") — 1) holds in Z[q],
hence we may replace n by ged(m,n) and thus assume n | m. For (a), simply observe that
(®1,(q),q™ — 1) is the unit ideal in Z[q|, because it contains all prime factors of m/n by the
proof of Lemma 2.3.

For (b), if m = n, then R[q]/®(q) is (¢" — 1)-torsion, hence already (¢" — 1)-complete, and
nothing happens. So from now on, assume m/n = p®, where o > 1. In this case 0 = [p*]4» holds
in R[q]/®m(q). Observe that [p*]sn = p®+ (¢" — 1)u = pv + (¢" — 1)?" 71, where u,v € Z[q] are
some polynomials. Hence the ideals generated by p and by ¢" — 1 in R[q]/®;,,(¢) have the same
radical. Thus, to show that the derived (¢ — 1)-completion of (R[q]/ (Dm(q»f\qn—l) is static, it’s
enough to show the same for the derived p-completion, which follows from our assumption that
}Aip is static since R[q]/®,,(q) is a finite free R-module. For the torsion assertion, the same
observation shows

(R[Q]/(I)m(Q)) [(qn - 1)t] - (R[q]/(l)m(q)) [pta] 7
(Rlq)/@m(9)[p'] € (Rlal/®m(q))[(¢" — "],

for all ¢ > 1, which immediately implies that R[q|/®,,(¢) has bounded (¢" — 1)°*°-torsion if R
has bounded p*°-torsion. ]

Proof of Corollary 2.25. As in the proof of Lemma 2.26, we may assume without loss of
generality that n | m. Assume Ry is static for all prime factors £ | m. We use induction
to show that q—Wm(R)@]n_l) is static. The case m = 1 is clear as ¢-W;(R) = R is already
(¢" — 1)-torsion. Now let m > 1. Recall (e.g. from [Stacks, Tag 0BKG]) that

H (g Wi (S)(gn—)) = 1im g-Won (R)[(¢" — 1)']
where the transition maps in the limit are multiplication by (¢" — 1). Let x = (z4) be an
element of the right-hand side; we wish to show x = 0. Using the inductive hypothesis, we see
that Fy(x¢) = 0 for all prime factors £ | m and all ¢; hence also 0 = Vi Fy(zt) = [€] jm/ext. By
Lemma 2.2, this implies ®,,(q)z; = 0.

If m/n has at least two distinct prime factors, then (®,,(q),¢" — 1) is the unit ideal in Z[q]
(see the proof of Lemma 2.1). As every x; is both ®,,(q)-torsion and (¢" — 1)!-torsion, we
obtain x = 0, as required.

So we're left to deal with the case where m/n = p® is a prime power. In this case, the
ideal (®,,(q),q"™ — 1) C Z[q] is not the unit ideal, but at least it contains p (see again the proof
of Lemma 2.1) and thus z; is a p’-torsion element for all ¢ > 1. We may therefore replace R
by its localisation Ry,), which according to Corollary 2.19(a) amounts to replacing ¢-W,,(R)
by ¢-W,,(R) () and therefore doesn’t change the p>-torsion part. Also note that replacing
R by R(,) doesn’t change the condition that the derived f-adic completions are static for all
prime factors ¢ | m, as these completions can only become 0 for ¢ # p. Using Lemma 2.26,
we know that gh(z;) = 0 for all £. Together with Fy(z;) = 0, we conclude z; = V(y;) for
some y; € q—Wm/p(R) by Lemma 2.20. As V}, is injective by Corollary 2.18, we see that y; is
a (¢" — 1)!-torsion element and that y;_1 = (¢" — 1)y;. Hence y = (y;) defines an element in
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H Y (q¢-W,,(S )f\qn—l))' Then the inductive hypothesis shows y = 0 and thus x = 0 as well, as

desired. This finishes the proof that ¢-W,, (R)(Aqn_l) is static.

Now assume that R has bounded ¢*°-torsion for all prime factors ¢ | m. Let x € ¢-W,,,(R) be
a (¢" —1)°°-torsion element. By induction and Lemma 2.26, we may choose a common bound for
the (¢" — 1)>-torsion in R[q]/®m(q) and ¢-W,, /,(R) for all prime factors £ | m. Hence we find
a positive integer N, independent of x, such that (¢" — 1)V x vanishes under the ghost map gh;
and under the Frobenius maps F} for all £ | m. Then 0 = V,Fy((¢" —1)Nz) = (€] ymse(q" — DNz
for all £ | m, which as before implies 0 = ®,,(q)(¢" — 1)V .

If m/n has at least two distinct prime factors, then (¢" — 1)V being both ®,,(q)-torsion
and (¢" — 1)*®-torsion implies (¢" — 1)V x = 0 and we're done. If m/n = p®
we can only deduce that (¢" — 1)V x is p>-torsion. But then we may once again replace R by
R and apply Lemma 2.20 to see that (¢" — 1)Na = V,(y) for some y € W, /p(R). Then
Vp being injective by Corollary 2.18 implies that y must be a (¢ — 1)*°-torsion element too.
Hence (¢" — 1)Vy = 0. Thus (¢" — 1)*’2z = 0 and we're done. O

is a prime power,

§2.3. Injectivity of W,,(R) — ¢-W,,(R)

In this subsection we’ll do as the title says and prove the following consequence of Proposi-
tion 2.14:

2.27. Proposition. — Let R be a commutative, but not necessarily unital ring, and let m be
a positive integer. Then the natural map W,,,(R) — ¢-W,,(R) is injective.

Proposition 2.27 won’t be needed in the rest of this article, but it’s perhaps rather satisfying
to know that ¢-W,,,(R) is really an extension of W,,(R). To prove this, first we need one more
simple corollary of Proposition 2.14.

2.28. Corollary. — Let R — R’ be a surjection of commutative, but not necessarily unital
rings, and let J be its kernel (which we again consider as a commutative, not necessarily unital
ring). Then the sequence

0— ¢W,(J) — ¢W,(R) — ¢-W,,(R) —0
1s exact for all positive integers m.

Proof. We use induction on m. The case m = 1 is clear. For m > 1, we use the proof of
Proposition 2.14 together with the fact that colimgerr preserves cofibre sequences to see that
fib(¢-W,,(J) — J[¢m]) — fib(¢-W,(R) — R[Gn]) — fib(¢-W,(R') — R'[(n]) is a cofibre
sequence. So is J[(n] — R[(n] — R/[Gn], as it is the base change of J — R — R’ along the
finite free ring map Z — Z[(y]. This proves what we want. O

Furthermore, to prove Proposition 2.27, we need the following lemma with a somewhat
lengthy, but straightforward proof.

2.29. Lemma. — Let R be a commutative, but not necessarily unital Z,)-algebra, and let
m = p®n, where « is the exponent of p in the prime factorisation of m. Then

Wi (R) = [T 4-Wpe (R) @z, [q1,50 Zipy[a)/ (®a(a) - Ppeala))
din

where % : Ziplal — Zp)la] is the map sending q — q“.
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Proof. Let’s abbreviate the right-hand side by II,,. We’ll explain how to give (Il,;)mnen the
structure of a ¢-F'V-system over R as in Definition 2.7. To equip II,, with a W,,(R)-algebra
structure, we must construct a ring map from W,,(R) into each factor. On the d*® factor we
construct the desired map as the composition
Fonya Resq
Wi (R) = Wpan(R) —— Wpag(R) — Wpa(R) — ¢-Wpe (R)

This defines a map W,,(R) — II,,. To understand what this map is really doing, observe that
Wi (R) = Wy, (Wpa (R)) = [1g), Wpe (R). Here the first isomorphism is [Borll, Corollary 5.4],
the second is induced by the ghost maps for W,,(—), using that n is invertible on W« (R) by
our assumption that R is a Z,)-algebra. Then the map W (R) — I, is simply given by
matching up the factors.

This takes care of the W, (R)-algebra structures. It remains to construct construct Frobenii
Fy: 1Ly, — My, /¢ and Verschiebungen Vy: 11,/ — Iy, for all prime factors £ | m and verify that
they satisfy V; o Fy = [/] gn/e as well as FyoVy = (but the latter will be trivial, so we won'’t
mention it).

Case 1: { = p. Here we simply take the maps induced by the usual Frobenius and
Verschiebung F: ¢-Wpa(R) — ¢-W,a-1(R) and Vp: ¢-Wpa1(R) — ¢-Wpa(R). To check
Vp o Fy = [p] m/», we must check that

wd([p]qpa/zﬂ) = [p]qm/p mod Pq(q) -+ Ppea(q) -

In fact, we even claim that [p]ea/p = [p]pens mod ¢""® — 1. This is because the se-
quences {1,qP 4P (qPd/P)2 . (qP"UPYW=1Y and {1,q""P, (gP"7/P)2, ... (¢P"™/P)P=1) agree
modulo ¢?*¢ — 1 up to permutation, similar to the argument in the proof of Lemma 2.8.

Case 2: £ # p. Here the Frobenius Fy is simply given by the projection to those factors
where d divides n/f. The Verschiebung is given as follows: If w = (we)e|(n/¢) is an element of
Iy, we let Vi(w) = (Ve(w)a)q)n, where

Veta)y = {ewe ifd=el (n/f) |

0 else

To check Vy o Fy = [€] m/e, we have to verify [{] m/e is either £ or 0 modulo ®4(q) - - - ®pea(q),
depending on whether d divides n/¢ or not. This is straightforward.

We’ve thus succeeded in equipping (I1,,)men with the structure of a ¢g-F'V-system over R.
It remains to verify that it is in fact the initial one. To do so, let (W,,)men be an arbitrary
q-FV system. For m = p*n as above and d | n, put Wy, g .= Wy, /(®a(q) - - - Ppeq(q)). Then

Wm = H Wm,d )
d|n

because Z,)[q]/(q™ — 1) = [lgn Zpy[al/(Palq) - - - Ppealq)) by Lemma 2.1 and the Chinese
remainder theorem. Furthermore, this decomposition of W,, is respected by Frobenii and
Verschiebungen, because it only depends on the Z[g]-algebra structure on W,,. For any
d | n, the induced maps Foja: Wyend — Wped d and Vija: Wyped,d — Wpan q are isomorphisms.
Indeed, F,/q 0 V;/q = n/d, which is invertible in Z,, and also V,, /q o F}, /4 = [n/d] pea = n/d,
because Wyaqq and Wpyay, 4 are (¢""% — 1)-torsion.
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In particular, the Wpya, (R)-algebra structure on Wy, ¢4 necessarily factors through the
Frobenius F), /q: Wy, (R) — Wyaq(R). Furthermore, for all prime factors £ | d, the diagram

Wpad(R) Wpad,d

T T

Wpad/g(R) — Wpad/Z/(q)d(Q) T ‘I)pad(Q))

commutes. But the lower right corner vanishes by Lemma 2.1. Hence the Wa4(R)-algebra struc-
ture on Wpyaq q factors through the quotient Wpag(R) = Wpag(R)/(im V; | £ prime factor of d).
This quotient map can be identified with Resg: Wpag(R) — Wya(R).

To summarise, we've shown that the Wa,, (R)-algebra structure on Wyey, 4 really factors
through Wya (R). Hence for fixed n and d, the sequence (Wpay, 4)a>0 acquires the structure of a
{1,p,p?, ... }-truncated ¢"-FV-system in the sense of Remark 2.11 (that is, it satisfies the same
axioms, but with ¢ replaced by ¢™). Since we’ve checked [p] g/ = [p] gron/p mod ¢ —1, and
We 4 is a (¢P"¢—1)-torsion ring, we obtain equivalently a {1, p, p?, ... }-truncated ¢%-FV-system
structure. The universal such system is clearly (¢-Wpo(R) ®7,,[al v L(p) [¢])a=0 and so we
obtain canonical morphisms

q_Wpo‘ (R) ®Z(p) [q],0® Z(p) [Q]/((I)d(Q) T (I)pad(Q)) — Wpand,

witnessing the desired universal property for (IL,,;)men. O

Proof of Proposition 2.27. If R is p-torsion free for all prime factors p | m, then the assertion is
clear by Lemma 2.22. So let’s next assume that R is a p-torsion ring. Then V,, o F}, = p holds
on ordinary Witt vectors. In particular, ¢-Wpa (R)/(¢ — 1) = W,a(R), because then clearly
both (¢-Wye(R)/(q — 1))as0 and (Wye(R))az0 are universal among {1,p,p?,... }-truncated
q-FV-systems for which ¢ = 1. This proves that Wpa(R) — ¢-Wpa(R) has a section and is
therefore injective. For general m, write m = p®n, where o = vp(m). We must show that

Win(R) = [T Wpe (R) — []a-Wpe (R) ®z,, 1g1,0¢ L))/ (Pa@) - - ®pealq)) = ¢-Win(R)
dn dn

is injective (see Lemma 2.29 and its proof). But the d'" factor on the right-hand side projects
t0 ¢-Wpa (R) ®z[q),p¢ Z(p)lq]/Pa(q). This is a (g% — 1)-torsion ring, hence it can be rewritten as
q-Wpa (R)/(q — 1) ®gpq)pt Zp)[a]/ Pa(q) = Wpe (R)[Ca]. Now Wy (R) — Wpa (R)[(4] is clearly
injective and we’re done in the case where R is p-torsion.

Next, let’s assume R is p®-torsion for some o > 1. We use induction on «; the case aa =1
was just done. For o > 2, we have a short exact sequence 0 — R[p] — R — R/R[p] — 0 of non-
unital rings. Using the inductive hypothesis for R[p] and R/R[p] together with Corollary 2.28
and the four lemma, we conclude that W,,,(R) — ¢-W,,,(R) is injective, as required. This also
settles the case where R is p>-torsion, because then R = |J,~; R[p®] and both W,,(—) and
q-Wp,(—) commute with filtered colimits.

Finally, let’s do the general case. We have a short exact sequence of non-unital rings
0— (—Bp|m R[p*®] - R — R — 0, where R is p-torsion free for all p | m. So we already know
that the assertion is true for @®,,,, R[p>] and R. Applying Corollary 2.28 and the four lemma
once again, we conclude that the assertion for R is true as well. O
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§2.4. ¢-Witt vectors of A-rings

In general, ¢-W,,(R) can be quite far from R[q]/(¢™ — 1). However, in the presence of a
A-structure on R, there are certain maps between these rings. The purpose of this subsection is
to describe these maps. As a consequence, we will see that ¢-W,,(Z) = Z[q]/(¢™ — 1).

From now on, we will no longer consider non-unital rings; all rings in the following will be
commutative and unital.

2.30. The trivial map. — Suppose A is a A-ring. Then we get a section A — W,,,(A) of
gh;: W, (A) — A as follows: The cofree A-ring under A is the big Witt ring W(A), hence we
get a section s: A — W(A) of gh;. Composing with the restriction map Res: W(A) — W,,(A)
gives the desired section. We can now extend this section Z[¢]-linearly to obtain a map

sm: Algl/(¢" — 1) — ¢-W,,(4),

whose composition with gh; is the canonical map A[q]/(¢"™ —1) — A[q]/®Pm(q). More generally,
if we write s: A — W(A) = AN as s(z) = (6,,(2))men for all x € A, then

Y (x) =Y déa(x)™* = gh,, (s(x))

dlm

is the m™ Adams operation ™: A — A of the A-ring A. Clearly ™ is a ring morphism.
Hence for the trivial comparison map s,,: A[q]/(¢"™ — 1) — ¢-W,,,(A) constructed above, the
composition gh,, /4 © s, agrees with the canonical projection A[q]/(¢™ — 1) — Alq]/®a(q)
followed by 1™/, extended Z[q]-linearly.

2.31. Remark. — The construction from 2.30 as well as all other results in this subsection
remain valid if we fix m and only assume that A is a A,,-ring: that is, a Az g-ring in the sense
of [Borll, 1.17], where E = {pZ | p prime factor of m}. The only necessary change will be to
replace W(A), the cofree A-ring under A, by Wg(A), the cofree A,,-ring under A, where S C N
is the truncation set of all positive integers whose prime factors are also prime factors of m.

The map from 2.30 is a little silly yet surprisingly useful (as we’ll see). Nevertheless,
it is seldom an isomorphism or even surjective. We’ll now set out to construct another
comparison map ¢n,: ¢-W,,(A) — Alq]/(¢"™ — 1), which is more suitable for computations.
Similar maps have been found independently by Pridham [Pril9, Remark 3.15] and Molokov
[Mol22, Proposition 3.1].

We’ve seen in 2.30 that the Adams operations on a A-ring A can be expressed in terms of
the ghost maps on W(A) via the system of maps (of sets) d,,: A — A. We’ll show now that
conversely, the ghost maps can be expressed in terms of Adams operations.

2.32. Lemma. — For any A-ring A with Adams operations Y™ : A — A, there are functorial
maps (of sets) epm: Wy (A) — A for all m € N such that

ghm(x) = Z d¢m/d (5d ReSm/d(l'))
dlm

for all x € Wy, (A). Here Res,,/q: Wi (A) — Wy(A) is used to denote the restriction map for
ordinary Witt vectors.
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Proof. For the purpose of this proof, let us abuse notation by denoting the composition
of s: A — W(A) from 2.30 with Res: W(A) — W,,(A) also by s,,. We claim that every
r € Wy, (A) can expressed as a sum x = 3y, Va(spm/a(Tm/q)) for z4 € A in a unique way.
Believing this claim, we can simply define &,,(x) := 21 and compute

ghm(m) = Z ghm (Vd (Sm/d(xm/d))) = Z dghm/d (Sm/d(xm/d)) - Z dwm/d(m'm/d) :

dlm dlm dlm

Since Res,,/q(z) = X eja Ve(Sa/e(Tmy(ase))), our definition yields 4 Res,,/q(z) = @p/4, s0 the
computation shows that the desired formula holds.

To prove the claim, let’s first show that every x € W,,(A) has such a representation. We use
induction on m. The case m = 1is clear. For m > 1, let x,,, := gh;(z), then gh; (x—s,,(x.,)) = 0,
hence © — sy, (2, ) is contained in the ideal (im V), | p prime factor of m). Applying the inductive
hypothesis for all W, /,(A), we get a representation & = i (Tm) + X ajm, a1 Va(Smya(Tm/a)) as
desired.

We’ll only prove uniqueness in the case where A is flat over Z and leave the general case to
the reader. The flat case will be enough for our purposes, since it allows us to define &, for
Z-flat A-rings, hence, in particular, for free A-rings (possibly in infinitely many generators).
By a formal argument, there’s then a unique way to extend the e, functorially to all A-rings:
Just write an arbitrary A-ring as a reflective coequaliser of free A-rings and use that W,,(—)
commutes with reflective coequalisers. To show uniqueness in the flat case, first observe that
in any representation @ = 374, Va(Sym/d(Tm/q)) the element xy, is uniquely determined via
Ty = ghy (7). Next, for all prime factors p | m, the element z,, , is uniquely determined via
gh, () = YP(zm) + P2y, p, since A is p-torsion free by our flatness assumption. Continuing in
this way, we find that all x,, 4 are uniquely determined. O

2.33. Lemma. — For any A-ring A with Adams operations ™ : A — A, the map (of sets,
a priori) cm: Wi, (A) — Alq]/(¢"™ — 1) given by

em(@) =Y _[d] m/ath™ (ea Resyy a(x))
dlm

is a morphism of rings.

Proof. We can always find a surjection A’ — R from a Z-flat A-ring A’, hence we may assume
that A is Z-flat itself. Then Alq]/(¢™ — 1) — [lgm Algl/®a(q) is injective. So it suffices to
check that ¢, is a ring morphism modulo ®4(q) for all d | m. For this, note that

e ifd| ™2
m/e = © do
[e]q / {0 lde% mo d(Q)

and then a straightforward calculation shows ¢,, = ¢ o gh,, /a mod ®q(g). This is clearly a
ring morphism, hence we’re done. ]

2.34. Corollary. — Let R be a A-ring. Then the ring morphism c,,: W, (A) — Alq]/(¢™—1)
from Lemma 2.33 extends uniquely to a functorial ring morphism

em: ¢-Wn(A) — Algl/(¢™ — 1)
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such that the following diagrams commute for all d | m:

W (A) —"— Alq]/(¢" — 1) ¢-Won(A) =" Alq]/(¢™ — 1)
Fm/dl J and Vm/aﬁ I[m/d]qd
¢-Wa(A) —2— Alq]/(¢" — 1) ¢-Wa(A) —— Alq]/(¢" - 1)

Furthermore, the composition ¢, © sy Alql/(¢™ — 1) — Alq]/(¢™ — 1) is the Z|q]-linear
extension of the m™ Adams operation ™: A — A.

Proof. First one checks that the analogous diagrams with W,,,(4) and W;(A) commute. As
in the proof of Lemma 2.33, it’s enough to check this modulo all the cyclotomic polynomials,
which leads to a straightforward calculation. Having checked this, it’s now clear that the
system (A[q]/(¢™ — 1))am satisfies the conditions (a) and (b) of Definition 2.7 if we equip
Alq]/(¢%—1) with the W4(A)[q]/(¢%—1)-algebra structure obtained via cq and extend Frobenius
and Verschiebung in the indicated way. By the universal property of (¢-W,,(A))men, this
provides us with the desired maps ¢,,: ¢-W,,(A) — Alq]/(¢™ — 1).

By surjecting from a Z-flat A-ring, it’s again enough to check that c¢,, o s, = ¥™ holds
modulo ®,4(q) for every d | m. But we've seen in 2.30 that gh,, 4 0 $m = Y% and we've seen in

the proof of Lemma 2.33 that ¢, = wdoghm/d mod ®,4(g). Since Y™ = Phoyp™/d we win. [

Using the comparison map from Corollary 2.34, we can now compute g-Witt vectors in
some cases.

2.35. Proposition. — Let A be a A-ring such that all Adams operations " : A — A are
injective. Then the ring morphism cp,: ¢-W,,(A) — Alq]/(¢"™ — 1) from Corollary 2.34 is an
isomorphism onto the subring

> [d]ymsa™ 4 (A)g)/(a™ — 1)  Alg) /(g™ — 1)

dlm

Proof. For all primes p, A(,) is a é-ring with injective Frobenius ¢?: Ay, — A, hence
[BS19, Lemma 2.28] shows that A is p-torsion free for all primes p. Hence the projections
Alq]/ (@™ — 1) — Alq]/®a(q) for d | m are jointly injective. The composition of ¢, with the
d™ such projection is ¢¢ o gh,, /d- Since 9% is injective and the ghost maps on ¢-W,,(A) are
jointly injective by Lemma 2.22, we deduce that ¢, : ¢-W,,(A) — A[q]/(¢"™ — 1) is injective.
It’s clear from the construction that the image of ¢, is contained in the indicated subring.
To show surjectivity, recall the construction of the maps &,,: W,,(A) — A from the proof of
Lemma 2.32. For every a € A it immediately follows that c,,(Vi(sp/a(a))) = [d]qm/d¢m/d(a),
hence the image of ¢,;, must contain the whole subring above. O

2.36. Corollary. — If A is a perfect A-ring (e.g. A = Z, A = Zp, or A = Aijp¢(R) for
some perfectoid ring R), then the comparison maps from 2.30 and Corollary 2.34 are both
isomorphisms:

sm: Algl/ (@™ = 1) = ¢Wi(A) and e ¢-Wi(A) — Alg]/(q™ — 1)

Proof. For ¢, this is immediate from Proposition 2.35; for s,, we use ¢, o S, = Y™ by
Corollary 2.34, which is an isomorphism since A is perfect. O
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2.37. Example. — As indicated in Remark 2.31, Corollary 2.36 is still true, for fixed m,
if A is only a perfect A,,-ring. Now assume that R is any ring such that m is invertible in R.
We can equip R with the trivial A,,-structure, where all Adams operations are the identity.
This is clearly perfect, hence ¢, : ¢-W,,,(R) — R[q]/(¢"™ — 1) is an isomorphism. On the other
hand, if py,...,p, are invertible in R, then the cyclotomic polynomials ®4(q) for d | m are
pairwise coprime in R[q] by Lemma 2.1, hence R[q]/(¢™ —1) = [14,, R[q]/®a(g) by the Chinese
remainder theorem. Now recall from the proof of Lemma 2.33 that ¢,, = ¢¥?ogh,, /a mod ®4(q)
and ¢ is the identity on R. So an equivalent way of stating Corollary 2.36 in our case is that

(811 /a) g : 4-Win(R) — ] Rla)/®alq)
dlm

is an isomorphism.

2.38. Corollary. — If R is of finite type over Z, then ¢-W,,(R) is of finite type over
Zlq]/(q™ — 1). In particular, it is noetherian.

Proof. If P — R is a surjection from a polynomial ring, then ¢-W,,(P) — ¢-W,,(R) is
surjective too. Hence it suffices to consider the case where R = Z[T1,...,T,] is a polynomial
ring. Equip Z[T1,...,T,] with the unique A-structure in which ¢?(T;) = T? for all primes p
and all = 1,...,n. In this case, Proposition 2.35 tells us that ¢-W,,(R) isomorphic to the
subing B,, = Zd|m[d]qm/dZ[T1m/d, LT q]/(¢™ — 1) sitting inside a chain of inclusions

Since Z[T1, ..., Tk, q]/(¢™ — 1) is finite over the noetherian ring Z[T7",..., T}, q]/(¢™ — 1), it
follows that By, must be finite over Z[T]",...,T}",q]/(¢"™ — 1) as well. This proves that By,
has finite type over Z[q]/(¢™ — 1), as desired. O

§2.5. Relative ¢-Witt vectors

Using the comparison map ¢, from §2.4, one can develop a theory of ¢-Witt vectors relative
to a fixed A-ring A, in such a way that all structure maps are A[¢]-linear. This is necessary
since we would like to formulate our eventual applications [W-Hab; MW24] in a relative setting.
First we introduce the following relative variant of Definition 2.7.

2.39. Definition. — Let A be a A-ring and let R be an A-algebra. A ¢-FV -system of
A-algebras over R is a system of A[g]-algebras (W,,)men, together with the following structure:

(a) For all m € N, an A[g]-algebra map ¢-W,,,(R) ®q-w,, () Alg]/(¢™ — 1) — Wy,. Here the
tensor product is taken along the map ¢, from Lemma 2.33.

(b) For all divisors d | m, an A[g]-algebra morphism F,, q: Wy, — Wy and a A[g]-module mor-
phism V;,,/q4: Wi — Wiy, These must be compatible with the Frobenii and Verschiebungen
on g-Witt vectors (via the morphisms from (a)) and satisfy

FrjaoViya=m/d and Vg0 Fyq=[m/d]a.

q-FV

These objects form an obvious category, which we denote CRing}, /A -
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2.40. Lemma. — Let A be a A-ring and R an A-algebra. The category CRingqﬁfﬁlv has an
initial object (¢-W,(R/A))men. FEzplicitly, ¢-W,,(R/A) is the quotient

q_Wm(R/A) = (q_wm(R) ®q—Wm(A) A[Q]/(qm - 1))/Um s

where Uy, is the ideal generated by Vi, ,q4(vy) ® 1 =V, q(x) @ ca(y) for all divisors d | m, all
x € ¢-Wy(R), and all y € g-W4(A).

2.41. Definition. — Let A be a A-ring and R an A-algebra. We call ¢-W,,(R/A) the ring
of m-truncated big q- Witt vectors of R relative A.

Proof of Lemma 2.40. First we should remark that V,,/4(z) ® ca(y) is a well-defined element
of Wy, (R) ®q-w,,(A),c, Alal/(@™ — 1), even though, a priori, cq(y) is only an element of
Alql/(¢* = 1). But V,,/q(2) € Wy (R) is a (¢ — 1)-torsion element, so it doesn’t matter how
we lift c4(y) to an element of A[q]/(¢™ — 1).

To show that ¢-W,,(R/A), defined as the quotient above, is indeed the desired initial object,
we only need to check condition (b) from Definition 2.39. The ideal U, is constructed in such a
way that we get a well-defined A[g]-linear map ¢-Wq(R) ®,-w,(a) Alal/(¢* — 1) — ¢-Wy,(R/A)
by sending z ® a +— V,,, /q(z) ® a for all z € ¢-Wy(R), a € Alq]/ (g% —1). Clearly, this map kills
Ug, hence we get our desired Verschiebung V,, /q: ¢-Wa(R/A) — ¢-W,,,(R/A).

To construct the Frobenii, it’s enough to construct Fy,: ¢-W,,(R/A) — ¢-W,,,,(R/A)
for all prime factors p | m. The Frobenius Fy: ¢-W,,(R) — ¢-W,,,(R) and the canonical
projection A[q]/(¢™ — 1) — Algq]/ (qm/ P — 1), which are compatible by Corollary 2.34, induce
an A[q]-algebra morphism

Fy: ¢-Win(R) g, (4) Algl/ (@™ = 1) — W (R) g, (4) Algl/ (@™ = 1)

To finish the proof, we must check F},(Uy,) € U, /. So let’s consider a generator of the form
Vina(xy) @ 1 = Vi, /q(7) @ ca(y). Depending on whether p divides n := m/d or not, the element
FpVinsa(y) @ 1 — Fp Vi, 1q(7) ® cq(y) can be evaluated to either

P(Vinspya(@y) @ L= Vigspyja(@) @ caly))  or Vi (Fp(z)Fp(y)) @ 1 — Vo (Fy(a)) @ ca(y) -

In the first case, we visibly get an element of U,, /,. In the second case, recall from Corollary 2.34
that the image of cq(y) in A[q]/(¢% — 1) is precisely cq,(F,(y)). Hence the element above is
again contained in U, /,,. O
2.42. Remark. — Asin Remark 2.11, for every truncation set S C N, the truncated sequence
(¢-W,,(R/A))mes satisfies a similar universal property. In the special case where S = T,,
is the set of divisors of m, the construction doesn’t need a full A-structure on A; instead, a
A,-structure in the sense of Remark 2.31 will be enough.

Throughout the rest of this article, we’ll exclusively work in the relative setting, since our
applications work in the relative setting and the relative case isn’t really more difficult. It is,
however, a little heavier on the notation.

In the rest of this subsection, we’ll show that (under mild assumptions) most of our results
so far can be carried over to the relative setting. Let’s begin with a few canonical constructions.
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2.43. Ghost maps for relative ¢-Witt vectors. — For all divisors d | m, we get a relative
ghost map

ghysat Wi (R/A) — R®4 ya Alg]/Palq) -

This map can be constructed by tensoring the usual ghost map gh,,, /q: ¢-Wp,(R) — R[g]/®a(q)
with the natural projection A[q]/(¢"™ — 1) — A[q]/®4(q) and checking that the ideal U, from
Lemma 2.40 is sent to 0. It’s also straightforward to check that gh,, 4 = ghy/4 © F};,/q and that
ghy/m: ¢-Win(R/A) — R®aym Alq]/®m(q) can be identified with the quotient of g-W,,, (12/A)
by the ideal generated by the images of all Verschiebungen V,,, /4 for d | m, d # m.

2.44. Relative comparison maps. — Suppose R is a A-A-algebra. Using the universal prop-
erty of (¢-W,(—/A))men, we see that the map ¢-W,,(R) — R[q]/(¢™ — 1) from Corollary 2.34
extends to an A[g]-algebra morphism

Cm/A*: q_Wm(R/A) - R[Q]/(qm - 1) :

As we’ll see in the proof of Lemma 2.45 and in Remark 2.46, this map is often injective and its
image can be pinned down.

Furthermore, using ¢y, o sp,, = 9™ by Corollary 2.34, we see that the trivial comparison map
sm: Alq]/(¢™ — 1) — ¢-W,,,(A) extends to an A[g]-algebra morphism

Sm/a: R@aym Alg]/(q™ —1) — ¢-Win(R/A).
The composition ¢, /4 © 8,,/4 is given by the linearised Adams operation 1117}4: R®pym A— R.

2.45. Lemma. — If A — A’ is a morphism of A-rings and R is an A-algebra, then for all
m € N the canonical map is an isomorphism

¢-Win (R/A) @4 A — ¢-W,(R®4 A'/A).

Proof. The statement might seem like an exercise in universal properties, but it’s not; the prob-
lem with such an approach is to construct a W, (R®4 A’)-algebra structure on ¢-W,, (R/A)®4 A’
So instead, our proof will be somewhat indirect. It’s enough to prove the case where
R = A[{T:}icr] is a polynomial ring over A (possibly in infinitely many variables). Indeed, using
the universal property, it’s straightforward to check that ¢-W,,(—/A) commutes with reflective
coequalisers and every A-algebra can be written as a reflective coequaliser of polynomial rings
over A.

To prove the polynomial ring case, equip A[{T;};c;|] with a A-A-algebra structure via
YP(T;) = TF. The comparison map cyuya: ¢-Wan(A{T:}ics]/A) — AT }icr,al/(¢™ — 1) from
2.44 has its image contained in the subring

B = Y [d] g A[{T] Y od) /(67— 1)
dlm

But we also have a canonical map m: ¢-W,,,(Z[{T}icr]) ®z A — ¢-Wp, (A[{Ti}icr]/A). Using
Proposition 2.35 for Z[{T;}icr], it’s clear that ¢, o m: ¢-W,,,(Z[{T;}ic1]) ®2 A — B, is an
isomorphism. We claim that the composition ¢ := 7 o (¢;, o ) "1 0 ¢, is the identity on
q-Wo (A[{T;}icer]/A). Believing this for the moment, we're done. Indeed, if ¢ is the identity,
then 7 yields an isomorphism ¢-W,,,(Z[{T;}icr]) ®z A = ¢-W,,,(A[{T;}icr]/A), an analogous
isomorphism holds for A’, and then the desired base change property is immediate.
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To prove that ¢ is the identity, recall from Lemma 2.40 that ¢-W,,,(A[{T}}ic1]/A) can be
written as a quotient of ¢-W,, (A[{T}}icr]) ®q-w,, (4) Ala]/(¢™ —1). Furthermore, it follows from
the proof Lemma 2.32 that ¢-W,,(A[{T;}ic1]) is generated as a Z[gq]-module by elements of the
form V(s 4(fa)), where f € Z[{Ti}ier] is a polynomial with integral coefficients and a € A.
So we only need to check that ¢ fixes elements of the form Vy(s,,/q(fa))®a’ for f and a as above
and a’ € Alq]/(¢™—1). By construction, ¢, sends such an element to [d]qm/d¢m/d(fa)a’. Under
the isomorphism (¢, o) ™!, this is sent to Vy(s,,/a(f)) ®v™/%(a)a’. But, again by construction,
we have ¥"™/%(a) = cp/a(smya(a)). Hence Vy(sy, a(fa)) ® a — Va(spya(f)) @ v™/4(a)d’ is
contained in the ideal U, from Lemma 2.40, which proves that ¢ indeed sends the element
Va(spma(f)) ® Y™ (a)a’ to itself. We're done. O

2.46. Remark. — If A, is a perfect A-ring, then ¢-W,,(R) = ¢-W,,,(R/A) holds for all
Ao-algebras R by Corollary 2.36. In general, if A is a A-ring for which the map A — A, into its
colimit perfection is faithfully flat(>?), then all the nice properties we proved about ¢-Wp, (=) in
§2.2 will also hold for ¢-W,,,(—/A), since we can deduce them via Lemma 2.45 and faithfully flat
descent. For example, it will be true that the Verschiebungen V,,, /q: ¢-W4(R/A) — ¢-W,,(R/A)
are injective, the analogue of Proposition 2.14 is true, and if R is relatively perfect over A,
meaning that the linearised Adams operations 1/)7 4 R®ayr A — R are isomorphisms for all p,
then the comparison maps s,,/4 and ¢,/ from 2.44 are isomorphisms.

A-rings with the property that A — A is faithfully flat will be called perfectly covered. In
most real life situations, the Adams operations ¢ : A — A will be faithfully flat, hence A will
be perfectly covered. A being perfectly covered will also be a crucial assumption in our eventual
applications [MW24; W-Hab]. Still, it seems believable that even without this assumption the
analogue of Proposition 2.14 is true (from which all other desired properties could easily be
deduced). To prove this, the crucial step would be to show injectivity of the Verschiebung
Vi ¢Wya1(R/A) — ¢-Wpa(R/A). But it’s not clear (at least to the author) how the proof of
Lemma 2.16 could be adapted.

§2.6. ¢-Witt vectors and étale morphisms

The goal of this subsection is to prove the following proposition, which is a ¢g-Witt vector
analogue of results obtained by van der Kallen [vdKal86, Theorem (2.4)], Langer-Zink [LZ04,
Corollary A.18], and Borger [Borll, Theorem 9.2].

2.47. Proposition. — Let A be a A-ring, let R — R’ be an étale morphism of A-algebras,
and let m be a positive integer. Then ¢-W,,(R/A) — ¢-W,,,(R'/A) is étale again. Furthermore,
if d | m, then

Wi (R'/A) ®qw,,(r/a) - Wa(R/A) — ¢-Wy(R'/A)
is an isomorphism, where the tensor product is taken with respect to the Frobenius map
Fm/d: q_Wm(R/A) - q_wm/d(R/A)

(231n fact, if any faithfully flat morphism of A-rings A — Ao into a perfect A-ring exists, then the Adams
operations ¢ : A — A are faithfully flat (and so the map from A into its colimit perfection is faithfully flat as
well). Indeed, whether — ®a,4m A is exact can be checked after the faithfully flat base change along A — Ax.
But

(— ®A,’L/J"” A) ®A Aoo = — ®A,'¢)”L Aoo = —®A A()O

as Ao is perfect, so we can conclude since A — A is flat. This shows that ¢™: A — A is flat. The same
argument shows faithfulness.
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2.48. Remark. — Let us indicate how the ordinary Witt vector analogue of Proposition 2.47
follows from the literature. For the étaleness of ¢-W,,,(R) — ¢-W,,,(R’), this is clear, but the
assertion that R

Won(R') @W,u(R),Fyjq Wa(R) — Wa(R')

is either stated only for p-typical Witt vectors (under the assumption that R and R’ are F'-finite)
or only for the tensor product with respect to the restriction map Res,,/q: Wy, (R) — Wy(R).
Nevertheless, the general case is true and can be deduced as follows. It’s enough to consider
the case where m/d = p is a prime. Write m = p“n, where a = v,(m). By the p-typical case,
as stated in [LZ04, Corollary A.18], the diagram

Wiy (R) —— Wy (R')
ij r |5
Wiy (R) —— W,a(R)

is a pushout diagram of rings, provided that R and R’ are F-finite. By writing R — R’ as a
filtered colimit of étale morphism between rings of finite type over Z (which are F-finite), we
see that the diagram above is a pushout in general. Furthermore, [Borll, Theorem 9.2] shows
that the horizontal arrows in the pushout diagram are étale (in the F-finite case, this is also
proved by Langer-Zink). Now [Borll, Corollary 5.4] allows us to write W, (—) = W, (Wpa(—))
and [Borll, Corollary 9.4] shows that the functor W, (—) preserves pushouts in which one leg
is étale. This proves what we want.

The crucial ingredient in the proof of Proposition 2.47 is the following.

2.49. Lemma. — Let A be a A-ring, let R — R’ be an étale morphism of A-algebras, and let
m be a positive integer. Then we get a canonical isomorphism

Won(R') @, (r) &-Win(R/A) — ¢- Wi (R /A).
Proof. We start with the case A =7 (that is, the case of absolute ¢-Witt vectors). We define

M =@ Wu(R)[qg] and N:= P Wa(R)[q].

dlm e|dlm

By Definition 2.9, we can write ¢-W,,(R) = coker(M & N — W,,(R)[¢]), where the map
in question is given as follows: For a divisor d | m, the d' component of M — W,,(R)[q]
is given by (¢? — 1)V;n/4, and for a chain of divisors e | d | m, the (e,d)™ component of
N — Wpn,(R)[q] is given by [d/e]qeVin/a — VinjeFase- Note that all of these are morphisms of
W (R)[g]-modules, if we equip W, ,4(R)[q] with the module structure obtained through the
Frobenius F, /q: Wy, (R)[q] — Wa(R)[q].

Similarly, W,,,(R’) = coker(M'® N’ — W,,(R')[q]), where M’ and N’ are defined as above,
but with R replaced by R'. The discussion in Remark 2.48 shows that M’ = W,,(R') ®w,,r) M
and N' = W,,,(R')®w,, (r) N, which immediately yields W,,,(R')®w,, (r)¢-Wm(R) = ¢-Wp,(R'),
as claimed.

The proof in the relative case is analogous. Let

K == @ ¢-Wa(R) ®zq) ¢-Win(A) @11 Alg]-

dlm
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Then Lemma 2.40 shows that ¢-W,(R/A) = coker(K — ¢-W,,(R) ®qw,,(a) Ala]/(¢™ — 1)),
where the map is given is given as follows: On the d'' component, we send z ® y ® a to
Vinsa(ry) ® a — Vi /q(7) @ cm(y)a. Similarly, we can describe ¢-W,,(R'/A) as a cokernel
coker(K' — ¢-W,,(R') ®qw,,(4) Alg]/(¢™ — 1)). Since we’ve already proved the absolute case,
we find K’ = W,,,(R') ®w,,(g) K and the claim follows. O

Proof of Proposition 2.47. Both assertions follow immediately from Lemma 2.49 plus the anal-
ogous assertions for ordinary Witt vectors, which hold true as explained in Remark 2.48. [

We'll present two applications of Proposition 2.47. The first one is a similar pushout result
for ghost maps.

2.50. Corollary. — If A is a A-ring, R — R’ is an étale map of A-algebras, and m is a
positive integer, then

q_Wm(R/A) q_Wm(R//A)
ghm/dJ . Jghm/d
R® 4 ya A[Ca] —— R' ®4 ya Alld]

is a pushout diagram of rings (both in the derived and in the underived sense) for all d | m.

Proof. Using ghy,a = ghgjqoF,,/q and Proposition 2.47, we may assume m = d. Then
8h it Wi (R/A) — (R®aym A)lq]/Pm(q) is identified with the projection map

¢-W,,(R/A) — coker(M — q—Wm(R/A)) )

where M := P djm q¢-W4(R/A) and the map is given by (V;;,/4)dm- Likewise, the ghost map for
R’ is given by a similar projection map ¢-W,,(R’'/A) — coker(M' — ¢-W,,(R'/A)). Proposi-
tion 2.47 implies M’ = ¢-W,,,(R'/A) ®q-w,,(r/a) M and we're done. O

As a second application, we prove a partial inverse of Corollary 2.36. This result won’t
be needed again, but it’s pretty convenient as a sanity check: It often appears on first glance
that our ¢-Witt vectors (or later our ¢g-de Rham—Witt complexes) are trivial in the sense of
W (R/A) = R[q]/(¢"™ — 1). The following result shows that already when A =Z and R is
étale, this is not at all the case.

2.51. Corollary. — Let p be a prime and let R be an étale Z-algebra such that R — Ep
is injective (equivalently, p is not invertible on any connected component of Spec R). If a
Z|q]-algebra isomorphism

¥: ¢-Wi(R) — Rlq]/(¢™ — 1)

exists for some positive integer m divisible by p, then the unique Frobenius lift ¢,: ﬁp — fip
restricts to a morphism ¢,: R — R. Furthermore, the ¢, commute for different p and R can be
equipped with a A,-structure.

Proof. Recall from Corollary 2.36 that ¢-W,,,(Z) = Z[q]/(¢™ — 1); furthermore, by the com-
mutative diagrams from Corollary 2.34, this isomorphism identifies the Frobenius F, ,, with
the canonical projection Z[q]/(¢™ — 1) — Z[q]/(¢"? — 1). Then Proposition 2.47 implies
¢-W,(R) = ¢-W,,,(R)/(¢P — 1). In particular, if an isomorphism 1) as above exists, then there
exists an isomorphism ¢-W,(R) = R[q]|/(¢”? — 1) too. So we may as well assume m = p.

34



§2.6. ¢-WITT VECTORS AND ETALE MORPHISMS

The isomorphism ¢-W,(Z) = Z[q]/(¢P — 1) from Corollary 2.36 identifies the ghost maps gh,
and gh,, with the canonical projections Z[q]/(¢” — 1) — Z[(p] and Z[q]/(¢* — 1) — Z[G1] = Z,
respectively. The pushouts of Z[q|/(¢? — 1) — R[q]/(¢” — 1) along these maps are R[(,]| and R,
respectively. But Corollary 2.50 tells us that these pushouts can also be identified with the
ghost maps for ¢-W,(R). We thus obtain unique Z[q|-algebra automorphisms

¢1: R[¢,] — R[¢p] and tp: R — R

such that the following diagrams commute:

-W,(R) — R[G,) ¢-Wy(R) —2 R
;Jw %% and glw =1y
R[q]/(¢" — 1) —— R[(] Rl[q]/(¢" =1) —— R

By composing ¢ with ¢! ® id: R[q]/(¢" — 1) = R®z Z[q]/(¢" — 1) — R®z Z[q]/(¢" — 1)
we may assume ), = id. Now let x = (x1,2,) € W,(R) be an element written in Witt
vector coordinates; we view z as an element of ¢g-W,(R) as well. Then the left commutative
diagram shows v¢(z) = ¢ gh(z) = ¢¥1(x1) mod ®,(¢) and similarly the right one shows
Y(x) = Ppghy,(x) = 2f + pr, mod (¢ — 1) since we assume ¢, = id. Thus

Y1(z1) =2y mod (¢ —1);

in other words, 11 induces the Frobenius on R[(,]/(¢, — 1) = R/p. Since R is étale over Z, this
property, together with Z[q¢]-linearity, uniquely determines the morphisln induceg by 1 on
the ({, — 1)-adic completion R[Cp](Agp—l)' This completion coincides with Rp[(,] = Ry, ®z Z[(p].
Now

¢p ®id: Ep Rz Z[Cp] - Ap Xz Z[Cp]

also restricts to the Frobenius modulo (¢, — 1). Hence it coincides with ; and must therefore
map the subring R®zZ[(,] C fip@)ZZ[Cp] into itself. But ¢, ®id also respects the decomposition
Ep ®z L[] = @?:_02 (;Ep, hence ¢, must restrict to an endomorphism of R, as claimed.

Now let £ # p be another prime factor of m such that R — }A?g is injective. Then
¢¢: R — R induces an endomorphism of ﬁp as well, and it’s enough to show ¢, o ¢y = ¢y 0 ¢,
as endomorphisms of }A?p. By p-complete étaleness, we can further reduce to checking this on
R/p. But then everything becomes obvious because any ring endomorphism of R/p commutes
with the Frobenius.

To prove that R can be equipped with a A,,-structure, observe that the above construction
allows us to define commuting Frobenius lifts on R for all primes p | m. Indeed, on those
components of Spec R where p is not invertible, we can use the construction above, and on the
other components we can simply take the identity. O
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§3. ¢-de Rham—-Witt complexes

There are several objects that people call de Rham—Witt (pro-) complex: The original construction
[11179] due to Illusie, building on work of Bloch, Deligne, and Lubkin, defines a pro-complex
(W5 )n>1 for any Fp-algebra R. Langer-Zink [LZ04] define a relative de Rham-Witt pro-
complex (W, QF / 4)n>1 for any map A — R of Z;,)-algebras. Finally, Hesselholt-Madsen [HMO03;
Hes15] define an absolute big de Rham—Witt complex for any ring R.

The goal of this section is to study a system of (strictly) graded-commutative differential-
graded A[g]-algebras (¢-W,,Q}, / 4)meN, which we call truncated q-de Rham-Witt complexes
of R, for any A-ring A and any A-algebra R. Even though our construction naturally works
with big Witt vectors, even in the case A = Z it’s a much closer analogue of [LZ04] than of
Hesselholt-Madsen’s absolute big de Rham—-Witt complex. It seems possible that by dropping
the Z[q|-linearity of the differentials, one can obtain a g-analogue of ¢-W,,Q%, of Hesselholt—
Madsen’s absolute construction, but we haven’t pursued this so far.

Throughout this section, we work relative to a fixed A-ring A. The most important case is
A = 7Z, the additional generality is only needed for our eventual applications [W-Hab; MW24].

§3.1. Three non-equivalent categories

Even though Langer—Zink’s construction generalises Illusie’s, they proceed in a slightly different
way: For Langer—Zink, the Frobenius operators are part of the definition of (W, R/ A)n>1,
whereas Illusie only constructs them a posteriori. Similarly, we have the choice of whether or
not to include Frobenii in our definition of (¢-W,,Q7}, / 4)meN- Both definitions turn out to be
equivalent, or rather they lead to two non-equivalent categories (Definitions 3.1 and 3.6) which
happen to have the same initial object (as we’ll see in Proposition 3.17). What makes things
even more confusing is that in the case where R is smooth over Z, there is a third category
(Definition 3.9) in which (q_WmQE/A)mEN is initial (as we’ll see in Proposition 4.1).

To alleviate this confusion, let us first carefully introduce these three different categories.
We begin with the variant without Frobenii.

3.1. Definition. — Fix an A-algebra R. A ¢-V-system of differential-graded A-algebras over
R is a system (P} ),,en of commutative differential-graded A[g]-algebras, equipped with the
following additional structure:

(a) For all m € N, an A[q]-algebra morphism ¢-W,,(R/A) — PY.

(b) For all divisors d | m, a morphism V,,,4: Pj — Py, of graded A[g]-modules. These are
required to be compatible with the Verschiebungen on relative ¢-Witt vectors (via the
morphisms from (a)) and must satisfy V,, /e = Vp,/q0 Vg, for all chains of divisors e | d | m

as well as V,, g(wdn) =V, /q(w) AV, /q(n) for all w € Pt e P
Furthermore, we require that the following V -Teichmiiller condition is satisfied:

(rv) For all d | m and all w € P}, r € R, one has

Vm/d(w) dTm(T) = Vm/d (WTd(T)m/dil) dvm/de(r) .

Here 7,,,(r) € ¢-W,,,(R/A) and 74(r) € ¢-W4(R/A) denote the respective Teichmiiller lifts,
which we also implicitly identify with their images in P, and Pg , respectively.

There is an obvious category of ¢g-V-systems of differential-graded A-algebras over R, which we
denote CDGAIg'g)/A.
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3.2. Lemma. — Let R be an A-algebra. In any q-V-system (P})men over R, the Ver-
schiebungen satisfy the relation
Vhod=n(doV,).

Proof. We write n = m/d and use the second condition from Definition 3.1(b) to obtain
Vinja(dw) = Vi, q(1) AV, ja(w) = [m/d] e dVy, q(w) for all w € Py. Here we also used that
Vinya(1) = [m/d],q holds in ¢-W,,(R/A). But w and thus dV,,, /q(w) are (¢®—1)-torsion elements,
hence multiplication by [m/d],« agrees with multiplication by m/d. O

3.3. V-Divided powers. — In classical Witt vector theory, one often considers a divided
power structure on the ideal generated by the Verschiebung. In general, this can’t be done for
our ¢-Witt vectors ¢-W,,, (R), since we’re working with big rather than p-typical Witt vectors
and we don’t assume that R is a Z,)-algebra. However, if p is a prime factor of m, then there’s
still a well-defined map 7, : im V,, — im V,, sending V,,(z) to pP~2V,(zP) (here we use that V,,
is injective by Corollary 2.18); it satisfies py,(v) = vP for all v € imV},. We then say that a
derivation d: ¢-W,,(R) — M is a V-PD-derivation if d,(v) = vP~! dv.

3.4. Lemma. — Let R be an A-algebra. For any q-V -system (P} )men over R and all m,
the composition ¢-W,,(R) — ¢-W,,,(R/A) — PY — P} is a V-PD-derivation. In fact, for any
prime factor p | m and all x € ¢-W,,,,(R/A), we have the stronger condition

dVp(a?) = Vp(aP1) dVp(z) .

Proof. The proof is mostly the same as in [LZ04, Lemma 1.5]. We use induction on m, the
case m = 1 being trivial. So let m > 1. We proceed in three steps: Step 1 is to prove the
relation in the case x = a7,,/,(r) for some a € A[q] and some r € R. Step 2 is to prove that if
the relation is satisfied for x = 1 and = = x4, then it’s satisfied for x = x1 + z9 as well. Step 3
is prove the relation in the case x = Vy(y) for some prime factor ¢ | m (including ¢ = p) and
some y € ¢-W,, /,(R).

For the first two steps, we can copy Langer—Zink’s proof, except that in the first step,
Langer and Zink use the F-Teichmiiller condition (see (77) below), but the argument works
equally well with the V-Teichmiiller condition (7y/). For the third step, apply =2V} to both
sides of dV,(y?) = V,(y?~1)dV,(y) (which we know from the inductive hypothesis). Using
Vyod = £(doV,) by Lemma 3.2 and V;(y)? = *~1V,(y), the left-hand side becomes

CTV AV, (yP)) = AV (yF) = AV (P Ve(yP)) = dVp(Va(y)?) -
In a similar way, the right-hand side becomes
PV (VP dVa(y) = C7V(Va(yP ™) dVeV(y) = Vo (Ve(y) ™) dVpVa(y)
This finishes Step 3, the induction, and the proof. ]

3.5. Remark. — It turns out that an even stronger version of Lemma 3.4 is true: If d | m is
any divisor, and = € ¢-W4(R/A), then

AV a(2™) = Vi g (2971 AV, a() -

The author doesn’t know how to generalise the proof of Lemma 3.4. Instead, one can argue
as follows: It suffices to prove this for the universal ¢-V-system over R. We’ll see that such a
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thing exists in Proposition 3.12; furthermore, this proposition shows that we can reduce to the
case where R is a polynomial ring over A (possibly in infinitely many variables). Furthermore,
it will follow from Proposition 4.1 and passing to filtered colimits that the universal ¢-V-system
over a polynomial ring is degree-wise Z-torsion-free. But the relation in question is easily seen
to be true after multiplication with (m/d)™%!, so we’re done. Note that we couldn’t have
used this argument in the first place, since we’ll need Lemma 3.4 (in its weak form) to prove
Proposition 4.1.

Next we define the variant that has Frobenii.

3.6. Definition. — Fix an A-algebra R. A q-FV -system of differential-graded A-algebras
over R is a ¢-V-system (P} ),en as in Definition 3.1 together with the following additional
structure:

(c) For all d | m, a morphism F,, q: Py, — Pj of graded A[g]-algebras. These are required
to be compatible with the Frobenius maps on ¢-Witt vectors (via the morphisms from
Definition 3.1(a)) and must satisfy F, /. = Fy/ o Fy, /4 for all chains of divisors e | d | m.
Furthermore, they must interact with the Verschiebungen in the following way:

Fm/d odo Vm/d =d and Vm/d(WFm/d(n)) = Vm/d(w)n

for all w € PJ, n € P}. Moreover, F,, must commute with V}, whenever n, k are coprime.
Finally, we must have the familiar relations

FrjaoViga=m/d and V40 F,,q=[m/d].

Last but not least, we require that the following F'-Teichmiiller condition is satisfied:

(1) For all d | m and all r € R, one has
Frya(drm(r)) = ma(r)™ = dry(r) .

Here 7, (1) € ¢-W, (R/A) and 74(r) € ¢-W4(R/A) denote the respective Teichmiiller lifts,
which we also implicitly identify with their images in P2 and Pg , respectively.

There is an obvious category of ¢-F'V-systems of differential-graded algebras over R, which we

denote CDGA]quf;;‘V, and an obvious forgetful functor CDGAIg‘gﬁXV — CDGAlggKLX.

3.7. Lemma. — Let R be an A-algebra. In any q-FV -system (P} ),en over R, the Frobenii
satisfy the relation
doF,=n(doV,).

Proof. We write n = m/d and use the conditions from Definition 3.6(c) to compute that
dFy,q(w) = Fya(dViaFm (W) = [m/d]aFy a(dw) for all w € Py, But this computation
takes place in P}, which is (¢% — 1)-torsion, so multiplication by [m/d] g2 and by m/d agree. [

3.8. Remark. — In Definition 3.6, the condition that (P}) be a ¢-V-system was added for
simplicity, but it’s partially redundant. As explained after [LZ04, Definition 1.4], the condition
Vinjalwdn) = Vi, a(w) dVy, q(n) from Definition 3.1(b) is easily implied by the conditions
from Definition 3.6(c), and the V-Teichmiiller condition (1) follows easily from this and the
F-Teichmiiller condition (7).

Finally, we introduce the variant that only becomes relevant for smooth Z-algebras.
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3.9. Definition. — Fix an A-algebra R. A torsion-free q-V -system of differential-graded A-
algebras over R is a system (P}) of degree-wise Z-torsion-free differential-graded A[q]-algebras,

equipped with the additional structure from Definition 3.1(a) and (b). The corresponding
category will be denoted (CDGAlg}, /A )tors’free.

3.10. Remark. — Note that every torsion-free ¢-V-system is also a g-V-system. Indeed,
in general, the V-Teichmiiller condition (71/) always holds up to (m/d)™/ % !-torsion, so it’s
automatically true in the Z-torsion-free case. In particular, there is a fully faithful forgetful
functor (CDGAlg‘gXL‘)tors’free — CDGAlggXL‘.

3.11. A theory without restrictions (again). — Observe that we do not include any
restriction maps in Definitions 3.1, 3.6, and 3.9.(31) This is of course necessitated by the fact
that there are no restrictions for g-Witt vectors.

Surprisingly though, restrictions are also not needed for Langer—Zink’s construction! Indeed,
let R — S be any map of Z,-algebras and let CDGAlgg/‘;%(p) be the category of F'V -pro-
complezes (P})n>1 over the R-algebra S as in [LZ04, Definition 1.4], but without the restriction
maps P | — P} (this is of course an informal definition; we leave it to the reader to formalise it).
Then the de Rham-Witt pro-complex (W, Q% / g)n>1 is still initial in the category CDGAlgE/‘;’%(p ),
To see this, just skim through [LZ04, §1.3] and note that compatibility with the restrictions is
never enforced. We’'ll see in Remark 3.18 below that this observation provides us with a map
from Langer—Zink’s de Rham-Witt complexes to our ¢-de Rham—-Witt complexes.

§3.2. Construction of g-de Rham-Witt complexes

In this subsection we’ll construct (¢-W,, Q7 / 4)meN and derive some first properties. Our goal
is to prove the following proposition.

3.12. Proposition. — Let R be an A-algebra. The category CDGAlgq}.th4 has an initial object
(q—WmQE/A)meN, which has the following properties:

(a) For allm € N, the canonical map Qq Wy (R/4)/Ala] — q—WmQE/A is surjective. For m =1,
it induces an isomorphism QR/A = g-W, R/A

(b) For all m € N, the structure map from Definition 3.1(a) induces an isomorphism
G- Wi (R/A) = ¢-Wp Q5 4.

3.13. Definition. — Let R be an A-algebra. For all m € N, the differential-graded A[q]-
algebra ¢-W,,Q7, /A from Proposition 3.12 is called the m-truncated q-de Rham—Witt complex

of R relative to A.32)

Proof of Proposition 3.12. We proceed inductively. For m = 1, we put q—Wlﬁ}"%/A = Q’}’}/A.
Now let m > 1 and assume that we’ve already constructed ¢-W;Q7, /A for all divisors d | m,

-DWhich is also why we can’t use the term FV -pro-complez as in [LZ04, Definition 1.4]—at best, in the
presence of Frobenii, we get a pro-system of graded A[g]-algebras, but never of complexes.

(3-2) Again, we’ve deviated again from the terminology of [Wag21, Definition 5.17], as we’re not working in a
(¢ — 1)-complete setting and also Z-torsion-freeness is not assumed. It will be apparent from Proposition 4.1
(plus Corollary 2.38 to ensure that completions behave nicely) that the g-de Rham-Witt complexes defined

n [Wag21, Definition 5.17] coincide with (g-W.,Q%)(, 7)(q—1)» Where the completion is taken degree-wise (and it
doesn t matter whether we take the underived or the derived completion).
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d # m, satisfying (a) and (b), along with Verschiebungen V. for all e | d satisfying the
conditions from Definition 3.1. Now let J¥ C Q;Wm( R/A)/A[q D€ the smallest differential-
graded ideal satisfying the following conditions for all divisors d | m, d # m:

(Va) For all j > 1, all finite indexing sets I, and all sequences (w;, %;1,...,%; j)icr of elements
of q—Wd(R/A)‘ such that 0 = >°;c;w;da; 1 A -+ Ada;j holds in q—Wng,%/A (which is a
quotient of Qfl W (R/A)/Aq] by (a), so the sum makes sense), the following homogeneous

degree-j element is contained in J7 :

&= Via(wi) dVisa(in) A+ AdVp ja(wij) -
el

(74) Forall z € ¢-Wy(R/A) and all r € R (so that V,,, ;4(x) and Vm/d(xrd(r)m/d_l) are already
defined), the following homogeneous degree-1 element is contained in J¥,:

0= V(@) d7in (1) = Vippa (27a(r)™ ) AV para(r) -

Explicitly, J¥, is the graded ideal generated by all £, d¢, n, and dn, where £ and n are as in
(Va) and (74), respectively. We put ¢-WmQp 4 = Q7w 5y, Ald] JJ% . It’s a differential-graded
Alqg]-algebra by construction. Condition (V) makes sure that there’s a well-defined map
Vinja: q—WdQE/A — q—WmQE/A given by the formula

Vm/d(w dzi A--- A da:j) = Vm/d(w) de/d(xl) VANEERIAN de/d(an) .

This automatically satisfies the condition from Definition 3.1(b). Furthermore, (7,) ensures
that ¢-W,,, Q% satisfies the V-Teichmiiller condition (7y/) for w = x in degree 0, which easily
implies the general case. Finally, it’s clear from the construction that conditions (a) and (b)
are true. This finishes the inductive step. It’s straightforward to see that (¢-W,, Q% / 4)meN is

really initial in CDGAlgg/VA. O
3.14. Remark. — As in Remark 2.42, the proof of Proposition 3.12 shows that a similar

universal property also holds for every truncated system: If S C N is any truncation set (in the
sense of 2.5), we define an S-truncated q-V -system of differential-graded A-algebras over R to
be a systems of differential-graded Z[q]-algebras (P} ),cs equipped with the structure from
Definition 3.1(a), (b) for all m € S as well as satisfying the V-Teichmiiller condition (7y) for
all m € S. Then (¢-W,, Q% / 4)mes is the initial S-truncated ¢-V-system.

In the case where S = T, is the set of divisors of m, we only need a A,,-structure on A to
define (¢-WaQ2p, 4 )aers, -

3.15. Ghost maps. — It turns out that (q—WmQE/A) comes equipped with maps of
differential-graded A[g]-algebras

ghjat Wi 4 — Qg @4 g AlC]

for all d | m, generalising the ghost maps for relative ¢-Witt vectors. To construct these maps,
it’s enough to equip (Hd|m(Q}"%/A ® 4, pd A[Cd]))meN with the structure of a ¢-V-system over R.

According to Definition 3.1(a), the first piece of structure we must provide are ring maps
qG-Win(R/A) = TLgm (R ®4 pa A[Ca]) for all m. But we can simply take them to be the product
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(8hy,/q)dm of all relative ¢-Witt vector ghost maps; see 2.43. Furthermore, we have to define
Verschiebungen

Vinyn: [ [(Qh/a @aye AlC])— ] (k)4 ®a,pa AlCa])

eln dlm
for all divisors n | m. We do this as follows: If w = (we)e, is homogeneous of degree i, we let

Vm/n(w) = (Vm/n(w)d)dhm where

(m/n)Tlw, ifd=c|n

0 else

Vm/n(w)d = {

This is compatible with V;,/,,: ¢-W,(R/A) — ¢-W,,(R/A) because of how Witt vector Ver-
schiebungen interact with ghost maps. The other conditions from Definition 3.1(b) as well as
the V-Teichmiiller condition (1) are straightforward to check. This finishes the construction.

Finally, our relative g-de Rham—Witt complexes enjoy a similar base change property as in
Lemma 2.45.

3.16. Lemma. — If A — A’ is a morphism of A-rings and R is an A-algebra, then for all
m € N the canonical map is an isomorphism

¢ Winp/4 ®a A= Wi Qg ar/a -

Proof. 1t’s straightforward to verify the desired universal property for ¢-W,, Q% /4 ®A A’. The

only non-obvious property is the condition from Definition 3.6(a), that is, the existence of an
Alq]-algebra map ¢-W,,,(R®a A'/A") — ¢-W,,(R/A) ®4 A’. But this was taken care of in
Lemma 2.45. O

§3.3. Construction of Frobenii

In this subsection we’ll prove the following proposition:

3.17. Proposition. — Let R be an A-algebra. There is a unique choice of Frobenius operators
on (q—WmQE/A)meN, making it into a q-FV -system. Moreover, this exhibits (q—WmQE/A)mGN
as an initial object of the category of q-FV-systems.

3.18. Remark. — As a consequence of 3.11 and Proposition 3.17, we get a comparison map
between ordinary and g-de Rham-Witt complexes in the case where A a Z,)-algebra. Indeed,
in this case there’s a forgetful functor

FV FV, (p)
CDGAlg;’%/A — CDGAIgR/Z(i
sending (P )men to (P-1)n>1, which induces morphisms

Wart1Qka — ¢Wpeallg 4

for all @ > 0, compatible with Frobenii and Verschiebungen.
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3.19. Battle plan. — Unfortunately, the proof of Proposition 3.17 will be rather laborious.
We construct the Frobenii F, /3: ¢-W,, Q% /A~ q-WQ7, /A using induction on m. For m =1,
there’s nothing to do. For the rest of this subsection, let m > 1 and assume that F};/, has been
constructed for all e | d | m, d # m, in such a way that the conditions from Definition 3.6(c)
and () are satisfied. It then suffices to construct Fy: ¢-W,,Q} /A~ W Q25 /A for any
prime factor p | m. Fix such a prime p. Our first goal is to construct a Z[g]-linear derivation

Fyd: ¢-Wi(R) — ¢-W,, ,Qp 12

The notation F}, d is chosen in a suggestive way, of course, but has no intrinsic meaning yet.
Once F,d is constructed, we’ll painstakingly verify that it extends to a graded A[g]-algebra

map Fj,: q—WmQE/A — q—Wm/pQE/A with all desired properties.

3.20. Some properties that F,d should have. — Given what F,d should be, we
immediately note that it should satisfy the properties below.

(a) On Teichmiiller lifts, the values of F},d are prescribed by (77): We must have
Fydrp(r) = Tm/p(r)p_l A7y /(1) -

(b) On elements in im V;, where ¢ is any prime factor of m, the values of F}, d are also prescribed
by Definition 3.6(c): If £ = p, we immediately get

F,dV,(z) =dz.

If ¢ # p, it’s a little less straightforward to see. First note that Fj, dVy(x) is uniquely
determined by pF, dVi(x) and ¢F,dV(x), as ¢ and p are coprime. Using Lemmas 3.2
and 3.7, we see that necessarily

pF,dVy(z) = dF,Vi(z) and (F,dVy(z) = F,(Vidx) = Vo(F,dx).

The right-hand sides are uniquely determined by induction and the fact that F}, should be
just the usual Frobenius in degree 0.

We also note that together with Fj, d being Z[q¢]-linear, properties (a) and (b) already show that
there is at most one choice for F, d: ¢-W,,(R) — ¢-W,, /pﬂ}% 7 More generally, this shows that

there is at most one choice of an A[g]-linear derivation Fj,d: ¢-W,,(R/A) — ¢-W,,,,Q

1
m/p i R/A"
3.21. Lemma. — Let V,, := (imV; | £ prime factor of m) C ¢-W,,(R). Then there is a

well-defined Z[q)-linear map F,d: Vi, — ¢-W,, , Q5 given as in 3.20(b).

Proof. From Proposition 2.14, we get an exact sequence

(Vey =Viy) v,
@ q_wm/ﬁ1éz (R) % @Q‘Wm/Z(R) M) Vm — 0;
L

L1782

here ¢, ¢1, and ¢5 range over all prime factors of m. Condition (b) above defines a unique Z[q]-
linear map @, ¢-W,, ,(R) — ¢-W,, /pQ}% (here we also use injectivity of the Verschiebungen,
see Corollary 2.18) and we only have to check that ®,, 205 Wi/, s, (R) maps into its kernel.
We can do this one summand at a time. So fix prime factors £1 # f5. We distinguish two cases:

Case 1: p ¢ {{1,¢5}. In this case, it’s enough to check that pF}, d and ¢1£2F}, d are well-defined,
since p and ¢1/y are coprime. For pF), d, we have to check that dF,Vp, (Vi,(z)) = dF, Vi, (Vi (2))
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holds for all z € ¢-W,, ¢, (R), which is clear. For ¢1f2F),d, we have to check the condition
0oVy, (Fp AV, (2)) = 41V, (Fp dVp, (), which again is clear as both sides can be transformed
into Vp, ¢, (Fpdz), using Lemma 3.2.

Case 2: p € {{1,03}. Without restriction let p = ¢; and ¢ = ¢5. This time we check that
pFy,d and (F, d are well-defined. For pF}, d, we must check that dF,Vy(V,(z)) = pdV,(z) holds
for all x € ¢-W,, 5,4, (R), which follows from F}, 0 Vp oV}, = F, 0V, 0V, = pV,. For (F,d,
we must check that V(F, dV,(x)) = £dV,(z). But this follows from the inductive hypothesis,
which ensures that F, dV,(z) = dz, and Lemma 3.2. O

3.22. Construction. — We construct a well-defined map F,d: ¢-W,,(R) — q—Wm/pQ}Q/Z
as follows: By 2.12, every = € ¢-W,,(R) can be uniquely written as

p(m)—1
x = Z ¢ Tm(ri) +v,
i=0

where ¢(m) = deg ®,,(¢q) denotes Euler’s ¢-function, r; € R, and v € V,,,. We then define

p(m)—1

Fydr = Z qiTm/p(m)p_l dTm/p(Ti) + F,dv,
i=0

where F), dv is constructed as in Lemma 3.21.

3.23. Lemma. — The map F,d: ¢-W,,(R) — ¢-W,,,,Q% from Construction 3.22 is additive.

m/p

Proof. 1t’s straightforward to see from Definition 3.13 that g-de Rham—Witt complexes commute
with filtered colimits in R. By writing R as a filtered colimit of finite type Z-algebras, we may
thus assume that R itself is of this form. In this case, Corollary 2.38 shows that ¢-W,, ,(R)
is of finite type over Z too and then Proposition 3.12(a) shows that ¢-W,, /pQ}Q is a finitely
generated module over the noetherian ring ¢-W,, /,(R). For any finitely generated module M
over a noetherian Z[q]-algebra, the natural map

1 r 1
M — M[;] X 1;[ M(nqm/e_l) X M[iqm/lfl ‘ Z # p]
L#£p

is injective; here ¢ ranges over all prime factors # p of m.3) In particular, we see that it

suffices to show additivity of our would-be derivation F}, d after applying each of the functors
(LBl (D) ey and (D[L/ @ = 1) | £#].

Proof after localisation at p. Since pF), d = dF}, holds by construction, it’s clear that Fj,d is
additive after inverting p.

Proof after (p,q™* — 1)-adic completion. It suffices to show additivity of (F,d, since ¢
becomes invertible after (p, ¢"/! — 1)-adic completion. Furthermore, [/] gm/ve Decomes invertible

(-3 Here’s the technical argument: It’s clear that the map is injective after applying each of the functors
(=)[1/p], (_)?qum/“lﬁ and (—)[1/(qm/l -1) ‘ ¢ # p|. Thus, if K denotes the kernel of the map above, then
M — M/K will become injective after applying each of these functors, because then an injective map factors
through it. But all of these functors preserve exactness of the sequence 0 — K — M — M/K — 0: For the
localisations, this is clear, for the completions, we appeal to the fact that we're working with finitely generated
modules over a noetherian ring. Hence K vanishes after each of these functors and Lemma 2.4 shows K = 0.
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too. Hence the Frobenius Fy: ¢-W,, Q% 7z~ W pe05 17 which we’ve already constructed,

induces an isomorphism (with inverse [¢] . V)

1
qm/pl
. 1 A = 1 A
Fe: (Q‘Wm/pQR/Z)(p,qm/Ll) - (Q‘Wm/pZQR/Z)(p,qm/Ll)-
Therefore it suffices to show that (Fy(F,d) is additive. But we’ll show in Lemma 3.24 that
(Fy(F,d) = F,dFy, where F), on the right-hand side refers to F},: q—Wm/gQE/Z — q—Wm/ng}"%/Z,
which we’ve already constructed. Now it’s clear that Fj, dFy is additive.

Proof after localisation at (¢™/* —1) for all £ # p. Let m = p®n, where o = v,(m). Observe
that

G Won o Uy gty | £# 9] = 0 Woas Oz gy im Z{0. G | £#9)

where ¥" is the map that sends ¢ — ¢". Indeed, this can be shown as in the proof of
Proposition 2.14 by comparing universal properties (more precisely, by comparing the truncated
universal properties from Remark 3.14). So we can reduce to the case where m = p®. In
this case, the calculation from the proof of [LZ04, Proposition 1.3] can be carried over to our
situation (note that Langer-Zink’s calculation needs Lemma 3.4). O

3.24. Lemma. — If{ # p is another prime factor of m, then the map F,d from Construc-
tion 3.22 satisfies

(Fy(Fpdx) = F,dFy(x)
forallz € ¢-W,,,(R), where Fy on the left-hand side refers to Fy: q—Wm/pQE/Z — q—Wm/ng}}/Z,
which has already been constructed by induction, and Fy on the right-hand side refers to the
q- Witt vector Frobenius, which we also already know how to construct.

Proof. By construction of F,d in Construction 3.22, it suffices to consider the three cases
x = ¢'Tim(r) for some 0 < i < p(m) and some 1 € R, x = V,(y) for some y € ¢-W,, ,,(R), and
x = Vp/(z) for some prime factor £’ # p of m and some z € ¢-W,, /»(R).

Case 1: © = ¢"Ty(r). Using Lemma 3.7, we can transform the left-hand side as follows:

LF, (Fp d(qiTm/p(r))) = inFg (Tm/p(r)p_l dTm(’l“)) = qiTm/pg(r)e(p_l) ngTm/p(T) .

On the right-hand side, we use Fy(¢'7n (7)) = ¢'1p, /g(?"g), and then the F-Teichmiiller condition
(7r) shows

m/p

Fp d(qiTm/Z(rz)) = qiTm/pZ(TZ)p_l dTm/pé(Te) = qiTm/pf(r)e(p_l) dFZTm/p(r) :

Case 2: © = V,(y). In this case we have F,dV,(y) = dy. So the left-hand side simply
becomes (Fy dy = dFy(y). On the right-hand side we use that F; commutes with V), to obtain
F,dFV,(y) = F, dV,Fy(y) = dFy(y), as required.

Case 3: x = Vp(z). In this case, we prove the required equation after multiplica-
tion by p and after multiplication by ¢. After multiplication by p, the left-hand side be-
comes plFy(F,dVy(z)) = (Fy(dF,Vy(2)) = dFpF;Vy(z), whereas the right-hand side becomes
pF, dF Vi (2) = dF,FyVir(2). These two are the same, since we already know Fj, o Fy = Fyo F,
as maps q- Wi (R) — q- W, 0 (R).

Now let’s see what happens after multiplication by ¢'. By 3.20(b), ¢'F, dVy(z) = Vp(F, dz).
Plugging this into the left-hand side, we obtain

(*F, dz if =0/

UUE (F,dVy =lF\Vy(Fpdz) = .
(Fy dVe(2)) = EEVe (Fy d2) {evg,pg(dez) if 00
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If ¢ = ¢, then the right-hand side can be rewritten as ¢'F, dF,Vy(z) = (F,d({z) = (*F,dz,
as required. In the case ¢ # (', we already know that Fy o Vi = Vy o F;, holds as maps
W e (R) — ¢-W,, /o(R). We can thus compute

UF,dFVy (2) = Fp (¢ AV Fy(2)) = Ve Fy(dFy(2)) = Ve Fy(Fydz) .

In the second step, we used Lemma 3.2 together with the fact that Vi o F}, = F}, o Vjy holds
as maps q¢-W, /p Q% — ¢-Wp, 0% (we already know this by induction). In the last step we
used Lemma 3.2. Putting everything together, it remains to see (Vi Fy(F), dz) = {Vy F,(Fydz),
which is clear since we already know Fj, o Fy = Fyo F}, as maps ¢-W,,, QE/Z — q—Wm/pg/eQE/Z.
This finishes the proof.

3.25. Lemma. — The map F,d: ¢-W,,(R) — q—Wm/pQE/Z from Construction 3.22, which
we know to be additive by Lemma 3.23, is Z[q]-linear.

Proof. We already know from Lemma 3.21 that F), d is Z[g]-linear on the ideal V C ¢-W,,(R)
generated by the images of all Verschiebungen. This easily reduces the assertion to checking
that Fp d(®m(q)7m(r)) = @u(q)Ep dTim(r) = Pm(q)Tmp(r)P~ 1 d7y, p(r) for all v € R. Using
Lemma 2.2, it suffices to show

FP d([g]q"b/ﬂ—m (T)) = [e]q"b/fTm/p(r)pi1 dTm/p(r)

for all prime factors ¢ | m (including ¢ = p); note that for this argument to work, we crucially
use that [£] m/eTm(r) and thus ®.,(¢)7,(r) are contained in V, where we already know Z[q]-
linearity. We write [£] m/Tp(r) = ViFy(7in(r)) and apply 3.20(b). This requires once again a
case distinction.

Case 1: £ = p. In this case we have [p]qm/prm/p(r)p_l A7 p(r) = 107'm/p(7“)p_1 A7 p(1),
because both sides live in ¢-W,, ,,Q0%, which is (qm/ P — 1)-torsion. Also, according to 3.20(b),
we have I}, AV} (7, /,(7)P) = d(7p,/p(7)F). Using that d is a derivation, we're done.

Case 2: £ # p. We use our standard trick and show the desired equation after multiplication
by p and by £. After multiplication by p, we obtain

pF, (dVgFg (Tm(r))) = dF,VyFy (Tm(r)) = [E]qm/g dFpmm(r) = p[ﬁ]qm/ﬂm/p(r)p_l dTm/p(r) ,
as required. After multiplication by ¢, 3.20(b) allows us to compute

CE (AVeFy (1)) = Ve(Fp A7) = Ve (T pe(r) @~ driy e ()
= 0V (T e (1) P07, (1) 1) AV e (7)
=LV, (Tm/pf(r)g(pil)) A7 (1)
= Z[ﬁ]qm/ﬂm/p(r)p_l dTm/p(’l") .

In the first line, we used the F-Teichmiiller condition (77), which we already know for
Fp: q¢Wo, Q% — ¢- W, Q2% In the second line, we used that d is a derivation together
with the last condition from Definition 3.1(b). In the third line, we applied the V-Teichmiiller
condition () for w = Tm/pg(r)é(p_l). Finally, in the fourth line we used the fact that

W(Tm/pe(r)g(p_l)) = WFg(Tm/p(T)p_l) = [E]qm/ﬂm/p(r)p_l. We're done. O

3.26. Lemma. — The map F,d: ¢-W,,(R) — q—Wm/pQ}%/Z from Construction 3.22 is a
Z|q]-linear derivation. Furthermore, if R is an A-algebra, then F,d extends uniquely to an
Alq]-linear derivation F,d: ¢-W,,(R/A) — ¢-W,,,,Q

1
m/pYiR/A
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Proof. To show the first assertion, we use the same method as in the proof of Lemma 3.23:
After localisation at p, everything is trivial again. After (p, gt — 1)-adic completion, we can
use induction again. After localisation at (¢"/* — 1) for all £ # p, we can reduce to the case
m = p® again. In this case, we can adapt the proof of [LZ04, Proposition 1.3]; to make the
adaptation, one needs to use that Fj,d is Z[g]-linear, which we know from Lemma 3.25.

For the second assertion, first observe that F,d: ¢-W,,(R) — q—WmQ}% 1z~ q—WmQ}% /A
kills all elements in the image of ¢-W,,,(4) — ¢-W,,(R). Indeed, according to the description
in 3.20, we only have to show dz = 0 for all z € ¢-W,, ,(A) as well as V;(F,dy) = 0 for
all y € ¢-W,,/¢(A) and all £ # p. The latter follows from the inductive hypothesis, whereas
the former is ensured by the fact that q—Wm/pQ}{ /4 18 @ quotient of Qé_wm/p( R/A)/A[q] by

Proposition 3.12(a). Thus, F, d can be extended to an A|[g]-linear derivation
Wi (R) ®qw,,(4) Ala)/ (@ = 1) — ¢ W) Q54 -

It remains to show that the ideal U, from Lemma 2.40 is killed. This is another straightforward
check. It’s enough to consider generators of the form Vy(zy) ® 1 — Vi(7) ® ¢, ¢(y) for £ | m
a prime factor, z € ¢-W,, y(R), and y € ¢-W,, /s(A). If £ = p, then the map above sends this
generator to d(zy) — ¢y, /¢(y) dz = 0, using that the differentials of ¢-W,, ,, Q0% /4 8re Alg]-linear.
If ¢ # p, we have multiply by p and by ¢ once again. After multiplication by p, we obtain
dF,(Ve(zy) ® 1 — Vi(z) @ cpye(y)), which vanishes because Vy(2y) ® 1 — Vi(z) ® cpye(y) = 0
holds already in ¢-W,,(R/A). After multiplication by ¢, we get Vy(F, d(zy) — ¢y pe(y) Fp d),
which vanishes by the inductive hypothesis. O

3.27. Construction. — From Lemma 3.26 and the universal property of Kéhler differentials
we get a ¢-W,,(R/A)-module map F),: Qé_wm(R/A)/A[q] — q—Wm/pQ}{/A. By the universal
property of exterior algebras, this extends uniquely to a map

Fp: Q. (ryay Al — 4" Wi /pRya

of graded ¢-W,,(R/A)-algebras. We wish to show that this map factors uniquely over
W, Q% /A" By revisiting the explicit construction, we see that we must check F,(§) = 0,
F,(d§) =0, F,(n) =0, and F,(dn) = 0, where £ and 7 are as in the proof of Proposition 3.12.
This will be proved in Lemmas 3.28 and 3.29 below.

3.28. Lemma. — Fiz a divisor d | m such that d # m. Let j > 1, let I be a finite
indexing set, and let (w;, z;1,...,%;;)icr be a sequence of elements of ¢-Wy(R/A) such that
0=>crwidx;1 A--- Adw;; holds in q—WdQ%/A. Put

&= Z Vm/d(wi) de/d(xLl) VANREIVAN de/d(xiJ') .
i€l

Then Fp(&§) = 0 and F,(d§) = 0.

Proof. Note that 3.20 tells us how to compute F,(§), but in order to do that, we need to
distinguish whether or not p divides m/d. If p does divide m/d, we get

Fp(g) = vam/pd(wi> de/pd(xiJ) ARERA dvm/pd(xi,j)
i€l

= PVin/pd <Z widz; g A A dwi,j) )

el

46


https://www.math.uni-bielefeld.de/~zink/dRW.pdf#page=16

§3.3. CONSTRUCTION OF FROBENII

which vanishes because Y ;c; w; dzi1 A -+ Adx; ; = 0 by assumption. If p doesn’t divide m/d,
we’ll show p? Fj,(€) = 0 and (m/d)’ F,(£) = 0 instead. For the first one, we compute

P F (&) = FpVinja(wi) dFpVi ja(@in) A+ AdFp Vi a(i 5)
icl

= Vm/d (Z Fp(w;) dFp(@ia) A - A de(“J))

el
= p]Vm/de <Z w; dCCZ"l FANCIRIVAN dCL‘Z’J) R
el

which once again vanishes by our assumption >,y w;dz;1 A--- Adx;; = 0 plus the fact that
we already know Fj,: ¢-WyQ7p, /A" -Wqp Q% /4 tO be well-defined. Similarly,

m\J
(%) o) = 3= FpVinsalwi) Vinga( By daic) A -+ A Vi al(Fp )
el

= (%)jvm/de (Z widwiyp A A dxi,j) :

el

This vanishes because of our assumption again, plus the fact that we already know the Frobenius
F,: q—WdQE/A — q—Wd/pQ}“%/A to be well-defined. This finishes the proof that F},(§) = 0. The
proof that Fj,(d{) = 0 is completely analogous and we’ll leave it to the reader. O

3.29. Lemma. — Fiz a divisor d | m such that d # m. Let x € ¢-W4(R/A) and r € R. We
put
1= Vi) A7 (1) = Vi g (27a(r)™ 1) dVip, ara(r) -

Then Fy(n) =0 and F,(dn) = 0.

Proof. Again, we have to distinguish whether or not m/d is divisible by p. If it is, we get

Fp(n) = me/pd(x)Tm/p(T)p_l dTm/p(T) - me/pd ($Td(r)m/d_1> de/pde(r)

= pvm/pd (me/d(r)(p_l)m/pd) dTm/p(r) - me/pd (de(T)m/d_l) dvm/pde(T) .

In the second line we used Vm/pd(:v)Tm/p(r)p_l = Vo/pd(@F . jpa (T p(1)P 1)), as we already
know that the conditions from Definition 3.6(c) are true for Fy,, /01 ¢-W,, Q0% /A~ q-WaQy, A0
and Fy, 1pq (T p(r)P 1) = Tm/d(r)(pfl)m/pd. Now Fj,(n) vanishes because the last line is precisely
p times the V-Teichmiiller condition (1) for x7,, /d(r)(p_l)m/ Pd and 7.

Now assume p doesn’t divide m/d. Since 7 is automatically a (m/d)™/4~-torsion element
in Q(lz_wm(R/A)/A[q], it suffices to show pF,(n) = 0 in this case. Note that p not dividing m/d
implies that p must divide d. We put mg := m/p and dy := d/p for short and compute

pr(n) = Fme/d(l") deTd(T) - Fme/d (de(T)m/d_l) deVm/de(r)
= Ymo/do (Fp(x)) deo (Tp) - Vmo/do (FP(SC)Tdo (Tp)mo/do_l) deo/dono (Tp) .

Now pF,(n) = 0 follows because the last line is precisely the V-Teichmiiller condition (7y/) for
F,(x) and rP. This proves Fy,(n) = 0. The proof of Fj,(dn) = 0 is similar and we leave it to the
reader once again. O
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With Lemmas 3.28 and 3.29 proved, Construction 3.27 finally gives a complete construction
of the Frobenius F,. It remains to check that it has all necessary properties.

3.30. Lemma. — The map Fj: q—WmQ”I‘%/A — q-W
all properties from Definition 3.6(c).

m/pQ}*%/A from Construction 3.27 satisfies

Proof. Compatibility with the ¢-Witt vector Frobenius holds by construction. For the chain
condition, we must check F),o Fy = Fjo F), for all prime factors £ # p of m (in both compositions,
the left factor is defined via Construction 3.27 and the right factor is defined by induction).
This can be checked after multiplication by p and ¢ and then Lemma 3.24 takes care of the
essential case. The condition F}, od oV}, = d holds again by construction.

It remains to prove V,(wF,(n)) = V,(w)n for all w € ¢-W,, ,,Q% and all n € ¢-W,, Q7% (which
also implies V}, o F}, = [p] m/»). This is easily reduced to checking V,(zF,(dy)) = V,(z) dy for
all z € ¢-W,, ,(R) and y € ¢-W,,(R) (that is, it suffices to do the case w = z and n = dy).
Furthermore, it suffices to treat the three cases y = a7,,(r) for some a € A[q] and some r € R,
y = Vp(z) for some z € ¢-W,, ,,(R), and y = V;(w) for some prime factor ¢ # p of m and some
w e q_Wm/f(‘R)'

The case y = a7y, (r) follows immediately from the V-Teichmiiller condition (7y). For
y = V,(2), we compute V,(xF,dV,(z)) = Vp(xdz) = V,(x)dV,(2), as required. Finally, to
handle the case y = V;(y), we have to multiply both sides by p and ¢ for one last time. After
multiplication by p, we obtain

m/p

pVp(2Fp dVy(w)) = Vp (2 dF,Vi(w)) = V(@) AVpF,Ve(w) = [pym/n V() dVi(w) .

But V,(z) is (¢™/P — 1)-torsion, so [Plym/n Vp(z) dVe(w) = pVy(z) dVi(w), as required. After
multiplication by ¢, we compute

0V, (wFyp Vy(w)) = Vy (aVi(Ey(dw))) = VyVi(Fo(a) Fy(dw)) = ViV (Fe() Fy(duw))

In the second equality we used the property for Fy: ¢-W,, Q% /A~ W /peS5 A0 which we
already know by induction. Furthermore, applying the inductive hypothesis to the Frobenius
F,: q—Wm/gQE/A — q—Wm/ng}“%/A, we get

ViV (Fo(x) Fp(dw)) = Vi (Vyp Fy(z) dw) = VeF V() dVi(w) = [£] jmseVp(x) AVy(w) -
But dV(w) is (¢"/¢ — 1)-torsion, so [£] e V() dVi(w) = £Vp(x) dVi(w), as required. O

Proof of Proposition 3.17. It follows from Lemma 3.30 that for all prime factors p | m there
exists a Frobenius Fj,: ¢-W,,Q7, /A~ W 0% /A satisfying all properties from Definition 3.6.
Furthermore, F), satisfies the F-Teichmiiller condition (77) by construction. This finishes
the inductive construction of Frobenii on (¢-W,,Q7, / 4)meN, thus making it a ¢-F'V-system of
differential-graded algebras over R. Furthermore, if (P})en is an arbitrary ¢-FV-system,

then the properties from 3.20 show that the unique morphism of ¢-V-systems

(W% 4) ey — ()

must automatically be compatible with Frobenii, thus making it a morphism of ¢-F'V-systems.
This proves that (¢-W,, 27, / 4)meN is initial in CDGAIg‘}I_-;;;V too. O
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§3.4. Etale base change
The goal of this subsection is to prove the following;:

3.31. Proposition. — Let R — R’ be an étale morphism of A-algebras. Then the canonical
morphism ((I‘WmQE/A)meN — (Q—WmQE//A)meN induces isomorphisms of differential-graded
q-W,,(R'/A)-algebras

G- Wi (R JA) @, (r)a) W 4 — Wi /1 -

To prove this, first we have to construct the differential-graded algebra structures on
Wi (R [A) ®qw,,(r/4) W, /4~ This is achieved by the following lemma.

3.32. Lemma. — Let P* be a differential-graded A[q]-algebra concentrated in nonnegative
(cohomological) degrees and let P° — S be an étale morphism of rings. Then the graded A[q]-
algebra S ®po P* admits a unique differential-graded Alq]-algebra structure compatible with the
one on P*. Furthermore, this exhibits S®po P* as an initial object among all differential-graded
Alq]-algebras P*-algebras Q* equipped with a ring map S — Q.

Proof. This elegant proof is taken from [BLM21, Proposition 5.3.2]. Since P — S is étale, we
obtain S ® po Q;’O/A[q] = QE/A[q] as graded rings. Then

*

PO/A[q]
where Q70,4 aq P* is the differential-graded morphism induced by the universal property
of the algebraic de Rham complex. Now the tensor product on the right-hand side of the
isomorphism above carries an obvious differential-graded structure, which also clearly satisfies
the desired universal property. O

Proof of Proposition 3.31. We use induction on m and work with the truncated universal
properties from Remark 3.14, applied to the truncation set T, of positive divisors of m. The
case m = 1 is trivial as q—Wlﬁj‘%/A = Q}"%/A by Proposition 3.12(a) and same for R'. So let
m > 1 and assume that the base change formula is true for all divisors d # m of m. We equip
Wi (R [A) ®q-w,,(r/4) Wi /4 With the differential-graded A[g]-algebra structure from
Lemma 3.32, using that ¢-W,,(R/A) — ¢-W,,,(R'/A) is étale by Proposition 2.47. Furthermore,
¢-We(R'/A) ®q-w,(r/A) q—WdQ}“%/A = ¢-Wi(R'JA) ®qw,, (r/4) q—WdQ}“%/A holds by the second
part of Proposition 2.47. Consequently, we can define

Visa: aWa(R'[A) ®qwy(rya) Wak/a — ¢-Win(R'/A) @ w,,.(r/a) T Wm QR /4

to be the ¢-W,,(R'/A)-linear extension of the Verschiebung V,,, 4: q—WdQ}"%/A — q—WmQ}E/A.
If we can show that these V! /d satisfy the conditions from Definition 3.1, then combining the
universal property of (¢-WyQ7%, / 4)deT,, With the universal property of the differential-graded
structure on ¢-Wp,(R'/A) ®q-w,,(r/4) - Wmp /4 obtained from Lemma 3.32 will show that
(¢Wa(R'/A) ®qwy(r/a) - WalF, / 4)deT,, satisfies the universal property from Remark 3.14.
In particular, it will immediately show ¢-W.,,(R'/A) ®q.-w,,(r/4) - WmQE = ¢- W, Q7 /A thus
finishing the induction.

Most conditions from Definition 3.1 are straightforward to check, except for two tricky ones:
v Ja(wdn) = v Ja(@) dV,, 4(n) and the V-Teichmiiller condition (7). Nevertheless, these can
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be checked without doing any calculations, even though the argument is a little confusing (at
least to the author). Let

Frojat Wi (R'/A) ®gw, (r/4) Wi a — ¢-Wa(R'/A) ®gwy(r/4) Wi 4

be the ¢-W,,(R'/A)-linear extension of the Frobenius F,, /4. As noted in Remark 3.8, it’s
enough to check that F/, Jd satisfies the conditions from Definition 3.6(c), which are clear except
for F' aodo v /a = d, and the F-Teichmiiller condition (7x). Both of these are (easily
reduced to) assertions about F) ;o d: ¢-W(R'/A) — q-Wa(R'/A) ®gw,(r/a) a-Wasl ) 4-
It would certainly be enough to show that F/ /d © d agrees with the A[g]-linear derivation
Frjqod: ¢-Wy,(R'/A) — q—WdQ}%,/A from the actual g-de Rham Witt complexes over R’.
Consider the diagram

¢~ Wi (R'/A)
d

F/
™/
Wi (R'/A) g, (7/4) Wik 4 — " -Wu(R'/A) g, (Rj4) Wl a

14

G-Won (R JA) ®q-w,,(r/A) Qé—wmm/A)/A[q]

~

1 1
Qyw,.(r'/4)/ALq] ¢-Wallp 2

(the bottom left isomorphism follows from ¢-W,,(R/A) — ¢-W,,(R'/A) being étale and the
isomorphism on the right follows from the inductive hypothesis for d). Note F, /d © d is indeed
a A[g]-linear derivation; namely, the one associated to the bottom row of the diagram. Now
whether the A[g]-linear derivations F,,; o d and F), Jd © d are equal can be checked after
restriction along the étale morphism ¢-W,,,(R/A) — ¢-W,,,(R'/A), where they indeed become
equal by construction. O

3.33. Corollary. — For all positive integers m, the functor
Wy, Q_/4: CRingy — CAlg(D(Alq)))

sending an A-algebra R to the Ex-A[q]-algebra underlying the differential-graded Alq]-algebra
q—WmQE/A, is an €tale sheaf.

Proof. Tt suffices to show that the underlying functor CRing,4 — D(Z[q]) is an étale sheaf. By
writing ¢-Wp,,Qg/4 as a (derived) limit over its stupid truncations q—WmQEZ/ 4 and passing to
graded pieces, it’s enough to show that ¢-W,, Q% /A is an étale sheaf for every ¢ > 0. Using

Proposition 3.31, this will be a consequence of the following assertion:

(X) Let R be an A-algebra and let M € D(qg-W,,(R/A)) be a bounded below complex. Then
the functor R' — ¢-W,,(R'/A) ®{;—Wm(R/A) M defines a D(Z[q])-valued sheaf on the small
étale site of R.
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To prove (X), first note that ¢-W,,(R'/A) ~ ¢-W,,,(R') ®I(;-Wm( r) Wi (R/A) follows from
Lemma 2.49. So the functor under consideration agrees with R’ — ¢-W,,(R') ®IqJ—Wm (R) M. We

use induction on m. For m = 1, we can write R’ ®%M ~ lim;>o R’ ®I§ T<iM due to connectivity
reasons to reduce to the case where M is bounded, and then further to the case where M is
concentrated in a single degree. In this case we simply obtain a quasi-coherent sheaf on the
small étale site of R, which has vanishing higher cohomology [SGA,/,, Corollaire VII.4.4] and
is therefore also a sheaf with values in the oo-category D(Z[q]).

For m > 1, we use Proposition 2.14: It’s enough to prove that R’ — R'[(y] ®(I;—Wm(R) M

and R’ — ¢-Wy(R') ®{;‘Wm (ry M, for d # m a divisor of m, are D(Z|q])-valued sheaves. For the
latter, we can simply apply the inductive hypothesis to ¢-Wy(R) ®qL_Wm (R) M € D(¢-Wy4(R)).
To see that the former functor constitutes a sheaf, we can use a similar argument as in the
m = 1 case, applied to R[(y] ®I;_Wm(R) M € D(R[(m])- O

3.34. Corollary. — For any A-algebra R and any positive integer m, the ghost maps from
3.15 induce isomorphisms of differential-graded-A[q]-algebras

Wi 4l ] — H( R/A 4y A[#Cd])
dm

Proof. We’ll compare universal properties. Using Corollary 2.19(a) and the universal property
from Definition 2.41, it’s clear that ¢-W,,(R[1/m]/A) = ¢-W,,(R/A)[1/m]. Combined with
Proposition 3.31, we obtain

Wi al ] = aWa(R[5]/4) ®gwa(r/a) Wi a = ¢ Wk a

for all d | m. Thus, if T, denotes the truncation set of positive divisors of m, then
(q—WdQE/A[l/m])deTm is the initial T,,-truncated ¢-V-system over R[1/m] in the sense of
Remark 3.14. We will show that (He|d(§2’*1‘%/A ®a,pe A[1/m, Ce]))deTm, with its T;,,-truncated
g-V-system structure from 3.15, is initial too.

To prove this, first observe that the relative ¢-Witt vector ghost maps induce isomorphisms

(8haye)ela: ¢-Wa(R[;-]/A) = <R ®ape A[%7<€])
eld
Indeed, the canonical map ¢-W,,(R[1/m]) ®q-w,,.(a) Alql/(¢™ — 1) — ¢-Wy(R[1/m]/A) is
surjective by Lemma 2.40, but according to Example 2.37 we also have an isomorphism
q-Wa(R[1/m]) ®w,,(a) Algl/ (g™ — 1) = [Leja(R ®a,4e A)[1/m, (], and so it is a left inverse
of (ghd/e)d|e
Now let (PJ)ger,, be an arbitrary T, truncated g-V-system over R[1/m]. Observe that

for all d | m, the decomposition A[1/m,q]/(¢® — 1) = [Lejg Al1/m; ] induces a similar
decomposition Py =[], Pj., where Pj, is a differential-graded A[(c]-algebra. Furthermore,
the ¢-Wy(R[1/m]/A)-algebra structure on P! plus the ghost map isomorphism above induce
(R ®aype A)[1/m,(.]-algebra structures on Pg’e for all e | d. Thus, we obtain canonical
morphisms

H(QR/A@)AW A mvCe ) - HPde

eld eld
By Lemma 3.2, these are automatically compatible with the Verschiebungen. This proves that
(He|d(QT{/A ®a,pe A[1/m, Ce]))deTm satisfies the required universal property. O
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§4. ¢-de Rham Witt complexes in the smooth case

Fix a A-ring A which is perfectly covered in the sense of Remark 2.46. The most important
special case is A = Z. In this section we’ll study q—WmQ}’}/A for smooth A-algebras R. Our
goal will be to prove Theorem 1.7—and in fact, the more general version Theorem 4.28—as
well as the following two propositions.

4.1. Proposition. — Let R be smooth over A. Then q—WmQE/A s degree-wise Z-torsion-free
for all m € N. In particular, (q—WmQ}"%/A)meN is also an initial object of (CDGAIg%XLl)tors'free.
4.2. Proposition. — Let R be smooth over A and let m be a positive integer. If p is a prime

and « s the exponent of p in the prime factorisation of m, then there exists an equivalence of
p-complete Ex-Alq]-algebras

m N o~ A
(Qr/a ®i7¢pa Alq]/ ("™ - 1))p — (Q-WmQR/A)p ,
which is functorial with respect to arbitrary morphisms R — R’ between smooth A-algebras.

4.3. Battle plan. — Let us explain the logical structure of this section, since it’ll be not
entirely obvious. We’ll prove Theorem 1.7, Proposition 4.1, and Proposition 4.2 first in the case
where m = p® is a prime power; the general case can be reduced to this by standard arguments
(as we'll see). To handle the special case m = p®, we’ll prove all three results at once using an
induction on a. More precisely, we’ll show the following four assertions using induction on «:

(aq) If R is smooth over A, then the differential-graded A[g]-algebra ¢-W,aQ}; is degree-wise
p-torsion-free.

(ba) Theorem 1.7, and more generally Theorem 4.28 that we’ll state below, are true after
p-completion for m = p®.

(cq) Proposition 4.2 is true for m = p®.

(dg) Suppose R = A[Ty,...,T,] is a polynomial ring over A. If { € q-Wpa 2, satisfies d€ =0
mod p, then there exist w € ¢-W,,a+1Q% and n € ¢-WpaQ; satisfying

§=Fp(w) +pn.
Assertion (d_) is vacuously true. To carry out the inductive step, we’ll prove the implications
(da—1) = (an) = (ba) = (ca) = (dn). The implication (do—1) = (as) will be shown in §4.1.
After introducing the g-Hodge complex and proving some first properties in §§4.2—4.3, we’ll
prove the implications (by) = (co) = (do) in §4.4. Finally, in §4.5, we’ll deduce the global
cases of Theorems 1.7 and 4.28 as well as Propositions 4.1 and 4.2.

For ease of notation, throughout the induction we’ll denote the p" Adams operation
YP: A — A for the fixed prime p instead by ¢: A — A.

Before we dive into the proofs, let us make two philosophical remarks.
4.4. Remark. — If R is smooth over A = Z, then
Wizl =k @2 2[5, 4] /(@ = 1)

Indeed, this follows from Corollary 3.34 and Z[1/m,q]/(¢™ — 1) = [lgm, Z[1/m,q]/Pa(q)-
Similarly, in Proposition 4.2 the Adams operation ¥*" becomes trivial and we obtain

(Q‘WmQR/Z);\ ~ (Qr/z ®% Z[q]/(¢™ - 1))

A
p”
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Combining these two results seemingly suggests that ¢-W,,Qp /7, as an E-Z[q]-algebra, would
just be Qg7 ®%Z[q]/(¢™ —1). But usually it’s not! We can already see this in the case where R
is étale over Z: By Corollary 2.51, the existence of an equivalence E..-Z[¢]-algebra equivalence
between ¢-W,, Qg ~ ¢-W,,(R) and Qr ®% Z[q]/(¢™ — 1) ~ R[q]/(¢™ — 1) is obstructed by the
existence of a A,,-structure on R.

Upon closer examination, this also explains why Proposition 4.2 and Corollary 3.34 cannot
be combined to construct an isomorphism ¢-W,,(R) = R[q]/(¢™ — 1) in the case where R is

étale over Z: In this case, ¢-Wp,(R) ~ Rp[q]/(¢™ — 1) comes from Corollary 2.36, noticing

that ¢-Wp,,(R), ~ q—Wm(ﬁp) by Corollary 2.23 and that E’p carries a unique Frobenius lift
Op: ﬁp — Ep, which can be trivially upgraded to a perfect A-structure by declaring the other
Adams operations to be the identity. On the other hand, as explained in Example 2.37, the
isomorphism ¢-W,,,(R)[1/m] = R[1/m,q]/(¢"™ — 1) comes from the trivial perfect A,,-structure
on R[1/m], in which all Adams operations are the identity. So the two isomorphisms are
incompatible, unless ¢,,: Ep — Ep happens to be restrict to a Frobenius lift on R.

4.5. Remark. — If R is étale over A, Proposition 4.2 can be viewed as a higher-dimensional
analogue of the equivalence q—Wm(R)]/D\ ~ Rplq]/(¢"™ — 1) that was explained in Remark 4.4.

If R is smooth over Z of relative dimension > 1, then it will be no longer true that the
p-completion of R carries a canonical Frobenius lift. Instead, there’s a canonical Frobenius lift
on the Ec-algebra (€2g); this Frobenius lift can be identified with the crystalline Frobenius
under the equivalence

(QR);\ =~ chrys((R/p)/Zp) :

§4.1. p-Torsion freeness of g-de Rham—-Witt complexes

In this subsection we’ll prove the implication (do—1) = (aq) of our battle plan 4.3. This needs
a preparatory lemma.

4.6. Lemma. — The subset Vo = imV}, +imdV, C q—WpaQ}"%/A is a differential-graded
ideal and the ghost map gh, from 3.15 induces a functorial isomorphism

ghy: ¢-WpaQFp 4/ Ve = Qg4 ®ag0 AlGpe] .

Proof. 1t’s clear that Vs is closed under d. To show that it is a graded ideal, choose homogeneous

elements w € ¢-Wya—1 QE/A and n € q—WpaQ%/A. We compute V,(w)n =V (wFy(n)) and
dVp(w)n = d(Vp(w)n) = (=1)'Vp(w) dn = AV, (wFp(n)) — (=1)'V (wFp(dn)) ,

using the condition from Definition 3.6(c). This proves that V3. is a graded ideal.

To prove the second assertion, note that (0,...,0,¢-WpQF, /A /Via) is initial among all
{1,p,p?, ..., p"}-truncated ¢-V-systems (Pj, Py, ;‘2, ..., P satisfying P;i =0 for all 7 < a.
By inspection, such a system is nothing else but a differential-graded A[q]-algebra Pjo together
with a ¢-Wpa (R)/ im Vje-algebra structure on Ppoa; all the extra structure and conditions become
trivial. Now ¢-Wpa(R)/im V), = R ®4 ¢« A[(p=] by 2.43, hence, according to the universal
property of the de Rham complex, the initial {1, p,p?, ..., p%}-truncated g-V-system is also
given by (0,...,0,9% ) @44 A[¢p=]). This finishes the proof. O
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Proof of (da—1) = (ay). Assume first that R = A[T7,...,T,] is a polynomial ring. Suppose
§ € q¢-WyaQp /A satisfies p§ = 0. By Lemma 4.6, the quotient ¢-W,a Q7% /V;a is isomorphic to
0% 74 ®Ag0 A[(pe], which is degree-wise p-torsion-free. Indeed, our assumptions imply that A
is p-torsion free (because its faithfully flat cover A is p-torsion free, as is any perfect A-ring)
and then Q7 74 @A, ge A is degree-wise projective over R ®4 4o A, which is smooth over A and
thus p-torsion free as well.

Hence p§ = 0 implies § € Vya. So write § = V(o) + dV,(§1) for some & € q—WpadQ’}é/A
and & € q—Wpa—IQ,;%_/]A. Since V,od = p(d o V},) by Lemma 3.2, we can rewrite our assumption
p& =0 as V,(p&o + d&1) = 0. Note that V),: q—Wpale}"%/A — ¢-Wpa Q}“%/A is injective, because
F, oV, =pand ¢-Wp.1Q% /A is degree-wise p-torsion-free by the inductive hypothesis. Thus
péo +d& = 0. '

Applying (co—1) shows that we can write & = F,(w) + pn for some w € ¢-Wpa Qﬁ%_/il and
N € qGWpa Qg/z. Then d¢; = pFj,(dw) + pdn and so our assumption péy + d§; = 0 implies
§o = —Fp(dw) — dn by p-torsion-freeness of ¢-W,,a-1Q7}, /4~ We conclude

€ = Vp(éo) +dVp(&1) = Vp (= Fp(dw) — dn) + dVy (Fp(w) + pn)
= —Ppa(q) dw — V,(dn) + ®pa(q) dw + pdVy(n)
-0,

using V}, od = p(d o V,), which holds by Lemma 3.2, as well as V, o F}, = ®pa(q), which holds
by Definition 3.6(c). This finishes the proof in the polynomial ring case.

Now let R be an arbitrary smooth A-algebra. Fix a degree i; we’ve seen in the proof
of Corollary 3.33 that ¢-W,,Q% /4 Is an étale sheaf with values in the oo-category D(A[q]).
Then it’s also a sheaf in the ordinary category of A[g]-modules. Hence the p-torsion part
is an étale sheaf as well, since it can be written as the kernel of the multiplication map
p: ¢-W,, Q" /A -W,, Q¢ e Since smooth A-algebras are étale-locally polynomial rings, we
conclude that the p-torsion part of q—WmQ’é /4 st be trivial, as desired. O

In a similar way, one can show the following technical result.

4.7. Lemma. — For all smooth A-algebras R and all m € N, the relative qg-de Rham—Witt
complex q—WmQE/A has degree-wise bounded (q — 1)°°-torsion. In particular, for every degree i,

the underived and derived (q — 1)-completions of q—WmQE/A agree.

Proof. If A = Z and R = Z[Th,...,T,], then Corollary 2.38 and Proposition 3.12(a) imply
that ¢-W,, Q% ALK complex of finitely generated modules over the noetherian ring ¢-W,,(R)
and the assertion is clear. If A is an arbitrary A-ring (with the assumption that the morphism
A — A into its colimit perfection is faithfully flat), and R = A[T1,...,T,], then

q_WmQZ[Tl,...,Tn]/A = q_WmQZ[Th...,Tn]/Z ®z A

holds by Lemma 3.16. Since our assumption implies that A is flat over Z, we get bounded
(g — 1)*°-torsion in this case as well (with the same bound as in the case A = Z). Finally, using
étale descent as in the proof of (d,—1) = (a.) above, we get that ¢-W,,Q}, /4 has bounded
(¢ — 1)*>°-torsion for arbitrary smooth A-algebras R (still with the same bound as in the case
A=7Z,R=7[T1,...,T,]). O
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§4.2. The ¢-Hodge complex I: Additive Structure

In the introduction §1, we’'ve only sketched the construction of the g-de Rham complex and the
g-Hodge complex of a framed smooth Z-algebra (R,). So let’s do that now again, both in
more detail and in the relative setting.

4.8. The g-de Rham and the ¢-Hodge complex. — Let R be smooth over A and
suppose there exists an étale morphism O: A[T},...,T,] — R. For all i = 1,...,n let
vii A[Ty,...,Ty][qg—1] — A[Th,...,Tn][g—1], be the A-algebra morphism that sends T; — ¢T;
and leaves the other variables fixed. Observe that ~; is the identity modulo ¢ — 1, that [
induces a (¢ — 1)-completely étale morphism A[T1,...,T,]|[q — 1] — R[q — 1] (see 1.10 for the
terminology), and that R[g — 1] — R is a (¢ — 1)-complete pro-infinitesimal thickening. Hence
there exists a unique dashed lift in the solid diagram

AlTy, ..., Thla —1] —2— R[q—1]

ol x5

Rq—1] R

This lift will also be denoted ~;. By lifting against R[¢ — 1]/(¢ — 1)T; — R instead, which is
still a (¢ — 1)-complete pro-infinitesimal thickening, we see that ~; is not only congruent to
the identity modulo ¢ — 1, but also modulo (¢ — 1)7;. This allow us define algebraic versions
q-0;: R[q — 1] — R[q — 1] of Jackson’s g-derivatives from 1.4 using the formula

Vilf) = f
O f =
q-0if (T — T,
for i = 1,...,n. Note that ¢-0; and ¢-0; commute for all 7 and j. Indeed, this reduces to the
same assertion for v; and 7;, which follows once again by an infinitesimal lifting argument. We
may thus construct the ¢-de Rham complex of (R,0) as the Koszul complex of the commuting
Alq — 1]-module endomorphisms ¢-01, ..., q-0Op:

-V -v V. n
- Qpyan = (Rlo— 11 5 Qhyale =10 25 - 25 0 4[g — 11)

Similarly, the g-Hodge complex of (R,) is the Koszul complex of (¢ — 1) g-01,...,(q — 1) g-0p:

)¢V .,
 faDe QR/A[[q—lﬂ).

4.9. Non-commutative multiplicative structure. — It’s straightforward to check that
the partial g-derivative ¢-0; satisfies the g-Leibniz rule ¢-0;(fg) = f q-0;9 + vi(g) ¢-0; f. This
allows us to equip the ¢g-de Rham complex with a non-commutative differential-graded algebra
structures as follows: For homogeneous elements w = fdT;, A--- AdT;, € q—Q’f% JAO and

n=gdl; A---NdT}, EQ%/A’D we put

q—1)¢-V

( v
¢-Hdgp/a o = (R[[q —1] ——— —

(a1
Qpyala —1] =

w AT = Fy (s (9) ) dThy A+ AdTiy AdTy, A+~ AdTy,
More succinctly, we use the good old wedge product and impose the additional non-commutative
rule d7; A f == ~;(f) AdT; for all f € R[qg— 1] and all ¢ = 1,...,d. From the ¢g-Leibniz rule,
we easily get ¢-V(w A1) = ¢-V(w) An+ (=1)*w A ¢-V(n), so this multiplication does indeed
define a differential-graded A[q — 1]-algebra structure on ¢-£27, /0. The same definition also
works for the g-Hodge complex ¢-HdgF, /A
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Our eventual goal is to compute the cohomology H*(¢-Hdg}y 4 1/(¢™ — 1)), including its
multiplicative structure coming from 4.9. As a preparation, we’ll now determine the additive
structure of H*((¢-Hdgp /4 1)) /(¢"" —1)) as an A,[q — 1]-module.(*1) Our strategy will be to
construct a certain decomposition of (¢-Hdg} 1),/ (¢"" — 1) according to a Frobenius lift on

Rp. This is an old trick, going back (at least) to Katz’s proof of the Cartier isomorphism in
[Kat70, Theorem (7.2)].

4.10. The Frobenius lift. — The p-completion A p{T1, ..., Ty) = (A[Ty,...,Tp]), can be
equipped with a J-structure in which the Frobenlus ¢p is given by the Frobenius ¢ = 9P on
A and ¢n(T;) == T?. Since O: A p{T, - Tn) — R is p-completely étale, ¢ admits a unique
extension to a Frobenlus lift on Rp, which we still denote Ok ﬁp — Ep by abuse of notation.
We observe that ¢ is injective. Indeed, ¢g is injective modulo p, since R/p is reduced: It’s
a smooth A/p-algebra, and A/p must be reduced because it admits a faithfully flat cover
A/p — Ay /p by a perfect Fp-algebra. Hence every = € Ep with ¢o(z) = 0 must be divisible
by p; say « = pz’. But then 0 = ¢p(px’) = pop(2’) implies ¢po(z’) = 0. Iterating this argument
shows that x is divisible by p arbitrarily many times. But Ep is p-complete and thus p-adically
separated, so x = 0, as required.

4.11. The Frobenius decomposition I. — For every a > 0, let

a)_(%ﬂ 2 w@wﬁa:

(as usual, it doesn’t matter whether we complete in the derived or underived sense, as can be

seen by base change to Aw). We claim that the canonical map }AEI(JQ) — Ep exhibits ﬁfp as a
p(a)

free module over Ry, with a basis given by T} --- T'» for all multi-indices v = (v1,...,vy)
satisfying 0 < v; < p® — 1. To see why this is true, first observe that the corresponding assertion
for Ay(T1,...,T,) is true for obvious reasons. Hence it suffices to show that
Ap<T1, e ,Tn> I Rp
o] I P
ATy, ..., T,) — R,

is a derived pushout square of rings. But both the derived pushout and fzp are derived p-
complete, so by the derived Nakayama lemma it’s enough to check that we get a derived pushout
square after applying — ®%p [, everywhere. This is proved in [Stacks, Tag 0EBS].

Now, for every multi-index v = (vy,...,v,) satisfying 0 < v; < p* — 1 for all i, we let
(q—Hdgg;) an)p € (¢-Hdgh 4 1), be the free graded R{*[q — 1]-module with basis the elements

H Tz'vi /\ T;»]jil de

iel  jeJ

(41 Observe that our assumption on the existence of a faithfully flat map A — A into a perfect A-ring implies
that A and R are p-torsionfree, so it doesn’t matter whether we interpret A, and R, as the derived or the
underived completions. Similarly, g-Hdg¥ sa0is degree-wise p-torsion free, so it’s derived p-completion agrees
with the degree-wise underived completion.
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for all disjoint decompositions I LJ = {1,...,n}. If v; = 0 for some j, we use the convention
that T;)jfl dT; == T]p ol dTj. Then we obtain a decomposition

(Q‘HdgE/A,D);\ = @(Q‘Hdgyflﬂ):

v

as graded Rl(,a) [¢ — 1]-modules.

4.12. Lemma. — The decomposition from 4.11 is not just a decomposition underlying graded
modules, but a decomposition of complexes. Furthermore, for the induced decomposition on
(g-Hdg} 4 1)/ (¢"" —1), each piece (g-Hdg}, 5)p/(¢"" —1) is a complex of R [q—1]-modules.

Proof. To show that the differentials (¢ —1) ¢-V of (¢-Hdgpg 4 1), respect the decomposition, it
will be enough to show that ~;: Ep[[q —1] — Ap[[q — 1] respects the decomposition of ﬁp lg —1]

as a free ﬁéa) [¢ — 1]-module with basis Ty - - - T~ for all multi-indices v = (v1, ..., vy) as above.
To show this, extend ¢ to a Frobenius lift ¢ : Ep [q —1] — Ap[[q — 1] by putting ¢n(q) == ¢P.
It will certainly be enough to show that ¢g and ~; commute. It’s straightforward to check
that they commute when restricted Ep<T1, ..., Tn)[g — 1]. Furthermore, they commute modulo
(p,q — 1), because ~; is the identity modulo g — 1. Hence the desired commutativity follows
from uniqueness of infinitesimal lifting for (p,q — 1)-completely étale morphisms.

To show that each piece (q—HdgE’j’D);\ /(P —1)is f{,(ga) [¢ — 1]-linear, it will be enough to
show that

(q—1)q-V: Rylg — 1] — (Qpa)pla — 1]

is divisible by ¢P” — 1 when restricted to ]?{I(DO‘) [¢ — 1]. This follows easily from the fact that ~;
and ¢ commute, as we’'ve observed above. O

4.13. The Frobenius decomposition II. — We ’ll now further simplify the Frobenius
decomposition from 4.11, adapting the arguments in the proof of [Kat70, Theorem (7.2)]. Using
Lemma 4.12, we can write

@

A =
(q_Hdgz;)A,D)p/(qp - 1) = Rg()a) [[q - 1]] ®Zp[[q—1] Kiﬂ)(n) )

where K*?(n) is the complex of free Z,[q¢—1]/(¢*" —1)-modules with basis given by the elements
from 4.11 and differentials given by (¢ — 1) ¢-V. The complex K*"(n) can be decomposed
into a tensor product K5*(n) = K5 (1) ®z,[g-1] - - ®z,[¢—1] K& (1), where K5(1) is the
complex

* s v; o —1)g-V v — o
K2 (1) = (T g - 11/ — 1) Y e gL - 11 1))

concentrated in degrees 0 and 1. As in 4.11, we use the convention that T;’i_l dT; = Tip ol dT;
if v; = 0. If v; > 1, then we can write v; = p°v}, where e is the exponent of p in the prime
factorisation of v;. The differential (¢ — 1) g-V of K*"i(1) sends the generator 7;" in degree
zero to

(¢ =1 a-V(I") = (¢" = DI} dT; = [vf] e (¢ — DT dT;
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Now observe that [v}] e is a unit in Z,[q — 1]/(¢” " —1). Indeed, it can be written as a sum of
v}, which is a unit, and a multiple of the topologically nilpotent element ¢ — 1. Hence K*"i(1)
is isomorphic to the complex K . given by

K2 = (Bl - Wi -0 S - /@ - 1),

again concentrated in degrees 0 and 1. If v; = 0, then similarly K*°(1) = K7 |, where the

differential of K , is multiplication with ¢*" — 1, hence zero.
Summarising, we see that K™ (n) can be written as a tensor product of complexes of the

form K7 .. for some 0 < e1,...,e, < a. Fortunately, such a tensor product is easy to compute:
4.14. Lemma. — Ife; > ey > 0, then there is an isomorphism of complezes of Zy[q — 1]-
modules

K;q ®Zpﬂq_1ﬂ K;ék, K:; 62[ ] @ K; ,e2 *

Proof. An explicit isomorphism K7 . ®z, [q—1] Ka e, — Kae,[-1]1 ® K3 ., is given by the
following commutative diagram:

Zola -1/ ><qp—>> (@olg - 11/ — 1) )

Ly
" —1 o (e -1),0)

Zplg —1]/(¢" —1)

@2
Zpla —1]/(¢" = 1) —— (Zpla —1]/(¢" - 1)) Zplg —1]/(¢" = 1)
Here the vertical arrow in the middle sends (a, b) — (a — %b, b). O
4.15. Lemma. — Let v = (vy,...,vy) be a multi-index as in 4.11, and let’s write v; = p©iv},
where e; is the exponent of p in the prime factorisation of v; as in 4.13 (with the convention that
€ = in the case v; = 0). If e := min{ey, ..., eq}, then there is an isomorphism of complezes
of Aplq — 1]-modules
Hde®? V(P —1) =~ R@[g—1 ™ k* -k @Cx)
(q gR/A,EI)p/(q ) = Ry [q ]]®ZP|IQ*1]] @ ( a,e[ ]) .
k=0
Proof. Use 4.13, Lemma 4.14, and induction on n. O

4.16. Corollary. — For all a > 0, the cohomology groups H*((gq- Hng/A D) /(g”" —1)) are
p-torsion free.

Proof. By Lemma 4.15, each cohomology group of (¢-Hdg}, /A, ap/ (¢"" — 1) is a direct sum of
terms of the form

) [[q - 1]] ®Zp[[q—1] HO(Kc*y,e) or E}(?a) [[q - 1]] ®Zp[[q—1]] Hl (K;,e)

for some e > 1. But HO(K} ) = [p* €] e Zplg — 1]/(¢"" — 1) = Zp[q — 1] /(¢*" — 1) and also
HY(K} ) = Zy[q — 1]/(¢*" — 1), so everything is indeed p-torsion free. O
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§4.3. The ¢-Hodge complex IlI: Multiplicative Structure

Our goal in this subsection is to equip the cohomologies (H*(¢-HdgJ, /A0 /(@™ —1)))men with the
structure of a g-F'V-system of differential-graded A-algebras over R as defined in Definition 3.6.
This will allow us to formulate a relative version of Theorem 1.7, which will eventually be proved
in §§4.4-4.5. Throughout, we fix a framed smooth A-algebra (R,) and use the shorthand
H}"%/A’D(m) = H*(¢-Hdgp 4 0/(¢™ —1)). Let’s start constructing the various pieces of structure.

4.17. Differential-graded algebra structure. — We know from 4.9 that ¢-Hdg}, /A0 can
be equipped with a non-commutative differential-graded A[g]-algebra structure. This induces
a graded algebra structure on H7, / A,D('m)7 which turns out to be commutative as we’ll see in
Lemma 4.18 below.

This leaves us with the question of how to define the differentials. We’ll use the Bockstein
differentials: Our assumptions on A and R guarantee that ¢ — 1 is a nonzerodivisor in R[q— 1],
hence we have a short exact sequence of complexes

0 — ¢-Hdghp/ao/(q™ — 1) SN q-Hdgh 4 5/(q" —1)> — ¢-Hdgh a0/ (¢" — 1) — 0.
The associated connecting morphisms f,,: Hj, / an(m) — H”;thm(m) are called Bockstein
differentials. As the name suggests, 3, turns the graded A[q — 1]-module HE/AB(m) into a
cochain complex (see [Stacks, Tag OF7N] for example).

4.18. Lemma. — The graded algebra structure from 4.9 and the Bockstein differentials
constructed in 4.17 make (H}"{/AD(m),ﬁm) a commutative differential-graded Alq — 1]-algebra.

Proof. To show commutativity, let w € q—Hdg% /A0 be a k-form representing an element in
H%/A’D(m). It will be enough to show dT; Aw = (—1)*w AdT; mod ¢™ —1foralli=1,...,n.
To see this, write
w=>_ fidTj A--- AdT;
jedJ
for some finite indexing set J. Our assumption on w reads 0 = (¢ — 1) ¢-V(w) mod ¢ — 1. In
particular, it implies that

0= (%(fy)— f)dT; AdTy, A--- AdTj, mod ¢"™ —1.
jed
But dT; A f;dT; AdTy, A - ANdT), = v (f)dT; AdTy, A --- AdT), holds by definition of the
multiplication on ¢-Hdg, /A0 So the congruence above is exactly what we need.

To show the graded Leibniz rule, we’ll only verify that 3,,: H%/A,D(m) — H}%/Avm(m) is a
derivation; the arguments in higher degrees are similar. Let f, g € R[q — 1] be elements whose
images modulo ¢™ — 1 are contained in H%/A,D(m). Then (¢ — 1)g-V(f) € Q}%/A[[q —1] is
divisible by ¢ — 1, so that ¢-V(f) is divisible by [m],. A quick unravelling then shows that
Bm(f) is the image of

(¢—1)g¢V({) _ V()
g —1 [ml]q
in H}Q / A’D(m), and likewise for ,,(g). Furthermore, if ¢-V f is divisible by [m],, then ~;(f) — f
must be divisible by ¢™ — 1 for all i = 1,...,n. Thus, by the g-Leibniz rule,

mod ¢™ — 1.
[m]q

q-0i(fg) y f)q—aig q-0; f q-0ig | q-O0if

e Tl Il Y Tl
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This shows B (fg9) = fBm(9) + gBm(f), as desired. O

Next, we need to construct A[g]-algebra maps ¢-W,,(R/A) — HY% / ap(m) for all m. If

R = A[T\,...,T,] and O is just the identity, then these maps are easily defined: We equip R
with the A-A-algebra structure in which ¢?(7;) = T and consider the composition

¢-Wo(R/A) % R[]/ (¢ — 1) — Rlg — 1]/(¢" — 1),

where ¢, /4 is the comparison map from 2.44. It’s straightforward to see (but we don’t need it
at this point) that this map induces an isomorphism Q‘Wm(R/A)E\qA) — H%/Aym(m).(‘lm For
general R, however, the A-structure on A[T1,...,T),] doesn’t extend along the étale morphism
O: A[Ty,...,T,] — R. Instead, we only get é-structures on the p-completions R, for all
primes p. So instead our strategy will be to use an arithmetic fracture pullback square.

4.19. Arithmetic fracture pullback squares. — For any M € D(Z) and any integer
N # 0, the canonical commutative square

M[y] — E[Vﬂ?p[i]

is a pullback square in the derived oo-category D(Z). Indeed, after applying any of the functors
(=)[1/N] or (=), for a prime factor p | N, the square above becomes a pullback for trivial
reasons. But these functors are jointly conservative by Lemma 2.4.

4.20. Lemma. — Let N be divisible by m. Then the derived (¢ — 1)-completion of the
arithmetic fracture pullback square from 4.19 for ¢-W,,(R/A) takes the form

Q—Wm(R/A)&_l) - HQ‘WP%(EP/A)&,(]—D
pIN

) J

R[y] I 2[;]

p|N

where p? is the largest power of p dividing m for all prime factorsp | N. The top horizontal map
is given by the Frobenii F, oo and the vertical maps are the ghost maps gh,,, and (ghyes)p|N,
respectively.

Proof. We start with the top right corner. The Frobenius and Verschiebung

Froper : Wi (RJA) — ¢-Wpep (R/A)  and Vi, jpen 0 ¢-Wyep (R/A) — ¢-W,,, (R/A)

(2 One can use the A-structure on R to decompose q—Hdg;‘;/AD/(qm —1) as in 4.11. Then H%/Aﬂ(m) can
be read off and it matches up with the (¢ — 1)-completion of the description of ¢-W,,(R/A) from the proof of
Lemma 2.45.
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become isomorphisms after derived (p, q — 1)-completion because F,, /,op 0V, Jpor = m/p* and
Vinpew © Fopjper = [m/p*?] e are invertible in Z[q ](p g—1)- This explains why ¢-Wpyes (—/A)
shows up in the diagram 1nstead of ¢-W,,(—/A). Furthermore, the canonical morphism
Wy (R/A) — q—Wpap(Ep/A) becomes an isomorphism after p-completion. Indeed, this
can be checked after p-completed base change along the faithfully flat map A — A,,. Via
Lemma 2.45, we’re then reduced to a question about absolute ¢-Witt vectors, which was
addressed in Corollary 2.23.

The bottom corners are similar, but easier. Since NV and [N], are invertible in Z[1/N, q](Aq_l),
the same argument as above shows that the ghost map gh,,: ¢-W,,(R/A) — R, or equivalently,
the Frobenius F,, becomes an isomorphism after (—)[1/N ] (q—1)- Also note that R[1/N] doesn’t
need to be (¢ — 1)-completed because it’s already (¢ — 1)-torsion. This takes care of the bottom
left corner; the argument for the bottom right corner is analogous. O

4.21. Remark. — Observe that all factors of the pullback from Lemma 4.20 are static
(in the sense of 1.10), so we don’t just get a pullback in the derived oco-category, but also
an honest pullback of A[g]-modules. To see this, it’s enough to check that ¢-W,,(R/A) and
q-Wpep (}Aip /A) have bounded (¢ — 1)* and p*>-torsion. This can be done after base change
along A — A, where it reduces via Lemma 2.45 to questions about absolute ¢-Witt vectors
that were addressed in Corollaries 2.21 and 2.25. The same conclusion is true (but for easier
reasons) for the pullback square in Lemma 4.22 below.

4.22. Lemma. — Let N be divisible by m. Then the derived (q — 1)-completion of the
arithmetic fracture pullback square from 4.19 for R[q — 1]/(¢™ — 1) takes the form

Rlg—1]/(¢" - 1) —— [] Bpllg — 11/(¢*™ — 1)

: pIN l
R[] [ &[;]

p|N

where p®r is the largest power of p dividing m for all prime factors p | N.

Proof. One can argue as in Lemma 4.20, but with the Frobenius and Verschiebung replaced
by the canonical projections R[q — 1]/(¢™ — 1) — R[q — 1]/(¢*"" — 1) and the multiplication

maps [m/p] e : Rlq — 11/(¢"* — 1) — Rlq — 1]/(¢™ — 1). O

4.23. Construction. — Fix a prime p | N. We’ve already seen in 4.10 that the ¢tale framlng
O: A[Th,...,T,] — R determines a Frobenius lift on the p-completion Rp, which turns R
into a 0-A-algebra by p-torsion freeness. By Remark 2.31, ¢-Wpep (R,,/A) only depends on the
A,-structure on A, that is, on the d-structure, and the relative comparison map

Cpop /A Q‘Wpap(ﬁp/A) — EP[Q]/(QPQP —1)

from 2.44 can be defined using only a - A-algebra structure on f{p. These comparison maps for
all p | N induce a morphism between the pullback squares from Lemmas 4.20 and 4.22 and
hence a morphism

Cm,0" Q‘Wm(R/A)@]fl) B R[[q - 1]]/(qm - 1) )
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even though there’s usually no A-A-algebra structure on R. It’s straightforward to check that
¢m,0 doesn’t depend on the choice of N .43) Furthermore, it’s easy to see that ¢, 7 lands in
HOR/A’D(m). Indeed, we can write the free R[g — 1]/(¢™ — 1)-module q—Hdg}%/A,D as a similar
pullback as in Lemma 4.22 and then it suffices to check that we get 0 in each factor. For the
bottom factors this is trivial, since the differentials of ¢-Hdg}, /A vanish modulo ¢ — 1. So it
remains to show that the composition

G- Wi (Rp/4) — Ryllg — 1)/(a"™ = 1) 225 (0 )pla - 11/ — 1)

vanishes, or in other words, that map cpap /4 lands in HO((q—HdgE/Ag)Q/(QP% —1)) forallp| N.
But thanks to 4.11 and 4.13, we can determine that cohomology group. If v = (v1,...,v,) is a
multi-index and e is defined as in Lemma 4.15, then the v component of our desired H? is
given by

(o1

H((q-Hdgg), 0)p /(@ = 1)) = [p™ e T - TRV g — 11/(¢7 = 1)

By unravelling the definitions, it’s clear that cpep /4 really lands the direct sum of over all v of
these groups. This finishes the construction of a ¢-W,,(R/A)-algebra structure on H}, /A o(m).

4.24. Frobenius and Verschiebung. — For d | m, we define the Frobenius and the
Verschiebung

Finya: HE/A,D(m) - HE/A,EI(d) and Vi, q: HT%/A,EI(d) - HT%/A,EI(m)

to be the maps induced by the canonical projection ¢-Hdgp 4 n/(¢™ —1) — q—HdgE/Aym/(qd— 1)
and the multiplication map [m/d] a: q—Hdg}’}/A’D/(qd —1) — ¢-Hdgp 4 1/(¢™ — 1), respectively.
It’s clear that F,, /4 is a map of graded A[g]-algebras and V,,, /4 is a map of graded A[g]-modules.
In fact, V,, /q is a map of graded HE/A,D(m)—modules if we equip HE/A,D(d) with the module
structure induced from F,, /4.

These maps are compatible with the Frobenii and Verschiebungen on relative ¢-Witt
vectors under the maps constructed in Construction 4.23, which is straightforward to check
from the definition and Corollary 2.34. Furthermore, we clearly have F,,, /. = Fy/. o F;;, /g and
Vinje = VinjaoVaye for all chains of divisors e | d | m. The condition V,,, 4(wF,,/a(n)) = Vi a(w)n
follows from our observation that V;, /4 is a map of graded Hp, A (m)-modules.

According to Remark 3.8, we've thus equipped (HF / 40(m))men with all the structure

from Definition 3.1(a) and (b) as well as Definition 3.6(c), and it only remains to check the
F-Teichmiiller condition (7p). It’s easy to see that the F-Teichmiiller condition always holds
up to (m/d)™/41-torsion, so it will be enough to show the following lemma.

4.25. Lemma. — For all m € N and all primes p, the cohomology HE/A o(m) is p-torsion
free in every degree.

For the proof, we need a technical lemma.

4.26. Lemma. — Fiz a prime p and consider the following three conditions on a cochain
complex M* of Z|q]|-modules:

(4-3)We could have chosen m = N, but allowing an arbitrary N divisible by m makes the compatibility of Cm,0)
for varying m more apparent.
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(a) In every degree, M* and H*(M*) have bounded (q — 1)*°-torsion.
(b) In every degree, M* and H*(M*) are p-torsion free.
(¢) In every degree, M*/p and H*(M*)/p have bounded (¢ — 1)*°-torsion.

If M satisfies these conditions, then the derived (q — 1)-completion of M can be computed as
the degree-wise underived (q — 1)-completion, and it also satisfies conditions (a), (b), and (c).
Moreover, taking cohomology of M* commutes with derived (q — 1)-completion and with derived
(p, g — 1)-completion.

Proof. Condition (a) implies that the derived (¢ — 1)-completion of M* can be computed as
the degree-wise underived (¢ — 1)-completion. Furthermore, via the spectral sequence from
[Stacks, Tag 0BKE], it implies that (¢ — 1)-completion (derived or underived doesn’t matter)
commutes with taking cohomology. In formulas,

H* (M, ) = H (M),

It is now clear that (a) is still satisfied for M (4—1)- For conditions (b) and (c), let N be any
p-torsion free Z[q|-module. Then
N2 N—N/p

is a cofibre sequence of static objects in D(Z[q]). If both N and N/p have bounded (g — 1)*°-
torsion, then applying (—)(Aqil) to this cofibre sequence still yields a cofibre sequence of static
objects. This shows that N@—n is still p-torsion free and that N(/;_l) /p is the derived or
underived (g — 1)-completion of N/p. Applied to M*, we conclude that the degree-wise (¢ —1)-
completion M (”; _1) still satisfies all three conditions. In particular, its cohomology is p-torsion
free and so taking cohomology commutes with derived p-completion. In formulas,
H*(M(ﬂ;?vq—l)) =H (M(Z—l))z? = H*(M)E\M—l) ’

which is the last assertion we had to show. O

Proof of Lemma 4.25. We’ll show that the conditions of Lemma 4.26 are satisfied for the complex
M* = q—Hdg’}}/A,D/(qm —1). Let’s first consider the case A = Z. Thanks to Construction 4.23,
we know that ¢-Hdgp 7 1/(¢™ — 1) is a complex of q—Wm(R)&_l)—modules. We also know that
W, (R)(Aq,l) is noetherian using Corollary 2.38. Furthermore, the proof of said corollary shows

that R[q — 1]/(¢™ — 1) is finite over q—Wm(R)@_l). So ¢-Hdgg 7 n/(¢™ — 1) is a complex of
finitely generated modules over a noetherian ring. Hence conditions (@) and (¢) from Lemma 4.26
become obvious. It remains to check condition (b). It’s clear that ¢-Hdg}, 7,0 /(g™ —1) is
degree-wise p-torsion free. For complexes of finitely generated modules over a noetherian ring, p-
completion (derived or underived doesn’t matter) commutes with cohomology. Furthermore, an
abelian group is p-torsion free if and only if its derived p-completion is static and p-torsion free.
Now the derived p-completion of q—Hdg”]‘%/Zﬂ/(qm —1) is computed by (q—Hdg”}}/ZD)I/)\/(qpa —1),
where « is the exponent of p in the prime factorisation of m. Since we know this complex has
p-torsion free cohomology by Corollary 4.16, it follows that HJ, /ZD(m) must be p-torsion free
as well, as desired.

Now let A be an arbitrary A-ring (except that we still impose the condition that a faithfully
flat morphism of A-rings A — A into a perfect A-ring exists). Let Ry := Z[T1,...,T,]. We
claim that

A

q-Hdgh an/(d™ — 1) = (q-HdgEO/Z,D/ (" = 1) ®q-w,(Ro) "W (R/ A)) (¢-1)’
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where the completion is the degree-wise underived (¢ — 1)-completion, but it computes the
derived (¢ — 1)-completion (as we’ll see in a moment). To see this, first observe that the
base change along ¢-W,,(Ry) — ¢-W,,(R/A) is flat. Indeed, our assumptions imply that A
is flat over Z, hence ¢-W,,(Ry) — ¢-W,,(Ry ®z A/A) is flat by Lemma 2.45. Furthermore,
O: A[Ty,...,T,] = Ro®z A — R is étale, hence so is ¢-W,,,(Ry ®z A/A) — ¢-W,,(R/A) by
Proposition 2.47. The fact that q—HdgEO/ZE/(qm — 1) ®q-w,,(Ro) Wi (R2/A) is a flat base
change of g-Hdgp, /5 1/(¢™ — 1) immediately implies that it satisfies the conditions (a), (b),
and (c) from Lemma 4.26, and so the degree-wise underived (g — 1) completion indeed agrees
with the derived (¢ — 1)-completion. This also shows that once we’ve proved the isomorphism
above, we’ll be immediately done by Lemma 4.26.
To prove the claimed isomorphism, it’s enough to show that that the natural map

(Rola = 11/(a™ = 1) &1,y ¢ RIA)) | = Fla=11/(6" = 1)

is an equivalence, as q—Hdgj} /ZD/( — 1) and ¢- Hdgj} AD/( ™ — 1) are degree-wise free
modules over Ry¢ —1]/(¢"™ — 1) and R[q — 1] /(¢"™ — 1), respectlvely, with compatible bases.
By the derived Nakayama lemma [Stacks, Tag 0G1U] such an equivalence can be checked
after applying R®I};LO lg—1]/(gm—1) — The right-hand side then becomes R. The left-hand side
becomes

Ry @Ighm,qfwm(]zo) ¢-Wm(R/A) ~ (Ro @z A) ®I§hm,q—wm(Ro®zA/A) q-Win(R/A)

where we’ve used that ¢, : ¢-W,,(Ry) — R[q—1]/(¢"™ — 1) intertwines the canonical projection
to Ry with the m™ ghost map. The claim now follows from Corollary 2.50. 0

4.27. Construction. — This finishes the construction of a g-F'V-system of differential-
graded A-algebras over A on (HF, / Aﬂ(m))meN. By Proposition 3.17, this induces a unique
morphism of ¢-F'V-systems (Q‘WmQE/A)meN — (HE/A,D( m))meN. Since Hpa, o(m) is derived
(¢—1)-complete in every degree, this morphism of ¢-F'V systems factors through the degree-wise
derived (¢ — 1)-completions. By Lemma 4.7, we can equally well take the degree-wise underived
(¢ — 1)-completions, and so we obtain morphisms

(q W QR/A)( 1y HE/A,D(W)
which finally allow us to state the relative version of Theorem 1.7.

4.28. Theorem. — Let R be a smooth algebra over the perfectly covered A-ring A. Then the
canonical morphism from Construction 4.27 is an isomorphism

(¢-W QR/A)( 1) — (¢-Hdgh/ap/ (@™ — 1))

for all positive integers m € N.

§4.4. Proof of the main results I: The p-typical case

After our lengthy digression, we return to the induction outlined in our battle plan 4.3. The
goal of this subsection is to prove the remaining three implications, starting with (a,) = (ba)-

We keep the shorthand H, o(p®) == H*(¢-Hdgpg 4, o/(¢”" — 1)) as in §4.3 and note that the
degree-wise p-completion Hy, 4 (p® ), computes the cohomology of (¢-Hdg, / A)p/ (¢"" —1)

by Lemma 4.25.

p
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4.29. The Frobenius on the ¢-Hodge complex. — As in the proof of Lemma 4.12 we
extend ¢n to a Frobenius lift ¢r: R,[q — 1] — R,[g — 1] by putting ¢n(q) == ¢°. We can
further extend this to an endomorphism of complexes
A A
PO (q‘HdgE/A,D)p - (q_HdgE/A,D)p
by putting ¢n(dT;) = Tip*1 dT;. Indeed, we’ve checked in the proof of Lemma 4.12 that ¢
and v; commute and so to check that ¢ respects the differential, it’s enough to compute

¢0((q— 1) ¢-0:f) = ¢ <WZI)’Z_f de) _¢o (%(f)T)lP_ ¢D(f)Tip—1 oT,
_ %’(qu(f)z)i— ¢a(f) dT,

= (¢ —1)g-0;(¢n(f)) .

The Frobenius lift on A can be extended to a Frobenius lift ¢: A[q] — A[q] by putting ¢(q) = ¢.
Then the endomorphism ¢ induces a relative Frobenius
A

USYE (q‘HdgE/A,D ®A[q], 00 A[Q]) pig-1)

Following our conventions from 1.10, here we take the degree-wise underived completions,
but they coincide with the derived completion, because ¢-Hdg}, /A0 18 degree-wise p- and
(¢ — 1)-torsion free and ¢: A[q] — A[q] is flat (using footnote (2.3) in Remark 2.46). Also
recall from 4.11 that we have a decomposition

- (q_HdgE/A,D);\ '

(q—HdgE/A,D)Q = @(Q‘HdgE7A,D): '

v

Let us denote by (q—Hdg;’?Aﬂ);\ the direct summand for v = (0,...,0) and by HE?AD(pO‘)Q
the corresponding direct summand of Hf,, A’D(pa)l/}.
4.30. Lemma. — The relative Frobenius gb%/A is an isomorphism onto (q—HdgE?AD)Q. In

particular, we obtain an isomorphism of differential-graded Alq]-algebras
(e ~ o A
HE?A,D(I’ )y = (QE/A ®a,4 Algl/(¢" — 1))p

Proof. To see that we get an isomorphism onto (q—Hdg*R’;) A D)g, just observe that

(b%/A: (R[[q - 1]] ®A[q],¢0‘ A[q])( ) - E;()a) [[q - 1]]

p,q—1
is an equivalence essentially by definition of }AQ;S,O‘) and then check that ¢g /A sends the bases
from 4.11 onto each other.

To show the second assertion, we deduce from the first one that (q—Hng?AE);\ /(" —1)
is a flat base change of qudg}"%/A’D/(q — 1) up to (p,q — 1)-completion (or just p-completion
because we're already in a (¢?" — 1)-torsion situation). It straightforward to check that the
cohomology H*(¢-Hdg}, A /(g — 1)), equipped with the Bockstein differential, is the de Rham
complex 27, /A" It remains to check that p-completion commutes with taking cohomology, but
this is clear since we’ve just checked that

H* (g-Hdg a0/ (g — 1) @agom Ald]) = Qs @a0n Aldl/ (¢

is degree-wise p-torsion free. O

(o1

_]_)
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4.31. Lemma. — Let V;a C HE/A D(pa)]/:)\ be the p-complete graded sub-A[q]-module generated
by the images of V,, and dV),. Then there’s a short exact sequence
_ 0
0 — Via — Hp y 0(0"), — Hg )y 5(0");/®pe(q) — 0,

in which the second arrow s the canonical inclusion and the third arrow is the projection to the
direct summand HZ?AE(pO‘);\.
Proof. It’s clear from the construction in 4.24 that the kernel K* of the canonical projection
H;/A,D(pa)]/; — H}"%’?Aﬂ(pa)l/,\/épa(q) contains the image of V},, hence K* alsg contains the
p-complete differential-graded ideal generated by the image of V},. This shows V. C K*.

It remains to show that V;a — K* is surjective. We would like to use the decomposition
from Lemma 4.15 to show this. Alas, this decomposition is not compatible with the Bockstein
differential. But we can use a trick: It’s enough to show that V. — K™ is surjective modulo p,
as both sides are p-complete. Thanks to Lemma 4.25, we know that modding out p commutes
with taking cohomology for the complex q—HdgE/A o/(¢”" —1). But modulo p, we have a

surjection
+1

- 1) e q_Hdg}k%/A,D/(p7 (qp“ - 1)2) )

1

q-Hdgh a0/ (0, ¢

so the decomposition of ¢-Hdg}, /A0 /(p, - 1) is, in fact, compatible with the Bockstein
differential modulo (p, ¢** — 1).
So consider a two-term complex K7 ;. as in 4.13, where 0 < e < a+ 1. Put € := min{«, e}

and K}y =K%, . /(p, ¢*" —1). Then K%, . is the two-term complex

Koy, = (Fp[q]/m BN YAy 1>pa>

with cohomology HO(K%,, ) = (¢ — 1)P" 7' Fylql/(q — 1)*", HY(K%,, ) = Fylql/(¢ — 1)”". By

a simple unravelling, the Bockstein differential Bpo: HO(K?* t1e) = HY(K* +1,¢) coming from
the surjection K%, ./(p, (¢ — 1)*") — K}, is given by

Bpo ((q = 1)P"Pw) = (¢ — )P Pw

for all w € Fy[q]/(¢"" —1). For e < a — 1, we conclude that every class in HY(K}, ) is
contained in the image of V), since they're all divisible by (¢ — 1)1’a_p%1 = ®pa(g) mod p,
and similarly that every class in H (K} +1,) is contained in the image of dV},. This shows that
Vpa — Hy, A0 (po‘)z/,\ is a surjection in every direct summands except possibly H;’? A,D(pa)z/a\' To
analyse the situation for the latter, just observe that the kernel of

H*,D

R/A,D(pa)g - HE?Aﬂ(pa)ﬁ/‘I’p“ (9)

is given by the classes divisible by ®,a(g). But every such class is in the image of V], due to the
relation V), o F}, = ®pa(q). O

Proof of (aa) = (bn). We wish to show that after p-completion, the canonical map from
Theorem 4.28 for m = p“ becomes an isomorphism

A= a
(Q‘WPQQE/A),; - HE/A,D(P );/;\
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(the left-hand side doesn’t need to be (¢ — 1)-completed since it is already p-complete and
(¢*" —1)-torsion). To do so, let V. C (¢-Wpa Q% y 4)p be the p-complete graded sub-A[¢]-module
generated by the image of V,, and dV,,. Now consider the diagram

0 VEa (@-WpaQh a) —— (/4 Oage AlGe]), —— 0
0 Via Hy 4oy —— (/4 ®age AlGpe])) —— 0

The bottom row is exact by Lemmas 4.30 and 4.31. The top row is exact by passing to
degree-wise p-completions in Lemma 4.6; this preserves exactness since (a,,) implies that all
p-completions agree with the corresponding derived p-completions. By the five lemma, it will
be enough to show that the left and the right vertical maps are isomorphisms.

Let’s begin with the right one and verify that it really is the identity, as indicated. By
the universal property of de Rham complexes it’s enough to check this in degree 0. Now the
diagram

Cpo‘/A ~ ey

Q‘Wp"(ﬁp/A) Rp[Q]/(qp -1)

o o

(R®apn AN [Go] —— RplGpe]

commutes and the bottom row is injective, as we’ve checked in 4.10 and 4.11. This shows that
we really get the identity in degree 0.

To complete the proof, let’s shows that the left vertical arrow is an isomorphism. Using the
inductive hypothesis (b,—1) as well as injectivity of the Verschiebungen V), (which follows from
F,, 0V, = p combined with our p-torsion freeness results (a,) and Lemma 4.25), we see that we
get an isomorphism when restricted to the respective images of V,,. This immediately implies
that Vi — V;a must be surjective. For injectivity, observe that pV7i. and pV;a are contained
in the respective images of V}, since pdV}, =V}, od by Lemma 3.2. So pVJa — pVj. must be
injective. By p-torsion freeness we conclude that V7. — V7. must be injective as well. O

Next we set out to prove the implication (b,) = (cq). From now on, R is an arbitrary
smooth A-algebra; the existence of an étale framing (J: A[T},...,T,] — R is no longer assumed.

4.32. A non-canonical quasi-isomorphism I. — Contrary to what we just said, assume
that R admits an étale framing O: A[T1,...,T,] — R and fix one such choice. We'll use it to
construct a quasi-isomorphism as in Proposition 4.2, albeit a priori a non-canonical one (and
compatibility with the Eo-A[g]-algebra structures is also not a priori clear). To do that, we
consider the following diagram:

(o7

a )A ¢a|:|/A . 1)

(q—QE/A,D ®afgloe Aldl/(@ 1)) —— M@, ()2 ,2(0)Ppa (@) ((Q‘QE/A,D);\)/(QP

P
‘ J
! =
v
(07

H*<(q—HdgE/A,D)2/(qpa — 1)) — (gr® —1) ((Q‘HdgE/A,D);\)/(qp -1)
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Let us explain what happens here: The right vertical arrow is an isomorphism for obvious
reasons, and the bottom arrow is the quasi-isomorphism from [Stacks, Tag OF7T]. The top row
comes from the map of complexes
A A
¢ (Q‘QE/A,D)p - (q_QE/A,D)p
which is constructed as in 4.29 except that we put ¢n(dT;) == ®,(q)TF “tar,.(49 By construc-

tion, the image of ¢ is contained in the subcomplex nq,p(q)((q—QE/A I:,)}/D\), hence the top row
] /A of the diagram has the indicated form.

4.33. Lemma. — The morphism gb%/A from the diagram from 4.32 is a quasi-isomorphism.

Proof. This is a general feature of prismatic cohomology. If we consider S := }AEP [¢p] and the ¢-de
Rham prism (4,[g — 1], (®,(q))), then (@ k/an)p = /A 1] PY [BS19, Theorem 16.22].
As we’ll check below, this identifies ¢ with the primsatic Frobenius. Now for any prism (B, J),
[BS19, Theorem 15.3] shows that the relative Frobenius

L N ~
( s/B OB 5, B)(p,J) - L”(J¢>B(J)~~¢§;*1(J)) S5/B

is a quasi-isomorphism, which is what we want.

To check that ¢ agrees with the prismatic Frobenius, first observe that with the same
definition, one can define an endomorphism ¢ for any ¢-PD de Rham complex as in [BS19,
Construction 16.20]. We claim that each of them computes the prismatic Frobenius. To show
this, consider the cosimplicial complex M** from the proof of [BS19, Theorem 16.22]. Applying
our construction of ¢ for ¢-PD de Rham complexes yields an endomorphism ¢: M®* — M®*.
Restricted to M%*, this is the endomorphism we started with. Restricted to the cosimplicial
/Tp g — 1]-module M*° we get the prismatic Frobenius, since in degree 0 the endomorphism
¢g is induced by the Frobenii of the ¢-PD envelopes involved (which are d-rings). O

4.34. A non-canonical isomorphism II. — Since ¢*: A[q] — A[q]/(¢"?" — 1) factors
through the projection A[q] — A, the top left corner in the diagram from 4.32 is isomorphic to
(QE/A Qae Alg]/ (" —1))). By (bs), the bottom left corner is isomorphic to (q—Wpan,‘%/A)Z/j\.
This yields a quasi-isomorphism
(el A= AN
sojat (Qrja ®% g0 Algl/ (" — 1), — (a-WpeQpr/a), .

which has the desired form from Proposition 4.2. As we’ve already mentioned above, this quasi-
isomorphism is a priori non-canonical and compatibility with the E..-A[g]-algebra structures is
far from clear.

As we’ll see now, the map sg/4 from 4.34 is, in fact, canonical.

4.35. A functorial comparison map. — Let 7: P — ﬁp be any surjection from a p-
completely ind-smooth 6—ﬁp—algebra (see 1.10 for the terminology). Let D() denote the divided
power envelope of kerw. Then D(r) has a canonical d-structure by [BS19, Corollary 2.39]. We
let QE(W) /4 and QE(W) /A= L /4 ®P D(7) denote the ordinary and the PD-de Rham complex

49 Under the identification nép(q)(q‘QE/A,D) = n(qp,n(q—Hdg"};/A’D), this agrees with applying n(,—1) to the
Frobenius morphism from 4.29 (which sends ¢ — ¢*, so 7(q—1) on the left-hand side corresponds to 7 —1) on
the right-hand side).
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of D(m), respectively. Note that the crystalline Poincaré lemma [Stacks, Tag 07LG] shows that
the canonical map (Q D)/ Ay — (2 y 4)p is an equivalence on underlying Eq-algebras.

Using 2.44 (for which we only need a A,-A-algebra structure on D(7), so the given J-structure
does it) we get a comparison map spa;/4: D(7) @4, ga Alg]/(g"" — 1) — ¢-Wpa (D(r)/A) which
induces a morphism of differential-graded A[q]-algebras

)4 Oage Alal/ (¢ —1) — ¢Wpa Q14

Now let q—Wpaﬁ;‘)(w) A= EWpeldh 4 /(p*>-torsion). Since ¢-W, ﬁz( )/4 is p-local (because
D(m) is, see Corollary 2.19(a)) and p-torsion-free, its differentials must be PD-derivations.
Therefore, we get an induced map Q D(my/a — 4 -W, Q D(m)/A and hence also a map

()4 ®age Algl/ (¢ - 1)): — (Q—WpaQE(w)/A);\,

where the completion is the degree-wise underived p-completion (following our convention
from 1.10). Finally, since ¢-Wy,«Q7}, /A is degree-wise p-torsion-free by (a,), the natural map
q—WpaQ”b(ﬂ)/A — q—Wpan‘%/A induces a morphism (q—Wpaﬁj‘j(ﬂ)/A)ﬁ — (¢-Wpa QR/A) of
differential-graded A[g]-algebras. Summarising, we obtain the following diagram of Es.-A[q]-
algebras

(Qp(ryja ®% g Alal/ (" — 1)); — (q_wpaﬁD(w)/A);\

| J

(Qpja ®% 4o Aldl/ (" — 1))2 Lt (Q‘WPQQR/A);\

Since the left vertical arrow is an equivalence, the bottom dashed arrow s, exists uniquely up
to contractible choice.

We claim that sx doesn’t depend on the choice of w: P —» }A% (up to equivalence in the oco-
category CAlg(D,(A[q])) of p-complete Eoo-A[g j]-algebras). Indeed, let 7': P" — R, be another
surjection from a p—completely ind-smooth §- A -algebra. If there exists a J- A algebra map
f: P — P’ such that m = 7’ o f, then it’s clear that Sp ~ Sy since the the whole construction is
functorial Wlth respect to o- A -algebra maps. In general let C R denote the category of surjections
(m: P — R ») as above, with morphlsms m — w given by 0- A -algebra morphisms f: P — P’
such that 7 = 7’ o f. Then Cg has coproducts given by 7 U7’ = (1@ 7': (P ®4 P');; — R ),
hence it is weakly contractible.(*®) Therefore, for arbitrary elements in Cg, there’s an essentially
unique way to compare them, proving that they all give rise to the same map s, up to
equivalence.

Furthermore, this map can be made functorial in R. The easiest way to do so is to simply
choose a functorial surjection 7r: Pp — R from a p- completely ind-smooth J-ring; for example
one can take Pp = p{W( )}, to be the p-complete free o- A -algebra on the set W(R ) of
p-typical Witt vectors, together with its canonical surjection

Tr: PR — W(R,) — R,

Here W(}A‘Zp) is equipped with its ﬁp—algebra structure induced via ﬁp — W(ﬁp) — W(}Alp),
using the d-structure on A,. This yields the desired functoriality.

49If ¢ is any oco-category with coproducts, the diagonal A: C — C x C has a left adjoint, which forces
|A]: |C| — |C| x |C] to be an equivalence. Then all 74|C| must be singletons.
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4.36. Remark. — A conceptually nicer way would be to consider the category C of all pairs
(R,m: P — R}) together with its forgetful functor U: C — Smy into the category of smooth
A-algebras. In 4.35 we’ve constructed a natural transformation

s (o(y/a Dl ge Alal/ (@ = 1)) = (¢ WpeQ_ya)) o U

One can show that (Q_ 4 ®IA¢Q Alq]/(¢*" — 1)) is the left Kan extension of the functor on

the left-hand side along U.(45) Then the universal property of left Kan extension provides the
desired natural transformation.

Armed with a functorial comparison map, we’ll now prove the remaining two implications.

Proof of (by) = (ca). We need to prove that the natural transformation

(O ja @Y go Alg)/ (@ = 1)) = (¢-WpaQ_ya))

constructed in 4.35 and Remark 4.36 is an equivalence. As both sides are étale sheaves by Corol-
lary 3.33, it’s enough to do this in the case where there exists an étale map U: A[T 1., In] — R.
As in 4.10, we get a 6- A -algebra structure on Rp, thus making (id: R — R ») into an object
of Cr. The correspondmg divided power envelope is just Rp itself and so, with notation as in
4.35, siq is a morphism of differential-graded A[q]-algebras

(U4 ®age Alg)/(¢7" = 1)) — (¢-Wpa Q. 4))

We claim that this map coincides with the quasi-isomorphism sg,4 from 4.32, which would
finish the proof.

Both siq and s, 4 are given as explicit maps of differential-graded Alq]-algebras. By the
universal property of de Rham complexes, it is thus enough to check that siq and sg/4 agree in
degree 0. In fact, it’s enough to check this after postcomposition with the comparison map
Cpejas q-Wpe (}Aip JA) — ﬁp [q]/(¢"" — 1), which we know to be injective as a consequence of
(ba). By construction, siq is given by the comparison map

Spe/JA* Ep ®ape Alg)/ (" —1) — ¢-Wpa (RP/A)

from 2.44 in degree 0, using the J-A-algebra structure on R We’ve noted in 2.44 that
Cpa /A © Spa /4 18 given by the linearised (p @)th Adams operation of R But that’s just ¢2 / 4! By
unravelling 4.32, we see that sg/4 in degree 0, postcomposed with ¢pa /4, is also given by ¢p /A"
This finishes the proof. O

(4 For any R € Sma, the value of the left Kan extension at R is given by colim(C/z — C — CAlg(ﬁp(A[q]))).
Using that Cr is weakly contractible, it will thus be enough to check that Cr — C, is cofinal. The same argument
as in 4.35 shows that C,r has coproducts. Thus, if we choose any 7o € Cg, then the slice category projection
(C/r)ry; — C/r will be a right adjoint, with left adjoint given by — U mo. In particular, (C/g)r,; — C/r is
cofinal. Now let (C,z)™™ C C,gr be the full subcategory spanned by those ((R',7’) € C,(R' — R) € (Sma),r)
for which R’ — R is surjective. By inspection, the image of (C/g)~,, — C/r lands in (C,z)*™. The same
adjointness argument then shows that (C/gr)r,;, — (C/r)*"" is cofinal too, hence (C,z)"" — C,r must also be
cofinal. Finally, Cr — (C,r)*"" is a right adjoint, hence cofinal: The left adjoint simply sends a surjection

' P ﬁ; to its composition with ﬁ; — Ry.
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Proof of (cq) = (do). The idea is to combine the equivalence from Proposition 4.2 with the
Cartier isomorphism. Let R = A[Ty,...,T,] be a polynomial ring; we equip Ep with the
identity p-completely étale framing [1: ﬁp<T1, Ty — }A%p and the corresponding 5—Ap—algebra
structure given by §(7;) = 0. Furthermore, let

soja: (Viya ®@ape All/ (¢ - 1))2 — (Q‘Wp“QE/A)Q

be the explicit quasi-isomorphism from 4.32. We note that the left-hand side can be rewritten
as (Qgy/z @z Alg]/(¢#" — 1)), where Ro = Z[Ty, ..., T,].

Now assume § € g-Wpa Q%/A satisfies d€ = 0 mod p. Letting & denote the image of £ in
Wy Q7 /A /p; we see that £ is a cycle. Since both source and target of s5/4 are p-torsion-free
(using (a ), which we already know), it induces a quasi-isomorphism

S04t Qo) r, ®F, (A/D)[al/ (¢ = 1) = Wy Q4 /0.

Consequently, we can write £ = 35 / 4(9) + d€,, where 9 is a cycle in the base changed de
Rham complex Ql( Ro/p)/F, OFy (A/p)[q]/(¢"" — 1). But cycles in the de Rham complex of
a polynomial ring over [F, can be very explicitly described using the Cartier isomorphism,
or rather the ideas that lead to it. Namely, we can write ¥ = ¥y + dd;, where 9y is an
Alq]-linear combination of terms of the form T{"" - TP (T~ dTy,) - -+ (TE dT,,), where
U1,...,0g =2 0and 1 <nj; <ng <...<n; <n. Now choose lifts &, Yo and ¥ of &, Yo, and
91, respectively. Then & = sp/a(Po) +dsao(d1) +d§p mod p. Both dsg(v1) and d€p are in the
image of Fj,: ¢-Wpat QE/A — q-Wpa QE/A since F,od oV}, = d. Furthermore, we’ve seen in the
proof of (b,) = (ca) above that s,/ 4 is induced by the comparison map s,e /4 from 2.44. This
map sends 7; to its Teichmiiller lift 7,0 (7}) since §(7;) = 0. Hence sg,4(Yo) is an A[g]-linear
combination of terms of the form

Tpor (TP -+« Tpe (T )P (Tpo‘ (T, )p_l drpe (T, )) T (Tp“ (T, )p_l d7pe (Tnz)) )

which are also in the image of F),. This finishes the proof. O

§4.5. Proof of the main results Il: The global case

In the previous section we’ve carried out the induction outlined in our battle plan 4.3. It remains
to prove the global cases of Propositions 4.1 and 4.2 as wellas Theorem 4.28. Fortunately, these
are all easily reduced to the p-typical cases.

Proof of Proposition 4.1. We show that ¢-W,,Q7% is degree-wise p-torsion-free using induction
on m. The case m = 1 is covered by (agp). Now let m > 1. Using étale descent as in the proofs
of Lemmas 4.6 and 4.7, we can reduce to the case where R is a polynomial ring, and then by
base change and Lemma 3.16 we can reduce to the case A = Z.

By Corollary 2.38 and Proposition 3.12(a), we see that ¢-W,, Q7 1z is degree-wise finitely
generated over the noetherian ring ¢-W,,(R). By the same argument as in the proof of
Lemma 3.23, it’s therefore enough to show p-torsion freeness after applying each of the functors

OB gy, and ()b [ £#8],
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where ¢ ranges over all prime factors # p of m. After localisation at p, the p-torsion freeness is
trivial. After (p,¢™/¢ — 1)-adic completion, both £ and [/] g/t become units and so

Fe: (q_WmQE/Z)(Ap,qm/Ll) = (q_Wm/ZQE/Z)&,qm/Ll)

is a graded isomorphism with inverse [E]qj,ll ,¢Ve. By the inductive hypothesis, the right-hand
side is p-torsion-free, hence so is the left-hand side. Finally, if « is the exponent of p in the
prime factorisation of m, then ¢-W,, €27, /Z[l / (qm/ 1) | ¢ # p] is isomorphic to a flat base
change of q—WpaQ}"%/Z, as was argued in the proof of Lemma 3.23, so we’re done by (ay). O

To prove Proposition 4.2, we first need a g-de Rham—Witt analogue of Lemma 2.29:

4.37. Lemma. — Let R be any A-algebra and let m = p®n be an integer, where « is the
exponent of p in the prime factorisation of m. Then there’s an isomorphism of differential-graded
Apylq]-algebras

(Q*WmQE/A)(p) = Hq’Wp“QE/A ®z[q)/ (g7 —1),0¢ L(p) [Q]/(q)d(Q) o (I)P‘*d(q» )
dn

where ¥4: Z[q]/(¢"" — 1) — Zy[a)/(®a(q) - - - Ppealq)) is the map sending q — ¢°.

Proof. Let us abbreviate the right-hand side by II%,. We’ll show that (II%,)nmen exhibits the
same universal property as ((¢-W,, 27, / 4)(p))men- To do so, one must first construct the
structure of a ¢-FV-system of differential-graded A-algebras over R on (II})),en. Using
Lemma 2.29 as well as ¢-W,, (=) ) = ¢-Wi((—)(p)) by Corollary 2.19(a), we can equip each
I, with a ¢-Wy,(R) ®qw,,(4) A la]/(¢™ — 1)-algebra structure. To construct Frobenii
and Verschiebungen, we proceed in the exact same way as in the proof of Lemma 2.29. It’s
straightforward to verify that these satisfy the conditions from Definition 3.1(b), Definition 3.6(c),
and the Teichmiiller conditions (7/) and (77). The existence of A[g]-linear Verschiebungen
implies that the ¢-W,,,(R) ®q-w,, (4) A la]/(¢™ — 1)-algebra structure on IIY), factors through
a ¢-W,,(R/A)p)-algebra structure.

This finishes the construction of the desired structure on (II¥,),,en. To prove universality,
one can use the same argument as in the proof of Lemma 2.29. 0

Proof of Proposition 4.2. According to Lemma 4.37, we can decompose (q—WmQE/A);\ into a

product of base changes of (g-Wya QT%/A)I/)\ along e Z[q]/(qpa—l) — L) [q]/(Palq) - - - Ppoalq)).
These maps are flat, so the decomposition also works on a derived level. Similarly, we can
decompose

(Qpja @ 4o Aldl/ (g™ — 1))2 = H(QR/A ®'% g0 Alg]/ (®alq) - ‘I’pad(Q))>A
din P

The desired equivalence can now be constructed by matching up factors, using the p-typical
case (cq). This also needs

ALl /(@ = 1) @Yy 1yt L [ (@al@) -~ Bpeal@)) = Ay [a]/ (Bulg) -+ Bpoala)

which is straightforward to check. O
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Proof of Theorem 4.28. By Lemma 2.4, to check whether

A

(q_WmQ}k{/A) (g—1) — H* (q_Hdg}k%/A,D/(qm - 1))

is an isomorphism, it’s enough to do so after degree-wise application of the functors (—)[1/m]
and (—); for all prime factors p | m. Furthermore, as both sides are degree-wise derived
(¢ — 1)-complete, the localisation can be replaced by (—)[1/ m](\q_l) instead. We’ve seen in
the proof of Lemma 4.25 that the complex ¢-Hdgpy, 4 1/(¢™ — 1) satisfies the conditions of
Lemma 4.26. Hence the functors (—);; and (—)[1/m]€q_1) commute with taking cohomology,
and all completions can be computed as underived completions.

Let’s consider p-completions first. Let o be the exponent of p in the prime factorisation of
m. Both F;, jpa 0 Vi jpe = m/p® and Vp, jpe © Fppy e = [m/p®] pe are invertible over Zy[q — 1],
hence . N N

Efpet (0 Wma) q-1) — (@ WooRsa) 4 1)

(where we take the degree-wise derived completion) is an isomorphism. The same conclusion
holds for H*(¢-Hdgg /4 0/(¢™ — 1)), — H* (q—HdgE/A’D/(qpa — 1)), So we're reduced to (),
which we already know.

The argument for (—)[1/m]@1_1) is similar: Both F, o V,,, = m and V,,, o F};, = [m], are
invertible in Z[1/m][q — 1], hence we’re reduced to checking that

(W19 4l (g y) — B (¢ Hdghyapl5]/(a = D)

is an isomorphism. By Proposition 3.12(a), the left-hand side is just Q% ,[1/m], as is the
right-hand side by inspection. The map between them is clearly the identity on R[1/m] in
degree 0 and compatible with the differential-graded algebra structures by construction, hence
it must be the identity on QF, / 4[1/m] by the universal property of de Rham complexes. [
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§5. A no-go result for functoriality of the ¢-Hodge complex

In this final section, we’ll show the following result, which perhaps comes as an unwelcome
surprise after our very promising Theorem 4.28.

5.1. Theorem. — Let A be a perfectly covered A-ring (in the sense of Remark 2.46). If A is
not a Q-algebra, then there can be no functor

¢-Hdg_,4: Smy — ﬁ(q_l)(Aﬂq — 1]])

from the category of smooth A-algebras into the co-category of derived (q—1)-complete AJq—1]-
modules in such a way that for all m € N there’s also a functorial graded A[q — 1]-module

isomorphism
A

(W% 1)y — H*(g-Hdg_sa/"(q™ — 1))
and for all d | m the canonical projection q—Hdg_/A/L(qm -1)— q—Hdg_/A/L(qd — 1) induces
the Frobenius F,,q on q-de Rham—Witt complezes.

5.2. Remark. — Over Q, the g-derivatives from 4.8 can be expressed in terms of the usual
derivatives; see the argument in [Sch17, Lemma 4.1]. Hence in this case the ¢-Hodge complex
can be made functorial, but it’s no more interesting than the usual de Rham complex itself.

5.3. Remark. — In [MW24], we’ll explain how in certain situations a functorial derived
q-Hodge complex can be constructed. This will constitute a partial fix for the non-existence
result in Theorem 5.1.

We’ll now start the proof of Theorem 5.1.

5.4. Derived ¢-Hodge complexes. — Suppose a functor as in Theorem 5.1 would exist.
Let Ani(CRing,) denote the oo-category of animated A-algebras in the sense of Clausen. It
can be explicitly constructed as the oco-categorical localisation of the category of simplicial
commutative A-algebras at all weak equivalences. Via left Kan extension from polynomial
A-algebras (formerly known as forming the non-abelian derived functor), we can define a derived
q-Hodge complex R

Lg-Hdg_ /4 Ani(CRingy) — D(41) (Alg—1]).

5.5. ¢-de Rham—Witt filtrations. — By left Kan extending (or non-abelian deriving) the
Postnikov filtration 7<¢(¢-Hdg_ /A /Y(¢™ — 1)), we obtain for any animated A-algebra R an
ascending filtration Fili "V (Lg-Hdgp 14/ L(g™ —1)) which we call the g-de Rham-Witt filtration.
Since the Postnikov filtration is exhaustive, we get

— m /\
Lg-Hdgpa/“(¢" ~1) = (colim Fil ™™ (Lg-Hdgpa /M (a" = 1)) -

Furthermore, if a functorial isomorphism (g-W,,* / A)Z\qfl) = H*(¢-Hdg_ /4l L(g™ —1)) exists,
then associated graded of the g-de Rham-Witt filtration is given by

grf " (¢-Hdgpya/“(a™ = 1) = (La- WS4,y [—i]-

Let us also remark that the 0* filtration step of the g-de Rham-Witt filtration is always given

by Filg'wg(q—Hng/A/L(qm — 1)) >~ ¢-Wpn,(R/A)(,_ ;). Indeed, using the above description of

the associated graded grgwg, we only have to show that L ¢-W,,(R/A) — ¢-W,,(R/A) is an
equivalence. Base change along the faithfully flat map A — A, and Lemma 2.45 reduce this
to a question about absolute ¢-Witt vectors, which follows inductively from Proposition 2.14.

74


https://arxiv.org/pdf/1606.01796#theorem.4.1
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Proof of Theorem 5.1. If A is not a Q-algebra, then we find a prime p such that /Alp Z 0.
Consider R = (O¢ ®z, A);Q, where O¢ is the ring of integers in a complete algebraically closed
extension of @,. Note that R 2 0 since O¢ is the p-completion of a free Z-module. We also
note that O¢ is an integral perfectoid ring in the sense of [BMS18, Definition 3.5], so we can
write O¢ = Ajn(Oc¢)/€ for some nonzerodivisor & € Ajye(O¢) such that §(€) is a unit. Here §
refers to the usual d-structure on Ajn(O¢). If we define W := (A (Oc) ®z A);\, then ¢ is also
a nonzerodivisor on and W/¢ = R.

As we'll see in Lemma 5.6 below, (Lg-Hdgyy,4);, >~ W[g — 1]; in particular, it is static in
the sense of 1.10. Similarly, (Lg-Hdgpg, A)z/)\ is static and flat over Zy[q — 1]. Hence all derived
quotients (—)/%(¢™ — 1) can be identified with actual quotients. We’ll now play around with
the filtrations on (Lg-Hdgpg,4);,/(¢™ — 1) and (Lg-Hdgpg,4),/(¢™ — 1) for m =1 and m = p
and derive a contradiction.

Case 1: m = 1. Consider the element § € Wg — 1] = (Lg-Hdgy/4);,- Since { vanishes
under ¢-W1(W/A) — ¢-W;(R/A) and the diagram

¢-W1(W/A) —— Fil§™"® (Lg-Hdgyya/(¢ — 1)) — (Lg-Hdgya)) /(¢ —1)

J | l

¢-Wi(R/A) —— Fil§ ™ (Lg-Hdgg/a/(¢ — 1)) —— (Lq_Hng/A);\/(q —1)

commutes, we see that £ vanishes in (Lg-Hdgp/4);, /(¢ —1) and so & must be divisible by (¢ —1)
in (Lg-Hdgpg/a),-

Case 2: m = p. Consider the element ¢(£) —®,(¢)d(§) € Wg— 1] = (Lg-Hdgyy)4);,, where
¢ denotes the Frobenius of the §-ring Ajn(O¢). Then the image of £ modulo ¢ — 1 agrees
with the image of the Teichmiiller lift 7,(¢) under ¢-W,(W/A) — (Lg-Hdgy,4),/(¢" — 1).
Indeed, this follows from an unravelling of first the proof of Lemma 5.6(a) and then the
map from Lemma 2.33: We must check that e,(7,(£)) = —d(€), which follows from the fact
that the section s,: Aine(Oc) — Wp(Aint(Oc)) coming from the d-structure on Ayt (Oc¢)
satisfies sp(&) = (£,9(8)) = (&) + Vp(9(€)). Now the Teichmiiller lift 7,(£) vanishes under
¢-W,(W/A) — ¢-W,(R/A). Since the diagram

g-Wy(W/A) —— Fil§ " (Lg-Hdgy, /(¢ — 1)) — (Lg-Hdgy,a), /(¢” 1)

J | l

¢-Wy(R/A) —— Filj " (Lg-Hdgp/a/(¢" = 1)) —— (Lq—Hng/A);/(qp -1)

commutes, it follows that the image of ¢(£) — ®,(q)d(§) vanishes in (Lg-Hdgg,a),/(¢" — 1)
and so it must be divisible by (¢ — 1) in (Lg-Hdgpg/4);,-

We're ready to derive our contradiction. In the mod p reduction (Lg-Hdgp / A)]/D\ /D, we see
that ¢(&) — ®,(q)5(€) = €P — (¢ — 1)P718(¢) mod p is divisible by ¢ — 1 = (¢ — 1)? mod p.
Since &P is also divisible by (¢ — 1)P and (Lq—Hng/A)Q/p is flat over FpJg — 1], it follows
that (&) is divisible by (¢ — 1). In particular, §(§) vanishes in (Lg-Hdgpg,4),,/(p,q¢ — 1). By
Lemma 5.6(c) we see that §(¢) already vanishes in R/p. Since §(§) is a unit by assumption,
this forces R/p = 0, hence R = 0 by the derived Nakayama lemma [Stacks, Tag 09B9]. This is
the desired contradiction! O
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The following technical lemma was used in the proof.

5.6. Lemma. — With notation as above, the following are true:

(a) (Lg-Hdgy,a)p =~ Wlg—1].

() (Lg-Hdggya), is a static Alq — 1]-module and flat over Zy[q — 1].

(c) The map R/p = ¢-Wi(R)/p — (Lg-Hdgg,a),/(p,q — 1) induced by the 0™ step in the

q-de Rham—Witt filtration is injective.

Proof. 1t’s well-known that the p-completed cotangent complex (Ly, .(0.) /Zp);;\ vanishes. Hence
the graded pieces of the p-completed g-de Rham-Witt filtration for (Lg-Hdgyy 4/ Lig— 1));,\ are

-WQ A i A .
gri" (Lg-Hdgyy/a/" (g — 1))p ~ (LYY, (00)/2, ®7 A)p [—i] ~0

for ¢ > 0. It follows that (Lq—Hdi/A);\/L(q — 1) ~ ¢-W(W/A)) ~ W. In general, for any
derived (p, ¢ — 1)-complete object M € ﬁ(p’q_l)(Zp[[q —1]) we have M ~ Rlimgso M/%(¢?" —1).
Indeed, by the derived Nakayama lemma [Stacks, Tag 0G1U] this can be checked after applying
(—=)/%p, and then M/%(p,q?" —1) ~ M/"(p, (¢ — 1)P"), so we recover the condition that M /“p
is derived (¢ — 1)-complete. In particular, we obtain a map
. . A L (e
Rlim ¢-We (W/A), 1) — Rlim (La-Hdgya), /7@ = 1) -

where the limit on the left-hand side is taken along the g-Witt vector Frobenii. Here’s the only
time we use our assumption that Lq—Hdi/A/L(qpourl -1)— Lq—Hdi/A/L(qpa — 1) induces
the Frobenii on ¢-de Rham—Witt complexes. Using Lemma 2.45 and Corollary 2.36, we get

N A
Rlim ¢-Wye (W/A) g1y = (Rgg% Wldl/(¢" - 1)) ) Wlg—1]
A
(—)/%(g—1) this map is the identity on W, hence it is an isomorphism by the derived Nakayama
lemma. This finishes the proof of (a).
For (b) and (c), we argue as above to see that the graded pieces of the p-completed g-de
Rham-Witt filtration for (Lq—Hng/A/L(q — 1)), are

gr?WQ (Lq—Hng/A/L(q — 1));\ ~ (LQZbC/Zp ®% A);\[—i] ~ 0

By a standard fact about perfectoid rings (see [BMS19, Proposition 4.19] for example), we
have (LQ%C /ZP)Q[—i] ~ Q¢ for all i > 0. Hence the graded pieces above are all equivalent to
R. In particular, they are all static and p-torsion free. Inductively, this implies that all steps in
the p-completed ¢g-de Rham—-Witt filtration must be static and p-torsion free. Furthermore, the
transition maps must be injective. The same conclusion holds modulo p, which immediately
shows (c). For (b), we conclude that (Lg-Hdgg,4),/ L(g — 1) is the derived p-completion of a
static p-torsion free Z,-module, hence it must be static and p-torsion free itself. In general, if
M e ﬁ(q_l)(Z[[q —1]) is derived (¢ — 1)-complete and M/"“(q — 1) is static, then M itself is
static. Indeed, the map H'(M)/(q — 1) — HY(M/"(q — 1)) is always injective; together with
[Stacks, Tag 09B9] this implies HY(M) = 0 for i # 0, hence M must indeed be static. It
follows that (Lg-Hdgp,4); is static. Moreover, p-torsion freeness implies that (Lg-Hdgg,4);
is (¢ — 1)-completely flat in the sense of 1.10. Since Z,[¢q — 1] is noetherian, it follows that
(Lg-Hdgpg,4); is flat on the nose. This finishes the proof of (b). O

In summary, we've constructed a map Wqg — 1] — (Lg-Hdgyy)4);. By construction, after
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