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Abstract. — This thesis consists of two parts. In the first part we study
q-de Rham cohomology. We give a detailed argument how the results on the p-
completed q-de Rham complex from [BS19, §16] can be used to show the existence
of a well-behaved and functorial q-de Rham complex for smooth algebras over Z,
and we prove a q-crystalline analogue of a theorem of Berthelot–Ogus.

In the second part of this thesis, we study a variant of the q-de Rham complex,
which we call the q-Hodge complex. It is given as an explicit complex q-Hdg∗

R,□
for every smooth Z-algebra R equipped with a choice of étale coordinates □. We
show that the cohomology H∗(q-Hdg∗

R,□ /(qm − 1)) for all m ∈ N is independent
of the choice of étale coordinates □ and functorial in R. To this end, we
introduce q-versions of (both big and p-typical) Witt vectors as well as a q-
version of the de Rham–Witt pro-complex and show that the latter coincides
with (H∗(q-Hdg∗

R,□ /(qm − 1)))m∈N. However, we also show that the complex
q-Hdg∗

R,□ itself can not satisfy the same pleasant functoriality as the q-de Rham
complex.
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§1. Introduction

§1. Introduction
1.1. The q-de Rham Complex. — Let q be a formal variable. Classically, the q-derivative
(or Jackson derivative after [Jac10]) of a function f(t) is defined as

∇qf(t) := f(qt) − f(t)
qt − t

,

provided this expression makes sense in the respective context. For instance, if f(t) = tm

for some integer m ⩾ 0, then ∇qf(t) = [m]qtm−1 could be regarded as an element of the
polynomial ring Z[q, t], where [m]q = 1 + q + · · · + qm−1 denotes Gauß’s q-analogue of m.
Using the q-derivative, it’s possible to define q-analogues of the de Rham complex, as was first
done by Aomoto in [Aom90]. For example, if P is a polynomial ring over Z, one can take its
base changed de Rham complex Ω∗

P ⊗Z Z[q] and replace its differentials by the q-derivatives
as above to obtain a complex q-Ω∗

P which is a q-deformation of the usual de Rham complex
Ω∗

P in the sense that q-Ω∗
P /(q − 1) ∼= Ω∗

P .
These q-deformations have recently come into the focus of arithmetic interest. In [Sch17],

Scholze observes that, after (q−1)-completion, a complex as above can not only for polynomial
rings, but for arbitrary smooth Z-algebras equipped with a choice of étale coordinates;
furthermore, he explains various connections to p-adic Hodge theory and singular cohomology.
Scholze’s construction goes as follows: A framed smooth Z-algebra is a pair (R,□), where R
is smooth over Z and □ : Z[T1, . . . , Td] ! R is an étale map from a polynomial ring; we’ll
often call □ an étale framing. Let furthermore γi : Z[T1, . . . , Td]Jq − 1K ! Z[T1, . . . , Td]Jq − 1K
be given by Ti 7! qTi and Tj 7! Tj for j ̸= i. Observe that γi is the identity modulo q − 1,
that □ induces a (q − 1)-completely étale map Z[T1, . . . , Td]Jq − 1K ! RJq − 1K (see 1.10 for
the terminology), and that RJq − 1K ! R is a (q − 1)-complete pro-infinitesimal thickening.
Hence there exists a unique dotted lift in the solid diagram

Z[T1, . . . , Td]Jq − 1K RJq − 1K

RJq − 1K R

□

γi

∃!

This lift will also be denoted γi. Using a similar unique lifting argument and the analogous
assertion in the polynomial ring case, we also see that γi is not only congruent to the
identity modulo q − 1, but also modulo (q − 1)Ti. This allow us define algebraic versions
∇q,i : RJq − 1K ! RJq − 1K of Jackson’s q-derivatives using the formula

∇q,i(x) := γi(x) − x

qTi − Ti

for i = 1, . . . , d. Upon taking the Koszul complex of the commuting ZJq − 1K-module
endomorphisms ∇q,1, . . . , ∇q,d, we obtain the q-de Rham complex of the framed smooth
Z-algebra (R,□)

q-Ω∗
R,□ :=

(
RJq − 1K

∇q
−! Ω1

RJq − 1K
∇q
−! . . .

∇q
−! Ωd

RJq − 1K
)

.

We remark that q-Ω∗
R,□/(q − 1) ∼= Ω∗

R is a q-deformation of the de Rham complex of R, but
in general q-Ω∗

R,□ is no base change of Ω∗
R and thus it contains strictly more information.
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§1. Introduction

What makes matters complicated is that q-Ω∗
R,□ is neither functorial in R as a cochain

complex, nor is it usually independent of the choice of the framing □ up to isomorphism.
Instead, functoriality and independence of □ are only satisfied in the derived category; more
precisely, the following theorem is the best we can say:

1.2. Theorem (Theorem 2.1). — There exists a functor

q-Ω(−) : Sm(Z) −! ÂlgE∞

(
ZJq − 1K

)
from the category of smooth Z-algebras into the ∞-category of (q − 1)-complete E∞-algebras
over ZJq − 1K, such that for every étale framing □ : Z[T1, . . . , Td] ! R of a smooth Z-algebra
R, the underlying object of q-ΩR in the derived ∞-category of ZJq − 1K can be computed as

q-ΩR ≃ q-Ω∗
R,□ .

Theorem 1.2 was conjectured in [Sch17, Conjecture 3.1]. After a partial result by Pridham
[Pri19], who proved that the q-de Rham complex (as an E∞-algebra) is a natural invariant
of Λ-rings, the p-completed version of Theorem 1.2 for any prime p was proved by Bhatt and
Scholze by introducing a q-crystalline site in [BS19]. This essentially also proves Theorem 1.2
via a more or less formal reduction; we’ll give a detailed argument in §2.

1.3. Can there be Smaller Bases than ZJq − 1K? — It is an interesting question to
what extent q-de Rham cohomology only exists after (q − 1)-completion. For example, one
could ask the following question:
(∗) Can q-ΩR, or some version of it, be written as the base change of another object along

the map H ! ZJq − 1K? Here

H := lim
m⩾1

lim
n⩾1

Z[q]/(qm − 1)n

denotes the Habiro ring.
The Habiro ring was first considered in [Hab04] and has since been suggested by Manin
[Man10] to be related to analytic functions over the mythical field with one element F1. This
connection to F1 makes (∗) a natural question to ask.

We won’t discuss (∗) in this thesis, let alone answer it. Still, (∗) played an important
motivational role in studying the q-Hodge complex. We’ll come back to this after Theorem 1.7,
but let’s first introduce the main object of interest in this thesis.

1.4. The q-Hodge Complex. — The primary goal of this thesis is to study a variant of
the q-de Rham complex, which we’ve termed q-Hodge complex. Here’s the construction: For
a framed smooth Z-algebra (R,□) as above, we let q-Hdg∗

R,□ be the complex obtained from
q-Ω∗

R,□ by multiplying each differential by q − 1. That is,

q-Hdg∗
R,□ :=

(
RJq − 1K

(q−1)∇q
−−−−−! Ω1

RJq − 1K
(q−1)∇q
−−−−−! . . .

(q−1)∇q
−−−−−! Ωd

RJq − 1K
)

.

Often we’ll also consider a completed version. If p is a prime number, a framed p-completely
smooth Zp-algebra is a pair (R,□) as above, except that now R is p-completely smooth over
Zp and the framing □ : Zp[T1, . . . , Td] ! R is p-completely étale (see 1.10 for the terminology).
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§1. Introduction

Given a framed p-completely smooth Zp-algebra (R,□), we can define a p-completed q-Hodge
complex

q-Ĥdg∗
R,□ :=

(
RJq − 1K

(q−1)∇q
−−−−−! Ω̂1

RJq − 1K
(q−1)∇q
−−−−−! . . .

(q−1)∇q
−−−−−! Ω̂d

RJq − 1K
)

,

where Ω̂i
R denotes the p-completion of the Kähler differential module Ωi

R (so that we again
obtain a complex of degree-wise finite free RJq − 1K-modules).

To the authors knowledge, the q-Hodge complex first appeared in Pridham’s work [Pri19],
who defined E∞-AJq−1K-algebras qD̂RP (B/A) for any set P of primes and any flat morphism
A ! B of ΛP -rings. If P is the set of all primes and (R,□) is a framed smooth Z-algebra
such that the constant Λ-ring structure on the polynomial ring Z[T1, . . . , Td] extends along
□ : Z[T1, . . . , Td] ! R, then [Pri19, Theorem 2.8] shows that the underlying complex of
qD̂RP (R/Z) is quasi-isomorphic to q-Hdg∗

R,□. If P = {p}, then for any framed p-completely
smooth Zp-algebra (R,□) the framing □ : Zp[T1, . . . , Td] ! R induces a δ-structure on the
right-hand side (see [BS19, Lemma 2.18] for example), and in this case Pridham’s result shows
that qD̂R{p}(R/Zp) is quasi-isomorphic to q-Ĥdg∗

R,□. Despite these identifications, we’ve
decided to deviate from Pridham’s notation, to distinguish his homotopical constructions
from our explicit complexes, but also to emphasise that q-Hdg∗

R,□ really is a q-deformation
of Hodge cohomology.

Our main goal in this thesis is to study to what extent q-Hdg∗
R,□ is functorial in R and

independent of □ in the derived category. More precisely, we’ll investigate the following
analogue of Theorem 1.2.1

1.5. Conjecture. — There exists a functor

q-Hdg(−) : Sm(Z) −! ÂlgE∞

(
ZJq − 1K

)
from the category of smooth Z-algebras into the ∞-category of (q − 1)-complete E∞-algebras
over ZJq − 1K, such that for every étale framing □ : Z[T1, . . . , Td] ! R of a smooth Z-algebra
R, the underlying object of q-HdgR in the derived ∞-category of ZJq − 1K can be computed as

q-HdgR ≃ q-Hdg∗
R,□ .

Unfortunately, it turned out during this project that Conjecture 1.5 is most likely wrong!
However, the reason why we think it fails rests upon a closely related assertion, which is
actually true and already rather interesting on its own. So even though it’s usually pointless
to gather evidence for a wrong conjecture, it will be worthwhile to explain our motivation
behind Conjecture 1.5 before we tell the reader what goes wrong.

First of all, observe ηq−1(q-Hdg∗
R,□) ∼= q-Ω∗

R,□, where ηq−1 denotes the Berthelot–Ogus
décalage operator (see [BO78] or [Stacks, Tag 0F7N]). Hence q-Hdg∗

R,□ already contains
all information about q-Ω∗

R,□. Furthermore, Pridham’s results [Pri19] about functoriality
of the q-de Rham complex as a functor on Λ-rings are all deduced from corresponding
assertions about the q-Hodge complex in this way. This already suggests that q-Hdg∗

R,□
might be a more fundamental object than q-Ω∗

R,□. But perhaps the most compelling evidence
for Conjecture 1.5, and the reason why the question 1.3(∗) has lead to studying q-Hodge
complexes, comes from the fact that the cohomology rings H∗(q-Hdg∗

R,□ /(qm − 1)) for
all m ∈ N admit an incredibly nice structure, which actually is fully functorial in R and
independent of the choice of framing □.

1Conjecture 1.5 was suggested by Peter Scholze.
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§1. Introduction

1.6. q-Witt Vector Structures. — It turns out that H∗(q-Hdg∗
R,□ /(qm − 1)) for m ⩾ 1

form a system of commutative differential-graded algebras which very much resembles Illusie’s
de Rham–Witt pro-complex of an Fp-algebra from [Ill79, Définition I.1.4].

To set the stage, we first define certain q-versions of truncated big Witt vectors. Recall
that Hesselholt [Hes15, Section 1] defined a ring of truncated big Witt vectors WΣ(R) for
every subset Σ ⊆ N closed under divisors. If Σ = Σm is the set of positive divisors of some
m ∈ N, we put Wm(R) := WΣm

(R). Now let (q-Wm(R))m∈N be the universal system of
rings satisfying the following two conditions:
(a) q-Wm(R) is a Wm(R)Jq − 1K/(qm − 1)-algebra for all m ∈ N.
(b) For all divisors d | m, the Frobenius and Verschiebung maps on the ordinary big

Witt vectors of R extend to ZJq − 1K-linear maps Fm/d : q-Wm(R) ! q-Wd(R) and
Vm/d : q-Wd(R) ! q-Wm(R) satisfying the relations

Fm/d ◦ Vm/d = m/d and Vm/d ◦ Fm/d = qm − 1
qd − 1 .

We call q-Wm(R) the ring of m-truncated big q-Witt vectors2 over R. One can construct
q-Wm(R) explicitly as a certain quotient Wm(R)Jq − 1K/Im (which is actually how we’ll
define them in Definition 5.3; the universal property will be proved afterwards in Lemma 5.5).

The idea behind q-Wm(R) is pretty natural. While the Frobenius and Verschiebung on
ordinary big Witt vectors satisfy Fm/d ◦ Vm/d = m/d, there’s usually no nice description
of Vm/d ◦ Fm/d, unless the ring in question has characteristic p and m = pn is a power of
p, so that Wm(−) coincides with the functor of truncated p-typical Witt vectors Wn+1(−).
Also it wouldn’t make much sense to artificially enforce Fm/d and Vm/d to commute. So the
next best thing one could try is to enforce that Fm/d and Vm/d commute up to q-twist. And
indeed, condition (b) above precisely makes sure that

Vm/d ◦ Fm/d = 1 + qd + (qd)2 + · · · + (qd)m/d−1 =: [m/d]dq

is a q-deformation of m/d.
We’ll prove in Proposition 5.7 that H0(q-Hdg∗

R,□ /(qm −1)) is isomorphic to q-Wm(R) for
all m ∈ N. Already the fact that there is a map Wm(R) ! RJq −1K/(qm −1) (which depends
on the choice of framing □) seems rather unexpected. But even more is true. In Definition 5.11
and Proposition 5.16 we’ll construct a system of commutative differential-graded algebras
(q-WmΩ∗

R)m⩾1, which we call the with a universal property that is very much reminiscent
of the de Rham–Witt pro-complex. Since these universal properties involve quite a lot of
conditions, we won’t recall them here but refer to §4.3 and §5.2 instead; but let it be mentioned
that we again obtain Frobenius and Verschiebung maps Fm/d : q-WmΩ∗

R ! q-WdΩ∗
R and

Vm/d : q-WdΩ∗
R ! q-WmΩ∗

R for all divisors d | m as part of the structure. Our main result
will then be the following theorem:

1.7. Theorem (Theorem 5.18). — Let (R,□) be a framed smooth Z-algebra. For all
m ∈ N, there are isomorphisms

q-WmΩ∗
R

∼−! H∗(q-Hdg∗
R,□ /(qm − 1)

)
.

2The terminology we choose in this thesis is rather pretentious. It may well be that a future resolution of
question 1.3(∗) features objects which are more deserving of the titles (big) q-Witt vectors and (big) q-de
Rham–Witt complex and which should then be called thusly.
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§1. Introduction

Under these isomorphisms, the Frobenius map Fm/d : q-WmΩ∗
R ! q-WdΩ∗

R for all divisors
d | m corresponds to the map induced by the projection

q-Hdg∗
R,□ /(qm − 1) −! q-Hdg∗

R,□ /(qd − 1) .

Similarly, the Verschiebung Vm/d : q-WdΩ∗
R ! q-WmΩ∗

R corresponds to the scalar multiplica-
tion map

[m/d]qd : q-Hdg∗
R,□ /(qd − 1) −! q-Hdg∗

R,□ /(qm − 1) .

The hope for such a big q-de Rham–Witt structure is one of the considerations that lead
to considering q-Hdg∗

R,□ rather than q-Ω∗
R,□. To make this a bit clearer, recall from [Sch17,

Proposition 3.4] that
H∗(q-Ω∗

R,□/[p]q
) ∼= Ω∗

R ⊗̂Zp Zp[ζp]

is a base change of the Hodge cohomology of R. Now one can show (which we won’t
do, but it should be tractable by the same methods as in §4) that the cohomology rings
H∗(q-Ω∗

R,□/[pn]q) for n ⩾ 2 extend the structure from n = 1 to a similar kind of q-de
Rham–Witt structure as in Theorem 1.7, in such a way that H∗(q-Ω∗

R,□/[pn]q) plays the role
of Wn, the ring of truncated p-typical Witt vectors of length n. However, there’s no way
to extend this structure to a big q-de Rham–Witt structure in which, say, H∗(q-Ω∗

R,□/[m]q)
plays the role of Wm, simply because H∗(q-Ω∗

R,□/[pn]q) doesn’t correspond to Wpn , but to
Wpn−1 = Wn. So the q-de Rham–Witt structures on (H∗(q-Ω∗

R,□/[pn]q))n⩾1 for all primes p
are “inconveniently shifted”, preventing us from unifying them into one big structure. To fix
this issue, a natural approach is to look for a complex C∗ for which Hodge cohomology already
occurs as H∗(C∗/(q − 1)) rather than as H∗(C∗/[p]q), which in turn leads to q-Hdg∗

R,□ as
a likely candidate. And indeed, the candidate q-Hdg∗

R,□ lives up to our expectations, as
Theorem 1.7 shows.

Theorem 1.7 also looks encouraging in view of question 1.3(∗). Indeed, it’s not at all
necessary to take the (q −1)-completion in the definition of q-Wm(R). We could as well define
an “uncompleted” version q-W◦

m(R) if we replace 1.6(a) by the condition that q-W◦
m(R)

is a Wm(R)[q]/(qm − 1)-algebra, and merely require that Frobenius and Verschiebung are
Z[q]-linear rather than ZJq − 1K-linear in 1.6(b). On that same note, we could also define
“uncompleted” q-de Rham–Witt complexes q-W◦

mΩ∗
R. If q-Hdg∗

R,□ were functorial, this would
suggest that q-Hdg∗

R,□ /(qm − 1) might be the (q − 1)-completion of a complex defined over
Z[q]/(qm − 1)—which would certainly look like a step towards a theory defined over the
Habiro ring H, if only q-Hdg∗

R,□ had better functoriality properties.

1.8. Ok, But What Goes Wrong? — A precise formulation of “Conjecture 1.5 is most
likely wrong” is that there exists no functor q-Hdg(−) together with functorial isomorphisms

q-WmΩ∗
R

∼−! H∗(q-HdgR /L(qm − 1)
)

(where we use derived quotient notation as defined in 1.10) which identify the Frobenius maps
Fm/d : q-WmΩ∗

R ! q-WdΩ∗
R on the left-hand side with the map induced by the projection

q-HdgR /L(qm − 1) ! q-HdgR /L(qd − 1) for all divisors d | m. Of course, this doesn’t rule
that a functor q-Hdg(−) might still exist somehow, but in light of Theorem 1.7 that would
be pretty weird, and it would be questionable how useful such a functor could be at all.

If a functor q-Hdg(−) exists, we could define its non-abelian left-derived functor, or in
more modern terms, its left Kan extension to the ∞-category of animated rings. This left
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Kan extension will be denoted Lq-Hdg(−). If a functorial isomorphism as above exists,
then Lq-Hdg(−) /L(qm − 1) would acquire an ascending filtration, with filtration quotients
given by the non-abelian left-derived functors of R 7! q-WmΩi

R[−i], where [−i] denotes the
shift by −i in the derived category. However, by analysing these filtrations, one can show
that the p-completion of Lq-Hdg(−) is both zero and nonzero when evaluated at a p-torsion
free perfectoid ring, which is clearly a contradiction. We’ll give a detailed version of these
arguments in §6.

1.9. Leitfaden of this Thesis. — This thesis consists of two mostly separate parts: §2
and §3 are concerned with the q-de Rham complex, whereas in §§4–6 we study the q-Hodge
complex.

In §2, we give a detailed argument how the existence of a q-de Rham complex over Z with
all expected functoriality properties can be reduced to p-complete case from [BS19, §16], thus
proving Theorem 1.2. In §3, we study the Frobenius on the p-completed q-de Rham complex
and prove a q-crystalline analogue of a result of Berthelot–Ogus. This will be used later to
determine, out of curiosity, the cohomology of the (p-typical) q-de Rham–Witt complexes.

§4 is devoted to computing the cohomology H∗(q-Ĥdg∗
R,□/(qpn − 1)) for all primes p, all

n ⩾ 0, and all framed p-completely smooth Zp-algebras (R,□). To this end, we introduce
p-typical q-Witt vectors and study their basic properties. Once we know enough about
these rings, we can define our q-de Rham–Witt complexes and prove a p-completed version
of Theorem 1.7. In §5, we globalise these results using Beauville–Laszlo type arguments
and prove Theorem 1.7. Finally, in §6 we give a detailed explanation of why we think
Conjecture 1.5 is wrong.

1.10. Notations and Conventions. — Throughout, a framed smooth Z-algebra is defined
to be a pair (R,□), where R is a smooth Z-algebra and □ : Z[T1, . . . , Td] ! R is an étale
map from a polynomial ring. Similarly, a framed p-completely smooth Zp-algebra is a
pair (R,□) in which R is p-completely smooth over Zp (see below for the definition) and
□ : Zp[T1, . . . , Td] ! R is p-completely étale.

As usual, we’ll write [m]q = 1 + q + · · · + qm−1 for Gauß’s q-analogue of an integer m ⩾ 0.
More generally, if d is any positive divisor of m, we’ll use the notation

[m/d]qd := 1 + qd + (qd)2 · · · + (qd)m/d−1 = qm − 1
qd − 1 .

In particular, if m = pn is a prime power and d = pn−1, then [p]qpn−1 is the (pn)th cyclotomic
polynomial, and we’ll always use this notation in favour of Φpn(q).

We have to use some ∞-categoric language. If A is a ring, the derived ∞-category of A
will be denoted D(A), whereas D(A) denotes the ordinary derived category. Occasionally, we
use ∞-categoric language even if we don’t have to. A complex M ∈ D(A) is called discrete if
it is concentrated in degree 0. We’ll also call a sequence K ! L ! M in D(A) a fibre/cofibre
sequence instead of writing that K ! L ! M ! K[1] is a distinguished triangle in D(A).
Furthermore, we often use the derived quotient notation: If f ∈ A and M ∈ D(A), we let

M/Lf := cofib (f : M ! M)

denote the cofibre taken in D(A), or equivalently the cone in D(A), of the multiplication
map f : M ! M . For multiple elements f1, . . . , fr ∈ A, we let

M/L(f1, . . . , fr) :=
(

. . . (M/Lf1)/L . . .
)
/Lfr .
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Finally, the notion of derived I-completeness for I ⊆ A a finitely generated ideal will be
ubiquitous throughout the text. We give an overview of all necessary facts in the appendix,
§A.1. We’ll denote by DI-comp(A) and DI-comp(A) the full sub(-∞-)categories spanned by
the derived I-complete objects. Usually, the ideal I is clear from the context and we just
write Dcomp(A) and Dcomp(A). A complex M ∈ D(A) is called I-completely flat if M ⊗L

A A/I
is discrete and flat over A/I. A ring morphism A ! B is called I-completely smooth if B
is derived I-complete, I-completely flat, and B ⊗L

A A/I is smooth over A/I. In the same
way, the terms I-completely étale and I-completely ind-smooth/étale are defined. By Elkik’s
algebraisation results [Elk73], B is I-completely smooth/étale over A iff it is the derived
I-completion of a smooth/étale A-algebra.

1.11. Acknowledgement. — I would like to express my deepest thanks to my advisor,
Professor Peter Scholze, for answering my many questions, for many Zoom meetings to
discuss my progress, but most importantly for entrusting me with a proper research question
as my Master’s thesis. Although the answer to that question turned out not to be the one
either of us had hoped, it was challenging and exciting to work on this project.
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§2. q-de Rham Cohomology over Z

§2. q-de Rham Cohomology over Z
In this section we’ll prove the following theorem.

2.1. Theorem ([Sch17, Conjecture 3.1]). — There exists a functor

q-Ω(−) : Sm(Z) −! ÂlgE∞

(
ZJq − 1K

)
from the category of smooth Z-algebras into the ∞-category of (q − 1)-complete E∞-algebras
over ZJq − 1K, such that for every étale framing □ : Z[T1, . . . , Td] ! R of a smooth Z-algebra
R, the underlying object of q-ΩR in Dcomp(ZJq − 1K) can be computed as

q-ΩR ≃ q-Ω∗
R,□ ,

where q-Ω∗
R,□ denotes the q-de Rham complex

q-Ω∗
R,□ =

(
RJq − 1K

∇q
−! Ω1

RJq − 1K
∇q
−! . . .

∇q
−! Ωd

RJq − 1K
)

.

The p-completed analogue of [Sch17, Conjecture 3.1] was resolved by the construction of
the q-crystalline site in [BS19, §16]. We’ll explain how the p-complete result can be used to
prove the global case, i.e. Theorem 2.1. The argument we’ll present is largely formal and
is undoubtedly already known to the experts in some form or another. Still we believe it
doesn’t hurt to work out the argument in some detail.

A different approach to constructing the global version of q-Ω(−) was given by Kedlaya
in the course notes [Ked21, Section 29].

2.2. Outline of the Strategy. — Roughly, we’ll construct q-Ω(−) from its p-completions
for all primes p and its rationalisation, using a Beauville–Laszlo type argument. Note that
for a framed smooth Z-algebra (R,□) we already know the following:
(a) The rationalisation q-Ω∗

R,□ ⊗̂ZJq−1K QJq − 1K is just a base change of the ordinary de
Rham complex. We’ll recall the precise result in Lemma 2.6 below.

(b) If R̂p denotes the p-completion of R, which is a p-completely smooth Zp-algebra, then
the derived p-completion of q-Ω∗

R/Z,□ satisfies(
q-Ω∗

R,□

)
p̂

≃ q-Ω̂∗
R̂p,□

≃ RΓq-crys
(
R̂p/ZpJq − 1K

)
,

where the complexes in the middle is the p-complete q-de Rham complex and the
complex on right-hand side denotes q-crystalline cohomology; these constructions will
be recalled in 2.4 and 2.5 below.

In §2.1 we’ll study the rationalisation of q-de Rham cohomology further. In particular,
we’ll show a coordinate-free analogue of (a); namely, that the rationalisation of q-crystalline
cohomology is canonically a base change of crystalline cohomology. Once this is done, we
can construct q-Ω(−) and prove Theorem 2.1 in §2.2.

2.3. Recollections from [BS19], Part I: q-Divided Power Algebras. — From here
on until §2.2, we fix a prime p. Let’s first recall the notion of q-divided powers. Equip
ZpJq − 1K with the δ-structure given by δ(q) = 0. Let D be a δ-ring over ZpJq − 1K. We

10



§2. q-de Rham Cohomology over Z

assume additionally that D is [p]q-torsion free and derived (p, q −1)-complete (or equivalently,
derived (p, [p]q)-complete). If x ∈ D is an element such that ϕ(x) ∈ [p]qD, we write

γq(x) := ϕ(x)
[p]q

− δ(x) ∈ D .

This operation γq should be thought of as a q-analogue of the divided power operation
γ(x) := xp/p on Z(p)-algebras.

We say that a (p, q − 1)-complete ideal I ⊆ D has q-divided powers if γq is defined on I
and preserves I, that is, if ϕ(I) ⊆ [p]qD and γq(I) ⊆ I. Moreover, [BS19, Definition 16.2]
defines a q-PD pair to be a pair (D, I) as above, which also satisfies the following two
technical conditions:
(a) D/[p]q has bounded p∞-torsion. Together with the above assumptions on D, this implies

that (D, [p]qD) is a bounded prism over (ZpJq − 1K, [p]qZpJq − 1K).
(b) The ring D/(q − 1) is p-torsion free with finite (p, [p]q)-complete Tor amplitude over D.
In such a situation, D is sometimes called a q-PD thickening of D/I.

We also remark that there is a notion of q-PD envelope for sufficiently well-behaved rings
and ideals. We won’t recall the precise formulation, but only the special case relevant to us.
Let R be a p-completely smooth Zp-algebra and P a p-completely ind-smooth Zp-algebra,
equipped with a surjection P ↠ R with kernel J . Then by [BS19, Lemma 16.10] (or rather
its upgrade to our situation, by using Zariski descent and taking filtered colimits), there
exists a universal map(

P Jq − 1K, JJq − 1K
)
−!

(
DJJq−1K,q(P Jq − 1K), K

)
into a q-PD pair. The ring DJJq−1K,q(P Jq − 1K) is called the q-PD envelope of the pair
(P Jq − 1K, JJq − 1K). It is (p, q − 1)-completely flat over ZpJq − 1K (and thus flat on the nose
by Lemma A.7), and DJJq−1K,q(P Jq − 1K)/L(q − 1) coincides with the p-completion of the
ordinary divided power envelope of (P, J).
2.4. Recollections from [BS19], Part II: The q-Crystalline Site. — For simplicity,
we’ll work over (ZpJq − 1K, (q − 1)), whereas [BS19, Definition 16.12] works relative to any
q-PD pair (D, I). Let R be a p-completely smooth Zp-algebra. The q-crystalline site of R
relative to ZpJq − 1K, denoted (R/ZpJq − 1K)q-crys, is the category of q-PD thickenings of R,
that is, the category of triples (D, I, η), where (D, I) is a q-PD pair and η : D/I ∼−! R is an
isomorphism. We equip (R/ZpJq − 1K)q-crys with the indiscrete Grothendieck topology, so
that every presheaf is a sheaf.

The assignment (D, I) 7! D then defines a sheaf Oq-crys of δ-ZpJq − 1K-algebras on the
q-crystalline site (R/ZpJq − 1K)q-crys, and we call

RΓq-crys
(
R/ZpJq − 1K

)
:= RΓ

(
(R/ZpJq − 1K)q-crys, Oq-crys

)
p

the q-crystalline cohomology of R. Here the author decided to deviate from the original
notation qΩR/ZpJq−1K, since otherwise he would get utterly confused by the statement of
Corollary 2.13 below.
2.5. Recollections from [BS19], Part III: q-de Rham Complexes. — Let (R,□) be
a framed p-completely smooth Zp-algebra. From this data we can construct the p-complete
q-de Rham complex

q-Ω̂∗
R,□ =

(
RJq − 1K

∇q
−! Ω̂1

RJq − 1K
∇q
−! . . .

∇q
−! Ω̂d

RJq − 1K
)

,

11



§2. q-de Rham Cohomology over Z

where Ω̂i
R denotes the p-completion of Ωi

R, or equivalently, the p-completion of Ωi
R/Zp

. We
already know that q-Ω̂∗

R,□ is independent of the choice of framing up to quasi-isomorphism.
In fact, for every choice of □ there’s a quasi-isomorphism

q-Ω̂∗
R,□ ≃ RΓq-crys

(
R/ZpJq − 1K

)
into the q-crystalline cohomology of R; see [BS19, Theorem 16.21].

More generally, assume that P ↠ R is a surjection from a p-completely ind-smooth Zp-
algebra and that P is equipped with a p-completely ind-étale framing □ : Zp[{Ui}i∈Σ] ! P .
There is a δ-structure on Zp[{Ui}i∈Σ] given by δ(Ui) = 0, which extends uniquely to P . We
extend this δ-structure further to the (p, q − 1)-completely ind-smooth ZpJq − 1K-algebra
P Jq −1K via δ(q) = 0. Let J denote the kernel of P ! R. As in 2.3, we may then consider the
q-divided power envelope q-D := DJJq−1K,q(P Jq − 1K). Using this, [BS19, Construction 16.19]
defines the q-divided power de Rham complex

q-Ω̂∗
q-D/ZpJq−1K,□ :=

(
q-D ∇q

−! q-D ⊗̂Zp
Ω̂1

P

∇q
−! q-D ⊗̂Zp

Ω̂2
P

∇q
−! . . .

)
.

In the case P = R, there are no divided powers to be added, and we get back the complex
q-Ω̂∗

R,□ from above. Moreover, as above there’s a quasi-isomorphism

q-Ω̂∗
q-D/ZpJq−1K,□ ≃ RΓq-crys

(
R/ZpJq − 1K

)
;

for the proof we refer to [BS19, Theorem 16.21] again.

§2.1. Rationalised q-de Rham and q-Crystalline Cohomology
We begin with the result on the rationalised q-de Rham complex that was mentioned above.

2.6. Lemma ([Sch17, Lemma 4.1]). — Let (R,□) be a framed smooth Z-algebra. Then
there is an isomorphism of complexes

q-Ω∗
R,□ ⊗̂ZJq−1K QJq − 1K ∼= Ω∗

R ⊗̂Z QJq − 1K ,

where both tensor products are degree-wise (q − 1)-adically completed (which computes the
derived (q − 1)-completions by flatness).

Proof. As in [BMS18, Lemma 12.4], one shows that

(2.6.1) ∇q,i =

 log(q)
q − 1 +

∑
n⩾2

log(q)n

n!(q − 1)(∇iTi)n−1

∇i .

Here log(q) is to be understood as the corresponding Taylor expansion around 1. Note that
the first factor is an invertible automorphism. Indeed, log(q)/(q − 1) is invertible, and the
log(q)n/(n!(q − 1)) for n ⩾ 2 are topologically nilpotent and converge to 0 in the (q − 1)-adic
topology.

Now in general, assume that M is an abelian group together with commuting endo-
morphisms g1, . . . , gd and commuting automorphisms h1, . . . , hd, such that moreover gi

commutes with hj whenever i ̸= j. However, we don’t require gi to commute with hi

12



§2.1. Rationalised q-de Rham and q-Crystalline Cohomology

(and it won’t be satisfied in our application). In this case, the cohomological Koszul com-
plexes Kos∗

c(M, (g1, . . . , gd)) and Kos∗
c(M, (h1g1, . . . , hdgd)) are isomorphic, with an explicit

isomorphism given by

0 M
⊕

i M
⊕

i<j M . . .

0 M
⊕

i M
⊕

i<j M . . .

(gi)

(hi)i (hihj)i<j

(higi)

Applying this to gi = ∇i and higi = ∇q,i, with hi given by the converging series in the first
factor on the right-hand side of (2.6.1), shows the result.

Next, we’ll aim to prove two more variants of Lemma 2.6: First a version for the q-
divided power de Rham complexes from 2.5 and second a coordinate-free version involving
q-crystalline and crystalline cohomology. Both versions will be deduced from Lemma 2.8
below, which connects the rationalisations of q-PD envelopes and ordinary PD-envelopes.

2.7. Notation. — Until the end of the subsection, R will denote a p-completely smooth Zp-
algebra. Let P ↠ R be a surjection from a p-completely ind-smooth δ-Zp-algebra; for now the
δ-structure on P need not be given as in 2.5. We extend it again to a δ-structure on P Jq − 1K
by putting δ(q) = 0. Finally, let J denote the kernel of P ! R, let q-D := DJJq−1K,q(P Jq−1K)
denote its q-PD envelope and let D := DJ (P )p̂ denote the ordinary p-completed PD envelope
of the kernel of P ! R.

2.8. Lemma. — With notation as in Notation 2.7, there is a canonical isomorphism

D
[ 1

p

]
Jq − 1K ∼= q-D

[ 1
p

]
q̂−1 ,

where we take the (q − 1)-adically completed localisation on the right-hand side (since q-D is
(p, q − 1)-completely flat over ZpJq − 1K, and thus flat on the nose by Lemma A.7, it doesn’t
matter whether we take the derived or underived completion) .

Observe that if D◦ := DJ (P ) denotes the uncompleted PD-envelope, then the composition
P ! P Jq − 1K ! q-D

[ 1
p

]
q̂−1 automatically extends to a map

D◦ −! q-D
[ 1

p

]
q̂−1 ,

since the right-hand side is a Qp-algebra and thus has all divided powers. However, it’s not
clear at all whether this map extends to the p-completion D = (D◦)p̂ . Showing that this is
indeed the case will be the main difficulty in the proof of Lemma 2.8.

2.9. Notation. — According to [BS19, Lemmas 2.15 and 2.17], we may uniquely extend
the δ-structure from q-D to q-D

[ 1
p

]
q̂−1. We still let ϕ and δ denote the extended Frobenius

and δ-map. Furthermore, we denote by

γ(x) = xp

p
and γq(x) = ϕ(x)

[p]q
− δ(x)

the maps defining a PD-structure and a q-PD structure, respectively. Note that γ(x) and
γq(x) make sense for all x ∈ q-D

[ 1
p

]
q̂−1 since p and [p]q are invertible.
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§2. q-de Rham Cohomology over Z

To prove Lemma 2.8, we have to send two technical preparatory lemmas in advance.

2.10. Lemma. — Let notation be as in Notations 2.7 and 2.9.
(a) For all n ⩾ 1 and all α ⩾ 0, the map δ sends (q −1)nq-D into itself, and p−α(q −1)nq-D

into p−(pα+1)(q − 1)nq-D.
(b) For all n ⩾ 1 and all α ⩾ 0, the map γq sends (q − 1)nq-D into (q − 1)n+1q-D, and

p−α(q − 1)nq-D into p−(pα+1)(q − 1)n+1q-D.

Proof. Let’s prove (a) first. Let x = p−α(q − 1)ny for some y ∈ q-D. Since q-D is flat over
ZpJq − 1K and thus p-torsion free, we can compute

δ(x) = ϕ(x) − xp

p
= (qp − 1)nϕ(y)

pα+1 − (q − 1)pnyp

ppα+1 .

As qp − 1 is divisible by q − 1, the right-hand side lies in p−(pα+1)(q − 1)nq-D. If α = 0, then
the right-hand side must also be contained in q-D. But q-D ∩ p−1(q − 1)nq-D = (q − 1)nq-D
by flatness again. This proves both parts of (a).

Now for (b). Let’s first check that γq(q − 1) is divisible by (q − 1)2. For that we compute

ϕ(q − 1)
[p]q

− δ(q − 1) = qp − 1
[p]q

− (qp − 1) − (q − 1)p

p
= −(q − 1)2

p−1∑
i=2

1
p

(
p

i

)
(q − 1)i−2 .

In the following, we’ll use the relation γq(xy) = ϕ(y)γq(x) − xpδ(y) from [BS19, Remark 16.6]
repeatedly. First off, it shows that

γq

(
(q − 1)nx

)
= ϕ

(
(q − 1)n−1x

)
γq(q − 1) − (q − 1)pδ

(
(q − 1)n−1x

)
.

It follows from (a) that δ((q − 1)n−1x) and ϕ((q − 1)n−1x) are divisible by (q − 1)n−1. Hence
γq((q − 1)nx) is indeed divisible by (q − 1)n+1. Moreover, we obtain

γq

(
p−α(q − 1)nx

)
= ϕ(p−α)γq

(
(q − 1)nx

)
− (q − 1)npxpδ(p−α) .

Now ϕ(p−α) = p−α and δ(p−α) is contained in p−(pα+1)q-D, hence γq(p−α(q − 1)nx) is
contained in p−(pα+1)(q − 1)nq-D. This finishes the proof of (b).

2.11. Lemma. — Let notation be as in Notations 2.7 and 2.9. Let x ∈ J . For every n ⩾ 1,
there are elements y0, . . . , yn ∈ q-D such that y0 admits q-divided powers in q-D and

γn(x) = y0 + p−2(q − 1)y1 + p−2(p+1)(q − 1)2y2 + · · · + p−2(pn−1+···+p+1)(q − 1)nyn

holds in q-D
[ 1

p

]
, where γn = γ ◦ · · · ◦ γ denotes the n-fold iteration of γ.

Proof. We use induction on n. For n = 1, we compute

(2.11.1) γ(x) = xp

p
= γq(x) + [p]q − p

p

(
γq(x) + δ(x)

)
.

Note that x admits q-divided powers in q-D since we assume x ∈ J . Then γq(x) admits
q-divided powers again by [BS19, Lemma 16.7]. Moreover, ([p]q − p)/p is contained in
p−1(q − 1). This settles the case n = 1. We also remark that (2.11.1) remains true without
the assumption x ∈ J as long as the expression γq(x) makes sense.
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Now assume γn can be written as above. We put zi = p−2(pi−1+···+p+1)(q − 1)iyi for
short, so that γn(x) = y0 + z1 + · · · + zn. Recall the relations

γq(a + b) = γq(a) + γq(b) +
p−1∑
i=1

1
p

(
p

i

)
aibp−i , δ(a + b) = δ(a) + δ(b) −

p−1∑
i=1

1
p

(
p

i

)
aibp−i .

The first relation implies that γ(y0 +z1 + · · ·+zn) is equal to γ(y0)+γq(z1)+ · · ·+γq(zn) plus
a linear combination of terms of the form yk0

0 zk1
1 · · · zkn

n with 0 ⩽ ki < p and k0 + · · ·+kn = p.
Now γq(y0) admits q-divided powers again. Moreover, Lemma 2.10(b) makes sure that each
γq(zi) is contained in p−2(pi+···+p+1)(q − 1)i+1q-D. Finally, a monomial yi0

0 zi1
1 · · · zin

n with
m = max {i | ki ̸= 0} is contained in p−2(pm+···+p+1)(q − 1)m+1q-D by inspection.

A similar analysis, using the second of the above relations as well as Lemma 2.10(a),
shows that p−1(q − 1)δ(y0 + z1 + · · · + zn) can be decomposed into a bunch of terms, each of
which is contained in p−2(pi+···+p+1)(q − 1)i+1q-D for some 1 ⩽ i ⩽ n + 1. By (2.11.1), we
conclude that

γn+1(x) = γq

(
γn(x)

)
+ [p]q − p

p

(
γq(γn(x)) + δ(γn(x))

)
can be written in the desired form.

Proof of Lemma 2.8. As observed below Lemma 2.8, we get a map D◦ ! q-D
[ 1

p

]
q̂−1 from

the uncompleted PD-envelope D◦ = DJ (P ). By our assumptions in Notation 2.7, D◦ can be
identified with the sub-P -algebra of P

[ 1
p

]
generated by γn(x) for all x ∈ J and all n ⩾ 1.

In particular, D◦ is p-torsion free, and so its p-completion D agrees with the “analytic
p-completion” D◦JtK/(t − p), as can be easily checked by derived Nakayama. Thus, to
construct the a map D ! q-D

[ 1
p

]
q̂−1, it suffices to check that there is a map

D◦JtK −! q-D
[ 1

p

]
q̂−1

sending t 7! p. That is, we must show that every p-power series in D◦ converges in q-D
[ 1

p

]
q̂−1.

By Lemma 2.11, every such p-power series can be written as an infinite sum of a p-power
series in q-D and, for all n ⩾ 1, a p-power series in p−2(pn−1+···+p+1)(q − 1)nq-D. Each
individual of these p-power series converges in q-D

[ 1
p

]
, and their sum converges in q-D

[ 1
p

]
q̂−1.

Thus, we get a well-defined map as above. It extends canonically to a QpJq − 1K-algebra map

D
[ 1

p

]
Jq − 1K −! q-D

[ 1
p

]
q̂−1 .

Since both sides are derived (q − 1)-complete, whether this map is an isomorphism can be
checked after derived base change along QpJq − 1K ! Qp. But [BS19, Theorem 16.10(3)]
ensures that the right-hand side becomes D

[ 1
p

]
after derived base change, as does the

left-hand side.

Finally, we can prove the two promised variants of Lemma 2.6.

2.12. Corollary. — Let notation be as in Notation 2.7, but we assume additionally that
the δ-structure on P comes from a p-completely ind-étale framing □ : Zp[{Ui}i∈Σ] ! P as in
2.5. Furthermore, let Ω̂∗

D denote the p-completed divided power de Rham complex of D over
Zp; see [Stacks, Tag 07HZ]. Then

q-Ω̂∗
q-D/ZpJq−1K,□ ⊗̂ZpJq−1K QpJq − 1K ∼= Ω̂∗

D ⊗̂Zp
QpJq − 1K ,
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where both tensor products are degree-wise (q − 1)-adically completed (which computes the
derived (q − 1)-completion by flatness).

Proof. Combine Lemma 2.8 with the argument from the proof of Lemma 2.6. The only
non-obvious point is that equation (2.6.1) still holds in D

[ 1
p

]
Jq − 1K. But every element can

be written as a certain converging infinite sum of elements from the subring D◦[ 1
p

]
Jq − 1K.

This subring coincides with P
[ 1

p

]
Jq − 1K, where the desired equation is clear.

2.13. Corollary. — There is an equivalence

RΓq-crys
(

− /ZpJq − 1K
)

⊗̂L
ZpJq−1K QpJq − 1K ≃ RΓcrys(−/Zp) ⊗̂L

Zp
QpJq − 1K

of functors Ŝm(Zp) ! ÂlgE∞
(ZJq − 1K) from the category of p-completely smooth Zp-algebras

into the ∞-category of (q − 1)-complete E∞-ZJq − 1K-algebras. This equivalence is compatible
with the one from Corollary 2.12 in the sense that for every p-completely smooth Zp-algebra
R and every q-divided power envelope q-D as given there, we get a commutative diagram

q-Ω̂∗
q-D/ZpJq−1K,□ ⊗̂ZpJq−1K QpJq − 1K RΓq-crys

(
R/ZpJq − 1K

)
⊗̂L

ZpJq−1K QpJq − 1K

Ω̂∗
D ⊗̂Zp

QpJq − 1K RΓcrys(R/Zp) ⊗̂L
Zp

QpJq − 1K

≃

≃ ≃

≃

where the top row is induced by the quasi-isomorphism from [BS19, Theorem 16.21] and the
bottom row is induced by the usual quasi-isomorphism Ω̂∗

D ≃ RΓcrys(R/Zp).

Proof. Let P ↠ R be any surjection from a p-completely ind-smooth Zp-algebra and let
P • be the degree-wise p-completed Čech nerve of Zp ! P . Let J• ⊆ P • be the kernel
of the augmentation P n ! P Jq − 1K ! R. Consider the cosimplicial ZpJq − 1K-module
q-D• := DJ•Jq−1K,q(P •Jq − 1K) and the cosimplicial Zp-module D• := DJ•(P •)p̂ . The
totalisation of q-D• computes RΓq-crys(R/ZpJq − 1K); see [BS19, Remark 16.15]. Hence

RΓq-crys
(
R/ZpJq − 1K

)
⊗̂L

ZpJq−1K QpJq − 1K ≃ Tot
(

q-D•[ 1
p

]
q̂−1

)
.

But by Lemma 2.8, the right-hand side coincides with Tot(D•[ 1
p

]
Jq − 1K), which computes

RΓcrys(R/Zp) ⊗̂L
Zp

QpJq − 1K. It is straightforward to see that this quasi-isomorphism is
independent of the choice of P . Indeed, the construction is compatible with morphisms
P ! P ′ over R, and for every two surjections P ↠ R and P ′ ↠ R as above, we get another
one via P ⊗̂Zp

P ′ ↠ R together with morphisms P ! P ⊗̂Zp
P ′ and P ′ ! P ⊗̂Zp

P ′ over
R. Moreover, if we choose P to be strictly functorial in R (for example, take P to be the
free δ-Zp-algebra over W (R)), then our quasi-isomorphism upgrades to an equivalence of
functors Ŝm(Zp) ! ÂlgE∞

(ZJq − 1K), as desired.
To prove the claimed compatibility, we recall how the quasi-isomorphism

q-Ω̂∗
q-D/ZpJq−1K,□ ≃ RΓq-crys

(
R/ZpJq − 1K

)
was constructed in the proof of [BS19, Theorem 16.21]. Namely, one considers the cosimplicial
complex q-M•,∗ := q-Ω̂∗

q-D•/ZpJq−1K,□: Its rows q-M•,i for i > 0 are homotopy equivalent to 0,
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whereas its columns q-M j,• are all quasi-isomorphic to the 0th column q-Ω̂∗
q-D/ZpJq−1K,□. We

then get the desired quasi-isomorphism between the totalisation of q-M•,0, which computes
RΓq-crys(R/ZpJq − 1K), and the 0th column q-Ω̂∗

q-D/ZpJq−1K,□.
Now we know from [BJ11, Proof of Theorem 2.12] that the quasi-isomorphism

Ω̂∗
D ≃ RΓcrys(R/Zp)

can be constructed similarly, by considering the cosimplicial complex M•,∗ := Ω̂∗
D• . Applying

Corollary 2.12 column-wise provides an isomorphism of cosimplicial complexes

q-M•,∗ ⊗̂ZpJq−1K QpJq − 1K ∼= M•,∗ ⊗̂Zp QpJq − 1K .

Upon inspection, this yields the desired compatibility.

§2.2. The q-de Rham Complex over Z
We need one more lemma before we can give the general construction and prove Theorem 2.1.
The lemma roughly says that after modding out a power of q − 1, the isomorphisms from
Lemma 2.6 and Corollary 2.13 already hold away from a closed subset of SpecZ rather than
only at the generic point.

2.14. Lemma. — Let R be a smooth Z-algebra, p a prime and m ⩽ p − 1 an integer.
(a) There is a functorial equivalence of E∞-ZpJq − 1K-algebras

RΓq-crys
(
R̂p/ZpJq − 1K

)
/L(q − 1)m ≃ RΓcrys(R̂p/Zp) ⊗L

Zp
ZpJq − 1K/(q − 1)m .

(b) If R is equipped with an étale framing □ : Z[T1, . . . , Td] ! R and N is a nonzero integer
divisible by (m + 1)!, then there is an isomorphism of complexes

q-Ω∗
R,□

[ 1
N

]
/(q − 1)m ∼= Ω∗

R ⊗Z Z
[ 1

N

]
Jq − 1K/(q − 1)m .

Proof. We use the notation from Notations 2.7 and 2.9 again. Since m ⩽ p − 1, the element
[p]q − p is divisible by p(q − 1) in q-D/(q − 1)m. Hence, using (2.11.1), the expression γ(x)
makes sense in q-D/(q − 1)m for all x ∈ J . Moreover, γ(x) can then be written as a sum
of γq(x) and a multiple of (q − 1), so γ(x) admits q-divided powers again. Thus, we can
iteratively make sense of γn(x) for all n ⩾ 1. Therefore, we get a ring map D ! q-D/(q−1)m.
It can be extended to a map

DJq − 1K/(q − 1)m −! q-D/(q − 1)m .

This map is an isomorphism. Indeed, the case m = 1 is clear from [BS19, Theorem 16.10(3)].
The general case follows by comparing the filtration ((q − 1)iDJq − 1K/(q − 1)m)0⩽i⩽m on
the left-hand side to the filtration ((q − 1)iq-D/(q − 1)m)0⩽i⩽m on the right-hand side: By
flatness, the filtration quotients on both sides are D in every degree. Equipped with the
isomorphism DJq − 1K/(q − 1)m ∼= q-D/(q − 1)m, the desired functorial equivalence can now
be constructed as in Corollary 2.13. This proves (a).

For (b), observe that all we need to repeat the proof of Lemma 2.6 is that the Taylor
series for log(q) and log(q)n/(n!(q − 1)) make sense. Since we quotient out (q − 1)m, only the
series for n ⩽ m + 1 are nonzero, and each of them has only finitely many terms. Thus, by an
inspection of denominators, all necessary Taylor series are defined over Z

[ 1
N

]
Jq − 1K/(q − 1)m

if N divisible by (m + 1)!.
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2.15. Construction. — Let R be smooth over Z. To construct q-ΩR, we’ll construct the
derived quotients q-ΩR/L(q −1)m first. A priori, this notation is meaningless since we haven’t
yet defined q-ΩR, but it will follow a posteriori that q-ΩR/L(q − 1)m is indeed the correct
quotient of q-ΩR. To construct q-ΩR/L(q − 1)m, let N be any nonzero integer divisible by
(m + 1)! and take the pullback

q-ΩR/L(q − 1)m
∏

p|N

(
RΓq-crys

(
R̂p/ZJq − 1K

)
/L(q − 1)m

)

Ω∗
R ⊗Z Z

[ 1
N

]
Jq − 1K/(q − 1)m

∏
p|N

(
RΓcrys

(
R̂p/Zp

)
⊗L

Zp
QpJq − 1K/(q − 1)m

).

in the ∞-category ÂlgE∞
(ZJq − 1K). The right vertical arrow is induced by the equivalence

RΓq-crys(R̂p/ZJq −1K) ⊗̂L
ZpJq−1KQpJq −1K ≃ RΓcrys(R̂p/Zp) ⊗̂L

Zp
QpJq −1K from Corollary 2.13

and the bottom horizontal arrow is induced by (Ω∗
R)p̂ ≃ RΓcrys(R/Zp). Both equivalences

are functorial and thus q-ΩR/L(q − 1)m is functorial in R as well.
Furthermore, q-Ω(−)/

L(q − 1)m doesn’t depend on the choice of N . Indeed, if N | N ′,
then an equivalence between the version of q-Ω(−)/

L(q − 1)m defined via N ′ and the version
defined via N can be constructed using the derived Beauville–Laszlo theorem (Lemma A.8,
Remark A.9) and Lemma 2.14(a).

Let Nop denote the opposite category of the partially ordered set of positive integers.
Then the functors q-Ω(−)/

L(q − 1)m for all m ⩾ 1 can be arranged into a diagram

Nop −! Fun
(
Sm(Z), ÂlgE∞

(ZJq − 1K)
)

.

Indeed, since the inclusion of the 1-skeleton of (the nerve of) Nop is inner anodyne, it suffices
to provide natural transformations q-Ω(−)/

L(q − 1)m+1 ⇒ q-Ω(−)/
L(q − 1)m for all m ⩾ 1.

But if we use the same N to construct q-Ω(−)/
L(q − 1)m+1 and q-Ω(−)/

L(q − 1)m, such a
transformation is obvious. Hence we get a diagram as above and can define q-Ω(−) as its
limit, that is,

q-ΩR ≃ R lim
m⩾1

q-ΩR/L(q − 1)m .

Proof of Theorem 2.1. We’ve constructed the functor q-Ω(−) in Construction 2.15, so it
only remains to show that its values are the correct ones. Let (R,□) be a framed smooth
Z-algebra. Let m ⩾ 1 and let N be a nonzero integer divisible by (m + 1)!. By the derived
Beauville–Laszlo theorem (Lemma A.8, Remark A.9), we get a pullback diagram

q-Ω∗
R,□/(q − 1)m

∏
p|N

(
q-Ω̂∗

R̂p,□
/(q − 1)m

)

q-Ω∗
R,□

[ 1
N

]
/(q − 1)m

∏
p|N

(
q-Ω̂∗

R̂p,□

[ 1
p

]
/(q − 1)m

)
.

in the ∞-category Dcomp(ZJq − 1K). Using Corollary 2.13 and Lemma 2.14(b), this pullback
diagram can be identified with the one defining q-ΩR/L(q − 1)m; moreover, this also identifies
the transition maps on both sides. Taking Rlimn⩾1 on both sides yields the desired equivalence
q-Ω∗

R,□ ≃ q-ΩR in Dcomp(ZJq − 1K).
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2.16. Remark. — It follows from the constructions that there is a functorial equivalence
q-ΩR/L(q − 1) ≃ Ω∗

R, as one should expect. Furthermore, for every framed smooth Z-algebra
(R,□) this equivalence is compatible with the isomorphism of complexes q-Ω∗

R,□/(q−1) ∼= Ω∗
R.
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§3. Frobenius Action
The goal of this short section is to prove a q-crystalline analogue of a result of Berthelot–
Ogus [BO78]. It will be used in 4.42 to determine the cohomology of our q-de Rham–Witt
complexes.

3.1. The Frobenius on the Level of Complexes. — Let R be a p-completely smooth
Zp-algebra. There is a canonical “Frobenius” endomorphism

ϕq-crys : RΓq-crys
(
R/ZpJq − 1K

)
−! RΓq-crys

(
R/ZpJq − 1K

)
,

coming from the fact that the structure sheaf Oq-crys on the q-crystalline site is a sheaf of
δ-ZpJq − 1K-algebras. However, given a p-completely étale framing □ : Zp[T1, . . . , Td] ! R,
the Frobenius can already be constructed on the level of q-Ω̂∗

R,□.
Since this will be convenient in a moment, we describe the construction in a slightly more

general setting. Choose a surjection P ↠ R from a p-completely ind-smooth Zp-algebra
with a p-completely ind-étale framing □ : Zp[{Ui}i∈Σ] ! P as in 2.5. As described there,
this defines a δ-structure on P . We let ϕ□ : P ! P denote the Frobenius on P and let q-D
denote the q-divided power envelope of the kernel of P Jq − 1K ↠ R. We wish to show that
ϕ□ extends to an endomorphism

ϕ□ : q-Ω̂∗
q-D/ZpJq−1K,□ −! q-Ω̂∗

q-D/ZpJq−1K,□

of the q-divided power de Rham complex. On generators in degree 1, we define it by
ϕ□(dUi) := [p]qUp−1

i dUi, and for a general degree-m element we put

ϕ□(x dUi1 ∧ · · · ∧ dUim
) := ϕ□(x)ϕ□(dUi1) ∧ · · · ∧ ϕ□(dUim

) .

3.2. Lemma. — The above defines indeed an endomorphism of the cochain complex
q-Ω̂∗

q-D/ZpJq−1K,□. It is compatible with the Frobenius on RΓq-crys(R/ZpJq − 1K); that is, the
diagram

q-Ω̂∗
q-D/ZpJq−1K,□ RΓq-crys

(
R/ZpJq − 1K

)

q-Ω̂∗
q-D/ZpJq−1K,□ RΓq-crys

(
R/ZpJq − 1K

)
≃

ϕ□ ϕq-crys

≃

is commutative.

Proof. By naturality of the Koszul complex construction, proving that ϕ□ is a cochain
complex endomorphism reduces to showing ϕ□ ◦ ∇q,i = ∇q,i ◦ ϕ□ for all i ∈ Σ. So let’s recall
the construction of ∇q,i: Let γi : Zp[{Ui}i∈Σ] ! Zp[{Ui}i∈Σ] be given by Xi 7! qXi and
Xj 7! Xj for j ̸= i. By p-complete ind-étaleness, γi extends uniquely to a map γi : P ! P ,
which is compatible with the δ-structure on P determined by ϕ□. By [BS19, Lemma 16.20],
we may further extend γi to a δ-ring map γi : q-D ! q-D. Then

∇q,i(x) = γi(x) − x

(q − 1)Ui
dUi .
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for all x ∈ q-D. Using that γi is compatible with the Frobenius on q-D (it is a δ-ring map
after all), we compute

ϕ□
(
∇q,i(x)

)
=

ϕ□
(
γi(x)

)
− ϕ□(x)

ϕ□(q − 1)ϕ□(Ui)
ϕ□(dUi) =

γi

(
ϕ□(x)

)
− ϕ□(x)

(qp − 1)Up
i

[p]qUp−1
i dUi

=
γi

(
ϕ□(x)

)
− ϕ□(x)

(q − 1)Ui
dUi ,

and the right-hand side coincides with ∇q,i(ϕ□(x)), as required. This shows that ϕ□ is a
map of cochain complexes.

To prove commutativity of the diagram above, consider the cosimplicial complex q-M•,∗

from the proof of Corollary 2.13. It’s clear from the constructions that ϕ□ induces a map
ϕ□ : q-M•,∗ ! q-M•,∗ of cosimplicial complexes. The induced map on 0th columns is precisely
the map ϕ□ : q-Ω̂∗

q-D/ZpJq−1K,□ ! q-Ω̂∗
q-D/ZpJq−1K,□ under consideration, whereas the induced

map on 0th rows computes ϕq-crys : RΓq-crys(R/ZpJq − 1K) ! RΓq-crys(R/ZpJq − 1K) since it
is given by the Frobenii of the δ-rings involved.

3.3. Construction. — Let ϕ : ZpJq − 1K ! ZpJq − 1K, q 7! qp be the Frobenius associated
to the usual δ-structure. The explicit description from Lemma 3.2 implies that the n-fold
iterated Frobenius ϕn

q-crys = ϕq-crys ◦ · · · ◦ϕq-crys factors through Lη[pn]q
RΓq-crys(R/ZpJq −1K).

Moreover, ϕn
q-crys is ϕn-linear. That is, it induces a ZpJq − 1K-linear map

ϕq-crys : RΓq-crys
(
R/ZpJq − 1K

)
−! (ϕn)∗Lη[pn]q

RΓq-crys
(
R/ZpJq − 1K

)
,

where the right-hand side has the same underlying complex as Lη[pn]q
RΓq-crys(R/ZpJq − 1K),

but we equip it with the ZpJq − 1K-module structure obtained via ϕn : ZpJq − 1K ! ZpJq − 1K
rather than the standard module structure.

3.4. Proposition. — Let R be a p-completely smooth Zp-algebra. For all n ⩾ 0, the map
from Construction 3.3 induces a quasi-isomorphism

RΓq-crys
(
R/ZpJq − 1K

)
⊗L

ZpJq−1K,ϕn ZpJq − 1K ∼−! Lη[pn]q
RΓq-crys

(
R/ZpJq − 1K

)
.

Proof. We use induction on n. The case n = 0 is trivial. Now assume the assertion is true for
n ⩾ 0; let’s show it is true for n + 1 as well. Using the induction hypothesis, the right-hand
side of the map in question can be rewritten as

Lη[pn+1]q
RΓq-crys

(
R/ZpJq − 1K

)
≃ Lη[p]

qpn

(
Lη[pn]q

RΓq-crys(R/ZpJq − 1K)
)

≃ Lη[p]
qpn

(
RΓq-crys(R/ZpJq − 1K) ⊗L

ZpJq−1K,ϕn ZpJq − 1K
)

≃
(
Lη[p]q

RΓq-crys(R/ZpJq − 1K)
)

⊗L
ZpJq−1K,ϕn ZpJq − 1K .

In the last quasi-isomorphism we used the fact that [p]qpn−1 = ϕn−1([p]q) and that the functor
η[p]q

commutes with base change along the flat morphism ϕn−1 : ZpJq − 1K ! ZpJq − 1K.
Hence it suffices to check that

RΓq-crys
(
R/ZpJq − 1K

)
⊗L

ZpJq−1K,ϕ ZpJq − 1K −! Lη[p]q
RΓq-crys

(
R/ZpJq − 1K

)
is a quasi-isomorphism; that is, it suffices to do the case n = 1 of the proposition. Observe
that both sides are derived (p, q − 1)-complete. Indeed, for the left-hand side this is clear
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as ϕn is finite, and for the right-hand side [Stacks, Tag 0F7P] implies that the cohomology
groups of Lη[p]q

RΓq-crys(R/ZpJq − 1K) are derived (p, q − 1)-complete again, hence so is the
object itself. Therefore, to show that the morphism in question is a quasi-isomorphism, it
suffices to do so after applying (−)/L(q − 1) on both sides. But Lemma 3.5 below makes
sure that applying (−)/L(q − 1) leaves us with the quasi-isomorphism

RΓcrys
(
(R/p)/Zp

) ∼−! LηpRΓcrys
(
(R/p)/Zp

)
from [BO78, Section 8]; see also [BLM21, Section 4] for a treatment from a different
perspective.

3.5. Lemma. — There is a functorial map (Lη[p]q
M)/L(q − 1) ! Lηp(M/L(q − 1)) for all

M ∈ D(ZJq−1K) . Applied to the q-crystalline cohomology of R, it yields a quasi-isomorphism(
Lη[p]q

RΓq-crys(R/ZpJq − 1K)
)
/L(q − 1) ∼−! LηpRΓcrys

(
(R/p)/Zp

)
.

Proof. On K-flat representatives it’s clear how to construct the functorial map in question,
so we only need to show the second assertion. As both sides are derived [p]q-complete, it
suffices to show that(

Lη[p]q
RΓq-crys(R/ZpJq − 1K)

)
/L
(
[p]q, q − 1

)
−!

(
LηpRΓcrys((R/p)/Zp)

)
/L[p]q

is a quasi-isomorphism. By [Stacks, Tag 0F7T] and the q-analogue of the Cartier isomorphism
in [Sch17, Proposition 3.4], we have(

Lη[p]q
RΓq-crys(R/ZpJq − 1K)

)
/L[p]q ≃ H∗(RΓq-crys(R/ZpJq − 1K)/L[p]q

)
≃ Ω̂∗

R ⊗R RJq − 1K/[p]q .

Furthermore, [p]q acts like p on LηpRΓcrys((R/p)/Zp), and so applying (−)/L[p]q to it is the
same as applying (−)/Lp. Finally, using the same trick as above as well as the actual Cartier
isomorphism, we obtain(

LηpRΓcrys((R/p)/Zp)
)
/Lp ≃ H∗(RΓcrys((R/p)/Zp)/Lp

)
≃ Ω∗

(R/p)/Fp
.

Thus, we’re done if we can show that (Ω̂∗
R ⊗R RJq − 1K/[p]q)/L(q − 1) ! Ω∗

(R/p)/Fp
is a

quasi-isomorphism. This is now obvious.
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§4. Cohomology of the q-Hodge Complex I:
The p-Complete Case

The goal of §4 and §5 is to give a complete and functorial description of the cohomology
groups H∗(q-Hdg∗

R,□ /(qm − 1)) for every framed smooth Z-algebra (R,□) and all m ⩾ 1.
As a consequence, we will see that these cohomology groups are independent of the choice of
the framing □.

Although our final result will be completely global, the bulk of the work goes into
computing the cohomology groups after completion at an arbitrary prime. So throughout §4
let’s fix a prime p as well as a p-completely smooth Zp-algebra R together with a p-completely
étale framing □ : Zp[T1, . . . , Td] ! R. Our goal for now is to compute the cohomology groups
H∗(q-Ĥdg∗

R,□/(qpn − 1)) for all n ⩾ 0, and to explain how these can be arranged into a
system of commutative differential-graded algebras, which resembles the de Rham–Witt
pro-complex of an Fp-algebra.

This section is organised as follows: In §4.1, we’ll investigate the ZpJq − 1K/(qpn − 1)-
module structure on H∗(q-Ĥdg∗

R,□/(qpn − 1)). In particular, we’ll show that it is degree-wise
p-torsion free, which will be crucial later on. In §4.2 and §4.3 we’ll construct q-versions of
Witt vectors and the de Rham–Witt pro-complex and show that they come with a comparison
map into the cohomology we’re interested in. Finally, in §4.4 we’ll show that this comparison
map is an isomorphism.

§4.1. The Additive Structure
Our strategy will be to construct a certain decomposition of q-Ĥdg∗

R,□/(qpn − 1) according
to a Frobenius lift on R. This is an old trick: A similar decomposition is used in [Sch17,
Proposition 3.4] to compute H∗(q-Ω̂∗

R,□/[p]q), and much earlier in Katz’s proof of the Cartier
isomorphism in [Kat70, Theorem (7.2)].

4.1. The Frobenius Lift. — We always let ϕ : R ! R denote the Frobenius lift on R,
which is defined as the unique extension of the Frobenius lift on Zp[T1, . . . , Td] given by
Ti 7! T p

i along the p-completely étale map □ : Zp[T1, . . . , Td] ! R.
We observe that ϕ is injective. Indeed, ϕ is injective modulo p, since R/p is a smooth

Fp-algebra and thus reduced. Hence every x ∈ R with ϕ(x) = 0 must be divisible by p; say
x = px′. But then 0 = ϕ(px′) = pϕ(x′) implies ϕ(x′) = 0. Now the argument can be iterated
to see that x ∈

⋂
m⩾1 pmR. But R is p-complete and thus p-adically separated, so x = 0, as

required.
Futhermore, we observe that for all n ⩾ 0, the ring R is a free module over its subring

ϕn(R), with a basis given by T α1
1 · · · T αd

d for all multi-indices α = (α1, . . . , αd) satisfying
0 ⩽ αi ⩽ pn − 1. To see why this is true, it suffices to show that

Zp[T1, . . . , Td] R

Zp[T1, . . . , Td] R

Ti 7!T pn

i
ϕn

is a derived pushout square of rings. But both the derived pushout and R are derived
p-complete, so by the derived Nakayama lemma it’s enough to check that we get a derived
pushout square after applying − ⊗L

Zp
Fp everywhere. This is proved in [Stacks, Tag 0EBS].
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4.2. Frobenius Decompositions. — For every multi-index α = (α1, . . . , αd) as in 4.1,
let Ω̂∗,α

R ⊆ Ω̂∗
R be the p-complete graded sub-ϕn(R)-module generated by the elements∏

i∈I

T αi
i

∧
j∈J

T
αj−1
j dTj

for all disjoint decompositions I ⊔ J = {1, . . . , d}. If αj = 0 for some j, we use the convention
that T

αj−1
j dTj := T pn−1

j dTj . Then we obtain a decomposition

(4.2.1) Ω̂∗
R

∼=
⊕

α

Ω̂∗,α
R .

In the same way, we obtain decompositions

(4.2.2) q-Ω̂∗
R,□

∼=
⊕

α

q-Ω̂∗,α
R,□ and q-Ĥdg∗

R,□
∼=
⊕

α

q-Ĥdg∗,α
R,□ .

as graded ϕn(R)Jq − 1K-modules. For brevity, the summand corresponding to α = (0, . . . , 0)
will be denoted Ω̂∗,0

R , q-Ω̂∗,0
R,□, and q-Ĥdg∗,0

R,□, respectively.
4.3. Lemma. — Each of the decompositions from 4.2 is a decomposition of complexes
(rather than just a decomposition of their underlying graded modules).

Proof. It suffices to prove the assertion for q-Ω̂∗
R,□, as it implies the other two. We must

show that ∇q restricts to a map

∇q : q-Ω̂k,α
R,□ −! q-Ω̂k+1,α

R,□

for all k and all α. Using the q-Leibniz rule, this is easily reduced to the case k = 0 and
α = (0, . . . , 0). That is, we must check that for x ∈ ϕn(R)Jq −1K one has ∇q(x) ∈ Ω̂1,0

R Jq −1K.
By definition of ∇q, it suffices to check that

(4.3.1) (q − 1)Ti∇q,i(x) = γi(x) − x ∈ T pn

i ϕn(R)Jq − 1K .

for all i = 1, . . . , d. This will be done in two steps.
First we prove that γi(x) ∈ ϕn(R)Jq − 1K. For that we may assume that x is already

contained in ϕn(R), i.e. x is a constant power series in (q − 1) whose only nonzero coefficient
is in the image of ϕn. We can extend ϕ to a Frobenius lift Φ: RJq − 1K ! RJq − 1K by putting
Φ(q −1) = qp −1. Now γi commutes with Φ. Indeed, this can be checked first after restriction
along the (p, q − 1)-completely étale map Zp[T1, . . . , Td]Jq − 1K ! RJq − 1K, and second after
composition with the (p, q − 1)-complete pro-infinitesimal thickening RJq − 1K ! R/p; both
cases follow from a simple inspection. By assumption on x, it is contained in the image
of Φn. Hence γi(x) is contained in the image of Φn as well, which is in turn contained in
ϕn(R)Jq − 1K, as claimed.

This shows that γi(x) − x ∈ ϕn(R)Jq − 1K. To finish the proof of (4.3.1), we must show
that the canonical projection

π : ϕn(R)Jq − 1K −! ϕn(R)Jq − 1K/T pn

i

coincides with γi ◦ π. Again, this may be checked after restriction along the (p, q − 1)-
completely étale map Zp[T pn

1 , . . . , T pn

d ]Jq − 1K ! ϕn(R)Jq − 1K, and after composition with
the (p, q − 1)-complete pro-infinitesimal thickening ϕn(R)Jq − 1K/T pn

i ! ϕn(R)/(p, T pn

i ),
where it becomes clear.

24



§4.1. The Additive Structure

4.4. Lemma. — For all n ⩾ 0 and all multi-indices α, the complex q-Ĥdg∗,α
R,□/(qpn − 1) is

linear over the ring ϕn(R)Jq − 1K/(qpn − 1).

Proof. We must check that (q − 1)∇q(x) is divisible by qpn − 1 for all x ∈ ϕn(R)Jq − 1K, or
equivalently, that the canonical projection

π : ϕn(R)Jq − 1K −! ϕn(R)Jq − 1K/(qpn

− 1)

agrees with γi ◦ π for all i = 1, . . . , d. As in Lemma 4.3, this may be checked after restriction
along the (p, q − 1)-completely étale map Zp[T pn

1 , . . . , T pn

d ]Jq − 1K ! ϕn(R)Jq − 1K and after
composition with the pro-infinitesimal thickening ϕn(R)Jq − 1K/(qpn − 1) ! ϕn(R)/p.

4.5. More Decompositions. — Using Lemma 4.4, we can write

(4.5.1) q-Ĥdg∗,α
R,□/(qpn

− 1) ∼= ϕn(R)Jq − 1K ⊗ZpJq−1K K∗,α(d) ,

where K∗,α(d) is the complex of free ZpJq − 1K/(qpn − 1)-modules with basis the elements∏
i∈I

T αi
i

∧
j∈J

T
αj−1
j dTj

for all disjoint decompositions I ⊔ J = {1, . . . , d}, and differentials given by (q − 1)∇q. As in
4.2, we use the convention that T

αj−1
j dTj := T pn−1

j dTj if αj = 0. The complex K∗,α(d) can
be decomposed into a tensor product

(4.5.2) K∗,α(d) ∼= K∗,α1
n (1) ⊗ZpJq−1K · · · ⊗ZpJq−1K K∗,αd

n (1) ,

where K∗,αi(1) is the complex

K∗,αi(1) =
(

T αi
i · ZpJq − 1K/(qpn

− 1) (q−1)∇q
−−−−−! T αi−1

i dTi · ZpJq − 1K/(qpn

− 1)
)

concentrated in degrees 0 and 1. If αi ⩾ 1, then we can write αi = peα′
i, where e = vp(αi)

is the exponent of p in the prime factorisation of αi. The differential (q − 1)∇q of K∗,αi(1)
sends the generator T αi

i in degree zero to

(q − 1)∇q(T αi
i ) = (qαi − 1)T αi−1

i dTi = [α′
i]qpe (qpe

− 1)T αi−1
i dTi .

Now observe that [α′
i]qpe is a unit in ZpJq − 1K/(qpn − 1). Indeed, it can be written as a sum

of α′
i, which is a unit, and a multiple of the topologically nilpotent element q − 1. Hence

K∗,αi(1) is isomorphic to the complex K∗
n,e given by

(4.5.3) K∗
n,e =

(
ZpJq − 1K/(qpn

− 1) (qpe
−1)

−−−−−! ZpJq − 1K/(qpn

− 1)
)

,

again concentrated in degrees 0 and 1. If αi = 0, then similarly K∗,0(1) ∼= K∗
n,n, where the

differential of K∗
n,n is multiplication with qpn − 1, hence zero.

Combining these considerations with (4.5.2), we see that K∗,α(d) can be written as a
tensor product of complexes of the form K∗

n,ei
for some 0 ⩽ e1, . . . , ed ⩽ n. Fortunately, such

a tensor product is easy to compute:
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4.6. Lemma. — Suppose e1 ⩾ e2 ⩾ 0. Then there is an isomorphism of complexes

K∗
n,e1

⊗ZpJq−1K K∗
n,e2

∼= K∗
n,e2

[−1] ⊕ K∗
n,e2

.

Proof. An explicit isomorphism K∗
n,e1

⊗ZpJq−1K K∗
n,e2

∼−! K∗
n,e2

[−1] ⊕ K∗
n,e2

is given by the
diagram (in which we write A := ZpJq − 1K for short, or it wouldn’t fit the page)

A/(qpn − 1) A/(qpn − 1) ⊕ A/(qpn − 1) A/(qpn − 1)

A/(qpn − 1) A/(qpn − 1) ⊕ A/(qpn − 1) A/(qpn − 1)

(
qpe1 −1
qpe2 −1

) (
−(qpe2 −1),(qpe1 −1)

)
(

0
qpe2 −1

) (
−(qpe2 −1),0

)
where the vertical arrow in the middle sends (a, b) 7!

(
a − qpe1 −1

qpe2 −1 b, b
)

.

This now implies:

4.7. Proposition. — Let α = (α1, . . . , αd) be a multi-index as before, and let’s write
αi = peiα′

i as in 4.5 (with the convention that ei := n in the case αi = 0). If we denote
e := min{e1, . . . , ed}, then there is an isomorphism of complexes

q-Ĥdg∗,α
R,□/(qpn

− 1) ∼= ϕn(R)Jq − 1K ⊗ZpJq−1K

(
d−1⊕
k=0

(
K∗

n,e[−k]
)⊕(d−1

k )
)

.

Proof. Use 4.5, Lemma 4.6, and induction on d.

From Proposition 4.7 one can easily deduce a description of q-Ĥdg∗,α
R,□/(qpn −1). However,

for us only the following consequence will be relevant.

4.8. Corollary. — For all n ⩾ 0, the cohomology groups H∗(q-Ĥdg∗
R,□/(qpn − 1)) are

p-torsion free.

Proof. By Proposition 4.7, each cohomology group of q-Ĥdg∗
R,□/(qpn − 1) is a direct sum of

terms isomorphic to

ϕn(R)Jq − 1K ⊗ZpJq−1K H0(K∗
n,e) or ϕn(R)Jq − 1K ⊗ZpJq−1K H1(K∗

n,e)

for some e ⩾ 1. But H0(K∗
n,e) = [pn−e]qpe (ZpJq − 1K/(qpn − 1)) ∼= ZpJq − 1K/(qpe − 1) and

also H1(K∗
n,e) ∼= ZpJq − 1K/(qpe − 1), so everything is indeed p-torsion free.

§4.2. q-Witt Vectors
In this subsection, we will show that the 0th cohomology H0(q-Ĥdg∗

R,□/(qpn − 1)) can be
identified with a certain ring q-Wn+1(R), resembling the ring of truncated Witt vectors of
length n + 1 over R. These rings can be defined in quite some generality. So for the next few
pages, we forget about R and consider an arbitrary commutative but not necessarily unital
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ring S instead. We let Wn+1(S) denote the usual truncated p-typical Witt vectors of length
n + 1 over S for all n ⩾ 0. Furthermore,

Fn+1 : Wn+1(S) −! Wn(S) and Vn : Wn(S) −! Wn+1(S)

denote the Frobenius and Verschiebung maps. Usually we drop the indices and just write
F and V for these. We’ll even abuse notation and write V n−i instead of the (n − i)-fold
composition Vn ◦ Vn−1 ◦ · · · ◦ Vi+1 : Wi+1(S) ! Wn+1(S), and similarly for F . Finally,

[−] : S −! Wn+1(S)

denotes the Teichmüller lift (this collides somewhat with our notation [m/d]qd = qm−1
qd−1 from

1.10, but it shouldn’t cause any ambiguities).

4.9. Definition. — Let S be a commutative, but not necessarily unital ring. The ring of
q-Witt vectors of length n + 1 over S is the ring

q-Wn+1(S) := Wn+1(S)Jq − 1K/In+1 ,

where In+1 is the ideal generated by:
• (qpi − 1) im V n−i for all 0 ⩽ i ⩽ n, and
• im([pn−j ]qpi V j−i − V n−iF n−j) for all 0 ⩽ i ⩽ j < n.

4.10. Remark. — Despite the suggestive name, q-Wn+1(S) is no q-deformation of Wn+1(S)
in general. For example, if S is p-torsion free and the Frobenius on S/p is injective, then one
can show using Proposition 4.15 below that

q-Wn+1(S)/(q − 1) ∼= Spn

+ pSpn−1
+ . . . + pnS ⊆ S

is isomorphic to the image of the nth ghost map wn : Wn+1(S) ! S. Usually (e.g. for S = Q
and n ⩾ 1) this image is not even abstractly isomorphic to Wn+1(S).

However, if S is an Fp-algebra, then it is true that q-Wn+1(S) is a q-deformation of
Wn+1(S). Indeed, in that case the Frobenius and Verschiebung satisfy V ◦ F = p = F ◦ V
and so

[pn−j ]qpi V j−i − V n−iF n−j ≡ 0 mod q − 1 .

This implies that In+1 ⊆ Wn+1(S)Jq − 1K is already contained in the ideal generated by q − 1,
and thus the canonical morphism Wn+1(S) ! q-Wn+1(S)/(q − 1) is indeed an isomorphism.

The functorial way to think about q-Witt vectors, and in particular the strange ideal
In+1, is as follows:

4.11. Lemma. — The sequence (q-Wn+1(S))n⩾0 from Definition 4.9 is the universal
sequence of rings satisfying the following two conditions:
(a) q-Wn+1(S) is a Wn+1(S)Jq − 1K/(qpn − 1)-algebra for all n ⩾ 0.
(b) The Frobenius and Verschiebung maps on the ordinary Witt vectors of S extend to

ZJq − 1K-linear maps Fn+1 : q-Wn+1(S) ! q-Wn(S) and Vn : q-Wn(S) ! q-Wn+1(S)
satisfying the relations

Fn+1 ◦ Vn = p and Vn ◦ Fn+1 = [p]qpn−1 .
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To show Lemma 4.11, we prove an auxiliary lemma first.

4.12. Lemma. — The ZJq − 1K-linear maps F : Wn+1(S)Jq − 1K ! Wn(S)Jq − 1K and
V : Wn(S)Jq − 1K ! Wn+1(S)Jq − 1K satisfy F (In+1) ⊆ In and V (In) ⊆ In+1. Hence they
descend to maps on q-Witt vectors.

Proof. The condition on V holds by construction. So we only need to check the condition on
F . That is, we need to verify that F sends all the generators of In+1 from Definition 4.9
into In. For i ⩽ n − 1, we can use F ◦ V = p to see that

F
(
(qpi

− 1)V n−ix
)

= p(qpi

− 1)V n−1−ix

is contained in In for all x. For i = n, we see that F ((qpn − 1)x) = (qpn − 1)Fx is divisible by
qpn−1 − 1 and thus also contained in In. This deals with the first kind of generators of In+1.
On to the second kind of generators. For j − i ⩾ 1 we can use FV = p again to see that

F
(
[pn−j ]qpi V j−iy − V n−iF n−jy

)
= p
(
[pn−1−(j−1)]qpi V j−1−iy − V n−1−iF n−1−(j−1)y

)
is contained in In for all y. For j = i, we use FV = p once again to compute

F
(
[pn−i]qpi y − V n−iF n−iy

)
= [pn−i]qpi Fy − pV n−1−iF n−1−i(Fy) .

Now [pn−i]qpi Fy ≡ p[pn−1−i]qpi Fy mod qpn−1 − 1 and thus the right-hand side of the
equation above is contained in In, as desired. This finishes the proof that F (In+1) ⊆ In.

Proof of Lemma 4.11. First note that if the construction q-Wn+1(S) = Wn+1(S)Jq −1K/In+1
satisfies (a) and (b), then it will automatically be the universal choice. Indeed, if the ordinary
Verschiebung V n−i extends to a map q-Wi+1(S) ! q-Wn+1(S), then the image of V n−i in
q-Wn+1(S) must be (qpi − 1)-torsion, so we have to mod out at least (qpi − 1) im V n−i for
all 0 ⩽ i ⩽ n. Furthermore, to ensure Vn ◦ Fn+1 = [p]qpn−1 for all n ⩾ 1, we have to mod out
at least im([pn−j ]qpi V j−i − V n−iF n−j) for all 0 ⩽ i ⩽ j < n.

It remains to check that our q-Witt vectors do indeed satisfy (a) and (b). For (a)
this is trivial. For (b), Lemma 4.12 ensures that the ordinary Witt vector Frobenius and
Verschiebung extend to well-defined ZJq − 1K-linear maps F : q-Wn+1(S) ! q-Wn(S) and
V : q-Wn(S) ! q-Wn+1(S). These satisfy F ◦ V = p, because this is already true for ordinary
Witt vectors, and V ◦ F = [p]qpn−1 because im([p]qpn−1 − V F ) is contained in In+1. Hence
our q-Witt vectors satisfy the desired conditions

4.13. Remark. — Fn+1 : q-Wn+1(S) ! q-Wn(S) and Vn : q-Wn(S) ! q-Wn+1(S) will be
called Frobenius and Verschiebung again. Furthermore, the composition

[−] : S −! Wn+1(S) −! q-Wn+1(S)

will also be called the Teichmüller lift.

4.14. Remark. — What about the restrictions though? As it turns out, the naive attempt
of extending the restriction maps Res: Wn+1(S) ! Wn(S) to a map on q-Witt vectors by
putting Res(q − 1) = q − 1 doesn’t work. Indeed, such a map would necessarily commute
with V and thus induce an SJq − 1K-linear map q-Wn+1(S)/ im V ! q-Wn(S)/ im V . By
Proposition 4.15 below, this would provide us with an SJq − 1K-linear map

SJq − 1K/[p]qpn−1 −! SJq − 1K/[p]qpn−2
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which doesn’t exist in general. Nevertheless, one can still construct an analogue of the
restriction maps, but it is rather unsatisfying. If we change the variable q to q1/p, then
q-Wn+1(S)/ im V n can be identified with q-Wn(S)Jq1/p − 1K/[pn]q1/p . The quotient map

q-Wn+1(S) −! q-Wn+1(S)/ im V n ∼= q-Wn(S)Jq1/p − 1K/[pn]q1/p

(which isn’t ZJq − 1K-linear, as it sends q 7! q1/p instead) can then be regarded as the
restriction we’re looking for. That being said, these restrictions won’t play any role in the
theory we’re going to develop.

Our main tool for dealing with q-Witt vectors will be the following short exact sequence.

4.15. Proposition. — Suppose the derived p-completion of S is discrete (for example if S
has bounded p∞-torsion). Then for all n ⩾ 1, there is a functorial short exact sequence

0 −! q-Wn(S) V
−! q-Wn+1(S) −! SJq − 1K/[p]qpn−1 −! 0

compatible with the analogous sequence for the ordinary Witt vectors.

The somewhat weird condition that the derived p-completion of S be discrete is explained
by the following lemma.

4.16. Lemma. — The following conditions are equivalent:
(a) The derived p-completion of S is discrete.
(b) For all n ⩾ 1, [p]qpn−1 is a nonzerodivisor in SJq − 1K.
(c) For some n ⩾ 1, [p]qpn−1 is a nonzerodivisor in SJq − 1K.

Proof. Suppose some nonzero power series x =
∑

i⩾0 xi(q − 1)i is annihilated by [p]qpn−1 .
Without restriction we may assume x0 ̸= 0. It’s well-known that [p]qpn−1 is an Eisenstein
polynomial in q −1 with degree N = (p−1)pn−1 and constant coefficient p. We may therefore
write

[p]qpn−1 = (q − 1)N − p
(
a1(q − 1)N−1 + · · · + aN

)
,

where a1, . . . , aN are integers and aN = −1. By comparing constant coefficients, [p]qpn−1 x = 0
implies px0 = 0, and by comparing coefficients of (q − 1)i+N , we obtain

xi = p(a1xi+1 + · · · + aN xi+N )

for all i ⩾ 0. Now define a double sequence (yi,j)i,j⩾0 recursively as follows: We put yi,0 := xi

and yi,j+1 := a1yi+1,j + · · · + aN yi+N,j for all j ⩾ 0. By a simple induction, it follows that
pyi,j+1 = yi,j . Combining this with the fact that x0 is a nonzero p-torsion element, we see
that the sequence (y0,j)j⩾0 defines a nonzero element in the limit limj⩾0 S[pj+1], where the
transition maps are multiplication with p. But then Ŝp is not discrete by Lemma A.5(a).
This shows (a) ⇒ (b).

The implication (b) ⇒ (c) being trivial, it remains to show (c) ⇒ (a). Suppose the derived
p-completion of S isn’t discrete and choose a nonzero element (yj)j⩾0 ∈ limj⩾0 S[pj+1]. Let u
denote the power series p·([p]qpn−1 )−1 ∈ Z

[ 1
p

]
Jq−1K. Let x ∈ SJq−1K denote the power series

obtained from the formal product y0u by replacing every occurrence of y0/pj by yj . Then x
is nonzero because its constant coefficient is y0 and it satisfies [p]qpn−1 x = py0 = 0.
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Before we can prove Proposition 4.15, we need yet another auxiliary lemma.

4.17. Lemma. — Suppose S has discrete derived p-completion. Let n ⩾ 1 and consider a
power series x =

∑
i⩾0 xi(q − 1)i ∈ Wn(S)Jq − 1K. If the element

V x =
∑
i⩾0

V xi(q − 1)i ∈ Wn+1(S)Jq − 1K

is divisible by [p]qpn−1 , then x must already be divisible by [p]qpn−1 .

Proof. We must show that V : Wn(S)Jq − 1K/[p]qpn−1 ! Wn+1(S)Jq − 1K/[p]qpn−1 is injective.
Using the Verschiebung sequence for ordinary Witt vectors, we see that

0 −! Wn(S)Jq − 1K V
−! Wn+1(S)Jq − 1K −! SJq − 1K −! 0

is exact. To show that V remains injective after modding out [p]qpn−1 , it suffices to check that
TorZJq−1K

1 (SJq −1K,ZJq −1K/[p]qpn−1 ) vanishes, which it does since SJq −1K is [p]qpn−1 -torsion
free by Lemma 4.16.

Proof of Proposition 4.15. Let’s first show that V : q-Wn(S) ! q-Wn+1(S) is injective. Let
x ∈ Wn(S)Jq − 1K and assume that the element V x ∈ Wn+1(S)Jq − 1K (defined as in
Lemma 4.17) vanishes in q-Wn+1(S), i.e., V x is contained in In+1. This implies that we can
write

(4.17.1) V x =
∑

0⩽i⩽n

(qpi

− 1)V n−i(yi) +
∑

0⩽i⩽j<n

(
[pn−j ]qpi V j−izi,j − V n−iF n−j(zi,j)

)
for some yi ∈ Wi+1Jq − 1K and some zi,j ∈ Wn−(j−i)+1Jq − 1K. We’re free to change x
by elements from In, so let’s do that to simplify the equation above. If we replace x by
x − (qpi − 1)V n−1−i(yi) for some 0 ⩽ i < n, then the corresponding summand in (4.17.1)
cancels. So we may assume yi = 0 for all 0 ⩽ i < n. Furthermore, for j − i ⩾ 1 we may
replace x by x − [pn−1−(j−1)]qpi V j−1−izi,j − V n−1−iF n−1−(j−1)(zi,j) to assume zi,j = 0.
Finally, if we replace x by x −

∑
1⩽i<n([pn−1−i]qpi Fzi,i − V n−1−iF n−1−i(Fzi,i)), then the

summands corresponding to zi,i won’t quite cancel, but at least (4.17.1) can be simplified to

(4.17.2) V x = (qpn

− 1)y + [p]qpn−1 z − V Fz ,

where y = yn and z =
∑

0⩽i<n[pn−1−i]qpi zi,i.
This is now much easier to work with. We see that V (x−Fz) ∈ Wn+1(S)Jq−1K is divisible

by [p]qpn−1 . By Lemma 4.17, we can write x − Fz = [p]qpn−1 w for some w ∈ Wn(S)Jq − 1K.
Then

[p]qpn−1 V w = V (x − Fz) = [p]qpn−1
(
(qpn−1

− 1)y + z
)

.

Since [p]qpn−1 is a nonzerodivisor in Wn+1(S)Jq−1K (this follows inductively from Lemma 4.16
and the short exact sequence from the proof of Lemma 4.17), we get V w = (qpn−1 − 1)y + z.
Since q-Wn(S) is (qpn−1 − 1)-torsion, we have

[p]qpn−1 w = pw = FV w = (qpn−1
− 1)Fy + Fz = Fz
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in q-Wn(S), which implies x = 0 in q-Wn(S), as desired. This completes the proof that
V : q-Wn(S) ! q-Wn+1(S) is injective.

It remains to analyse its cokernel. Clearly q-Wn+1/ im V ∼= Wn+1Jq − 1K/(im V, In+1).
The ideal (im V, In+1) coincides with (im V, [p]qpn−1 ), whence

q-Wn+1/ im V ∼= (Wn+1/ im V )Jq − 1K/[p]qpn−1 ∼= SJq − 1K/[p]qpn−1 ,

as desired.

4.18. Corollary. — If S is p-torsion free or has bounded p∞-torsion, then the same is
true for all q-Wn+1(S).

Proof. To show that q-Wn+1(S) is p-torsion free or has bounded p∞-torsion, we can argue
by induction on n. The case n = 0 is the respective assumption on S. The inductive step
follows immediately from Proposition 4.15 together with the fact that if S is p-torsion free
or has bounded p∞-torsion, then the same holds for SJq − 1K/[p]qpn−1 for all n ⩾ 1. To see
why the latter is true, observe that Lemma 4.16 provides a short exact sequence

0 −! SJq − 1K
[p]

qpn−1

−−−−−! SJq − 1K −! SJq − 1K/[p]qpn−1 −! 0 .

This can be used to compute the pm-torsion part Tm = TorZ1 (SJq − 1K/[p]qpn−1 ,Z/pm). Since
the map [p]qpn−1 : (S/pm)Jq − 1K ! (S/pm)Jq − 1K is injective by Lemma 4.16, we see that

TorZ1
(
SJq − 1K,Z/pm

) [p]
qpn−1

−−−−−! TorZ1
(
SJq − 1K,Z/pm

)
−! Tm −! 0

is exact. If S is p-torsion free, then the same is true for SJq − 1K and the above sequence
shows immediately that T1 = 0, as desired. If S has bounded p∞-torsion, then the same
is true for SJq − 1K and the above sequence shows that (Tm)m⩾0 eventually stabilises, as
desired.

4.19. Corollary. — On rings with discrete derived p-completion, the functors q-Wn+1(−)
commute with derived p-completion.

Proof. Using induction, Proposition 4.15, and Lemma A.2(b), it’s clear that q-Wn+1(Ŝp) is
derived p-complete again, hence the canonical map q-Wn+1(S) ! q-Wn+1(Ŝp) factors over a
map q-Wn+1(S)p̂ ! q-Wn+1(Ŝp). We’ll show by induction on n that this is an isomorphism.
The case n = 0 is clear. For the inductive step, we obtain a diagram

q-Wn(S)p̂ q-Wn+1(S)p̂

(
SJq − 1K/[p]qpn−1

)
p̂

q-Wn(Ŝp) q-Wn+1(Ŝp) ŜpJq − 1K/[p]qpn−1

≃ ≃

in D(ZpJq − 1K). The top row is a cofibre sequence by Proposition 4.15 and the fact that
derived completion is exact. The bottom row is a cofibre sequence by Proposition 4.15. The
left vertical arrow is a quasi-isomorphism by the inductive hypothesis. The right vertical
arrow is a quasi-isomorphism since SJq − 1K/[p]qpn−1 ≃ SJq − 1K/L[p]qpn−1 is also a derived
quotient by Lemma 4.16 and derived completion commutes with derived quotients. hence
the middle vertical arrow must be a quasi-isomorphism as well.
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4.20. Corollary. — If S has discrete derived p-completion, then each of the rings q-Wn+1(S)
has bounded (q − 1)∞-torsion. In particular, they are all (underived) (q − 1)-complete.

Proof. We argue via induction on n. The case n = 0 is clear. The inductive step follows
immediately from Proposition 4.15, if we can show that the (q−1)∞-torsion of SJq−1K/[p]qpn−1

is bounded. Using the exact sequence

0 −! SJq − 1K
[p]

qpn−1

−−−−−! SJq − 1K −! SJq − 1K/[p]qpn−1 −! 0 .

provided by Lemma 4.16 to see that the (q − 1)m-torsion in SJq − 1K/[p]qpn−1 is isomorphic
to the kernel of the multiplication map [p]qpn−1 : SJq − 1K/(q − 1)m ! SJq − 1K/(q − 1)m.
Let x =

∑m−1
i=0 xi(q − 1)i represent an element of SJq − 1K/(q − 1)m annihilated by [p]qpn−1 .

By writing [p]qpn−1 as an Eisenstein polynomial in q − 1 as in the proof of Lemma 4.16,
we find inductively that each xi must be p-torsion. But then x is annihilated by [p]qpn−1

iff it is annihilated by its leading term (q − 1)N , where N = (p − 1)pn−1. This shows that
for m ⩾ N the [p]qpn−1 -torsion part of SJq − 1K/(q − 1)m is represented precisely of those
polynomials which are divisible by (q − 1)m−N and for which each coefficient is p-torsion.
Upon inspection, this shows that the (q − 1)m-torsion part of SJq − 1K/[p]qpn−1 stabilises for
m ⩾ N , as desired.

The additional assertion follows from Lemma A.5(a) and the fact that all q-Wn+1(S) are
derived (q−1)-complete, because they can be written as a cokernel of a map of (q−1)-complete
objects as we’ll see in the proof of Lemma 4.22 below.

We’ll show yet another application of Proposition 4.15. In contrast to the previous three
corollaries, this one won’t be used in the rest of the text, but it is perhaps nice to know.

4.21. Corollary. — Let S ! S′ be a surjection of rings with discrete derived p-completion
and let J be its kernel. Then for all n ⩾ 0 we have a canonical exact sequence

0 −! q-Wn+1(J) −! q-Wn+1(S) −! q-Wn+1(S′) −! 0 .

Proof. We use induction on n. The case n = 0 is clear. For the inductive step, consider

0 0 0

0 q-Wn(J) q-Wn+1(J) JJq − 1K/[p]qpn−1 0

0 q-Wn(S) q-Wn+1(S) SJq − 1K/[p]qpn−1 0

0 q-Wn(S′) q-Wn+1(S′) S′Jq − 1K/[p]qpn−1 0

0 0 0

V

V

V

By Proposition 4.15, each row is exact; for the top row we should mention that J is still
a (non-unital) ring with discrete derived p-completion, since Ĵp ! Ŝp ! Ŝ′

p is a cofibre
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sequence. Hence, if we regard each column as a complex, then the diagram can be interpreted
as a short exact sequence of complexes. The left column is acyclic by the induction hypothesis
and the right column is acyclic because [p]qpn−1 is a nonzerodivisor on each of JJq − 1K,
SJq − 1K, and S′Jq − 1K by Lemma 4.16, so each quotient is also a derived quotient. Hence
the middle column must be acyclic as well.

Last but not least, we’ll prove a q-Witt vector analogue of a theorem proved by van der
Kallen [Kal86, Theorem (2.4)] and, independently, by Borger [Bor11, Theorem B].

4.22. Lemma. — Suppose S ! S′ is an étale map of (commutative unital) rings whose
derived p-completions are discrete. Then the canonical morphism

q-Wn+1(S) ⊗̂Wn+1(S) Wn+1(S′) ∼−! q-Wn+1(S′)

(where the tensor product is derived (q − 1)-completed) is an isomorphism. In particular,
q-Wn+1(S) ! q-Wn+1(S′) is (q − 1)-completely étale.

Proof. Let’s first check that the base change assertion implies the “in particular”. By van
der Kallen’s theorem, Wn+1(S) ! Wn+1(S′) is étale again. Therefore, assuming the base
change assertion, we see that q-Wn+1(S) ! q-Wn+1(S′) is the derived (q − 1)-completion of
a base change of an étale morphism and thus (q − 1)-completely étale.

Now for the first part. Let

M :=
⊕

0⩽i⩽n

Wi+1(S)Jq − 1K and N :=
⊕

0⩽i⩽j<n

Wn−(j−i)+1(S)Jq − 1K .

By definition, we can write q-Wn+1(S) ∼= coker(M ⊕ N ! Wn+1(S)Jq − 1K), where the map
in question is given as follows: For 0 ⩽ i ⩽ n, the ith component of M ! Wn+1(S)Jq − 1K is
given by

(qpi

− 1)V n−i : Wi+1(S)Jq − 1K −! Wn+1(S)Jq − 1K ,

and for 0 ⩽ i ⩽ j < n, the (i, j)th component of N ! Wn+1(S)Jq − 1K is given by

[pn−i]qpi V j−i − V n−iF n−j : Wn−(j−i)+1(S)Jq − 1K −! Wn+1(S)Jq − 1K .

Observe that the well-known relation V (F (x)y) = xV (y) for Witt vectors shows that these
maps are morphism of Wn+1(S)Jq − 1K-modules, if we equip Wi+1(S) with the module
structure obtained through the Frobenius morphisms F n−i : Wn+1(S) ! Wi+1(S) rather
than the one obtained via the restrictions.

With this module structure (but also with the one via the restrictions), the canonical map

Wi+1(S) ⊗Wn+1(S) Wn+1(S′) ∼−! Wi+1(S′)

is an isomorphism. Indeed, in the case where S and S′ are F -finite Z(p)-algebras (which is all
we ever need), this was proved by Langer and Zink in [LZ04, Corollary A.18]. But together
with their base change result, their argument actually covers all Z(p)-algebras, even though
they don’t state it. By Zariski descent of Witt vectors, it remains to check the case where S
and S′ are Z

[ 1
p

]
-algebras, which is trivial because then Wn+1(S) ∼= Sn+1 via the ghost maps.

Now write q-Wn+1(S′) ∼= coker(M ′ ⊕ N ′ ! Wn+1(S′)Jq − 1K), with M ′ and N ′ defined
in an analogous way to M and N . The above discussion yields

M ′ ≃ M ⊗̂Wn+1(S) Wn+1(S′) and N ′ ≃ N ⊗̂Wn+1(S) Wn+1(S′)
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where the tensor products are (derived or underived) (q − 1)-completed. So if we can show
that the derived (q − 1)-completion of q-Wn+1(S) ⊗Wn+1(S) Wn+1(S′) is discrete again, then
it will automatically coincide with coker(M ′ ⊕ N ′ ! Wn+1(S′)Jq − 1K) ∼= q-Wn+1(S′) and
we’ll be done. To show discreteness, recall from Corollary 4.20 that q-Wn+1(S) has bounded
(q − 1)∞-torsion. Since Wn+1(S′) is étale and thus flat over Wn+1(S), the base change
q-Wn+1(S) ⊗Wn+1(S) Wn+1(S′) still has bounded (q − 1)∞-torsion and then Lemma A.5(a)
does the rest.

This finishes our discussion of q-Witt vectors in general and we return to the situation at
hand. So from now on, R is again as specified at the beginning of §4.

4.23. Proposition. — For all n ⩾ 0, there are isomorphisms

q-Wn+1(R) ∼−! H0(q-Ĥdg∗
R,□/(qpn

− 1)
)

.

Under these isomorphisms, the Frobenius F : q-Wn+1(R) ! q-Wn+1(R) gets identified with
the map induced by the canonical projection

q-Ĥdg∗
R,□/(qpn

− 1) −! q-Ĥdg∗
R,□/(qpn−1

− 1) ,

and the Verschiebung V : q-Wn(R) ! q-Wn+1(R) gets identified with the map induced by the
scalar multiplication map

[p]qpn−1 : q-Ĥdg∗
R,□/(qpn−1

− 1) −! q-Ĥdg∗
R,□/(qpn

− 1) .

To prove Proposition 4.23, we first construct a rather unexpected ring morphism.

4.24. Construction. — Let A be any δ-ring over Z(p) and let ϕA : A ! A denote its
Frobenius. Let furthermore εi be the inverse Joyal operations from Lemma A.12. We define
a map (of sets) cn : Wn+1(A) ! AJq − 1K/(qpn − 1) by the formula

cn

(
[x0, . . . , xn]

)
:=

n∑
i=0

[pi]qpn−i ϕn−i
A

(
εi(x0, . . . , xi)

)
.

4.25. Lemma. — The map cn : Wn+1(A) ! AJq − 1K/(qpn − 1) from Construction 4.24 is
a morphism of rings.

Proof. By taking a suitable surjective map A′ ↠ A of δ-rings, we may replace A by a δ-ring
which is flat over Z(p). Then

AJq − 1K/(qpn

− 1) −!
n∏

i=1
AJq − 1K/[p]qpn−i × A

is an injective ring map. Indeed, in the case A = Z(p) this follows from the fact that
qpn − 1 = (q − 1)

∏n
i=1[p]qpn−i is the prime factorisation of qpn − 1 in the factorial ring

Z(p)Jq − 1K, and the general case follows since AJq − 1K is (q − 1)-completely flat and thus
flat on the nose over the noetherian ring Z(p)Jq − 1K; see Lemma A.7.

Therefore, it’s enough to check that the induced maps cn,j : Wn+1(A) ! AJq −1K/[p]qpn−j

for j = 1, . . . , n and cn,n+1 : Wn+1(A) ! A are ring morphisms. Observe that

[pi]qpn−i ≡

{
0 if 1 ⩽ j ⩽ i

pi if i < j
mod [p]qpn−j .
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Indeed, the first case follows from the factorisation [pi]qpn−i = [p]qpn−1 · · · [p]qpn−i , whereas
in the second case we have that qpn−i ≡ 1 mod [p]qpn−j , so that [pi]qpn−i ≡ pi mod [p]qpn−j .
Hence

cn,j

(
[x0, . . . , xn]

)
=

j−1∑
i=0

piϕn−i
A

(
εi(x0, . . . , xi)

)
= ϕn−j+1

A

(
j−1∑
i=0

piϕj−1−i
(
εi(x0, . . . , xi)

))
= ϕn−j+1

A

(
xpj−1

0 + · · · + pj−1xj−1

)
= ϕn−j+1

A wj−1
(
[x0, . . . , xj−1]

)
,

for all j = 1, . . . , n, where wj−1 : Wn+1(A) ! A denotes the (j − 1)th ghost map. Now wj−1
is a ring morphism by definition of the ordinary Witt vectors and thus the same is true for
cn,j = ϕn−j+1

A ◦ wj−1. A similar calculation shows that cn,n+1 = wn is also a ring morphism.
This finishes the proof.

4.26. Construction. — We can extend the map cn : Wn+1(A) ! AJq − 1K/(qpn − 1)
canonically over q-Wn+1(A). We only need to check that the diagrams

Wn+1(A) AJq − 1K/(qpn − 1)

Wn(A) AJq − 1K/(qpn−1 − 1)

F

cn

cn−1

and
Wn(A) AJq − 1K/(qpn−1 − 1)

Wn+1(A) AJq − 1K/(qpn − 1)

V

cn

[p]
qpn−1

cn−1

commute, for then the universal property from Lemma 4.11 will provide us with the desired
extension. By definition of the Witt vector Frobenius, we have wj−1(Fx) = wj(x) and thus
the equation

cn−1,j(Fx) = ϕn−j
A wj−1(Fx) = ϕn−j

A wj(x) = cn,j+1(x)

holds for all j = 1, . . . , n. If A is flat over Z(p), this is enough to show commutativity of the
diagram on the left by the same trick as in the proof of Lemma 4.25. The general case can
again be reduced to this special case by taking a surjection A′ ↠ A of δ-rings with A flat
over Z(p). A similar calculation shows that the diagram on the right commutes as well, as
desired.

Proof of Proposition 4.23. Recall from 4.1 that the framing □ : Zp[T1, . . . , Td] ! R deter-
mines a Frobenius lift ϕ : R ! R and thus, by p-torsion freeness, a δ-structure. Let’s
denote H0

R,□(n) := H0(q-Ĥdg∗
R,□/(qpn − 1)) for short. It follows from Proposition 4.7 that

H0
R,□(n) ⊆ RJq − 1K/(qpn − 1) is the subring

n∑
i=0

[pi]qpn−i

(
ϕn−i(R)Jq − 1K/(qpn

− 1)
)

⊆ RJq − 1K/(qpn

− 1) ;

recall from 4.2 that ϕi(R) is a direct summand of R as Zp-modules, so ϕi(R)Jq − 1K/(qpn − 1)
can indeed be regarded as being embedded into RJq − 1K/(qpn − 1), as the formula above
suggests. By inspection, the map cn : q-Wn+1(R) ! RJq−1K/(qpn −1) from Construction 4.26
lands inside H0

R,□(n).
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We’ll show that cn+1 : q-Wn+1(R) ! H0
R,□(n) is an isomorphism using induction on n.

The case n = 0 is trivial, as q-W1(R) ∼= R ∼= H0
R,□(0). For the inductive step, we use that

we have a diagram of short exact sequences

0 q-Wn(R) q-Wn+1(R) RJq − 1K/[p]qpn−1 0

0 H0
R,□(n − 1) H0

R,□(n) ϕn(R)Jq − 1K/[p]qpn−1 0

V

cn−1 ∼= cn ϕn ∼=
[p]

qpn−1

in which the top row is the sequence from Proposition 4.15 and the bottom follows immediately
from our explicit description of H0

R,□(n) ⊆ RJq − 1K/(qpn − 1). The left square commutes
by what we’ve checked in Construction 4.26, and the right square commutes by a simple
inspection. Hence the five lemma finishes the inductive step and we’re done.

§4.3. The q-de Rham Witt Complex
Having studied the q-Witt vectors in the previous subsection, we’ll now proceed to construct a
sequence of commutative differential-graded algebras (q-WnΩ̂∗

R)n⩾1, which satisfy a universal
property similar to that of the de Rham–Witt pro-complex of an Fp-algebra. This will
provide us with a comparison map

q-Wn+1Ω̂∗
R −! H∗(q-Ĥdg∗

R,□/(qpn

− 1)
)

,

which is in fact an isomorphism, as we’ll show in §4.4. To motivate the definition of
(q-WnΩ̂∗

R)n⩾1, let’s first recall how the usual de Rham–Witt complex works.

4.27. De Rham–Witt Complexes. — Classically, de Rham–Witt complexes were defined
as a certain left adjoint functor in [Ill79, Théorème I.1.3]. For us it will be convenient to work
with an equivalent variant of that definition, which appears in [BLM21, Definition 4.4.1] and
which we’ll recall here. Let B be an Fp-algebra. A B-framed V -pro-complex consists of the
following data:

• A pro-system of commutative differential-graded algebras

(M∗
n)n⩾1 =

(
. . .

Res
−−! M∗

3
Res
−−! M∗

2
Res
−−! M∗

1

)
.

• Maps V : M∗
n ! M∗

n+1 of graded abelian groups for all n ⩾ 1.
• A Wn(B)-algebra structure on M0

n for all n ⩾ 1.
This data is required to satisfy the following three conditions:
(a) For all n ⩾ 1, the structure maps Wn(B) ! M0

n are compatible with the restriction and
Verschiebung on both sides. Furthermore, V ◦ Res = Res ◦ V .

(b) For all n ⩾ 1 and all x, y ∈ M∗
n, one has V (x dy) = V x dV y.

(c) For all n ⩾ 1 and all b ∈ B, y ∈ M0
n, one has V y d[b]n+1 = V (y[b]p−1

n ) dV [b]n, where [b]n
and [b]n+1 denote the images of the respective Teichmüller lifts of b under Wn(B) ! M0

n

and Wn+1(B) ! M0
n+1.

There is an obvious category V PCB of B-framed V -pro-complexes, and the classical de
Rham–Witt pro-complex (WnΩ∗

B)n⩾1 is its initial object. We remark that a priori there’s
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no mention of any Frobenii, and in fact, the Frobenius operators on (WnΩ∗
B)n⩾1 are only

constructed a posteriori.
In our situation, there seems to be no analogue of the restriction maps Res, as we’ve

already seen in Lemma 4.11. So we simply leave out the restrictions, keep the other conditions
and add a few technicalities to obtain the following definition:
4.28. Definition. — Let R be a (not necessarily framed) p-completely smooth Zp-algebra.
An R-framed p-complete q-V -sequence consists of the following data:

• A sequence (M∗
n)n⩾1 of degree-wise p-torsion free and degree-wise (p, q − 1)-complete

commutative differential-graded ZpJq − 1K-algebras.
• Maps Vn : M∗

n ! M∗
n+1 of graded ZpJq − 1K-modules for all n ⩾ 1. We’ll usually drop

the index and just write V if n is clear from the context.
• An q-Wn(R)-algebra structure on M0

n for all n ⩾ 1.
These data are required to satisfy the following conditions:
(a) For all n ⩾ 1, the structure maps q-Wn(R) ! M0

n are compatible with the Verschiebung
on both sides.

(b) For all n ⩾ 1 and all x, y ∈ M∗
n, one has V (x dy) = V x dV y.

(c) For all n ⩾ 1 and all r ∈ R, y ∈ M0
n, one has V y d[r]n+1 = V (y[r]p−1

n ) dV [r]n,
where [r]n and [r]n+1 denote the images of the respective Teichmüller lifts of r under
q-Wn(R) ! M0

n and q-Wn+1(R) ! M0
n+1. From now on we’ll omit the indices and just

write [r] for both Teichmüller lifts.
There is an obvious category q-V ŜeqR of R-framed p-complete q-V -sequences.

As for the classical situation, the Frobenii should be additional structure rather than part
of the definition.
4.29. Definition. — Let (M∗

n)n⩾1 be an R-framed p-complete q-V -sequence. A set of
Frobenius operators on (M∗

n)n⩾1 consists of maps Fn+1 : M∗
n+1 ! M∗

n of graded ZpJq − 1K-
algebras, which satisfy the following conditions:
(a) For all n ⩾ 1, the structure maps q-Wn(R) ! M0

n are compatible with the Frobenius
on both sides.

(b) For all n ⩾ 1, one has Fn+1 ◦ Vn = p and Vn ◦ Fn+1 = [p]qpn−1 .
As before, we’ll drop the index and just write F whenever n is clear from the context. An
R-framed p-complete q-V -sequence equipped with a choice of Frobenius operators will be
called a p-complete q-Witt sequence over R, and the corresponding category will be denoted
q-ŴittR.
4.30. Remark. — The axioms from Definition 4.28 and Definition 4.29 formally imply
number of further relations, which we’ll summarise here. First of all, the condition from
Definition 4.28(b) yields

(4.30.1) V (a dx1 · · · dxk) = V a dV x1 · · · dV xk .

for all n, k ⩾ 0 and all a, x1, . . . , xk ∈ M∗
n. If M∗

n is generated by elements of this form, then
Definition 4.28(b) is even equivalent to (4.30.1). Also, the condition from Definition 4.28(a)
implies that Vn(1) = [p]qpn−1 , so using Definition 4.28(b) with x = 1 ∈ M0

n shows

Vn ◦ d = [p]qpn−1 (d ◦ Vn) = d ◦ Vn ◦ [p]qpn−1 .
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However, the source of Vn is M∗
n, which is (qpn−1 − 1)-torsion, so d ◦ Vn ◦ [p]qpn−1 = d ◦ Vn ◦ p

and we obtain the relation

(4.30.2) V ◦ d = p(d ◦ V ) .

In particular, the graded ZpJq − 1K-module map V : M∗
m ! Mn+1∗ is neither compatible

with the multiplicative nor with the differential-graded structure.
Furthermore, if (M∗

n)n⩾1 is equipped with Frobenius operators as in Definition 4.29, then
F : M∗

n+1 ! M∗
n is compatible with the multiplicative structure (by assumption), but not

with the differential-graded one. Instead, we get the relations

(4.30.3) F ◦ d ◦ V = d and p(F ◦ d) = d ◦ F .

Indeed, for the first one, observe that p(F ◦d◦V ) = F ◦p(d◦V ) = F ◦V ◦d = p d, which implies
the desired relation by the p-torsion freeness assumption. For the second, first observe that
[p]qpn−1 F = pF , because the target of F is M∗

n, which is (qpn−1 − 1)-torsion by condition (a).
Hence we can compute p(F ◦ d) = [p]qpn−1 (F ◦ d) = F ◦ d ◦ [p]qpn−1 = F ◦ d ◦ V ◦ F = d ◦ F ,
where we also use the first relation from (4.30.3).

Finally, if (M∗
n)n⩾1 is equipped with Frobenius operators, we get yet another two relations

for free:

(4.30.4) xV y = V
(
F (x)y

)
and pV (yz) = V (y)V (z)

for all x ∈ M∗
n+1, y, z ∈ M∗

n (these relations are automatically satisfied by Definition 4.28(a)
if x, y, and z are in the images of q-Wn+1(R) ! M0

n+1 and q-Wn(R) ! M0
n respectively, but

for arbitrary x, y, and z we really need to show something). Indeed, we compute

pV
(
F (x)y

)
= V

(
F (x)py

)
= V

(
F (x)FV (y)

)
= V F

(
xV (y)

)
= [p]qpn−1 xV y .

Now V y is a (qpn−1 − 1)-torsion element, whence [p]qpn−1 xV y = pxV y. By p-torsion freeness,
this proves the first relation from (4.30.4). The second relation formally follows from the
first one by plugging in V z instead of x.

4.31. Remark. — Observe that the Teichmüller relation V (y) d[r] = V (y[r]p−1) dV [r]
from Definition 4.28(c) is redundant if y is contained in the image of q-Wn(R) ! M0

n or if
(M∗

n)n⩾1 can be equipped with Frobenius operators. Indeed, in either case we have

ppV
(
y[r]p−1) = pV (y)V

(
[r]
)p−1

by a repeated application of (4.30.4). As d is a derivation, we can conclude

ppV
(
y[r]p−1) dV [r] = pV (y)V

(
[r]
)p−1 = V (y) d

(
(V [r])p

)
= pp−1V (y) d

(
V ([r]p)

)
.

Note that [r]p = [rp] = F [r] holds in Wn(R) by a standard relation for ordinary Witt vectors.
Thus V ([r]p) = V F [r] = [p]qpn−1 [r] holds in q-Wn+1(R). Plugging this into the equation
above, we obtain

ppV
(
y[r]p−1) dV [r] = pp−1[p]qpn−1 V (y) d[r] .

But V (y) is (qpn−1 − 1)-torsion, hence the right-hand side agrees with ppV (y) d[r]. So the
Teichmüller relation holds up to multiplication with pp. But then it must hold on the nose,
since everything is p-torsion free.
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We can now explain the connection to the cohomology groups we’re interested in. In the
following we’ll denote H∗

R,□(n) := H∗(q-Ĥdg∗
R,□/(qpn − 1)) for short.

4.32. Lemma. — The graded ZpJq − 1K-modules H∗
R,□(n) for n ⩾ 1 can be equipped with

the structure of an R-framed p-complete q-V -sequence in a natural way. Furthermore, there
is a natural choice of Frobenius operators.

Before we can prove Lemma 4.32, we have to explain where all the additional structure
comes from.
4.33. The Graded Algebra Structure. — The complex q-Ĥdg∗

R,□ itself can be given
the structure of a non-commutative differential-graded algebra as follows: For homogeneous
generators ω = x dTi1 ∧ · · · ∧ dTik

∈ q-Ĥdgk
R,□ and η = y dTj1 ∧ · · · ∧ dTjℓ

∈ q-Ĥdgℓ
R,□ we put

ω ∧ η := xγi1

(
γi2(· · · γik

(y) · · · )
)

dTi1 ∧ · · · ∧ dTik
∧ dTj1 ∧ · · · ∧ dTjℓ

.

More succinctly, we use the good old wedge product and impose the additional non-
commutative rule dTi ∧ x := γi(x) ∧ dTi for all x ∈ RJq − 1K and all i = 1, . . . , d.

From the q-Leibniz rule, we easily get ∇q(ω ∧ η) = ∇q(ω) ∧ η + (−1)kω ∧ ∇q(η),
so this multiplication does indeed define a differential-graded algebra structure. Hence
q-Ĥdg∗

R,□/(qpn − 1) inherits a differential-graded algebra structure, and so its cohomology
H∗

R,□(n) comes equipped with the structure of a graded algebra.
However, a priori it might not be commutative. But it is! Indeed, if x ∈ q-Ĥdg0

R,□

represents an element in H0
R,□(n), then γi(x) − x ≡ 0 mod qpn − 1 holds by definition, and

therefore dTi ∧ x = x ∧ dTi in H∗
R,□(n).

4.34. Bockstein Differentials. — Since qpn − 1 is a nonzerodivisor in RJq − 1K, we have
a short exact sequence of complexes

0 −! q-Ĥdg∗
R,□/(qpn

− 1) (qpn
−1)

−−−−−! q-Ĥdg∗
R,□/(qpn

− 1)2 −! q-Ĥdg∗
R,□/(qpn

− 1) −! 0 .

The associated connecting morphisms βn : H∗
R,□(n) ! H∗+1

R,□(n) are called Bockstein differen-
tials. As the name suggests, βn turns the graded ZpJq − 1K-module H∗

R,□(n) into a cochain
complex (see [Stacks, Tag 0F7N] for example). This interacts well with the multiplicative
structure:
4.35. Lemma. — The Bockstein differential from 4.34 and the graded algebra structure
from 4.33 make (H∗

R,□(n), βn) a commutative differential-graded ZpJq − 1K-algebra.

Proof. We only show that βn : H0
R,□(n) ! H1

R,□(n) is a derivation; the arguments in higher
degrees are similar. Let x, y ∈ RJq − 1K be elements whose images modulo qpn − 1 are
contained in H0

R,□(n). Then (q − 1)∇q(x) ∈ Ω̂1
RJq − 1K is divisible by qpn − 1, so that ∇q(f)

is divisible by [pn]q. A quick unravelling then shows that βn(x) is the image of
(q − 1)∇q(x)

qpn − 1 = ∇q(x)
[pn]q

in H1
R,□(n), and likewise for βn(y). Furthermore, ∇q,i(x) being divisible by [pn]q implies

that γi(x) − f = (qTi − Ti)∇q,i(x) is divisible by qpn − 1. Thus, by the q-Leibniz rule,
∇q,i(xy)

[pn]q
= γi(x)∇q,i(y)

[pn]q
+ y

∇q,i(x)
[pn]q

≡ x
∇q,i(y)
[pn]q

+ y
∇q,i(x)
[pn]q

mod qpn

− 1 .
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This shows βn(xy) = xβn(y) + yβn(x), as desired.

4.36. Remark. — In the special case n = 0, we see that the Bockstein differential sends x
to the image of ∇q(x) in H1

R,□(0). But since H∗
R,□(0) = Ω̂∗

RJq − 1K/(q − 1) = Ω̂∗
R holds as

graded ZpJq − 1K-modules, we conclude that as a commutative differential-graded algebra,
(H∗

R,□(0), β0) coincides with the p-completed de Rham complex (Ω̂∗
R, d).

4.37. Frobenius and Verschiebung. — Proposition 4.23 suggests that the canonical
projection and the multiplication map

F : H∗
R,□(n) −! H∗

R,□(n − 1) and V = [p]qpn−1 : H∗
R,□(n − 1) −! H∗

R,□(n)

should be thought of as Frobenius and Verschiebung. They clearly satisfy the relations
V ◦ F = [p]qpn−1 = F ◦ V . But the target of F is H∗

R,□(n − 1), which is (qpn−1 − 1)-torsion,
hence also F ◦ V = p. Thus, once Lemma 4.32 is proved (which we’ll do in a moment), we
see that all the relations from Remark 4.30 are satisfied.

Proof of Lemma 4.32. By Corollary 4.8 and Lemma 4.35, the H∗
R,□(n) are indeed degree-wise

p-torsion free and degree-wise (p, q − 1)-complete commutative differential-graded algebras.
Define V : H∗

R,□(n − 1) ! H∗
R,□(n) and F : H∗

R,□(n) ! H∗
R,□(n − 1) as in 4.37 above. The

condition from Definition 4.28(a) is satisfied by Proposition 4.23 (and its proof).
Let’s check Definition 4.28(b) next. Suppose ω, η ∈ q-Ĥdg∗

R,□ are representatives of
elements from H∗

R,□(n − 1). Using the explicit descriptions of βn−1 and βn from the proof of
Lemma 4.35, we find that both V (ωβn−1(η)) and V ωβn(V η) are represented by the element

[p]qpn−1

(
ω

∇q(η)
[pn−1]q

)
=
(
[p]qpn−1 ω

)
·

∇q

(
[p]qpn−1 η

)
[pn]q

,

as desired. It remains to check the Teichmüller condition from Definition 4.28, but this
follows from the argument in Remark 4.31.

Let’s now construct the q-de Rham–Witt pro-complex of any p-completely smooth Zp-
algebra R, not necessarily equipped with a framing.

4.38. Proposition. — Let R be a p-completely smooth Zp-algebra. The category q-V ŜeqR

has an initial object (q-WnΩ̂∗
R)n⩾1. It satisfies q-WnΩ̂0

R
∼= q-Wn(R) for all n ⩾ 1. Moreover,

q-W1Ω̂∗
R

∼= Ω̂∗
R is the p-completed de Rham complex of R, and in general, q-WnΩ̂∗

R is a
quotient of the (p, q −1)-completed de Rham complex Ω̂∗

q-Wn(R)/ZpJq−1K by a differential-graded
ideal.

4.39. Definition. — For all n ⩾ 1, the commutative differential-graded algebra q-WnΩ̂∗
R

from Proposition 4.38 is called the nth q-de Rham–Witt complex over R.

4.40. Remark. — Throughout the proof of Proposition 4.38, we’ll have to take various
completions, so let’s ensure that they behave well. We claim that for all n ⩾ 0 there
exists a polynomial ring (in finitely many variables) Pn+1 over Zp together with a map
Pn+1Jq − 1K ! q-Wn+1(R) that becomes surjective after (p, q − 1)-completion. This will
imply that q-Wn+1(R) is noetherian and that the (p, q − 1)-completed Kähler differential
modules Ω̂k

q-Wn+1(R)/ZpJq−1K are finite modules over it. In particular, all their quotients will
stay (p, q − 1)-complete.
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To prove the claim, let’s first assume R admits a framing □. By the explicit description
of H0

R,□(n) in the proof of Proposition 4.23, we can regard q-Wn+1(R) both as a subring
of RJq − 1K and as an algebra over ϕn(R)Jq − 1K. Since RJq − 1K is finite over ϕn(R)Jq − 1K
(see 4.1), so is q-Wn+1(R), and the claim follows. For general R, choose a surjection R′ ↠ R
from another p-completely smooth Zp-algebra R′ such that R′ admits a framing; for example,
R′ can be taken to be the p-completion of a suitable polynomial ring. Then q-Wn+1(R) is a
quotient of q-Wn+1(R′) and thus satisfies the desired condition as well.

Proof of Proposition 4.38. We first describe the construction of (q-WnΩ̂∗
R)n⩾1 and then we

check that it’s indeed initial. Put q-W1Ω̂∗
R := Ω̂∗

R and observe that it is degree-wise p-
torsion free as R is p-completely smooth over Zp. Now let n ⩾ 1 and suppose q-WiΩ̂∗

R has
already been constructed as a quotient of Ω̂∗

q-Wi(R)/ZpJq−1K for i = 1, . . . , n. Furthermore,
assume that for i = 1, . . . , n − 1 we have already constructed suitable Verschiebung maps
V : q-WiΩ̂∗

R ! q-Wi+1Ω̂∗
R satisfying the conditions from Definition 4.28.

We wish to construct q-Wn+1Ω̂∗
R and V : q-WnΩ̂∗

R ! q-Wn+1Ω̂∗
R. To this end, let

N∗
n+1 ⊆ Ω̂∗

q-Wn+1(R)/ZpJq−1K

denote the degree-wise (p, q − 1)-complete differential-graded ideal generated by the following
two kinds of generators:

• For all r ∈ R, y ∈ q-Wn(R) we take the element V y d[r] − V (y[r]p−1) dV [r] in degree 1.
Such generators will be called generators of Teichmüller type.

• For all k ⩾ 1, all finite indexing sets I, and all sequences (ai, xi,1, . . . , xi,k)i∈I of elements
of q-Wn(R) such that

0 =
∑
i∈I

ai dxi,1 ∧ · · · ∧ dxi,k

holds in q-WnΩ̂k
R (which is a quotient of Ω̂∗

q-Wn(R)/ZpJq−1K, so the above sum makes
indeed sense), we take the element

ξ =
∑
i∈I

V ai dV xi,1 ∧ · · · ∧ dV xi,k

in degree k. Such generators will be called generators of V -type.
Now define q-W ′

n+1Ω̂∗
R := Ω̂q-Wn+1(R)/ZpJq−1K/N∗

n+1. As this might not yet be p-torsion free,
we let q-Wn+1Ω̂∗

R be the quotient of q-W ′
n+1Ω̂∗

R by its differential-graded ideal of p∞-torsion.
Furthermore, we define V : q-WnΩ̂∗

R ! q-Wn+1Ω̂∗
R by the formula

V (a dx1 ∧ · · · ∧ dxk) := V a dV x1 ∧ · · · ∧ dV xk .

The generators of V -type make sure that this gives a well-defined ZpJq − 1K-linear map.
Moreover, the conditions from Definition 4.28(a) and (c) are satisfied by construction, and so
is the condition from Definition 4.28(b) by Remark 4.30. So we get a well-defined p-complete
R-framed q-V -sequence (q-WnΩ̂∗

R)n⩾1.
It remains to show that (q-WnΩ̂∗

R)n⩾1 is initial. So let (M∗
n)n⩾1 be any p-complete

R-framed q-V -sequence. Then M0
1 is an R-algebra, so by the universal property of the de

Rham complex, we get a unique map f1 : q-W1Ω̂∗
R = Ω̂∗

R ! M∗
1 of degree-wise (p, q − 1)-

complete commutative differential-graded ZpJq − 1K-algebras. Now let n ⩾ 1 and assume
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fi : q-WiΩ̂∗
R ! M∗

i have already been constructed for i = 1, . . . , n in such a way that they
are compatible with the Verschiebung maps on both sides. We show that there is a unique
choice for fn+1 : q-Wn+1Ω̂∗

R ! M∗
n+1. Since M0

n+1 is a q-Wn+1(R)-algebra, we get a unique
map

gn+1 : Ω̂∗
q-Wn+1(R)/ZpJq−1K −! M∗

n+1

of of degree-wise (p, q − 1)-complete commutative differential-graded ZpJq − 1K-algebras. So
fn+1, if it exists at all, is necessarily unique. To show existence, let’s show that N∗

n+1 is in
the kernel of gn+1. This can be done on generators. For generators of Teichmüller type, this
is clear. So let’s consider a generator of V -type. We put ω =

∑
i∈I ai dxi,1 ∧ · · · ∧ dxi,k for

short. Then we need to show gn+1(V ω) = 0. Using Definition 4.28(a) and (b) for (Mn)n⩾1
we find that necessarily

gn+1(V ω) = V (fnω) .

But ω vanishes in q-WnΩ̂k
R by assumption, and hence so does V (fnω) in Mk

n+1. This shows
that gn+1 factors through q-W ′

n+1Ω̂∗
R. But since M∗

n+1 is p-torsion free, the p∞-torsion ideal
of q-W ′

n+1Ω̂∗
R must also be mapped to 0, so gn+1 descends indeed to a map

fn+1 : q-Wn+1Ω̂∗
R −! M∗

n+1 .

As we’ve already noticed above, Definition 4.28(a) and (b) for (Mn)n⩾1 imply that fn+1 ◦V =
V ◦ fn and we’re done.

4.41. Variants. — There are two more categories in which (q-WnΩ̂∗
R)n⩾1 happens to be

the initial object.
(a) The category of all (M∗

n)n⩾1 that satisfy all the conditions from Definition 4.28, except
for possibly the Teichmüller condition.

(b) The category q-ŴittR of all p-complete q-Witt sequences over R as defined in Defini-
tion 4.29.

To see why (a) is true, observe that the argument in Remark 4.31 implies that the generators
of Teichmüller type are already p∞-torsion elements in the quotient

Ω̂∗
q-Wn(R)/ZpJq−1K/(generators of V -type) .

So q-WnΩ̂∗
R could also be obtained by modding out all p∞-torsion from that quotient. This

shows that (q-WnΩ̂∗
R)n⩾1 is still initial if we start to denazify our category and drop the

Teichmüller condition as a requirement.
For assertion (b), first note that by Theorem 4.43 below and Lemma 4.32 there is a

choice of Frobenius operators on (q-WnΩ̂∗
R)n⩾1. Alternatively, these Frobenius operators can

also be constructed by hand, which we’ll have to do in the global case in §5. Furthermore,
observe that any morphism (q-WnΩ̂∗

R)n⩾1 ! (M∗
n)n⩾1 of p-complete q-V -sequences will

automatically be compatible with any potential Frobenius operators on (M∗
n)n⩾1. Indeed, in

degree 0 this is clear from Definition 4.29(a) and in degree 1 it follows from (4.30.3) and
p-torsion freeness. In all higher degrees, compatibility is then automatic since the Frobenius
operators are multiplicative and q-WnΩ̂∗

R is (p, q − 1)-completely generated by its elements
in degree 0 and 1.
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4.42. Relation to q-Crystalline Cohomology. — Since the usual de Rham–Witt com-
plex computes crystalline cohomology, one might ask whether the q-de Rham–Witt complex
computes q-crystalline cohomology. The answer is “yes, but actually no”. Using Theorem 4.43
below and [Stacks, Tag 0F7T], we get a sequence of quasi-isomorphisms

q-Wn+1Ω̂∗
R ≃ H∗(q-Ĥdg∗

R,□/(qpn

− 1)
)

≃ Lηqpn −1
(
q-Ĥdg∗

R,□

)
/L(qpn

− 1) .

Now the right-hand side can be identified with

Lη[pn]q

(
q-Ω̂∗

R,□

)
/L(qpn

− 1) ≃ RΓq-crys
(
R/ZpJq − 1K

)
⊗̂L

ZpJq−1K,ϕn ZpJq − 1K/(qpn

− 1)

using Proposition 3.4. So yes, q-Wn+1Ω̂∗
R computes a base change of q-crystalline cohomology.

But no, since ϕn : ZpJq − 1K ! ZpJq − 1K/(qpn − 1) factors over Zp, this is actually just a
base change of the crystalline cohomology of R.

§4.4. The Main Theorem in the p-Complete Case
Finally, we can formulate and prove the main result of §4.

4.43. Theorem. — Let (R,□) be a framed p-completely smooth Zp-algebra. For all n ⩾ 0,
the unique map induced by Lemma 4.32 and Proposition 4.38 is an isomorphism

q-Wn+1Ω̂∗
R

∼−! H∗(q-Ĥdg∗
R,□/(qpn

− 1)
)

.

4.44. Outline of the Strategy, Part I. — The proof of Theorem 4.43 will occupy the rest
of this subsection. We’ll keep the shorthand notation H∗

R,□(n) := H∗(q-Ĥdg∗
R,□/(qpn − 1)).

We first consider the case where R = Zp⟨T ⟩ is the p-completion of a polynomial ring in one
variable. In this case, we understand H∗

Zp⟨T ⟩,□(n) well enough to verify the desired universal
property directly. Next, we’ll handle the case R = Zp⟨T1, . . . , Td⟩: The main idea is to show
that H∗

Zp⟨T1,...,Td⟩,□(n) is “not too far” from being the (p, q − 1)-completed tensor product

H∗
Zp⟨T1⟩,□(n) ⊗̂ZpJq−1K · · · ⊗̂ZpJq−1K H∗

Zp⟨Td⟩,□(n) .

This will enable us to reduce the case R = Zp⟨T1, . . . , Td⟩ to the one-variable case. Finally,
we’ll reduce the general case to the case of a polynomial ring via an étale base change
argument that uses Lemma 4.22

4.45. Lemma. — Theorem 4.43 is true in the case where R = Zp⟨T ⟩ is the p-completion
of a polynomial ring in one variable and □ : Zp[T ] ! Zp⟨T ⟩ is the obvious framing.

Proof sketch. Let (M∗
n)n⩾0 be any R-framed p-complete q-V -sequence. As H∗

R,□(0) = Ω̂∗
R

by Remark 4.36, we get a unique morphism H∗
R,□(0) ! M∗

1 . Now let n ⩾ 1 and assume
we’ve already constructed morphisms fi : H∗

R,□(i) ! M∗
i+1 for i = 0, . . . , n − 1 in such a way

that they are compatible with the Verschiebung maps on both sides. We must show that
there is a unique choice for fn : H∗

R,□(n) ! M∗
n+1.

By Proposition 4.23, we already have a map f0
n : H0

R,□(n) ! M0
n+1 as part of the data

of (M∗
n)n⩾1. So we only need to construct the degree-1 part f1

n. Denote Rn := Zp⟨T pn⟩ for
short. By Proposition 4.7, we can write

H1
R,□(n) ∼= RnJq − 1K ⊗ZpJq−1K

pn⊕
α=1

T α−1 dT · ZpJq − 1K/(qpeα − 1) ,
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where we define eα := vp(α) to be the exponent of p in the prime factorisation of α. It follows
that f1

n is already determined by the values of f1
n(T α−1 dT ). Write α = peαα′. As observed

in 4.5, [α′]qpeα is a unit. From the explicit description of the Bockstein differential βn in the
proof of Lemma 4.35, we find that

T α−1 dT = 1
[α′]qpeα

βn

(
[pn−eα ]qpeα T α

)
,

so f1
n(T α−1 dT ) is already uniquely determined by f0

n([pn−eα ]qpeα T α). Also observe that
[pn−eα ]qpeα T α ∈ H0

R,□(n) is (qpeα −1)-torsion, hence so is the prescribed value of fn(T α−1 dT ).
Therefore, we can extend these values to a unique RnJq − 1K-linear morphism

f1
n : H1

R,□(n) −! M1
n+1 .

To finish the proof, we must verify that fn defined as above is indeed a morphism of
commutative differential-graded ZpJq − 1K-algebras. This leads to some straightforward but
tedious calculations, which have been moved to the appendix, §A.3.

4.46. Remark. — A quick reality check: In the proof of Lemma 4.45, including the
calculations that have been outsourced to the appendix, we never use the Teichmüller
condition from Definition 4.28(c). However, this doesn’t mean the proof is fishy; on the
contrary, in the light of 4.41 it would be suspicious if we had to use the Teichmüller condition.

This finishes the case R = Zp⟨T ⟩. Onward to arbitrary polynomial rings!

4.47. Outline of the Strategy, Part II. — For the next few pages, R = Zp⟨T1, . . . , Td⟩
is the p-completion of a polynomial ring in d variables, equipped with its obvious framing
□ : Zp[T1, . . . , Td] ! Zp⟨T1, . . . , Td⟩, and assume that Theorem 4.43 is true for P := Zp⟨T1⟩
and Q := Zp⟨T2, . . . , Td⟩. It follows from Lemma 4.32 and functoriality of the q-Witt
vectors that (H∗

R,□(n − 1))n⩾1 is both a P -framed and a Q-framed p-complete q-V -sequence.
Therefore we get morphisms of commutative differential-graded ZpJq − 1K-algebras

H∗
P,□(n) ⊗̂ZpJq−1K H∗

Q,□(n) −! H∗
R,□(n)

for all n ⩾ 0. To prove that (H∗
R,□(n − 1))n⩾1 has the desired universal property, we’ll

carefully analyse how far the above map is from being an isomorphism. To do this, we’ll use
a decomposition of q-ĤdgR,□/(qpn − 1) similar to Proposition 4.7. This will allow us to work
with small manageable complexes and we can get away with only a tiny bit of calculation.
So let’s set up these decompositions first.

4.48. The Return of the Frobenius Decompositions. — In the following we’ll denote
Rn := ϕn(R) = Zp⟨T pn

1 , . . . , T pn

d ⟩ for short; also define Pn and Qn similarly. Recall that
Proposition 4.7 allows us to write

q-Ĥdg∗
Q,□/(qpn+1

− 1) ∼= Qn+1Jq − 1K ⊗ZpJq−1K

⊕
j

K∗
n+1,ej

[−kj ] .

where 0 ⩽ ej ⩽ n+1 and 0 ⩽ kj ⩽ d−2; the indexing set doesn’t matter for our considerations.
Since q-Ĥdg∗

Q,□/(qpn − 1) is a quotient of q-Ĥdg∗
Q,□/(qpn+1 − 1) and Qn+1 is flat over Zp, it

follows that

(4.48.1) H∗
Q,□(n) = Qn+1Jq − 1K ⊗ZpJq−1K

⊕
j

H∗−kj (K∗
n+1,ej

) ,
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where we put K∗
n+1,e := K∗

n+1,e/(qpn − 1). Of course, we could have applied Proposition 4.7
directly to q-Ĥdg∗

Q,□/(qpn − 1) to obtain a similar decomposition with Qn in place of Qn+1.
The reason why we didn’t do that is somewhat technical and will become apparent in 4.51.
Also, we note that K∗

n+1,ei
= K∗

n,min{ei,n}, but we’ll stick to the former notation to emphasise
which decomposition it is we’re using.

Similarly, we can write

(4.48.2) H∗
P,□(n) = Pn+1Jq − 1K ⊗ZpJq−1K

⊕
i

H∗(K∗
n+1,ei

)

(no shifts occur since P is the p-completion of a polynomial ring in only one variable).
Furthermore, since q-ĤdgP,□/(qpn − 1) ⊗̂ZpJq−1K q-ĤdgQ,□/(qpn − 1) ∼= q-ĤdgR,□/(qpn − 1),
we see that also H∗

R,□(n) has a decomposition

(4.48.3) H∗
R,□(n) = Rn+1Jq − 1K ⊗ZpJq−1K

⊕
i,j

H∗−kj
(
K∗

n+1,ei
⊗ZpJq−1K Kn+1,ej

)
.

By construction, the decompositions from (4.48.1), (4.48.2), and (4.48.3) are compatible
with the morphism H∗

P,□(n) ⊗̂ZpJq−1K H∗
Q,□(n) ! H∗

R,□(n) from 4.47. This has some nice
consequences.

4.49. Lemma. — The morphism from 4.47 is injective; moreover, it induces an isomor-
phism after inverting p. That is,(

H∗
P,□(n) ⊗̂ZpJq−1K H∗

Q,□(n)
)[ 1

p

] ∼−! H∗
R,□(n)

[ 1
p

]
.

Proof. By 4.48, it suffices to check that

(4.49.1) H∗(K∗
n+1,ei

) ⊗ZpJq−1K H∗(K∗
n+1,ej

) −! H∗(K∗
n+1,ei

⊗ZpJq−1K K∗
n+1,ej

)
is injective, and an isomorphism after inverting p, for all i and j. This is a straightforward
calculation: H∗(K∗

n+1,ei
) is a degree-wise free ZpJq − 1K/(qpei − 1)-module generated by

ω0 = [pn−ei ]qpei ∈ K0
n+1,ei

and ω1 = 1 ∈ K1
n+1,ei

in degrees 0 and 1, respectively. Here we put ei := min{ei, n} to get a consistent notation in
the case ei = n + 1 (we brought this case upon ourselves by working with the decomposition
from 4.48 rather than the one from Proposition 4.7, but as mentioned before, it will come
in handy later on). Likewise, H∗(K∗

n+1,ej
) is degree-wise free over ZpJq − 1K/(qpej − 1)

generated by
η0 = [pn−ej ]

qp
ej ∈ K0

n+1,ei
and η1 = 1 ∈ K1

n+1,ei
.

Assume ei ⩾ ej ; the other case is entirely analogous. Since both sides of (4.49.1) are
degree-wise free ZpJq − 1K/(qpej − 1)-modules, it suffices to show that generators are mapped
to generators up to powers of p.

Degree 0. By Lemma 4.6, H0(K∗
n+1,ei

⊗ZpJq−1K K∗
n+1,ej

) is generated by the element
ξ0 := 1 ⊗ [pn−ej ]

qp
ej . Using the fact that [pn−ei ]qpei acts like pn−ei on any (qpej − 1)-torsion

element, we see that ω0 ⊗ η0 is mapped to

[pn−ei ]qpei ⊗ [pn−ej ]
qp

ej = pn−ei
(
1 ⊗ [pn−ej ]

qp
ej

)
= pn−eiξ0 .
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The left-hand side differs from ξ0 only by a power of p. Thus the degree-0 part of (4.49.1) is
indeed injective and an isomorphism after inverting p.

Degree 1. By Lemma 4.6, we have

H1(K∗
n+1,ei

⊗ZpJq−1K K∗
n+1,ej

) ∼= H1(K∗
n+1,ej

[−1] ⊕ K∗
n+1,ej

)
,

and a basis of the right-hand side is given by ξ1 := ([pn−ej ]
qp

ej , 0) and ξ2 := (0, 1). Now
condider ω1 ⊗ η0 and ω1 ⊗ η0. Under the isomorphism from Lemma 4.6, they are mapped to
ξ0 and (−[pn−ej ]

qp
ej , [pn−ei ]qpei ), respectively. Hence ω1 ⊗η0 +ω1 ⊗η0 is mapped to pn−eiξ2,

where we use the same torsion trick as in degree 0 above. So again a basis is mapped to a
basis up to powers of p and thus (4.49.1) in degree 1 is as desired.

Degree 2. ω1 ⊗ η1 is a generator of H1(K∗
n+1,ei

) ⊗ZpJq−1K H1(K∗
n+1,ej

) and is mapped to
a generator of H2(K∗

n+1,ei
⊗ZpJq−1K K∗

n+1,ej
). Since all other degrees vanish, we’re done.

4.50. Lemma. — Let D∗ ⊆ H∗
R,□(n)

[ 1
p

]
be the (p, q − 1)-complete sub-differential-graded

ZpJq − 1K-algebra generated by:
• the image of H∗

P,□(n) ⊗̂ZpJq−1K H∗
Q,□(n), and

• the sub-ZpJq − 1K-modules p−i im(V i ⊗ V i) ⊆ H∗
R,□(n)

[ 1
p

]
for i = 1, . . . , n.

Then D∗ = H∗
R,□(n).

Lemma 4.50 will be the heart of the proof of Theorem 4.43 in the polynomial ring case.
Before we can prove it, we need to go on a brief digression about the Bockstein differential
βn on H∗

R,□(n).

4.51. The Bockstein Differential modulo p. — Unfortunately, βn doesn’t seem to
interact well with the decomposition of q-Ĥdg∗

R,□/(qpn − 1) constructed in 4.48. However,
this difficulty goes away if we reduce things modulo p.

First note that since both the complex q-Ĥdg∗
R,□/(qpn − 1) and its cohomology are

degree-wise p-torsion free, we get

H∗
R,□(n)/p = H∗(q-Ĥdg∗

R,□/(p, qpn

− 1)
)

.

Next, observe that the ideal (p, qpn+1 − 1) = (p, (qpn − 1)p) is contained in (p, (qpn − 1)2).
Hence for every multi-index α as in 4.2 we get quotient maps of complexes

q-Ĥdg∗,α
R,□/(p, qpn+1

− 1) −↠ q-Ĥdg∗,α
R,□/

(
p, (qpn

− 1)2) −↠ q-Ĥdg∗,α
R,□/

(
p, (qpn

− 1)
)

.

Now Proposition 4.7 shows that q-Ĥdg∗,α
R,□/(p, qpn+1 − 1) can be written as a direct sum

of shifts of complexes of the form Rn+1Jq − 1K ⊗ZpJq−1K K∗
n+1,e/p. This induces similar

decompositions for the other two complexes above. Therefore, βn modulo p can be computed
using the Bockstein differentials βn+1,e associated to the short exact sequences

0 −! K∗
n+1,e/(p, qpn

− 1) (qpn
−1)

−−−−−! K∗
n+1,e/

(
p, (qpn

− 1)2) −! K∗
n+1,e/(p, qpn

− 1) −! 0

for e = 0, . . . , n − 1.
Explicitly, this means the following: Suppose ω is an element of q-Ĥdg∗

R,□/(qpn −1), which
is contained in a subcomplex of the form Rn+1Jq − 1K⊗ZpJq−1K K∗

n+1,e/(qpn − 1)[−k] for some
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k and some e. Suppose furthermore that ω represents an element of the cohomology H∗
R,□.

By flatness of Rn+1, we may then write ω as a sum ω =
∑

i ri ⊗ xi, where ri ∈ Rn+1Jq − 1K
and xi ∈ Kki

n+1,e/(qpn − 1) represent elements in the cohomology. Then

βn(ri ⊗ xi) ≡ ri ⊗ βn+1,e(xi) mod p .

If ki ̸= 0, then automatically βn+1,e(xi) = 0, so that βn(ri ⊗ xi) ≡ 0 mod p. Also, if
e = n + 1, then one checks that βn+1,n+1 vanishes, so again βn(ri ⊗ xi) ≡ 0 mod p. So let’s
suppose ki = 0 and e ⩽ n. In that case, for xi to represent an element of the cohomology, we
must have (qpe − 1)xi = 0 in ZpJq − 1K/(p, qpn − 1), so we can write xi = [pn−e]qpe yi for some
yi, which is unique up to multiples of (qpe − 1). Then it’s easy to check that βn+1,e(xi) = yi,
so that βn(ri ⊗ xi) ≡ ri ⊗ yi mod p.

Proof of Lemma 4.50. If ω ∈ H∗
P,□(n − i) and η ∈ H∗

Q,□(n − i) are any elements, then
H∗

R,□(n) already contains the element

V i(ω ⊗ η) = 1
pi

(
V i(ω) ⊗ V i(η)

)
.

This already proves D∗ ⊆ H∗
R,□(n). To show equality, it then suffices to show that the

induced morphism modulo p is degree-wise surjective, because both sides are degree-wise
p-complete.

For this, we’ll use the decompositions from 4.48 and argue very similar to the proof of
Lemma 4.49. Consider an arbitrary summand

Rn+1Jq − 1K ⊗ZpJq−1K H∗−kj
(
K∗

n+1,ei
⊗ZpJq−1K K∗

n+1,ej

)
of H∗

R,□(n) as well as the corresponding summands Pn+1Jq − 1K ⊗ZpJq−1K H∗(Kn+1,ei) of
H∗

P,□(n) and Qn+1Jq −1K⊗ZpJq−1K H∗−kj (Kn+1,ej ). We assume ei ⩾ ej , the other case being
analogous, and we put ei := min{ei, n}, ej = min{ej , n}. Let furthermore ω0, ω1, η0, η1,
ξ0, ξ1, ξ2 be defined as in the proof of Lemma 4.49. We’ll do a degree-wise case distinction
again, except this time everything is shifted by kj .

Degree kj . Rn+1Jq − 1K ⊗ZpJq−1K H0(K∗
n+1,ei

⊗ZpJq−1K K∗
n+1,ej

) is generated by 1 ⊗ ξ0 as
an Rn+1Jq − 1K-module. As in the proof of Lemma 4.49, we see that (1 ⊗ ω0) ⊗ (1 ⊗ η0) is
mapped to pn−ei(1 ⊗ ξ0). Now observe that

1 ⊗ ω0 ∈ im V n−ei and 1 ⊗ η0 ∈ im V n−ej

Indeed, in q-Ĥdg∗
P,□/(qpn −1) the element 1⊗ω0 = 1⊗ [pn−ei ]qpei is divisible by [pn−ei ]qpei =

[p]qpn−1 · · · [p]qpei , and thus it is contained in the image of V n−ei on the level of complexes.
Furthermore, any preimage will automatically represent an element in H∗

P,□(n − ei), hence
1⊗ω0 also lies in the image of V n−ei on the level of cohomology. The same argument works for
1 ⊗ η0. Since ei ⩾ ej , we can conclude that 1 ⊗ ξ0 is contained in p−(n−ei) im(V n−ei ⊗ V n−ei)
and thus in D∗.

Degree kj + 1. As we’ve seen in the proof of Lemma 4.49 (1 ⊗ ω1) ⊗ (1 ⊗ η0) is mapped
to 1 ⊗ ξ1 and (1 ⊗ ω1) ⊗ (1 ⊗ η0) + (1 ⊗ ω0) ⊗ (1 ⊗ η1) is mapped to pn−ei(1 ⊗ ξ2). If
ei = n + 1, then pn−ei = 1 and we obtain a generating system of the Rn+1Jq − 1K-module
Rn+1Jq − 1K ⊗ZpJq−1K H0(K∗

n+1,ei
⊗ZpJq−1K K∗

n+1,ej
). So suppose ei ⩽ n. Then also ej ⩽ n.

Thus 4.51 shows
βn(ξ0) ≡ 1 ⊗ (0, 1) ≡ 1 ⊗ ξ2 mod p ,
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so in this case βn(ξ0) and ω1 ⊗ η0 form a generating system modulo p. In either case we find
a generating system modulo p which is contained in D∗.

Degree kj + 2. As we’ve seen in the proof of Lemma 4.49, (1 ⊗ ω1) ⊗ (1 ⊗ η1) is mapped to
a generator of the Rn+1Jq − 1K-module Rn+1Jq − 1K ⊗ZpJq−1K H2(K∗

n+1,ei
⊗ZpJq−1K K∗

n+1,ej
).

Since all other degrees vanish, we are done.

4.52. Corollary. — Theorem 4.43 is true in the case where R = Zp⟨T1, . . . , Td⟩ is the
p-completion of an arbitrary polynomial ring and □ : Zp[T1, . . . , Td] ! Zp⟨T1, . . . , Td⟩ is the
obvious framing.

Proof. We do induction on d. The case d = 1 is Lemma 4.45. For d ⩾ 2, define P and
Q as in 4.47. Let furthermore (M∗

n)n⩾1 be any R-framed p-complete q-V -sequence. Since
H∗

R,□(0) = Ω̂∗
R by Remark 4.36, we get a unique map f0 : H∗

R,□(0) ! M∗
1 . Now let n ⩾ 1

and assume fi : H∗
R,□(i) ! M∗

i+1 have already been constructed for i = 0, . . . , n − 1 in such
a way that they are compatible with the Verschiebung maps on both sides. We need to
show that there exists choice for fn : H∗

R,□(n) ! M∗
n+1. Using the induction hypothesis

for P and Q, we get a unique extension gn : H∗
P,□(n) ⊗̂ZpJq−1K H∗

Q,□(n) ! M∗
n+1, which, by

Lemma 4.49, induces a map

gn

[ 1
p

]
: H∗

R,□(n)
[ 1

p

]
−! M∗

n+1
[ 1

p

]
.

Since M∗
n+1 is degree-wise p-torsion free, it can be regarded as a sub-differential-graded

ZpJq − 1K-algebra of Mn+1
[ 1

p

]
. Therefore, there’s at most one choice for fn. But Lemma 4.50

makes sure that the restriction of gn

[ 1
p

]
to H∗

R,□(n) lands in M∗
n+1, as desired.

Now that we’ve dealt with the case of polynomial rings, R is again allowed to be an
arbitrary p-completely smooth Zp-algebra. We only need one more preparatory lemma.

4.53. Lemma. — Let R′ be another p-completely smooth Zp-algebra and let R ! R′ be
p-completely étale. Then □ : Zp[T1, . . . , Td] ! R′ is also a p-completely étale framing of R′,
and the induced morphism

q-Ĥdg∗
R,□/(qpn

− 1) ⊗̂q-Wn+1(R) q-Wn+1(R′) ∼−! q-Ĥdg∗
R′,□/(qpn

− 1)

(where the tensor product is degree-wise (p, q − 1)-completed) is an isomorphism.

Proof. Since the two q-Hodge complexes are degree-wise free over RJq − 1K/(qpn − 1) and
R′Jq − 1K/(qpn − 1) respectively and have compatible bases by construction, it’s enough to
check that

RJq − 1K/(qpn

− 1) ⊗̂q-Wn+1(R) q-Wn+1(R′) ∼−! R′Jq − 1K/(qpn

− 1)

is an isomorphism. By Elkik’s algebraisation results [Elk73], R′ is the derived p-completion
of an étale R-algebra. Combining this with Lemma 4.22 and Corollary 4.19 shows that
q-Wn+1(R) ! q-Wn+1(R′) is (p, q − 1)-completely étale. So we may as well check that

RJq − 1K/(qpn

− 1) ⊗̂L
q-Wn+1(R) q-Wn+1(R′) ∼−! R′Jq − 1K/(qpn

− 1)

is a quasi-isomorphism. By derived Nakayama ([Stacks, Tag 0G1U]), this can be checked after
applying the functor R ⊗̂L

RJq−1K/(qpn −1) − on both sides. The left-hand side then becomes
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R ⊗̂L
q-Wn+1(R) q-Wn+1(R′), where R is considered as an q-Wn+1(R)-algebra via the map

cn,n+1 : q-Wn+1(R) ! R from the proof of Lemma 4.25. But this map coincides with the
n-fold Frobenius F n : q-Wn+1(R) ! q-W1(R). By Lemma 4.22 and the analogous assertion
for ordinary Witt vectors, we have

q-W1(R) ⊗̂L
q-Wn+1(R) q-Wn+1(R′) ≃ q-W1(R′) ≃ R′ .

But also R ⊗̂L
RJq−1K/(qpn −1) R′Jq − 1K/(qpn − 1) ≃ R′ by (p, q − 1)-complete flatness. This

finishes the proof.

Proof of Theorem 4.43. Let P := Zp⟨T1, . . . , Td⟩, so that Theorem 4.43 is true for P by
Corollary 4.52. The framing □ induces a p-completely étale map P ! R, and so q-Wn+1(P ) !
q-Wn+1(R) is (p, q − 1)-completely étale by the argument in the proof of Lemma 4.53.
Furthermore, that lemma shows that

H∗
R,□(n) ∼= H∗

P,□(n) ⊗̂q-Wn+1(P ) q-Wn+1(R)

as graded-commutative ZpJq − 1K-algebras, and then also as commutative differential-graded
ZpJq − 1K-algebras by a general fact about étale base change of differential-graded algebras;
see Lemma A.16. Thus, we may reduce the desired universal property for the R-framed
p-complete q-V -sequence (H∗

R,□(n − 1))n⩾1 to the corresponding universal property for the
P -framed p-complete q-V -sequence (H∗

P,□(n − 1))n⩾1.
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§5. Cohomology of the q-Hodge Complex II:
The Global Case

After dealing with the p-complete case in Theorem 4.43, we can now attack the global
problem of computing the cohomology groups H∗(q-Hdg∗

R,□ /(qm − 1)) for any m ⩾ 1.

§5.1. Big q-Witt Vectors
We start with a brief recollection about truncated big Witt vectors, following Hesselholt’s
exposition in [Hes15, Section 1].

5.1. Big Witt Vectors. — Let S be an arbitrary commutative, but not necessarily unital
ring, and Σ ⊆ N a subset which is closed under divisors (a truncation set in Hesselholt’s
terminology). As a set, the big Witt ring WΣ(S) is given by SΣ. Its ring structure is uniquely
determined by the condition that for all n ∈ Σ the ghost map wn : WΣ(S) ! S given by

wn

(
(ai)i∈Σ

)
:=
∑
d|n

da
n/d
d

is a morphism of rings and functorial in S.
For us, Σ will always be the set Σm of positive divisors of some integer m, and we’ll write

Wm(S) = WΣm
(S) for short. By [Hes15, Lemmas 1.3–1.5], for every divisor d | m there are

Frobenius and Verschiebung maps

Fm/d : Wm(S) −! Wd(S) and Vm/d : Wd(S) −! Wd(S)

such that Fm/d is a ring map and Vm/d is a map of abelian groups. If n = m/d and the
numbers m and d are clear from the context (or irrelevant), we abuse notation and write
just Fn := Fm/d and Vn := Vm/d. These maps fulfil the following relations: For all chains of
divisors e | d | m we have

Fd/e ◦ Fm/d = Fm/e and Vm/d ◦ Vd/e = Vm/e .

Furthermore, if n ⩾ 1 is arbitrary and k is coprime to n, then

Fn ◦ Vn = n and Fn ◦ Vk = Vk ◦ Fn ,

where we use the abuse of notation we just warned about. Finally, there’s a multiplicative
section of wm : Wm(S) ! S, called the Teichmüller lift

[−]m : S −! Wm(S) .

We usually drop the index if no confusion can occur (and to avoid further confusion with the
notation [m/d]qd = qm−1

qd−1 from 1.10). It interacts with the Frobenius and the Verschiebung via
the formulas Fn[s] = [sn] for all s ∈ S and x =

∑
d|m Vm/d[xd] for all x = (xd)d|m ∈ Wm(S).

5.2. Remark. — If m = pn is a prime power, then Wpn(S) ∼= Wn+1(S) equals the
ring of truncated p-typical Witt vectors of length n + 1. Furthermore, the Frobenius and
Verschiebung maps Fp and Vp coincide with their p-typical namesakes F and V , as does the
Teichmüller lift.
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Now there’s a natural way to generalise our p-typical Definition 4.9 to the big world: In
addition to Fn ◦ Vn = n, we would like to enforce the condition that Vn ◦ Fn is a q-analogue
of n; more precisely, we want that Vm/d ◦ Fm/d = [m/d]qd . This leads to the following.

5.3. Definition. — Let S be a commutative, but not necessarily unital ring. The ring of
m-truncated big q-Witt vectors over S is the ring

q-Wm(S) := Wm(S)Jq − 1K/Im ,

where Im is the ideal generated by:
• (qd − 1) im Vm/d for all divisors d | m, and
• im([d/e]qeVm/d − Vm/eFd/e) for all chains of divisors e | d | m.

5.4. Remark. — Observe that if m = pn is a prime power, then q-Wpn(S) ∼= q-Wn+1(S)
by inspection and Remark 5.2.

5.5. Lemma. — The system (q-Wm(S))m∈N from Definition 5.3 is the universal system
of rings satisfying the following two conditions:
(a) q-Wm(S) is a Wm(S)Jq − 1K/(qm − 1)-algebra for all m ∈ N.
(b) For all divisors d | m, the Frobenius and Verschiebung maps on the ordinary big

Witt vectors of S extend to ZJq − 1K-linear maps Fm/d : q-Wm(S) ! q-Wd(S) and
Vm/d : q-Wd(S) ! q-Wm(S) satisfying the relations

Fm/d ◦ Vm/d = m/d and Vm/d ◦ Fm/d = [m/d]qd .

Proof. The only non-obvious point is that the Frobenius maps extend, the rest can be done
as in Lemma 4.11. It suffices to show that Fp : Wm(S)Jq − 1K ! Wm/p(S)Jq − 1K satisfies
Fp(Im) ⊆ Im/p for all prime factors p | m.

Let’s first consider generators of the form (qd − 1)Vm/dx for x ∈ Wd(S). Depending on
whether n = m/d is coprime to p or not, the relations from 5.1 yield, respectively,

Fp

(
(qd − 1)Vnx

)
= (qd − 1)Vn(Fpx) or Fp

(
(qd − 1)Vnx

)
= p(qd − 1)V(m/p)/dx .

In either case, we get an element of Im/p. Now let’s consider generators of the form
[d/e]qeVm/dx − Vm/eFd/ex for some x ∈ Wd(S). If p divides both m/d and m/e, we can
use an easy computation as above to show that Fp sends the element into Im/p. Next, let’s
assume p is coprime to both m/d and m/e. Let’s write m0 := m/p, d0 := d/p, and e0 := e/p
for short. Using the relations from 5.1, we can compute

Fp

(
[d/e]qeVm/dx − Vm/eFd/ex

)
= [d/e]qeVm0/d0(Fpx) − Vm0/e0Fd0/e0(Fpx)

= [d0/e0]qe0 Vm0/d0(Fpx) − Vm0/e0Fd0/e0(Fpx) +
(
[d/e]qe − [d0/e0]qe0

)
Vm0/d0(Fpx)

The first summand is contained in Im/p by definition. Regarding the second summand, observe
that our assumptions imply that p is coprime to d/e = d0/e0 and therefore the sequences
1, qe/p, (qe/p)2 . . . , (qe/p)d/e−1 and 1, qe, (qe)2 . . . , (qe)d/e−1 coincide modulo qd/p − 1 up to
permutation. Thus [d/e]qe − [d0/e0]qe0 is divisible by qd/p − 1 = qd0 − 1 and so the second
summand is also contained in Im/p.
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It remains to consider the case where m/d is coprime to p, but m/e is not. Put m0 := m/p
and d0 := d/p again. Using the relations from 5.1, we can compute

Fp

(
[d/e]qeVm/dx − Vm/eFd/ex

)
= [d/e]qeVm0/d0(Fpx) − pVm0/eFd/ex

= p
(
[d0/e]qeVm0/d0(Fpx) − Vm0/eFd0/e(Fpx)

)
+
(
[p]qd0 − p

)
[d0/e]qeVm0/d0(Fpx) .

The first summand is again contained in Im/p by definition. Regarding the second summand,
we observe [p]qd0 ≡ p mod qd0 − 1 and so [p]qd0 [d0/e]qe ≡ p[d0/e]qe mod qd0 − 1. Hence the
second summand is contained in (qd0 − 1) im Vm0/d0 , which is in turn contained in Im/p by
definition. This finishes the proof.

5.6. Lemma. — Let S be a commutative, but not necessarily unital ring, and let m ∈ N be
arbitrary.
(a) Let p be a prime, let (−)p̂ denote derived p-completion and let vp(m) be the p-adic

valuation of m. Assume that Ŝp is discrete. Then

q-Wm(S)p̂ ≃ q-Wvp(m)+1(Ŝp) .

(b) Let N be an integer divisible by m and let (−)q̂−1 denote derived (q − 1)-completion.
Then

q-Wm(S)
[ 1

N

]
q̂−1 ≃ S

[ 1
N

]
.

Proof. For (a), observe that n := m/pvp(m) and [n]qm/n are units in ZpJq − 1K. Hence, using
Lemma 5.5, the Frobenius and Verschiebung induce quasi-isomorphisms

Fn : q-Wm(S)p̂
∼−! q-Wpvp(m)(S)p̂ and Vn : q-Wpvp(m)(S)p̂

∼−! q-Wm(S)p̂

which are mutually inverse (up to unit). Combining this with Remark 5.4 and Corollary 4.19
proves (a). For (b), a similar argument shows that

Fm : q-Wm(S)
[ 1

N

]
q̂−1

∼−! q-W1(S)
[ 1

N

]
q̂−1 ≃ S

[ 1
N

]
is a quasi-isomorphism, with inverse (up to unit) given by Vm.

Combining Lemma 5.6 with the derived Beauville–Laszlo theorem (Lemma A.8, Re-
mark A.9) provides a convenient method to reduce assertions about big q-Witt vectors to
their p-typical counterparts. For example, that method can be used to show analogues of
Proposition 4.15, Corollary 4.18, and Corollary 4.21 for big q-Witt vectors, but also to deduce
the global version of Theorem 4.43 (as we will see soon). With that being said, we can start
computing the cohomology of the q-Hodge complex.
5.7. Proposition. — Let (R,□) be a framed smooth Z-algebra. Then for all m ∈ N, there
are isomorphisms

q-Wm(R) ∼−! H0(q-Hdg∗
R,□ /(qm − 1)

)
.

Under these isomorphisms, the Frobenius Fm/d : q-Wm(R) ! q-Wd(R) gets identified with
the map induced by the canonical projection

q-Hdg∗
R,□ /(qm − 1) −! q-Hdg∗

R,□ /(qd − 1) ,

and the Verschiebung Vm/d : q-Wd(R) ! q-Wm(R) gets identified with the map induced by
the scalar multiplication map

[m/d]qd : q-Hdg∗
R,□ /(qd − 1) −! q-Hdg∗

R,□ /(qm − 1) .
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5.8. Outline of the Strategy. — We put H∗
R,□(m) := H∗(q-Hdg∗

R,□ /(qm − 1)) for short.
To prove Proposition 5.7 we’ll see the combination of Lemma 5.6 and derived Beauville–Laszlo
in action for the first time. Unfortunately though, the argument will be somewhat convoluted,
due to the following complication: For our Beauville–Laszlo arguments to work, we need to
ensure that the q-Hodge complex and its cohomology interact well with various completions.
However, in order to ensure that, we already need to prove a part of Proposition 5.7.

So we’ll proceed as follows: First, we construct a map q-Wm(R) ! RJq − 1K/(qm − 1)
and check that it lands in H0

R,□(m). Then we use this to show that q-Hdg∗
R,□ /(qm − 1)

is a complex of finite modules over the noetherian ring q-Wm(R). Once this is clear, all
completions till the end of this section will behave nicely and we can finish the proof of
Proposition 5.7.

Proof of Proposition 5.7 (first half ). Let’s first construct a map

q-Wm(R) −! RJq − 1K/(qm − 1) .

Using Lemma 5.6 as well as derived Beauville–Laszlo in the form of Remarks A.9 and A.10,
we get a pullback square of ZJq − 1K-modules (and then also of ZJq − 1K-algebras)

q-Wm(R)
∏

p|N q-Wvp(m)+1(R̂p)

R
[ 1

N

] ∏
p|N R̂p

[ 1
p

].

where N is any integer divisible my m. A similar pullback diagram exists for RJq−1K/(qm−1).
We note that RJq − 1K is noetherian, so all derived completions that appear in the following
will be discrete and coincide with their underived counterparts. As in Lemma 5.6, we see
that RJq − 1K/(qm − 1) ! RJq − 1K/(qpvp(m) − 1) becomes an isomorphism after (−)p̂ for
all prime factors p | N . Similarly, the quotient map RJq − 1K/(qm − 1) ! R becomes an
isomorphism after (−)

[ 1
N

]
q̂−1. Thus, we get a pullback

RJq − 1K/(qm − 1)
∏

p|N R̂pJq − 1K/(qpvp(m) − 1)

R
[ 1

N

] ∏
p|N R̂p

[ 1
p

].

of ZJq − 1K-algebras. The maps q-Wvp(m)+1(R̂p) ! R̂pJq − 1K/(qpvp(m) − 1) from Proposi-
tion 4.23 induce a map between these pullback squares, which gives us the desired map
q-Wm(R) ! RJq − 1K/(qm − 1).

This map doesn’t depend on the choice of N by a standard argument. It’s also immediately
clear that it lands in H0

R,□(m). Indeed, q-Hdg1
R,□ /(qm − 1) can be written as a similar

pullback above, and then, by construction, q-Wm(R) is sent to 0 in each of the factors. This
finishes the first half of the proof.

5.9. Lemma. — For all m ∈ N, the ring q-Wm(R) is noetherian, and the map from
Proposition 5.7 makes q-Hdg∗

R,□ /(qm − 1) into a complex of finite q-Wm(R)-modules.
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Proof. Let P := Z[T1, . . . , Td] and Pm := Z[T m
1 , . . . , T m

d ]. Replacing R by P in the above,
we get a map q-Wm(P ) ! P Jq − 1K/(qm − 1), which is injective because so are the maps
on all the pullback factors. Moreover, its image contains PmJq − 1K/(qm − 1), because each
pullback factor contains T m

i for all i = 1, . . . , d by inspection and Proposition 4.23. Now
q-Wm(P ) is finite over the noetherian ring PmJq − 1K/(qm − 1) since it is a submodule of the
finite module P Jq − 1K/(qm − 1). This proves that q-Wm(P ) itself is noetherian. To show the
same for q-Wm(R), choose a surjection P ′ ↠ R from another polynomial ring P ′ to see that
q-Wm(R) is a quotient of q-Wm(P ′), which is noetherian by the same argument as for P .

The complex q-Hdg∗
R,□ /(qm − 1) is degree-wise finite free over RJq − 1K/(qm − 1), hence

it suffices to show that RJq − 1K/(qm − 1) is finite over q-Wm(R). In the case R = P ,
this follows from the arguments above. In general, the étale framing □ : P ! R induces a
quasi-isomorphism

P Jq − 1K/(qm − 1) ⊗̂L
q-Wm(P ) q-Wm(R) ∼−! RJq − 1K/(qm − 1) .

Indeed, using Lemma 5.6 and derived Beauville–Laszlo (Remark A.9), this can be reduced
to an analogous assertion for p-typical q-Witt vectors, which has already been shown in the
proof of Lemma 4.53.

5.10. Remark. — The proof of Lemma 5.9 shows slightly more: For all m ∈ N, there exists
a Polynomial ring (in finitely many variables) Pm over Z and surjection PmJq−1K ↠ q-Wm(R).
Furthermore, the argument didn’t use that (R,□) is a framed smooth Z-algebra; all we
needed was that R has finite type over Z.

Proof of Proposition 5.7 (second half ). On finite modules over a noetherian ring, p-com-
pletion is exact. Therefore, Lemma 5.9 ensures

H0
R,□(m)p̂

∼= H0
((

q-Hdg∗
R,□ /(qm − 1)

)
p̂

)
∼= H0(q-Ĥdg∗

R̂p,□
/(qpvp(m)

− 1)
)

and so q-Wm(R) ! H0
R,□(m) is an isomorphism after (−)p̂ for all prime factors p | N by

Lemma 5.6 and Proposition 4.23. A similar argument shows that it is an isomorphism after
(−)
[ 1

N

]
q̂−1, whence we are done by derived Beauville–Laszlo.

§5.2. The Big q-de Rham–Witt Complex
Hesselholt–Madsen [HM03] and Hesselholt [Hes15] have introduced a big de Rham–Witt
complex over any ring A. However, the (yet to be defined) object that we will confidently
call big q-de Rham Witt complex over R isn’t really a q-version of their big de Rham–Witt
complex. Instead, it’s probably better to think of it as a big version of the q-de Rham–Witt
complex from Definition 4.39.

On that note, let’s first give big versions of Definitions 4.28 and 4.29.

5.11. Definition. — Let R be a (not necessarily framed) smooth Z-algebra. An R-framed
q-V -system consists of the following data:

• A system (M∗
m)m∈N of degree-wise Z-torsion free and degree-wise (q − 1)-complete

commutative differential-graded ZJq − 1K-algebras.
• Maps Vm/d : M∗

d ! M∗
m of graded ZpJq − 1K-modules for all divisors d | m. Occasionally

we’ll use the same abuse of notation that we warned about in 5.1.
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• An q-Wm(R)-algebra structure on M0
m for all m ∈ N.

This data is required to satisfy the following four conditions:
(a) For all m ∈ N, the structure maps q-Wm(R) ! M0

m are compatible with the Ver-
schiebung on both sides.

(b) For all chains e | d | m of divisors, one has Vm/d ◦ Vd/e = Vm/e.
(c) For all d | m and all x, y ∈ M∗

d , one has Vm/d(x dy) = Vm/dx dVm/dy.
(d) For all d | m and all r ∈ R, y ∈ M0

d , one has

Vm/dy d[r]m = Vm/d

(
y[r]m/d−1

d

)
dVm/d[r]d ,

where [r]d and [r]m denote the images of the respective Teichmüller lifts of r under
q-Wd(R) ! M0

d and q-Wm(R) ! M0
m.

There is an obvious category q-V SysR of R-framed q-V -systems.

5.12. Definition. — Let (M∗
m)m∈N be an R-framed q-V -system. A set of Frobenius

operators on (M∗
m)m∈N consists of maps Fm/d : M∗

m ! M∗
d of graded ZJq − 1K-algebras for

all d | m, which satisfy the following conditions:
(a) For all m ∈ N, the structure maps q-Wm(R) ! M0

m are compatible with the Frobenius
on both sides.

(b) For all chains e | d | m of divisors, one has Fd/e ◦ Fm/d = Fm/e.
(c) For all d | m, one has Fm/d ◦ Vm/d = m/d and Vm/d ◦ Fm/d = [m/d]qd .
An R-framed q-V -system equipped with a choice of Frobenius operators will be called a
q-Witt system over R, and the corresponding category will be denoted q-WittR.

5.13. Remark. — Just as in Remark 4.30 (only that we have to replace p-torsion freeness
by general Z-torsion freeness), we get a whole zoo of relations that hold for any R-framed
q-V -system (Mm)m∈N. First of all,

(5.13.1) Vn ◦ d = n(d ◦ Vn)

holds for all n ⩾ 1. Furthermore, if (Mm)m∈N is equipped with Frobenius operators, then

(5.13.2) Fn ◦ d ◦ Vn = d and n(Fn ◦ d) = d ◦ Fn

holds for all n ⩾ 1, along with the projection formulas

(5.13.3) xVny = Vn

(
Fn(x)y

)
and nVn(y)Vn(z) = Vn(yz)

for all y, z ∈ M∗
m, x ∈ M∗

mn (but note that these formulas also hold without the existence of
Frobenius operators as long as x, y, and z are contained in the image of the structure maps
q-Wmn(R) ! M0

mn and q-Wm(R) ! M0
m, respectively). Finally, if n and k are coprime,

then the relation

(5.13.4) Fn ◦ Vk = Vk ◦ Fn

holds automatically. Indeed, by Z-torsion freeness, this can be checked after applying
n = Fn ◦ Vn on both sides, hence also after applying Vn. For x ∈ M∗

m, we obtain VnFnVkx =
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[n]qkm/nVkx and VnVkFnx = VkVnFnx = [n]qm/nVkx. Since k and n are coprime, the
sequences 1, qm/n, (qm/n)2, . . . , (qm/n)n−1 and 1, qkm/n, (qkm/n)2, . . . , (qkm/n)n−1 coincide
modulo qm − 1 up to permutation. Now Vkx is a (qm − 1)-torsion element and thus
[n]qm/nVkx = [n]qkm/nVkx, as desired.
5.14. Remark. — As in Remark 4.31, one can show that the Teichmüller condition from
Definition 5.11(d) is redundant for y contained in the image of q-Wd(R) ! M0

d , and in the
presence of Frobenius operators even for arbitrary y.
5.15. Lemma. — Let (R,□) be a framed smooth Z-algebra. The graded ZJq − 1K-modules
H∗(q-Hdg∗

R,□ /(qm − 1)) for m ∈ N can be equipped with the structure of a q-Witt system
over R (Definition 5.12) in a natural way.

Proof. The differential-graded algebra structures along with the Frobenius and Verschiebung
maps can be constructed as in 4.33, 4.34, and 4.37, and to show that they satisfy the desired
conditions one can argue as in the proof of Lemma 4.32. It only remains to show that
H∗(q-Hdg∗

R,□ /(qm − 1)) is Z-torsion free in every degree. But for every prime p, being
p-torsion free can be tested after derived p-completion (as long as everything stays discrete,
see Lemma A.5(b)), and(

Hi(q-Hdg∗
R,□ /(qm − 1))

)
p̂

∼= Hi
(
q-Ĥdg∗

R̂p,□
/(qpvp(m)

− 1)
)

holds for all i by Lemma 5.9, so Corollary 4.8 finishes the job.

5.16. Proposition. — Let R be a smooth Z-algebra. The category q-V SysR has an
initial object (q-WmΩ∗

R)m∈N. It satisfies q-WmΩ0
R

∼= q-Wm(R) for all m ∈ N. Moreover,
q-W1Ω∗

R
∼= Ω∗

R is de Rham complex of R, and in general, q-WmΩ∗
R is a quotient of the

degree-wise (q − 1)-completed de Rham complex Ω̂∗
q-Wm(R)/ZJq−1K by a differential-graded ideal.

5.17. Definition. — For all m ∈ N, the commutative differential-graded algebra q-WmΩ∗
R

from Proposition 5.16 is called the mth big q-de Rham–Witt complex over R.
Proof of Proposition 5.16. Remark 5.10 implies that Ω̂∗

q-Wm(R)/ZJq−1K is degree-wise finite
over the noetherian ring q-Wm(R). Hence all completions in the following will be nicely
behaved.

We first describe the construction. Let m > 1 and suppose the q-WiΩ∗
R for i ⩽ m − 1

along with the Verschiebung maps between them have already been constructed as desired.
We wish to construct q-WmΩ∗

R and Vm/d : q-WdΩ∗
R ! q-WmΩ∗

R for all divisors d | m. To
this end, let

N∗
m ⊆ Ω̂∗

q-Wm(R)/ZJq−1K

denote the smallest degree-wise (q − 1)-complete differential-graded ideal with the following
property: For all divisors d | m, d ̸= m, all k ⩾ 1, all finite indexing sets I, and all sequences
(ai, xi,1, . . . , xi,k)i∈I of elements of q-Wd(R) such that

0 =
∑
i∈I

ai dxi,1 ∧ · · · ∧ dxi,k

holds in q-WdΩk
R (which is a quotient of Ω̂∗

q-Wd(R)/ZJq−1K, so the above sum makes indeed
sense), the degree-k element

ξ =
∑
i∈I

Vm/dai dVm/dxi,1 ∧ · · · ∧ dVm/dxi,k
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is contained in N∗
m (here Vm/d denotes the Verschiebung on big q-Witt vectors, so the

definition isn’t circular). Now define q-W′
mΩ∗

R := Ω̂q-Wm(R)/ZJq−1K/N∗
m. As this might not

yet be Z-torsion free, we let q-WmΩ∗
R be the quotient of q-W′

mΩ∗
R by its differential-graded

ideal of Z-torsion. Furthermore, we define Vm/d : q-WdΩ∗
R ! q-WmΩ∗

R by the formula

Vm/d (a dx1 ∧ · · · ∧ dxk) := Vm/da dVm/dx1 ∧ · · · ∧ dVm/dxk

for all divisors d | m. By definition of N∗
m, the map Vm/d is well-defined. Hence the

above construction yields indeed a system (q-WmΩ∗
R)m∈N that satisfies all conditions from

Definition 5.11 except for possibly the Teichmüller condition. But since q-WmΩ0
R

∼= q-Wm(R),
Remark 5.14 ensures that the Teichmüller condition holds true automatically. Finally, proving
that (q-WmΩ∗

R)m∈N is indeed initial in q-V SysR can then be done by a straightforward
argument as in the proof of Proposition 4.38.

§5.3. The Main Theorem in the Global Case
5.18. Theorem. — Let (R,□) be a framed smooth Z-algebra. For all m ∈ N, the unique
map induced by Lemma 5.15 and Proposition 5.16 is an isomorphism

q-WmΩ∗
R

∼−! H∗(q-Hdg∗
R,□ /(qm − 1)

)
.

In contrast to the p-complete case, this time we won’t get around proving the existence
of Frobenius operators on (q-WmΩ∗

R)m∈N. Instead, their existence will play a crucial role in
the proof. So that will be our first task.

5.19. Proposition. — For any smooth Z-algebra R, the big q-de Rham–Witt complex
(q-WmΩ∗

R)m∈N admits a unique choice of Frobenius operators. Therefore, it is also an initial
object in the category q-WittR from Definition 5.12.

We send an auxiliary lemma in advance.

5.20. Lemma. — Let m ∈ N and n ⩾ 1. Then for all x ∈ q-Wmn(R), the element
dFn(x) ∈ q-WmΩ1

R is divisible by n.

Proof. Since all maps in sight are linear over ZJq −1K and (q −1)-adically continuous, we may
as well assume x ∈ Wmn(R). Let x = (xd)d|mn, so that x =

∑
d|mn Vmn/d[xd] by 5.1. Then

we may further reduce to the case x = Vmn/d[xd]. Putting k = gcd(n, mn/d), we compute

Fn(x) = Fn

(
Vmn/d[xd]

)
= kV(mn)/(dk)

(
Fn/k[xd]

)
= kV(mn)/(dk)

(
[xd]n/k

)
.

Since d is a derivation, d([xd]n/k) is divisible by n/k. Hence also V(mn)/(dk) d([xd]n/k) =
(mn)/(dk) dV(mn)/(dk)([xd]n/k) is divisible by n/k. But (mn)/(dk) and n/k are coprime by
definition of k, so already dV(mn)/(dk)([xd]n/k) is divisible by n/k. Then the calculation
above shows that dFn(x) is indeed divisible by n.

Proof of Proposition 5.19. It suffices to construct Fp : q-WmΩ∗
R ! q-Wm/pΩ∗

R for all prime
factors p | m. The Frobenius on big q-Witt vectors induces a map of differential-graded alge-
bras on (q−1)-completed de Rham complexes over ZJq−1K. Combining this with Lemma 5.20
shows that we can define a map of graded rings Fp : Ω̂∗

q-Wm(R)/ZJq−1K ! q-Wm/pΩ∗
R via

Fp(a dx1 ∧ · · · ∧ dxk) := Fpa dFpx1 ∧ · · · ∧ dFpxk

pk
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for all a, x1, . . . , xk ∈ q-Wm(R); here we also use Z-torsion freeness to ensure that the quotient
is well-defined. We’re certainly done if we can show that this map descends to q-WmΩ∗

R.
To this end, first note that Fp satisfies d ◦ Fp = p(Fp ◦ d). By Z-torsion freeness of

q-Wm/pΩ∗
R, this implies that the kernel of Fp is a differential-graded ideal, even though Fp

itself is not a map of differential-graded algebras. Hence it suffices to show that Fp annihilates
the generators of the differential-graded ideal N∗

m from the proof of Proposition 5.16 (because
it also automatically annihilates any remaining Z-torsion).

So let ξ be as in the proof of Proposition 5.16. Let’s first assume p divides m/d. Then
Fp ◦ Vm/d = pV(m/p)/d and therefore

Fp(ξ) = pV(m/p)/d

(∑
i∈I

ai dxi,1 ∧ · · · ∧ dxi,k

)
.

But
∑

i∈I ai dxi,1∧· · ·∧dxi,k vanishes in q-WdΩ∗
R by assumption, and so Fp(ξ) = 0, as desired.

Now assume p is coprime to m/d; let m0 := m/p and d0 := d/p. Then Fp ◦Vm/d = Vm0/d0 ◦Fp.
Furthermore, arguing inductively, we may assume that Fp : q-WdΩ∗

R ! q-Wd/pΩ∗
R has already

been constructed. This allows us to compute

Fp(ξ) =
∑
i∈I

(Vm0/d0Fpai) d(Vm0/d0Fpxi,1) ∧ · · · ∧ d(Vm0/d0Fpxi,k)
pk

= Vm0/d0Fp

(∑
i∈I

ai dxi,1 ∧ · · · ∧ dxi,k

)
.

But
∑

i∈I ai dxi,1 ∧ · · · ∧ dxi,k vanishes in q-WdΩ∗
R again and therefore we get Fp(ξ) = 0

in the second case too. This finishes the proof that (q-WmΩ∗
R)m∈N can be equipped with

Frobenius operators. Uniqueness and the fact that we get an initial object in q-WittR can
be deduced as in 4.41.

We need only one final lemma before we can prove Theorem 5.18.

5.21. Lemma. — The full subcategory of q-WittR spanned by those q-Witt systems
(M∗

m)m∈N over R such that each M∗
m is degree-wise p-complete is equivalent to the category

q-Ŵitt
R̂p

of p-complete q-Witt sequences over R̂p (Definition 4.29).

Proof. Let (M∗
m)m∈N be an element of q-WittR such that each M∗

m is degree-wise p-complete.
If we denote n := m/pvp(m), then Frobenius and Verschiebung

Fn : M∗
m −! M∗

pvp(m) and Vn : M∗
pvp(m) −! M∗

m

are mutually inverse (up to unit) isomorphisms by the same argument as in Lemma 5.6.
Hence (M∗

m)m∈N 7! (M∗
pn)n⩾1 defines the desired equivalence.

Proof of Theorem 5.18. Let N be any integer divisible by m. By the derived Beauville–Laszlo
theorem (Lemma A.8, Remark A.9), whether q-WmΩ∗

R ! H∗(q-Hdg∗
R,□ /(qm − 1)) is an

isomorphism can be checked after applying the functors (−)p̂ for p | N and (−)
[ 1

N

]
q̂−1 in

every degree.
Let’s consider the p-completions first. Using Proposition 5.19, we see that the degree-wise

p-completion of (q-WmΩ∗
R)m∈N is the initial object in the category of all q-Witt systems
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(M∗
m)m∈N such that each M∗

m is degree-wise p-complete. By Lemma 5.21, this provides us
with isomorphisms

(q-WmΩi
R)p̂

∼−! q-Wvp(m)+1Ω̂i

R̂p

for all i. But thanks to Lemma 5.9, we also have an isomorphism(
Hi(q-Hdg∗

R,□ /(qm − 1))
)

p̂

∼−! Hi
(
q-Ĥdg∗

R̂p,□
/(qpvp(m)

− 1)
)

.

Hence Theorem 4.43 finishes the job after p-completion.
Now let’s consider the situation after (−)

[ 1
N

]
q̂−1 has been applied. By the same argument

as in Lemma 5.6, the Frobenius

Fm : q-WmΩi
R

[ 1
N

]
q̂−1 −! q-W1Ωi

R

[ 1
N

]
q̂−1

∼= Ωi
R

[ 1
N

]
is an isomorphism for all i, with inverse (up to unit) given by the Verschiebung Vm. But the
same argument again, together with Lemma 5.9 to ensure that (q − 1)-completion commutes
with cohomology, shows that(

Hi(q-Hdg∗
R,□ /(qm − 1))

)[ 1
N

]
q̂−1 −! Hi

(
q-Hdg∗

R,□ /(q − 1)
)[ 1

N

]
q̂−1

∼= Ωi
R

[ 1
N

]
is an isomorphism as well. We are done!
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§6. Why Functoriality Fails
Fix a prime p. In this section, we’ll attempt to explain why there is no p-completed q-Hodge
complex functor

q-Ĥdg(−) : ŜmZp
−! Dcomp

(
ZpJq − 1K

)
from the category of p-completely smooth Zp-algebras into the full sub-∞-category of derived
(p, q − 1)-complete objects in the derived ∞-category D(ZpJq − 1K); or, at least, we’ll explain
why the properties we would reasonably expect from this functor are inconsistent. For the
sake of contradiction, assume such a functor exists.

6.1. The Derived q-Hodge Complex. — Let Âni(Ring) denote the full sub-∞-category
of derived p-complete objects in the ∞-category of animated rings. Here, the ∞-category of
animated rings refers to the animation of the category of rings as defined in [ČS21, Section 5.1];
for example, it can be obtained as the ∞-categorical localisation of the category of simplicial
rings at those morphisms that are weak homotopy equivalences of underlying simplicial sets.
Also an animated ring A is called derived p-complete iff A ≃ Rlimn⩾1 A/Lpn.

If a functor as above exists, we can study its left Kan extension along ŜmZp
! Âni(Ring)

(where the left Kan extension is necessarily taken in the ∞-categorical sense; see [HTT, §4.3]).
This left Kan extension exists because Dcomp(ZpJq − 1K), being a Bousfield localisation of
D(ZpJq − 1K), has all colimits. We still let

q-Ĥdg(−) : Âni(Ring) −! Dcomp
(
ZpJq − 1K

)
denote the extended functor. This notation makes sense, because the value q-ĤdgR on p-
completely smooth Zp-algebras R remains unchanged; indeed, by derived (q−1)-completeness
and the filtration of q-ĤdgR/L(q − 1) from Lemma 6.3 below, this reduces to the observation
that

∧i
L̂R ≃ Ω̂i

R, where L̂R denotes the p-completed cotangent complex of R.

6.2. q-De Rham–Witt Filtrations. — For all n ⩾ 0 and all i, let

Filq-W Ω
i

(
q-Ĥdg(−)/

L(qpn

− 1)
)

denote the left Kan extension of the functor R 7! τ⩽i(q-ĤdgR/L(qpn − 1)) on p-completely
smooth Zp-algebras. For any derived p-complete animated Zp-algebra A, this defines an
increasing filtration{

Filq-W Ω
i

(
q-ĤdgA/L(qpn

− 1)
)
! q-ĤdgA/L(qpn

− 1)
}

i⩾0

on q-ĤdgA/L(qpn − 1) by functoriality of left Kan extensions; we call it the q-de Rham–Witt
filtration. This terminology is due to the following observation: Left Kan extension (being
a left adjoint) preserves colimits of functors (which are computed pointwise), and hence
in light of Theorem 4.43 we would expect that the filtration quotients, i.e., the cofibres
grq-W Ω

i ≃ cofib(Filq-W Ω
i−1 ! Filq-W Ω

i ) in Dcomp(ZpJq − 1K), are given by

grq-W Ω
i

(
q-ĤdgA/L(qpn

− 1)
)

≃ Lq-Wn+1Ω̂i
A[−i] ,

where the right-hand side denotes the left Kan extension (shifted by −i) of the functor
R 7! q-Wn+1Ω̂i

R on p-completely smooth Zp-algebras.

60



§6. Why Functoriality Fails

Furthermore, preservation of colimits shows that the filtration is exhaustive, that is, we
have an equivalence

q-ĤdgA/L(qpn

− 1) ≃
(

colim
i⩾0

Filq-W Ω
i

(
q-ĤdgA/L(qpn

− 1)
))

(̂p,q−1)
,

where the right-hand side is the derived (p, q − 1)-completion of the colimit in D(ZpJq − 1K)
and thus agrees with the colimit taken in Dcomp(ZpJq − 1K). Finally, by functoriality of the
smart truncation τ⩽i, the projection map

q-ĤdgA/L(qpn

− 1) −! q-ĤdgA/L(qpn−1
− 1)

should be compatible with the q-de Rham–Witt filtrations on both sides. In view of
Theorem 4.43, we should moreover assume that the map Lq-Wn+1(A) ! Lq-Wn(A) induced
on the 0th filtration quotients is induced by the Frobenius F : q-Wn+1(A) ! q-Wn(A), and
similarly in higher degrees.

6.3. Lemma. — In the case n = 0, the filtration quotients from 6.2 can be explicitly
determined: For every derived p-complete animated Zp-algebra, one has

Lq-W1Ω̂i
A ≃

(∧i
AL̂A

)
p̂

,

where L̂A denotes the derived p-completed cotangent complex of A and
∧i

A denotes the derived
exterior power functor; see [SAG, Construction 25.2.2.2] for example.

Proof. We need to show that
(∧i

A L̂A

)
p̂

is the left Kan extension of the functor R 7! Ω̂i
R

on p-completely smooth Zp-algebras. Unfortunately, this isn’t immediately clear from the
construction of the cotangent complex, which we now recall: Let PolyZ denote the category
of polynomial rings in finitely many variables. Then the functor Ani(Ring) ! D(Z) given by
A 7!

∧i
A LA is the non-abelian left derived functor, or animation, of the functor PolyZ ! D(Z)

given by P 7! Ωi
P . That is, it’s the contractibly unique sifted colimits-preserving extension

guaranteed by [HTT, Proposition 5.5.8.15].
Then A 7!

(∧i
A L̂A

)
p̂

is the animation of PolyZ ! Dcomp(Zp) given by P 7! Ω̂i
P , because

the derived p-completion functor (−)p̂ : D(Z) ! Dcomp(Zp) preserves all colimits. Hence
the technical Lemma 6.4 below (together with the derived Nakayama lemma to verify the
required condition) finishes the proof.

6.4. Lemma. — Let F : PolyZ ! Dcomp(Zp) be a functor whose animation

LF : Ani(Ring) −! Dcomp(Zp)

satisfies LF (A) ≃ LF (Âp) for all animated rings A. Then the restriction of LF to the full
sub-∞-category of derived p-complete animated rings agrees with the left Kan extension of
the restriction of LF to ŜmZp

.

Proof. Note that the forgetful functor Âni(Ring) ! Ani(Ring) has a left adjoint given by
derived p-completion; moreover, the counit is evidently an equivalence as all derived p-
complete animated rings A satisfy Âp ≃ A. Hence Âni(Ring) can be regarded as a Bousfield
localisation (and thus indeed as a full sub-∞-category) of Ani(Ring).
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The unit of the adjunction above induces a natural transformation LF ⇒ LF ◦ (−)p̂

which is an equivalence by our assumption on LF . Hence LF factors over a functor

L′F : Âni(Ring) −! Dcomp(Zp) .

By general nonsense about localisations, L′F is necessarily the left Kan extension of LF .
Hence by general nonsense about Kan extensions, L′F is also the left Kan extension of
F along (−)p̂ : PolyZ ! Âni(Ring). But then L′F can also be computed by first left Kan
extending F to a functor

F ′ : ŜmZp
−! Dcomp(Zp)

and then left Kan extending F ′ along ŜmZp ! Âni(Ring). So it remains to show that
F ′ is the restriction of LF , or equivalently of L′F . But that’s a general property of Kan
extensions along fully faithful functors, and ŜmZp

! Âni(Ring) is indeed fully faithful because
the discrete derived p-complete rings form a full sub-∞-category of all derived p-complete
animated rings (and even a Bousfield localisation, with left adjoint given by π0).

6.5. Remark. — Given that q-ĤdgR/L(q − 1) ≃ q-Ĥdg∗
R,□/(q − 1) for every framed

p-completely smooth Zp-algebra (R,□), we might even expect that the filtration for n = 0 is
split, that is,

q-ĤdgR/L(q − 1) ≃

(⊕
i⩾0

∧i
AL̂A

)̂
p

.

However, we won’t need that to derive our contradiction.

6.6. Proposition. — There is no functor

q-Ĥdg(−) : Âni(Ring) −! Dcomp
(
ZpJq − 1K

)
such that q-ĤdgA/L(qpn − 1) has a filtration as in 6.2 for all derived p-complete animated
rings A and all n ⩾ 0.

Our strategy to prove Proposition 6.6 will be to evaluate q-Ĥdg(−) at a perfectoid ring R
and show that it has contradictory properties. We send two lemmas in advance.

6.7. Lemma. — If A is a discrete derived p-complete ring, then the q-Witt vectors of A
coincide with their derived variant. That is

Lq-Wn(A) ≃ q-Wn(A) .

Proof. By construction of left Kan extensions, [HTT, Definition 4.3.2.2], Lq-Wn(A) is a
colimit over q-Wn(R), indexed by maps R ! A with R a p-completely smooth Zp-algebra.
By functoriality of q-Wn(−), this provides a contractibly unique map Lq-Wn(A) ! q-Wn(A).
We use induction on n to show that it is an equivalence. The case n = 1 is clear, as then
both sides are just A. For the inductive step, Proposition 4.15 and its derived variant provide
a map of cofibre sequences

Lq-Wn(A) Lq-Wn+1(A) AJq − 1K/L[p]qpn−1

q-Wn(A) q-Wn+1(A) AJq − 1K/[p]qpn−1

≃ ≃
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in Dcomp(ZpJq − 1K). The left vertical arrow is an equivalence by the induction hypothesis,
and the right vertical arrow is an equivalence because [p]qpn−1 is a nonzerodivisor on AJq − 1K
by Lemma 4.16. Hence the middle arrow must be an equivalence as well.

6.8. Lemma. — Let R be a perfectoid ring and let Ainf := Ainf(R). Then

q-ĤdgAinf ≃ AinfJq − 1K .

Proof. Since Ainf is p-torsion free, its Frobenius defines a unique δ-structure. Then Con-
struction 4.26 provides maps q-Wn+1(Ainf) ! AinfJq − 1K/(qpn − 1) for all n ⩾ 0. Using the
same inductive argument as in the proof of Proposition 4.23, plus the fact that the Frobenius
ϕ : Ainf ! Ainf is an isomorphism, shows that q-Wn+1(Ainf) ∼= AinfJq − 1K/(qpn − 1) for all
n ⩾ 0. Using 6.2, Lemma 6.7, and Lemma A.11, we get maps

AinfJq − 1K −! Rlim
n⩾0

q-Wn+1(Ainf) −! Rlim
n⩾0

q-ĤdgAinf /
L(qpn

− 1) ≃ q-ĤdgAinf .

Whether the composite map AinfJq − 1K ! q-ĤdgAinf is an equivalence can be checked
after applying (−)/L(q − 1) on both sides. But L̂Ainf ≃ 0 by a standard argument and so
Lemma 6.3 shows that we get indeed an equivalence.

Proof of Proposition 6.6. Let R be a perfectoid ring in the sense of [BMS18, §3]. We assume
that R is p-torsion free for convenience. First we wish to show that q-ĤdgR is discrete and
nonzero. Applying Lemma A.5(b) twice, it suffices to show that q-ĤdgR/L(p, q −1) is discrete
and nonzero. By 6.2, we can write

q-ĤdgR/L(p, q − 1) ≃ colim
i⩾0

Filq-W Ω
i

(
q-ĤdgA/L(q − 1)

)
/Lp .

Because this is a filtered colimit, it suffices to show that each Filq-W Ω
i (q-ĤdgA/L(q − 1))/Lp

is discrete and that the transition maps are injective. Moreover, both assertions will follow
at once if we can show that each filtration quotient grq-W Ω

i (q-ĤdgA/L(q − 1))/Lp is discrete.
These filtration quotients can be evaluated using Lemma 6.3: We have L̂R ≃ R[1]; see [BMS19,
Proposition 4.19] for example. Hence a result of Illusie (see [Ill71, Proposition 4.3.2.1] or
[SAG, Proposition 25.2.4.2]) shows(∧i

RL̂R

)
[−i] ≃

(∧i
R

(
R[1]

))
[−i] ≃ Γi

R(R) ≃ R ,

where Γi
R(−) denotes the ith divided powers functor. Since we assume R to be p-torsion free,

we see that R/Lp is indeed discrete, as desired.
By now we know that q-ĤdgR is discrete. Moreover, it is (p, q − 1)-completely flat over

ZpJq − 1K since q-ĤdgR/L(p, q − 1) is discrete and thus automatically flat over Fp. Together
with Lemma A.7, this implies that q-ĤdgR/L(qp − 1) and q-ĤdgR/Lp are discrete as well.
So all these derived quotients can also be written as ordinary quotients, which we’ll do in
the following.

We’re ready to derive the final contradiction. Write R ∼= Ainf/ξ, where ξ is a distinguished
nonzerodivisor, and consider the map

AinfJq − 1K ≃ q-ĤdgAinf −! q-ĤdgR .
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The element ξ ∈ AinfJq − 1K vanishes under q-W1(Ainf) ! q-W1(R), hence it vanishes in
q-ĤdgR/(q − 1). Thus the image of ξ in q-ĤdgR must be divisible by q − 1. Similarly,
the element ϕ(ξ) − [p]qδ(ξ) ∈ AinfJq − 1K vanishes under q-W2(Ainf) ! q-W2(R), because
ϕ(ξ) − [p]qδ(ξ) is the image of the Teichmüller lift [ξ] ∈ q-W2(Ainf) under Construction 4.24.
Hence the element ϕ(ξ) − [p]qδ(ξ) vanishes in q-ĤdgR/(qp − 1), which means that its image
in q-ĤdgR must be divisible by qp − 1.

We conclude that in q-ĤdgR/p both ξp and ϕ(ξ) − [p]qδ(ξ) ≡ ξp − (q − 1)p−1δ(ξ) mod p

are divisible by (q − 1)p. Hence (q − 1)p−1δ(ξ) is divisible by (q − 1)p. But q-ĤdgR/p is
(q − 1)-torsion free as q-ĤdgR/L(p, q − 1) discrete. Hence δ(ξ) is divisible by (q − 1) and
thus vanishes in q-ĤdgR/(p, q − 1). Then it must already vanish in the 0th filtration step
q-W1(R)/p ∼= R/p. However, this forces R/p = 0, since ξ is distinguished and therefore δ(ξ)
is a unit. This is clearly a contradiction.
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§A.1. Derived Complete Algebra

Completions, both derived and underived, are ubiquitous throughout the text. For the
reader’s convenience, we collect all the necessary facts in this subsection.
A.1. Derived Completeness. — Let A be a ring and f ∈ A. Recall that an element
M ∈ D(A) of the derived category of A is called derived f -complete if

Rlim
(

. . . −! M
f

−! M
f

−! M
)

≃ 0 .

The Rlim on the left-hand side is denoted T (M, f) in [Stacks, Tag 091N], where T probably
stands for telescope.

More generally, if I ⊆ A is any ideal, we say that M is derived I-complete iff it is derived
f -complete for all f ∈ I. Equivalently, by [Stacks, Tag 091Q] it suffices to require that
M is derived f -complete for all f in a generating system of I. We let DI-comp(A) denote
the full subcategory of D(A) spanned by the derived I-complete objects. Furthermore, if
D(A) denotes the derived ∞-category of A, then DI-comp(A) denotes the full sub-∞-category
spanned by the derived I-complete objects. If I is clear from the context, we often just write
Dcomp(A) and Dcomp(A).
A.2. Lemma. — Let A be a ring and I ⊆ A an ideal.
(a) The sub-∞-category Dcomp(A) ⊆ D(A) is closed under finite colimits and arbitrary

limits.
(b) An object M ∈ D(A) is derived I-complete iff its cohomology Hi(M) is derived I-

complete in every degree i. Thus, the category of all A-modules which are derived
I-complete as objects of D(A) is closed under kernels, cokernels, and extensions.

Proof. Part (a) is clear as Rlim, being the internal limit in the stable ∞-category D(A),
commutes with finite colimits and arbitrary limits. For the first half of (b) see [Stacks,
Tag 091P]. Together with (a), this formally implies the second half of (b).

A.3. Koszul Complexes and Derived Completion. — If the ideal I is finitely gen-
erated, there’s yet another criterion for derived I-completeness. Let f1, . . . , fr be arbitrary
generators of I and let

K∗
n := Kos∗ (A, (fn

1 , . . . , fn
r )
)

=
(

A
fn

1−! A
)

⊗A · · · ⊗A

(
A

fn
r−! A

)
denote the cohomological Koszul complex of A with respect to fn

1 , . . . , fn
r , where each of the

complexes in the tensor product on the right-hand side is concentrated in degrees −1 and
0 (so that K∗

n is concentrated in degrees −r, . . . , 0). Then [Stacks, Tag 091Z] shows that
M ∈ D(A) is derived I-complete iff the canonical map

M ∼−! Rlim
n⩾1

M ⊗L
A K∗

n

is a quasi-isomorphism. Furthermore, M 7! Rlimn⩾1 M ⊗L
A K∗

n defines a left adjoint to
the inclusion Dcomp(A) ⊆ D(A), thus making Dcomp(A) a Bousfield localisation of D(A).
We’ll usually denote this left adjoint by (−)Î and call it derived I-completion. It follows
formally that (−)Î commutes with colimits, or in other words, that colimits in Dcomp(A) are
computed by taking the colimit in D(A) and then I-completing it.
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A.4. Lemma (Derived Nakayama lemma). — Let A be a ring and let M ∈ D(A).
(a) If M is derived f -complete for some f ∈ A, then M/Lf ≃ 0 implies M ≃ 0.
(b) If I ⊆ A is a finitely generated ideal and M ⊗L

A A/I ≃ 0, then M ≃ 0. Moreover, if M
is discrete, then already M/IM = 0 implies M = 0.

Proof. If M/Lf ≃ 0, then multiplication by f induces a quasi-isomorphism f : M ! M .
Thus T (M, f) ≃ M . But if M is derived f -complete, then T (M, f) ≃ 0 by definition. Hence
part (a) follows. For (b) see [Stacks, Tags 0G1U and 09B9]

Next we’ll discuss various questions of discreteness.

A.5. Lemma. — Let f ∈ A and M ∈ D(A).
(a) If M is discrete, then the derived f-completion of M is discrete iff limn⩾1 M [fn] = 0,

where M [fn] denotes the fn-torsion part and the transition maps M [fn+1] ! M [fn]are
multiplication by f . In particular, if M is f∞-torsion free, then its derived f -completion
is discrete and coincides with the underived f -completion.

(b) If M is discrete, then M is f -torsion free iff M̂f is discrete and f -torsion free.
(c) If M is derived f -complete and M/Lf is discrete, then M is discrete.

Proof. Part (a) follows from [Stacks, Tag 0BKG], which implies that M̂f is concentrated in
degrees 0 and −1, with H−1(M̂f ) ∼= limn⩾1 M [fn].

For part (b), first note that M/Lf is derived f -complete (because its cohomology is
f -torsion, so Lemma A.2(b) applies) and that derived f -completion commutes with (−)/Lf .
Hence M/Lf ≃ M̂f /Lf . Since the f -torsion part of M is isomorphic to H−1(M/Lf), the
claim follows.

Finally, we prove (c). Observe that we have exact sequences

0 −! Hi(M)/f −! Hi(M/Lf) −! Hi+1(M)[f ] −! 0

for all i. If M/Lf is discrete, then Hi(M)/f = 0 for all i ̸= 0. But Hi(M) is derived
f -complete by Lemma A.2(b), hence Hi(M)/f = 0 implies Hi(M) = 0 by the derived
Nakayama lemma.

A.6. Lemma. — Let A be noetherian and I ⊆ A any ideal. Then derived and underived
I-completion coincide for all finite A-modules.

Proof. If I is principal, this follows directly from Lemma A.5(a). For the general case see
[Stacks, Tag 0EEU].

A.7. Lemma. — Let A be a noetherian ring and I ⊆ A an ideal. Let M ∈ D(A) be derived
I-complete and I-completely flat. Then M is discrete and a flat A module.

Proof. We may assume that A is I-complete, for if not, we can replace A by its I-completion
Â (which is flat as A is noetherian). It suffices to show that M ⊗L

A N is discrete whenever N
is finite over A. Note that M ⊗L

A N ≃ M ⊗̂L
A N by [Stacks, Tag 0EEV]. Also, if we choose

generators f1, . . . , fr of I and let K∗
n = Kos∗(A, (fn

1 , . . . , fn
r )) denote the corresponding

homological Koszul complexes, then

M ⊗̂L
A N ≃ Rlim

n⩾1

(
(M ⊗L

A N) ⊗L
A K∗

n

)
≃ Rlim

n⩾1

(
M ⊗L

A (N ⊗A K∗
n)
)
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by definition of derived I-completion and the fact that K∗
n is degree-wise free. Now the

pro-objects {N ⊗A K∗
n}n⩾1 and {N/(fn

1 , . . . , fn
r )}n⩾1 in D(A) are isomorphic; this can be

shown by virtually the same argument as in [Stacks, Tag 0921]. Hence

M ⊗̂L
A N ≃ Rlim

n⩾1

(
M ⊗L

A N/(fn
1 , . . . , fn

r )
)

.

Now each M ⊗L
A N/(fn

1 , . . . , fn
r ) is discrete as M is I-completely flat, hence it coincides with

(M ⊗A N)/(fn
1 , . . . , fn

r ). This shows that the transition maps are surjective and thus the
Rlim above must be discrete.

The formalism of derived completion allows us to prove a derived analogue of the Beauville–
Laszlo theorem ([BL95]; see also [Stacks, Tag 0BNI]). This result is used on several occasions
throughout the text, both in the construction of the q-de Rham complex over Z and in the
computation of the cohomology groups of the q-Hodge complex.

A.8. Lemma (Derived Beauville–Laszlo). — Let A be a ring and f ∈ A any element. We
write (−)

[ 1
f

]
: D(A) ! D(A) for the f-localisation functor and (−)f̂ : D(A) ! D(A) for

derived f -completion.
(a) The functors (−)

[ 1
f

]
and (−)f̂ are jointly conservative.

(b) For any M ∈ D(A) we have the following pullback square in the derived ∞-category
D(A):

M M̂f

M
[ 1

f

]
M̂f

[ 1
f

].

Proof. In contrast to the Beauville–Laszlo theorem for modules, the derived version is
almost trivial. For (a), recall from [Stacks, Tag 091V] that M̂f can also be computed as
RHomA(C, M), where C denotes the complex A ! A

[ 1
f

]
in degrees 0 and 1. Thus, M̂f ≃ 0

implies
RHomA

(
A
[ 1

f

]
, M
)

≃ RHomA(A, M) ≃ M .

But then M is already f -local, so M
[ 1

f

]
≃ M . Therefore M

[ 1
f

]
≃ 0 implies M ≃ 0.

For (b), we use (a) to see that the homotopy pullback property may be checked after
applying (−)

[ 1
f

]
and (−)f̂ . If we apply (−)

[ 1
f

]
to the diagram above, both columns become

quasi-isomorphisms and the pullback property is obvious. Similarly, derived f -completion
vanishes on f -local objects, hence after (−)f̂ the bottom row becomes 0, whereas the top
row becomes a quasi-isomorphism, so again the pullback property is trivially satisfied.

A.9. Remark. — Whenever Lemma A.8(b) is used in the text, it will appear in the
following formulation: Let M ∈ Dcomp(ZJq − 1K) be derived (q − 1)-complete and let N > 0
be an integer. Then

M
∏

p|N M̂p

M
[ 1

N

]
q̂−1

∏
p|N M̂p

[ 1
p

]
q̂−1

.
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is a pullback diagram in Dcomp(ZJq − 1K). Indeed, this can be seen as follows: First apply
Lemma A.8(b) in the case A = ZJq − 1K and f = N and observe that the derived N -
completion of M coincides with the product over the derived p-completions of M for all prime
factors p | N ; for example, this follows from the Chinese remainder theorem. Then apply
derived (q − 1)-completion to the ensuing pullback diagram. This preserves the pullback
property and gives the pullback diagram above, as M and M̂p coincide with their derived
(q − 1)-completions because they are already derived (q − 1)-complete by assumption and
Lemma A.2(a).

A.10. Remark. — Let A be any ring. Observe that if we have a pullback diagram

K L

M N

.

in the ∞-category D(A) for which all participants are discrete, then this diagram is also
a pullback in the category of A-modules. Indeed, the pullback property is equivalent to
K ! M ⊕ L ! N (where the maps are equipped with your favourite sign convention) being
a fibre sequence in D(A). But then 0 ! K ! M ⊕ L ! N ! 0 must be a short exact
sequence of A-modules, proving that the above square is indeed a pullback (and a pushout)
of A-modules.

In particular, if M in Remark A.9 is discrete and all completions happen to stay discrete
as well, then the pullback diagram given there is also a pullback diagram of ZJq − 1K-modules.
This observation is used several times in §5 to get some strictly functorial maps out of
Remark A.9.

Finally, we prove a technical assertion needed in the proof of Lemma 6.8.

A.11. Lemma. — Let M ∈ Dcomp(ZpJq − 1K) be a derived (p, q − 1)-complete complex.
Then the following canonical map is a quasi-isomorphism:

M ∼−! Rlim
n⩾0

M/L(qpn

− 1) .

Proof. Both sides are derived (q − 1)-complete, so it suffices to check that we get a quasi-
isomorphism after applying (−)/L(q − 1). Note that this commutes with the Rlimn⩾1. Also
note that (

ZpJq − 1K/(qpn

− 1)
)
/L(q − 1) ≃ Zp/L(qpn

− 1) ≃ Zp[1] ⊕ Zp .

The transition maps (ZpJq − 1K/(qpn+1 − 1))/L(q − 1) ! (ZpJq − 1K/(qpn − 1))/L(q − 1)
are the identity on the summand Zp and multiplication by [p]qpn ≡ p mod q − 1 on the
summand Zp[1]. Putting everything together, we see that

Rlim
n⩾0

(
M/L(qpn

− 1)
)
/L(q − 1) ≃ T

(
M/L(q − 1), p

)
[1] ⊕ Rlim

n⩾1
M/L(q − 1) .

But M/L(q − 1) is derived p-complete and thus the telescope T (M/L(q − 1), p) vanishes.
Therefore, after applying (−)/L(q − 1) to both sides of the original map we get indeed a
quasi-isomorphism M/L(q − 1) ≃ Rlimn⩾0 M/L(q − 1), as claimed.
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§A.2. Joyal’s δn-Operations and their Inverses
Let A be a δ-ring. By a result of Joyal, [Joy85], there are functorial maps (of sets) δi : A ! A,
called Joyal’s δi-operations, which satisfy

ϕn(x) = δ0(x)pn

+ pδ1(x)pn−1
+ · · · + pnδn(x)

for all x ∈ A and all n ⩾ 0. In particular, δ0(x) = x, δ1(x) = δ(x), and x 7! (δ0(x), δ1(x), . . . )
defines a ring map A ! W (A) which is a section of the 0th ghost map w0 : W (A) ! A.

In this subsection we’ll construct maps εi : Ai+1 ! A which are inverse to Joyal’s
δi-operations in a certain sense.

A.12. Lemma. — Let A be a δ-ring. There exist functorial maps (of sets) εi : Ai+1 ! A
which are uniquely determined by the property that for all n ⩾ 0 and all x0, . . . , xn ∈ A,

xpn

0 + pxpn−1

1 + · · · + pnxn = ϕn
(
ε0(x0)

)
+ pϕn−1(ε1(x0, x1)

)
+ . . . + pnεn(x0, · · · , xn) .

Proof. Uniqueness is clear by taking a surjection A′ ! A from a p-torsion free δ-ring A′. To
show existence, first observe that it suffices to construct εi(x) := εi(x, 0, . . . , 0) for all x ∈ R,
as then εi(x0, . . . , xi) = εi(x0) + εi−1(x1) + · · · + ε0(xi) will do the job. Now consider the
recursive definition ε0(x) := x, εn(x) := −

∑n−1
i=0 εi(δn−i(x)). We show, using induction on n,

that it gives a sequence of maps εi : A ! A satisfying xpn = ϕn(ε0(x)) + · · · + pnεn(x) for
all x ∈ A. with the required properties. For n = 0, the assertion is trivial. Now let n > 0
and assume it holds for all smaller values. We compute

n∑
i=0

piϕn−i
(
εi(x)

)
= ϕn(x) −

n∑
i=1

piϕn−i

i−1∑
j=0

εj

(
δi−j(x)

)
= ϕn(x) −

n∑
k=1

pk

n−k∑
j=0

pjϕn−(k+j)(εj(δk(x))
)

= ϕn(x) −
(

pδ1(x)pn−1
+ · · · + pnδn(x)

)
,

which agrees with xpn . In the first equality plugged in the recursive definition of each εi. In
the second equality, we reordered the sum by putting k = i − j. In the third equality, we
applied the inductive hypothesis to each of the sums. This finishes the proof.

§A.3. Some Technical Calculations
In this subsection we complete the proof sketch of Lemma 4.45.

A.13. Lemma. — For the morphism f1
n : H1

R,□(n) ! M1
n+1 constructed in the proof sketch

of Lemma 4.45, the following relations hold:
(a) d ◦ f1

n = 0.
(b) f1

n ◦ βn = d ◦ f0
n.

(c) f1
n(xω) = xf1

n(ω) for all x ∈ H0
R,□(n) and all ω ∈ H1

R,□(n).
Therefore, fn : H∗

R,□(n) ! M∗
n+1 is a morphism of commutative differential-graded ZpJq − 1K-

algebras.
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What makes the proof of this lemma so annoying is that while [pn−eα ]qpeα T α is an element
of H0

R,□(n), the monomial T α alone is not. So we always have to carry these factors around
to make sure get well-defined expressions . . . Before we start the actual proof, we’ll prove
two auxiliary lemmas which will be used several times.

A.14. Lemma. — For all α = 1, . . . , pn, we have

[pn−eα ]qpeα f1
n(T α−1 dT ) = f0

n

(
[pn−eα ]qpeα T α−peα ) df0

n

(
[pn−eα ]qpeα T peα )

.

Proof. Since M∗
n+1 is degree-wise p-torsion free, it suffices to verify the desired equation after

multiplying by some power of p. Moreover, as both sides are (qpeα − 1)-torsion, we may as
well multiply by powers of [pn−eα ]qpeα . Now

[pn−eα ]α
′−1

qpeα · [pn−eα ]qpeα f1
n(T α−1 dT )

= [pn−eα ]α
′

qpeα · 1
[α′]qpeα

df0
n

(
[pn−eα ]qpeα T α

)
= [pn−eα ]qpeα · 1

[α′]qpeα

d
(

f0
n

(
[pn−eα ]qpeα T peα )α′)

= [pn−eα ]qpeα · α′

[α′]qpeα

f0
n

(
[pn−eα ]qpeα T peα )α′−1 df0

n

(
[pn−eα ]qpeα T peα )

= [pn−eα ]α
′−1

qpeα · f0
n

(
[pn−eα ]qpeα T α−peα )df0

n

(
[pn−eα ]qpeα T peα )

.

In the third equality we used that d is a derivation. In the fourth equality we also used that
α′ and [α′]qpeα act the same, since everything is (qpeα − 1)-torsion.

A.15. Lemma. — For all 0 ⩽ j ⩽ i ⩽ n we have

[pn−j ]qpj df0
n

(
[pn−i]qpi T pi)

= f0
n

(
[pn−j ]qpj T pi−pj)

df0
n

(
[pn−j ]qpj T pj)

.

Proof. Note that the left-hand side can be rewritten as [pn−i]qpi df0
n([pn−j ]qpj T pi); this

follows from the identity [pn−j ]qpj = [pi−j ]qpj · [pn−i]qpi by moving the factor [pi−j ]qpj . Now
a similar trick as in Lemma A.14 can be employed: By p-torsion freeness and the fact that
both sides are (qpj − 1)-torsion, it suffices to check the equation after multiplying both sides
by a power of [pn−j ]qpj . But then

[pn−j ]p
i−j−1

qpj · [pn−i]qpi df0
n

(
[pn−j ]qpj T pi)
= [pn−i]qpi df0

n

((
[pn−j ]qpj T pj)pi−j)

= [pn−i]qpi · pi−j · f0
n

(
[pn−j ]qpj T pj)pi−j−1 df0

n

(
[pn−j ]qpj T pj)

= [pn−j ]qpj · f0
n

(
[pn−j ]qpj T pj)pi−j−1 df0

n

(
[pn−j ]qpj T pj)

= [pn−j ]p
i−j−1

qpj · f0
n

(
[pn−j ]qpj T pi−pj)

df0
n

(
[pn−j ]qpj T pj)

.

In the second equality we used that d is a derivation. In the third equality we used the fact
that [pn−i]qpi · pi−j and [pi−j ]qpj · [pn−i]qpi = [pn−j ]qpj act the same because everything is
(qpj − 1)-torsion.
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Proof of Lemma A.13(b). It suffices to verify the relation f1
nβn(x) = df0

n(x) in the special
case x = T kpn · [pn−eα ]qpeα T α for some k and some α, because a general x can be written as
a (p, q − 1)-power series whose coefficients are finite ZpJq − 1K-linear combination of elements
of the above form. We compute

βn

(
T kpn

· [pn−eα ]qpeα T α
)

= T kpn

βn

(
[pn−eα ]qpeα T α

)
+ k[pn−eα ]qpeα T α+(k−1)pn

βn

(
T pn)

= T kpn

βn

(
[pn−eα ]qpeα T α

)
+ k[pn−eα ]qpeα T α+(k−1)pn

· T pn−1 dT

= T kpn

βn

(
[pn−eα ]qpeα T α

)
+ k[pn−eα ]qpeα T kpn

· T α−1 dT .

In the first equality we used that βn is a derivation. In the second equality we used the
explicit description of βn that was given in the proof of Lemma 4.35. By construction of f1

n

and by Lemma A.14, we conclude

f1
nβn

(
T kpn

· [pn−eα ]qpeα T α
)

= f0
n

(
T kpn)

df0
n

(
[pn−eα ]qpeα T α

)
+ kf0

n

(
[pn−eα ]qpeα T kpn+α−peα ) df0

n

(
[pn−eα ]qpeα T peα )

So much about f1
nβn(x); now we need to compute df0

n(x). We obtain

df0
n

(
T kpn

· [pn−eα ]qpeα T α
)

= f0
n

(
T kpn)

df0
n

(
[pn−eα ]qpeα T α

)
+ kf0

n

(
[pn−eα ]qpeα T α+(k−1)pn)

df0
n

(
T pn)

= f0
n

(
T kpn)

df0
n

(
[pn−eα ]qpeα T α

)
+ kf0

n

(
[pn−eα ]qpeα T α+kpn−peα )df0

n

(
[pn−eα ]qpeα T peα )

.

The first equality follows as d is a derivation. Furthermore, Lemma A.15 for i = n and j = eα

implies [pn−eα ]qpeα df0
n(T pn) = f0

n([pn−eα ]qpeα T pn−peα ) df0
n([pn−eα ]qpeα T peα ). Plugging this

in, shows that the second equality holds after multiplication with [pn−eα ]qpeα . But then our
standard argument shows that it must hold on the nose as well. This justifies the calculation
above. Upon comparing the expressions for f1

nβn(x) and df0
n(x), we have thus finished the

proof of part (b).

Proof of Lemma A.13(a). By a similar argument as in (b), it suffices to show df1
n(ω) = 0 in

the special case ω = T kpn · T α−1 dT for some k and some α. If k = 0, this is clear because
f1

n(T α−1 dT ) is contained in the image of d: M0
n+1 ! M1

n+1 by construction. So assume
k > 0. Then the integer kpn−eα + α′ is positive and therefore a nonzerodivisor in M∗

n, which
is after all a p-torsion free ZpJq − 1K-algebra. Furthermore, ω is (qpeα − 1)-torsion, and hence
[pn−eα ]qpeα acts like pn−eα on it. Using Lemma A.14 and the definition of f1

n, we can thus
compute

[pn−eα ]kpn−eα +α′

qpeα

(
kpn−eα + α′) · f1

n

(
T kpn

· T α−1 dT
)

= [pn−eα ]kpn−eα +α′

qpeα

(
kpn−eα + α′) · f0

n

(
T kpn)

f1
n

(
T α−1 dT

)
= [pn−eα ]qpeα

(
kpn−eα + α′) · f0

n

(
[pn−eα ]qpeα T peα )kpn−eα +α′−1 df0

n

(
[pn−eα ]qpeα T peα )

= [pn−eα ]qpeα df0
n

((
[pn−eα ]qpeα T peα )kpn−eα +α′)

.

This is clearly contained in the kernel of d: M1
n+1 ! M2

n+1. Hence so is f1
n(ω). This finishes

the proof of part (a).

71



§A. Appendix

Proof of Lemma A.13(c). We already know that f1
n is RnJq − 1K-linear, so it suffices to verify

the condition

f0
n

(
[pn−eβ ]

qp
eβ T β

)
f1

n(T α−1 dT ) = f1
n

(
[pn−eβ ]

qp
eβ T β · T α−1 dT

)
for all α = 1, . . . , pn and all β = 0, . . . , pn − 1. Let γ := α + β and eγ = vp(γ). The left-hand
side of our desired equation is (qpeα −1)-torsion, so by the same arguments as always together
with Lemma A.14 we obtain

pn−eα · (left-hand side) = f0
n

(
[pn−eβ ]

qp
eβ [pn−eα ]qpeα T β+α−peα )df0

n

(
[pn−eα ]qpeα T peα )

.

Similarly, Lemma A.14, together with a quick case distinction on whether 1 ⩽ γ ⩽ pn or
pn < γ ⩽ 2pn − 1, shows

pn−eγ · (right-hand side) = f0
n

(
[pn−eβ ]

qp
eβ [pn−eγ ]qp

eγ T γ−peγ ) df0
n

(
[pn−eγ ]qp

eγ T peγ )
.

If eα = eγ , this is already sufficient. If not, then β = α − γ implies eβ = min{eα, eγ}. Hence
we may Lemma A.15 for i = eα and j = eβ to the first equality, and for i = eγ and j = eβ to
the second equality, to obtain

pn−eβ · (left-hand side) = f0
n

(
[pn−eβ ]2

qp
eβ T γ−peβ )df0

n

(
[pn−eβ ]

qp
eβ T peβ )

= pn−eβ · (right-hand side) .

We are done, at last.

§A.4. Étale Base Change of Differential-Graded Algebras
In this subsection we prove a technical lemma about extending differential-graded structures
along étale maps, which was needed in the final step of the proof of Theorem 4.43. The
author strongly suspects that this result is known already, since it seems like a rather natural
question, but didn’t succeed in locating a reference. In the following, CDGA means strictly
graded-commutative differential-graded algebra.

A.16. Lemma. — Let A∗ be a CDGA concentrated in nonnegative cohomological degrees.
Let A0 ! B0 be an étale ring map. Then the graded-commutative ring B0 ⊗A0 A∗ admits a
natural CDGA-structure with the following universal property: For every map A∗ ! E∗ of
CDGAs together with a B0-algebra structure on E0, there is a unique map B0 ⊗A0 A∗ ! E0

such that the diagram
A∗ E∗

B0 ⊗A0 A∗

commutes and consists of maps of CDGAs.

A.17. Remark. — Observe that we do not assume that the differentials on A∗ are
A0-linear. So extending the differentials to B0 ⊗A0 A∗ will be a non-trivial part of the proof.

Proof of Lemma A.16. We will proceed in three steps: In Step 1, we’ll construct linear maps
dn

B : B0 ⊗A0 An ! B0 ⊗A0 An+1. In Step 2, we verify that these satisfy the Leibniz rule. In
Step 3, we use this to show that dn+1

B ◦ dn
B = 0.
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Step 1. Construction of the differentials. The differentials on A∗ define an A0-linear map
Ω1

A0 ! A1. Using that A0 ! B0 is étale, this can be extended to a B0-linear map

Ω1
B0 ∼= B0 ⊗A0 Ω1

A0 −! B0 ⊗A0 A1 ,

which defines a derivation d0
B : B0 ! B0 ⊗A0 A1. To construct the higher differentials,

consider the map D : B0 × An ! B0 ⊗A0 An+1 given by D(b, an) := d0
B(b)an + b dn

A(an),
where the products are taken with respect to the graded ring structure on B0 ⊗A0 A∗. D is
clearly Z-bilinear. Moreover, it is A0-balanced in the sense that D(b, aan) = D(ba, an) for
all a ∈ A0; this is straightforward to check using the Leibniz rule for d0

B and dn
A. Hence D

defines a Z-linear map dn
B : B0 ⊗A0 An ! B0 ⊗A0 An+1 by a lesser-known universal property

of the tensor product.
Step 2. The Leibniz rule. Next we check dm+n

B (bmbn) = dm
B (bm)bn + (−1)mbn d(bn) for

all bm ∈ B0 ⊗A0 Am and bn ∈ B0 ⊗A0 An. It suffices to do this on elementary tensors, so
let’s assume bm = b ⊗ am and bn = c ⊗ an. Then

dm+n
B

(
(b ⊗ am)(c ⊗ an)

)
= dm+n

B (bc ⊗ aman)
= d0

B(bc)aman + bc dm+n
A (aman)

= d0
B(b)caman + b d0

B(c)aman + bc dm
A (am)an + (−1)mbcam dn

A(an) .

One down, one to go. We compute

dm
B (b ⊗ am)(c ⊗ an) + (−1)m(b ⊗ am) dn

B(c ⊗ an)
=
(

d0
B(b)am + b dm

A (am)
)
(c ⊗ an) + (−1)m(b ⊗ am)

(
d0

B(c)an + c dn
A(an)

)
= d0

B(b)amcan + b dm
A (am)can + (−1)mbam d0

B(c)an + (−1)mbamc dn
A(an)

= d0
B(b)caman + bc dm

A (am)an + b d0
B(c)aman + (−1)mbcam dn

A(an) ;

in the last line, we used graded commutativity, which ensures that c commutes with everything
and b d0

B(c)ama = (−1)mbam d0
B(c)an. Hence the graded Leibniz rule holds.

Step 3. dB is a differential. Proving dn+1
B ◦ dn

B = 0 can be reduced to the case n = 0 via
the graded Leibniz rule. Using the graded Leibniz rule again, we compute

d1
B d0

B(bc) = d1
B

(
d0

B(b)c + b d0
B(c)

)
= d1

B d0
B(b)c − d0

B(b) d0
B(c) + d0

B(b) d0
B(c) + b d1

B d0
B(c)

= d1
B d0

B(b)c + b d1
B d0

B(c) .

Hence d1
B ◦d0

B : B0 ! B0 ⊗A0 A2 is a derivation. It clearly vanishes on A0, hence the induced
map Ω1

A0 ! B0 ⊗A0 A2 is zero. But then also Ω1
B0

∼= B0 ⊗A0 Ω1
A0 ! B0 ⊗A0 A2 must vanish

since B0 ! A0 is étale. This shows d1
B ◦ d0

B = 0, as required.
We’ve thus completed the proof that B0 ⊗A0 A∗ can be equipped with a CDGA-structure.

It remains to check the universal property, but this follows from the construction by an easy
inspection.

73



References

References
[Aom90] Kazuhiko Aomoto. “q-analogue of de Rham cohomology associated with Jackson

integrals. I”. In: Japan Academy. Proceedings. Series A. Mathematical Sciences
66.7 (1990), pp. 161–164.

[BJ11] Bhargav Bhatt and Aise Johan de Jong. Crystalline cohomology and de Rham
cohomology. 2011. arXiv: 1110.5001 [math.AG].

[BL95] Arnaud Beauville and Yves Laszlo. “Un lemme de descente”. In: Comptes Rendus
de l’Académie des Sciences. Série I. Mathématique 320.3 (1995), pp. 335–340.

[BLM21] Bhargav Bhatt, Jacob Lurie, and Akhil Mathew. “Revisiting the de Rham-Witt
complex”. In: Astérisque 424 (2021), pp. viii+165.

[BMS18] Bhargav Bhatt, Matthew Morrow, and Peter Scholze. “Integral p-adic Hodge
theory”. In: Institut de Hautes Études Scientifiques. Publications Mathématiques
128 (2018), pp. 219–397.

[BMS19] Bhargav Bhatt, Matthew Morrow, and Peter Scholze. “Topological Hochschild
homology and integral p-adic Hodge theory”. In: Publications Mathématiques.
Institut de Hautes Études Scientifiques 129 (2019), pp. 199–310.

[BO78] Pierre Berthelot and Arthur Ogus. Notes on crystalline cohomology. Prince-
ton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978,
pp. vi+243.

[Bor11] James Borger. “The basic geometry of Witt vectors, I: The affine case”. In: Algebra
& Number Theory 5.2 (2011), pp. 231–285.

[BS19] Bhargav Bhatt and Peter Scholze. Prisms and Prismatic Cohomology. 2019. arXiv:
1905.08229 [math.AG].

[ČS21] Kęstutis Česnavičius and Peter Scholze. Purity for flat cohomology. 2021. arXiv:
1912.10932 [math.AG].

[Elk73] Renée Elkik. “Solutions d’équations à coefficients dans un anneau hensélien”. In:
Annales Scientifiques de l’École Normale Supérieure. Quatrième Série 6 (1973),
553–603 (1974).

[Hab04] Kazuo Habiro. “Cyclotomic completions of polynomial rings”. In: Kyoto University.
Research Institute for Mathematical Sciences. Publications 40.4 (2004), pp. 1127–
1146.

[Hes15] Lars Hesselholt. “The big de Rham-Witt complex”. In: Acta Mathematica 214.1
(2015), pp. 135–207.

[HM03] Lars Hesselholt and Ib Madsen. “On the K-theory of local fields”. In: Annals of
Mathematics. Second Series 158.1 (2003), pp. 1–113.

[HTT] Jacob Lurie. Higher Topos Theory. Vol. 170. Annals of Mathematics Studies.
Princeton University Press, Princeton, NJ, 2009, pp. xviii+925.

[Ill71] Luc Illusie. Complexe cotangent et déformations. I. Lecture Notes in Mathematics,
Vol. 239. Springer-Verlag, Berlin-New York, 1971, pp. xv+355.

[Ill79] Luc Illusie. “Complexe de de Rham-Witt et cohomologie cristalline”. In: Annales
Scientifiques de l’École Normale Supérieure. Quatrième Série 12.4 (1979), pp. 501–
661.

74

https://arxiv.org/abs/1110.5001
https://arxiv.org/abs/1905.08229
https://arxiv.org/abs/1912.10932


References

[Jac10] Frank H. Jackson. “q-Difference Equations”. In: American Journal of Mathematics
32.4 (1910), pp. 305–314.

[Joy85] André Joyal. “δ-anneaux et vecteurs de Witt”. In: La Société Royale du Canada.
L’Academie des Sciences. Comptes Rendus Mathématiques. (Mathematical Re-
ports) 7.3 (1985), pp. 177–182.

[Kal86] Wilberd van der Kallen. “Descent for the K-theory of polynomial rings”. In:
Mathematische Zeitschrift 191.3 (1986), pp. 405–415.

[Kat70] Nicholas M. Katz. “Nilpotent connections and the monodromy theorem: Ap-
plications of a result of Turrittin”. In: Institut des Hautes Études Scientifiques.
Publications Mathématiques 39 (1970), pp. 175–232.

[Ked21] Kiran S. Kedlaya. Notes on Prismatic Cohomology. Notes from a graduate topics
course at UC San Diego (spring 2021). Available at https://kskedlaya.org/
prismatic (accessed 16th November 2021).

[LZ04] Andreas Langer and Thomas Zink. “De Rham-Witt cohomology for a proper and
smooth morphism”. In: Journal of the Institute of Mathematics of Jussieu. JIMJ.
Journal de l’Institut de Mathématiques de Jussieu 3.2 (2004), pp. 231–314.

[Man10] Yuri I. Manin. “Cyclotomy and analytic geometry over F1”. In: Quanta of maths.
Vol. 11. Clay Mathematical Proceedings. American Mathematical Society, Provi-
dence, RI, 2010, pp. 385–408.

[Pri19] Jonathan P. Pridham. “On q-de Rham cohomology via Λ-rings”. In: Mathematische
Annalen 375.1-2 (2019), pp. 425–452.

[SAG] Jacob Lurie. Spectral Algebraic Geometry (Under Construction). Unfinished text-
book, last update: February 2018. Available at https://www.math.ias.edu/
~lurie/papers/SAG-rootfile.pdf (accessed 16th November 2021).

[Sch17] Peter Scholze. “Canonical q-deformations in arithmetic geometry”. In: Annales
de la Faculté des Sciences de Toulouse. Mathématiques. Série 6 26.5 (2017),
pp. 1163–1192.

[Stacks] The Stacks Project Authors. The Stacks Project. 2021. Available at https://
stacks.math.columbia.edu (accessed 16th November 2021).

75

https://kskedlaya.org/prismatic
https://kskedlaya.org/prismatic
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu

	Introduction
	q-de Rham Cohomology over Z
	Rationalised q-de Rham and q-Crystalline Cohomology
	The q-de Rham Complex over Z

	Frobenius Action
	Cohomology of the q-Hodge Complex I: The p-Complete Case
	The Additive Structure
	q-Witt Vectors
	The q-de Rham Witt Complex
	The Main Theorem in the p-Complete Case

	Cohomology of the q-Hodge Complex II: The Global Case
	Big q-Witt Vectors
	The Big q-de Rham–Witt Complex
	The Main Theorem in the Global Case

	Why Functoriality Fails
	Appendix
	Derived Complete Algebra
	Joyal's delta-n-Operations and their Inverses
	Some Technical Calculations
	Étale Base Change of Differential-Graded Algebras

	References

