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Abstract. We consider the derived category of permutation modules over a
finite group, in positive characteristic. We stratify this tensor triangulated
category using Brauer quotients. We describe the spectrum of its compact
objects, by reducing the problem to elementary abelian groups and then by
using a twisted form of cohomology to express the spectrum locally in terms
of the graded endomorphism ring of the unit. Together, these results yield a
classification of thick and of localizing ideals.

Figure 1. The geometry for the dihedral group D8.
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1. Preamble

Fix a field k of positive characteristic p. Let G be a finite group. We often write
‘tt’ to abbreviate ‘tensor triangulated’ or ‘tensor-triangular’.

Topic. Among k-linear representations of G, permutation modules are perhaps the
easiest to grasp: They are simply the k-linearizations k(X) of G-sets X. They
play an important role throughout equivariant mathematics, in subjects as varied
as derived equivalences [Ric96], Mackey functors [Yos83], or equivariant homotopy
theory [MNN17], to name a few. The authors’ original interest stems from yet
another connection, with Voevodsky’s theory of motives [Voe00] and specifically
Artin motives. For elaboration on this theme, we refer the reader to [BG21].

We consider a ‘small’ tt-category, the homotopy category
(1.1) K(G) = K(G; k) := Kb

(
perm(G; k)\

)
of bounded complexes of finitely generated permutation kG-modules, idempotent-
completed. It sits as the compact part of the ‘big’ tt-category
(1.2) T(G) = DPerm(G; k)
obtained, for instance, by closing K(G) under coproducts and triangles in the ho-
motopy category K(Mod(kG)) of all kG-modules. We call DPerm(G; k) the derived
category of permutation kG-modules. See Recollection 3.2 for details.
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As we shall discuss in this preamble, these tt-categories of permutation mod-
ules are interesting and important for a variety of reasons. To begin with, they
stand at the crossroad of several subjects, as alluded to above. Concretely, the
tt-category T(G) is equivalent to:
(i) the derived category of cohomological k-linear Mackey functors over G,
(ii) the homotopy category of modules over the constant Green functor Hk in

genuine G-spectra,
(iii) the triangulated category of k-linear Artin motives generated by motives of

intermediate fields in any Galois extension with Galois group G.
Consequently, while we adopt here the language of permutation modules, our results
admit translations into each of the contexts (i), (ii) and (iii).

Main goals. We want to understand the tensor-triangular geometry of these per-
mutation tt-categories. Tensor-triangular geometry [Bal10b] is a way to bring or-
ganization to sometimes bewildering tt-categories, be it in topology, algebraic ge-
ometry or representation theory. Its fundamental device is the tt-spectrum Spc(K)
of a small tt-category K. Computing Spc(K(G)) will provide a classification of all
thick triangulated ⊗-ideals in K(G). We also want to show that K(G) strongly
controls the big tt-category T(G), namely the Telescope Conjecture holds for T(G)
and the localizing ⊗-ideals of T(G) are classified by subsets of Spc(K(G)).

Landscape. Let us place K(G) among some standard G-equivariant tt-categories:
(a) The equivariant stable homotopy category SH(G)c of finite genuine G-spectra.
(b) Kaledin’s category of derived Mackey functors DMack(G; k)c.
(c) The bounded derived category Db(kG) of finitely generated kG-modules.
(d) The stable module category stab(kG) = mod(kG)/ proj(kG).
These categories all fit in a natural sequence of tt-functors, from equivariant homo-
topy theory to modular representation theory, with our K(G) at center stage:

(1.3) SH(G)c // DMack(G; k)c // K(G; k) // // Db(kG) // // stab(kG).

The initial one, SH(G)c, is topological in nature and its tt-geometry relies heav-
ily on chromatic theory, à la Devinatz-Hopkins-Smith [DHS88, HS98]. The first
functor SH(G)c → DMack(G; k)c moves to the k-linear world and thus the chro-
matic refinements disappear from DMack(G; k)c onwards. A central feature of
the tt-categories in (1.3) is their variance in the group G. Restriction, induc-
tion and conjugation turn them into so-called Mackey 2-functors. In the language
of [BD22], the three Mackey 2-functors K(G; k), Db(kG) and stab(kG) are more-
over cohomological. (This categorifies the fact that an ordinary Mackey functor is
cohomological if IKH ◦RKH is multiplication by [K :H].) In other words, the second
functor DMack(G; k)c → K(G) in (1.3) moves us to the cohomological world. The
subsequent functors in (1.3) are simply localizations. (For K(G)�Db(kG) this
follows from [BG23a]. For Db(kG)� stab(kG) it is a well-known theorem due to
Rickard [Ric89], or Buchweitz [Buc21].)

Classical methods. The four categories surrounding our K(G) in (1.3) have a
fairly well-understood tt-geometry, thanks to a series of powerful and widely used
techniques that we shall now briefly review with application to K(G) in mind.



4 PAUL BALMER AND MARTIN GALLAUER

The first obvious idea is to try some induction on the order of G. For each of
the tt-categories in (1.3) we can define a so-called

geometric open
inside their tt-spectrum. It is the open complement of all the images of the closed
maps induced by restriction to proper subgroups. This geometric open captures
what is intrinsically new over G, beyond what is detected by proper subgroups. The
name comes from stable homotopy theory (a), as the localization of SH(G) over the
geometric open recovers the classical geometric G-fixed-points functor. In fact, a
miracle occurs here: That localization of SH(G) is simply the non-equivariant SH.
This fact has allowed [BS17] to describe all points of the spectrum of SH(G)c: All
points come from the non-equivariant chromatic spectrum Spc(SHc) via geometric
H-fixed-points, for all subgroups H 6 G up to conjugation. The same strategy has
been applied by Patchkoria-Sanders-Wimmer [PSW22] to derived Mackey func-
tors over G, where the same miracle occurs: The geometric open boils down to
the non-equivariant version, independently of G. One deduces that the spectrum
of DMack(G; k)c is the set of conjugacy classes of subgroups of G with a certain
Alexandrov topology (if G is a p-group, K ∈ {H} iff K ≤G H).

This geometric fixed-points method has been formalized by Barthel-Castellana-
Heard-Naumann-Pol [BCH+23] for arbitrary equivariant tt-categories. However,
the induction process breaks down because the above ‘miracle’ can evaporate in
general: There is no simple description of the geometric open a priori and it can
heavily depend on the group G. For example, for the stable category of an ele-
mentary abelian p-group G = (Cp)r the geometric open is dense in the spectrum,
a projective space of dimension r − 1, and thus it grows with G. In that respect,
K(G) unfortunately behaves like stab(kG), and Db(kG); the miracle breaks down.
Beyond groups with very small p-Sylow the inductive approach of [BS17] hits a wall
because the geometric fixed-points of K(G) are too complicated.

The second important method goes back to Serre’s 1965 Theorem [Ser65]. In
modern lingo, it says that the geometric open of Db(kG) is empty unless G is
an elementary abelian p-group. As a consequence, and through further work of
Quillen [Qui71], the tt-geometry of Db(kG) and stab(kG) reduces to elementary
abelian subgroups of G. Unfortunately again, Serre’s result does not hold for K(G):
The geometric open is non-empty for every p-groupG. Ipso facto, one cannot reduce
the tt-geometry of K(G) to the elementary abelian subgroups of G.

Here is a third classical method. Work of Benson-Carlson-Rickard [BCR97]
determines the tt-geometry of the derived and stable categories by using the coho-
mology H•(G, k), that we can view as the graded endomorphism ring End•Db(kG)(1)
of the ⊗-unit object 1 in Db(kG). Reformulated in the language of [Bal10a], their
result implies that the comparison map, which exists for every tt-category K,
(1.4) compK : Spc(K)→ Spech(End•K(1)),
is a homeomorphism in the case of K = Db(kG). The case of stab(kG) only differs
from the above by removing the closed point, i.e. the ‘irrelevant’ ideal H+(G; k).
Again, these ideas have been pushed and generalized, most famously in a corpus
of work affectionately known as ‘BIK’, after Benson-Iyengar-Krause [BIK11]. So
we could hope that the BIK methods might apply to our tt-category of permuta-
tion modules K(G). Alas, the graded ring End•K(G)(1) is just the field k and its
spectrum, a meagre singleton, refuses to entertain any idea of geometry.
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The challenge. In summary, the classical methods that worked so well for SH(G)c
and DMack(G; k)c on the one hand, and those that worked for Db(kG) and stab(kG)
on the other, all fall short in the case of K(G):

(X=works, 7=fails) SH(G)c & DMack(G; k)c K(G; k) Db(kG) & stab(kG)

Geom. fixed-pts X 7 7

Elem. ab. subgps 7 7 X

Comp. map & BIK 7 7 X

This turn of events might seem surprising considering that K(G) ought to be the
most accessible one among the five tt-categories in our list. Indeed, the mere con-
struction of SH(G) and DMack(G; k) is highly involved and the modular represen-
tations that make up Db(kG) and stab(kG) are notoriously wild, whereas K(G) is
simply the bounded homotopy category of an additive category with finitely many
isomorphism classes of indecomposables.

As we shall demonstrate in this article, the tt-geometry of K(G) just is very
complex. It combines the complexity of its neighbors in (1.3), DMack(G; k)c
and Db(kG), in a way reminiscent of how SH(G)c combines the complexity of
DMack(G; k)c and SHc. More precisely, just as the underlying set

Spc(SH(G)c) = qH Spc(SHc)(1.5)

decomposes, over conjugacy classes of subgroups H ≤ G, into chromatic strata, so
it will be shown that

Spc(K(G)) = qH Spc(Db(k(G//H)))(1.6)

decomposes, over conjugacy classes of p-subgroups H ≤ G, into cohomological
support varieties for the associated Weyl groups G//H. Figure 2 may help the
reader visualize the various phenomena at play. Each of them can be thought of as
contributing a ‘dimension’ to the spectrum.

SHc

SH(G)c

DMack(G; k)c

K(G; k)

Db(kG)

stab(kG)

Figure 2. Related tt-categories and tt-geometric phenomena:
chromatic (cyan), group-combinatorial (magenta), and Mackey-
cohomological (yellow).

So, how do we approach the tt-geometry ofK(G) given that the classical methods
fail us? Let us discuss in broad strokes how the ideas behind those methods can
still guide us to the solution, with suitably reinvented tools.
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New methods. While geometric fixed-points definitely remain insufficient, a dif-
ferent type of fixed-points functors, the modular fixed-points, will prove very useful.
They are the correct analogue at the level of K(G) of Brauer quotients, a well-
known tool for the study of permutation modules. Firstly, we will use them to
describe all points of the spectrum of K(G), arriving at (1.6) above. In addition,
they allow us to circumvent the failure of Serre’s theorem for K(G) and instead
of a reduction to elementary abelian subgroups, obtain a reduction to elementary
abelian subquotients of G. Finally, for G elementary abelian, although the compari-
son with cohomology and the BIK method still cannot be used globally on K(G), we
will produce an open cover of Spc(K(G)) over which the comparison map is indeed
a homeomorphism. In other words, BIK will work on small enough pieces of the
category K(G). Their determination will involve a ‘twisted’ version of cohomology
which epimorphically maps to the group cohomology for each Weyl group.

We explain these ideas in more detail and state precise theorems in the in-
troduction to Part I (Section 2), where we discuss modular fixed-points and the
‘stratification’ results about the big tt-category T(G), and in the introduction to
Part II (Section 10) where we focus on the topology of Spc(K(G)) and produce the
announced local analysis for G elementary abelian.

Illustration. A geometric paper should include pictures and there will be many
of those below. The title page shows what happens for G = D8, the dihedral group
of order 8, at the prime p = 2. Hopefully, the beauty of Figure 1 will entice the
reader to proceed beyond this preamble.

At the bottom right of Figure 1, we recognize the projective support variety
of D8 consisting of two copies of P1

k glued together at an F2-rational point. It
is the spectrum of the stable module category stab(kD8) and also the spectrum
of Db(kD8) with its ‘irrelevant’ closed point punctured out. This ‘puncturing’
process produces more geometric pictures, displaying classical projective varieties
associated to graded rings instead of their full homogeneous spectra. At the bottom
left, we recognize the lattice of conjugacy classes of subgroups of D8, with the
Alexandrov topology, which is the spectrum of DMack(D8; k)c with the closed point
(the trivial subgroup) punctured out for coherence. In the center of this triptych
sits the spectrum of K(D8) in majesty, with its closed points removed. It has
three irreducible components, each of which is a P1

k with multiple F2-rational points
doubled. The components meet in some of these doubled points. This spectrum is
presented in detail at the end of the paper, in Example 18.17.

The two maps in Figure 1 are the images under the contravariant functor Spc(−)
of the tt-functors in (1.3), ignoring SH(D8). The colors are chosen to indicate where
each point goes in a hopefully self-explanatory way. We see that the right-hand pro-
jective support variety Spc(stab(kD8)) embeds as an open subset of Spc(K(D8)),
meeting two of the three irreducible components. These two components are de-
tected by the two Klein-four subgroups of D8. The third component is detected
by the announced modular fixed-points and relies on the elementary abelian Klein-
four D8/Z(D8) that appears as a quotient.

Acknowledgements. We thank Tobias Barthel, Henning Krause and Peter Symonds
for precious conversations and for their stimulating interest. We also thank Ivo
Dell’Ambrogio, Colin Ni and Beren Sanders for comments and suggestions.

* * *
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1.7. Terminology. A ‘tensor category’ is an additive category with a symmetric-
monoidal product additive in each variable. We say ‘tt-category’ for ‘tensor tri-
angulated category’ and ‘tt-ideal’ for ‘thick (triangulated) ⊗-ideal’. We say ‘big’
tt-category for a rigidly-compactly generated tt-category, as in [BF11]. We write
Spc(K) for the tt-spectrum of a tt-category K. For an object x ∈ K, we write
open(x) =

{
P ∈ Spc(K)

∣∣x ∈ P
}
to denote the open complement of supp(x).

For subgroups H,K 6 G, we write H 6G K to say that H is G-conjugate to a
subgroup of K, that is, Hg 6 K for some g ∈ G. We write ∼G for G-conjugation.
As always Hg = g−1H g and gH = g H g−1. We write Subp(G) for the set of
p-subgroups of G and Subp(G)/G for its G-orbits under G-conjugation. We write
NG(H,K) for

{
g ∈ G

∣∣Hg 6 K
}
and NGH = NG(H,H) for the normalizer. For

each subgroup H 6 G, its Weyl group is G//H = (NGH)/H.

1.8. Convention. When a notation involves a subgroup H of an ambient group G,
we drop the mention of G if no ambiguity can occur, for instance ResH for ResGH .
The mention of the field k is sometimes dropped, for readability.

Part I. Modular fixed-points and stratification

2. Introduction to Part I

Having sketched the broad context and the aims of the article, let us turn to the
content of Part I in more detail.

Stratification. In colloquial terms, one of our main results says that the big de-
rived category T(G) of permutation modules given in (1.2) is strongly controlled
by its compact part K(G) described in (1.1):

2.1. Theorem (Theorem 9.11). The derived category of permutation modules T(G)
is stratified by Spc(K(G)) in the sense of Barthel-Heard-Sanders [BHS21].

Let us remind the reader of BHS-stratification. What we establish in Theo-
rem 9.11 is an inclusion-preserving bijection between the localizing ⊗-ideals of T(G)
and the subsets of the spectrum Spc(K(G)). This bijection is defined via a canonical
support theory on T(G) that exists once we know that Spc(K(G)) is a noetherian
space (Proposition 9.1). Note that Theorem 2.1 cannot be obtained via ‘BIK-
stratification’ as in Benson-Iyengar-Krause [BIK11], since the endomorphism ring
of the unit End•K(G)(1) = k is too small. However, we shall see that [BIK11] plays
an important role in our proof, albeit indirectly. An immediate consequence of
stratification is the Telescope Property (Corollary 9.12):

2.2. Corollary. Every smashing ⊗-ideal of T(G) is generated by its compact part.

The key question is now to understand the spectrum Spc(K(G)). Recall from
[BG23a, Theorem 5.13] that the innocent-looking category K(G) actually captures
much of the wilderness of modular representation theory. It admits as Verdier
quotient the derived category Db(kG) of all finitely generated kG-modules. By
Benson-Carlson-Rickard [BCR97], the spectrum of Db(kG) is the homogeneous
spectrum of the cohomology ring H•(G, k). We deduce in Proposition 3.22 that
Spc(K(G)) contains an open piece VG
(2.3) Spech(H•(G, k)) ∼= Spc(Db(kG)) =: VG ↪→ Spc(K(G))
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that we call the cohomological open of G.
In good logic, the closed complement of VG is

(2.4) Spc(K(G))r VG = Supp(Kac(G))
the support of the tt-ideal Kac(G) = Ker(K(G)�Db(kG)) of acyclic objects. The
problem becomes to understand this closed subset Supp(Kac(G)). To appreciate
the issue, let us say a word of closed points. Corollary 7.31 gives the complete
list: There is one closed point M(H) of Spc(K(G)) for every conjugacy class of
p-subgroups H 6 G. The cohomological open VG only contains one closed point,
for the trivial subgroup H = 1. All other closed points M(H) for H 6= 1 are to
be found in the complement Supp(Kac(G)). It will turn out that Spc(K(G)) is
substantially richer than the cohomological open VG, in a way that involves p-local
information about G. To understand this, we need the right notion of fixed-points.

Modular fixed-points. Let H 6 G be a subgroup. We abbreviate by
(2.5) G//H := WG(H) = NG(H)/H
the Weyl group of H in G. If H P G is normal then of course G//H = G/H.

For every G-set X, its H-fixed-points XH is canonically a (G//H)-set. We also
have a naive fixed-points functor M 7→ MH on kG-modules but it does not ‘lin-
earize’ fixed-points of G-sets, that is, k(X)H differs from k(XH) in general. And it
does not preserve the tensor product. We would prefer a tensor-triangular functor
(2.6) ΨH : T(G)→ T(G//H)
such that ΨH(k(X)) = k(XH) for every G-set X.

A related problem was encountered long ago for the G-equivariant stable ho-
motopy category SH(G), see [LMSM86]: The naive fixed-points functor (a. k. a.
the ‘genuine’ or ‘categorical’ fixed-points functor) is not compatible with taking
suspension spectra, and it does not preserve the smash product. To solve both
issues, topologists invented geometric fixed-points ΦH . As we saw in the preamble,
those geometric fixed-points functors already played an important role in tensor-
triangular geometry [BS17, BGH20, PSW22] and it would be reasonable, if not very
original, to try the same strategy for T(G). Unfortunately they do not give us the
wanted ΨH of (2.6), as we explain in Remark 4.11.

In summary, we need a third notion of fixed-points functor ΨH , which is neither
the naive one (−)H , nor the ‘geometric’ one ΦH imported from topology. It turns
out (see Warning 5.1) that it can only exist in characteristic p when H is a p-
subgroup. The good news is that this is the only restriction (see Section 5):

2.7. Proposition. For every p-subgroup H 6 G there exists a coproduct-preserving
tensor-triangular functor on the big derived category of permutation modules (1.2)

ΨH : T(G)−→T(G//H)
such that ΨH(k(X)) ∼= k(XH) for every G-set X. In particular, this functor pre-
serves compacts and restricts to a tt-functor ΨH : K(G)→ K(G//H) on (1.1).

We call the ΨH the modular H-fixed-points functors. These functors already
exist at the level of additive categories perm(G; k)\ → perm(G//H; k)\, where they
agree with the classical Brauer quotient, although our construction is quite different.
See Remark 5.8. These ΨH also recover motivic functors considered by Bachmann
in [Bac16, Corollary 5.48]. Equipped with those ΨH , let us return to Spc(K(G)).
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The spectrum. Each tt-functor ΨH induces a continuous map on spectra

(2.8) ψH := Spc(ΨH) : Spc(K(G//H))−→ Spc(K(G)).

In particular Spc(K(G)) receives via this map ψH the cohomological open VG//H of
the Weyl group of H:

(2.9) VG//H = Spc(Db(k(G//H))) ↪→ Spc(K(G//H)) ψH−−→ Spc(K(G)).

Using this, we can describe the set underlying Spc(K(G)) in Theorem 7.16:

2.10. Theorem. Every point of Spc(K(G)) is the image ψH(p) of a point p ∈ VG//H
for some p-subgroup H 6 G, in a unique way up to G-conjugation, i.e. we have
ψH(p) = ψH

′(p′) if and only if there exists g ∈ G such that Hg = H ′ and pg = p′.

In this description, the trivial subgroup H = 1 contributes the cohomological
open VG (since Ψ1 = Id). Its closed complement Supp(Kac(G)), introduced in (2.4),
is covered by images of the modular fixed-points maps (2.9), for H running through
all non-trivial p-subgroups of G. The main ingredient in proving Theorem 2.10 is
our Conservativity Theorem 6.12 on the associated big categories:

2.11. Theorem. The family of functors {T(G) ΨH−−→ T(G//H)�K Inj(k(G//H))}H ,
indexed by the (conjugacy classes of) p-subgroups H 6 G, is conservative.

This determines the set Spc(K(G)). The topology of Spc(K(G)) involves new
characters and we postpone its discussion to Part II.

Measuring progress by examples. Before the present work, we only knew the
case of cyclic group Cp of order p = 2, where Spc(K(C2)) is a 3-point space (1)

(2.12)
Supp(Kac(C2)) • •

• VC2

This was the starting point of our study of real Artin-Tate motives [BG22b, Theo-
rem 3.14]. It appears independently in Dugger-Hazel-May [DHM24, Theorem 5.4].

The present paper gives a description of Spc(K(G)) for arbitrary finite groups G.
We gather several examples in Section 8 to illustrate the progress made since (2.12),
and also for later use in [BG23b]. Let us highlight the case of the quaternion
group G = Q8 (Example 8.12). By Quillen, we know that the cohomological
open VQ8 is the same as for its center Z(Q8) = C2, that is, the 2-point Sierpiński
space displayed in green on the right-hand side of (2.12), and again below:

Supp(Kac(Q8))=? •
• VQ8

∼= VC2

If intuition was solely based on (2.12) one could believe that Spc(K(G)) is just VG
with some discrete decoration for the acyclics, like the single (brown) point on the
left-hand side of (2.12). The quaternion group offers a stark rebuttal.

1A line indicates specialization: The higher point is in the closure of the lower one.
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Indeed, the spectrum Spc(K(Q8)) is the following space:

(2.13)

• • • • • •
VQ8
∼= VC2

•

Supp(Kac(Q8))∼= Spc(K(C×2
2 ))

• • P
1
··· • • • •

•

Its support of acyclics (in brown) is actually way more complicated than the co-
homological open itself: It has Krull dimension two and contains a copy of the
projective line P1

k . In fact, the map ψC2 given by modular fixed-points identifies
the closed piece Supp(Kac(Q8)) with the whole spectrum for Q8/C2, which is a
Klein-four. We discuss the latter in Example 8.10 where we also explain the mean-
ing of P1··· and the undulated lines in (2.13).

3. Recollections and Koszul objects

3.1. Recollection. We refer to [Bal10b] for elements of tensor-triangular geometry.
Recall simply that the spectrum of an essentially small tt-category K is Spc(K) ={
P ( K

∣∣P is a prime tt-ideal
}
. For every object x ∈ K, its support is supp(x) :={

P ∈ Spc(K)
∣∣x /∈ P

}
. These form a basis of closed subsets for the topology.

3.2. Recollection. (Here k can be a commutative ring.) Recall our reference [BG21]
for details on permutation modules. Linearizing a G-set X, we let k(X) be the
free k-module with basis X and G-action k-linearly extending the G-action on X.
A permutation kG-module is a kG-module isomorphic to one of the form k(X).
These modules form an additive subcategory Perm(G; k) of Mod(kG), with all kG-
linear maps. We write perm(G; k) for the full subcategory of finitely generated
permutation kG-modules and perm(G; k)\ for its idempotent-completion.

We tensor kG-modules in the usual way, over k with diagonal G-action. The
linearization functor k(−) : G-Sets−→Perm(G; k) turns the cartesian product of
G-sets into this tensor product. For every finite X, the module k(X) is self-dual.

We consider the idempotent-completion (−)\ of the homotopy category of bounded
complexes in the additive category perm(G; k)

K(G) = K(G; k) := Kb(perm(G; k))\ ∼= Kb(perm(G; k)\).

As perm(G; k) is an essentially small tensor-additive category, K(G) becomes an
essentially small tensor triangulated category. As perm(G; k) is rigid so is K(G),
with degreewise duals. Its tensor-unit 1 = k is the trivial kG-module k = k(G/G).

The ‘big’ derived category of permutation kG-modules [BG21, Definition 3.6] is

DPerm(G; k) = K(Perm(G; k))
[
{G-quasi-isos}−1],

where a G-quasi-isomorphism f : P → Q is a morphism of complexes such that
the induced morphism on H-fixed points fH is a quasi-isomorphism for every sub-
group H 6 G. It is also the localizing subcategory of K(Perm(G; k)) generated
by K(G), and it follows that K(G) = DPerm(G; k)c.

3.3. Example. For G trivial, the category K(1; k) = Dperf(k) is that of perfect
complexes over k (any ring) and DPerm(1; k) is the derived category of k.
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3.4. Remark. The tt-category K(G) depends functorially on G and k. It is con-
travariant in the group. Namely if α : G→ G′ is a homomorphism then restriction
along α yields a tt-functor α∗ : K(G′) → K(G). When α is the inclusion of a
subgroup G 6 G′, we recover usual restriction

ResG
′

G : K(G′)→ K(G).

When α is a quotient G�G′ = G/N for N P G, we get inflation, denoted here (2)

InflG/NG : K(G/N ; k)→ K(G).

The covariance of K(G) in k is simply obtained by extension-of-scalars. All these
functors are the ‘compact parts’ of similarly defined functors on DPerm.

Let us say a word of kG-linear morphisms between permutation modules.

3.5. Recollection. Let H,K 6 G be subgroups. Then HomkG(k(G/H), k(G/K))
admits a k-basis {fg}[g] indexed by classes [g] ∈ H\G/K. Namely, choosing a
representative in each class [g] ∈ H\G/K, one defines

(3.6) fg : k(G/H) �
η
k(G/L) ∼→

cg
k(G/Lg) �

ε
k(G/K)

where we set L := H ∩ gK, where η and ε are the usual maps using that L 6 H and
Lg 6 K (thus η maps [e]H to

∑
γ∈H/L γ and ε extends k-linearly the projection

G/Lg�G/K), and finally where the middle isomorphism cg is

(3.7)
cg : k(G/L) // k(G/Lg)

[x]L � // [x · g]Lg .

This is a standard computation, using the adjunction IndGH a ResGH and the Mackey
formula for ResGH(k(G/K)) ' ⊕[g]∈H\G/K k(H/H ∩ gK).

We can now begin our analysis of the spectrum of the tt-category K(G).

3.8. Proposition. Let G 6 G′ be a subgroup of index invertible in k. Then the
map Spc(ResG

′

G ) : Spc(K(G))→ Spc(K(G′)) is surjective.

Proof. This is a standard argument. For a subgroup G 6 G′, the restriction functor
ResG

′

G has a two-sided adjoint IndG
′

G : K(G) → K(G′) such that the composite of
the unit and counit of these adjunctions Id → Ind Res → Id is multiplication by
the index. If the latter is invertible, it follows that ResG

′

G is a faithful functor. The
result now follows from [Bal18, Theorem 1.3]. �

3.9. Corollary. Let k be a field of characteristic zero and G be a finite group. Then
Spc(K(G)) = ∗ is a singleton.

Proof. Direct from Proposition 3.8 since Spc(K(1; k)) = Spc(Dperf(k)) = ∗. �

3.10. Remark. In view of these reductions, the fun happens with coefficients in a
field k of positive characteristic p dividing the order of G.

Let us now identify what the derived category tells us about Spc(K(G)).

2We avoid the traditional InflG
G/N

notation which is not coherent with the restriction notation.
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3.11. Notation. We can define a tt-ideal of K(G) = Kb(perm(G; k)\) by

Kac(G) :=
{
x ∈ K(G)

∣∣x is acyclic as a complex of kG-modules
}
.

It is the kernel of the tt-functor ΥG : K(G)→ Db(kG) := Db(mod(kG)) induced by
the inclusion perm(G; k)\ ↪→ mod(kG) of the additive category of p-permutation
kG-modules inside the abelian category of all finitely generated kG-modules.

3.12. Recollection. The canonical functor induced by ΥG on the Verdier quotient
K(G)
Kac(G) −→Db(kG)

is an equivalence of tt-categories. This is [BG23a, Theorem 5.13]. In other words,

(3.13) ΥG : K(G)�Db(kG)

realizes the derived category of finitely generated kG-modules as a localization
of our K(G), away from the Thomason subset Supp(Kac(G)) of (2.4). Following
Neeman-Thomason, the above localization (3.13) is the compact part of a finite lo-
calization of the corresponding ‘big’ tt-categories T(G)�K Inj(kG), the homotopy
category of complexes of injectives. See [BG22a, Remark 4.21]. We return to this
localization of big categories in Recollection 6.7.

We want to better understand the tt-ideal of acyclics Kac(G) and in particular
show that it has closed support.

3.14. Construction. Let H 6 G be a subgroup. We define a complex of kG-modules
by tensor-induction (recall Convention 1.8)

kos(H) = kosG(H) := ⊗IndGH(0→ k
1−→ k → 0)

where 0→ k
1−→ k → 0 is non-trivial in homological degrees 1 and 0; hence kos(H)

lives in degrees between [G :H] and 0. Since H acts trivially on k, the action of G
on kos(H) is the action of G by permutation of the factors ⊗G/H(0→ k

1−→ k → 0).
This can be described as a Koszul complex. For every 0 6 d 6 [G : H], the
complex kos(H) in degree d is the k-vector space Λd(k(G/H)) of dimension

([G:H]
d

)
.

If we choose a numbering of the elements of G/H = {v1, . . . , v[G:H]} then kos(H)d
has a k-basis

{
vi1 ∧ · · · ∧ vid

∣∣ 1 6 i1 < · · · < id 6 [G : H]
}
. The canonical

diagonal action of G permutes this basis but introduces signs when re-ordering the
vi’s so that indices increase. When p = 2 these signs are irrelevant. When p > 2,
every such ‘sign-permutation’ kG-module is isomorphic to an actual permutation
kG-module (by changing some signs in the basis, see [BG23a, Lemma 3.8]).

3.15. Proposition. Let H 6 G be a subgroup. Then kosG(H) is an acyclic com-
plex of finitely generated permutation kG-modules which is concentrated in degrees
between [G :H] and 0 and such that it is k in degree 0 and k(G/H) in degree 1.

Proof. See Construction 3.14. Exactness is obvious since the underlying complex of
k-modules is (0→ k → k → 0)⊗[G:H]. The values in degrees 0, 1 are immediate. �

3.16. Example. We have kosG(G) = 0 in K(G). The complex kosG(1) is an acyclic
complex of permutation modules that was important in [BG23a, § 3]:

kosG(1) = · · · 0 // Pn // · · · // P2 // kG // k // 0 · · ·



THE GEOMETRY OF PERMUTATION MODULES 13

3.17. Lemma. Let H P G be a normal subgroup and H 6 K 6 G. Then
kosG(K) ∼= InflG/HG (kosG/H(K/H)). In particular, kosG(H) ∼= InflG/HG (kosG/H(1)).

Proof. The construction of kosG(K) = ⊗G/K(0 → k
1−→ k → 0) depends only on

the G-set G/K which is inflated from the G/H-set (G/H)/(K/H). �

In fact, kosG(H) is not only exact. It is split-exact on H. More generally:

3.18. Lemma. For every subgroups H,K 6 G and every choice of representatives
in K\G/H, we have a non-canonical isomorphism of complexes of kK-modules

ResGK(kosG(H)) '
⊗

[g]∈K\G/H

kosK(K ∩ gH).

In particular, if K 6G H, we have ResGK(kosG(H)) = 0 in K(K).

Proof. By the Mackey formula for tensor-induction, we have in Chb(perm(K; k))

ResGK(kosG(H)) '
⊗

[g]∈K\G/H

⊗IndKK∩gH
(
gResHK∩gH(0→ k

1−→ k → 0)
)
.

The result follows since Res(0 → k
1−→ k → 0) = (0 → k

1−→ k → 0). If K 6G H,
the factor kosK(K) appears in the tensor product and kosK(K) = 0 in K(K). �

We record a general technical argument that we shall use a couple of times.

3.19. Lemma. Let A be a rigid tensor category and s = (· · · s2 → s1 → s0 → 0 · · · )
a complex concentrated in non-negative degrees. Let x ∈ Chb(A) be a bounded
complex such that s1⊗ x = 0 in Kb(A). Then there exists n� 0 such that s⊗n0 ⊗ x
belongs to the smallest thick subcategory 〈s〉′ of K(A) that contains s and is closed
under tensoring with Kb(A) ∪ {s} in K(A). In particular, if s ∈ Kb(A) is itself
bounded, then s⊗n0 ⊗ x belongs to the tt-ideal 〈s〉 generated by s in Kb(A).

Proof. Let u := s≥1[−1] be the truncation of s such that s = cone(d : u → s0).
Similarly we have u = cone(u≥1[−1] → s1). Note that u≥1 is concentrated in
positive degrees. Since x⊗ s1 = 0 we have u⊗ x ∼= u≥1 ⊗ x in K(A) and thus

u⊗n ⊗ x ∼= (u≥1)⊗n ⊗ x
for all n ≥ 0. For n large enough there are no non-zero maps of complexes from
(u≥1)⊗n⊗x to s⊗n0 ⊗x, simply because the former ‘moves’ further and further away
to the left and x is bounded. So d⊗n ⊗ x : u⊗n ⊗ x−→ s⊗n0 ⊗ x is zero in K(A).

Let L be the tt-subcategory of K(A) generated by Kb(A) ∪ {s}; then 〈s〉′ is a
tt-ideal in L, and similarly we write 〈cone(d⊗n)〉′ for the tt-ideal in L generated by
cone(d⊗n). By the argument above, we have s⊗n0 ⊗ x ∈ 〈cone(d⊗n)〉′ ⊆ 〈s〉′. �

3.20. Corollary. Let A be a rigid tensor category and I ⊆ Kb(A) a tt-ideal. Let
s ∈ I be a (bounded) complex concentrated in non-negative degrees such that
(1) supp(s0) ⊇ supp(I) in Spc(Kb(A)) (for instance if s0 = 1A), and
(2) supp(s1) ∩ supp(I) = ∅, meaning that s1 ⊗ x = 0 in Kb(A) for all x ∈ I.
Then s generates I as a tt-ideal in Kb(A), that is, supp(I) = supp(s) in Spc(Kb(A)).

Proof. Let x ∈ I. By (2), Lemma 3.19 gives us s⊗n0 ⊗ x ∈ 〈s〉 for n � 0. Hence
supp(s0) ∩ supp(x) ⊆ supp(s). By (1) we have supp(x) ⊆ supp(s0). Therefore
supp(x) = supp(s0) ∩ supp(x) ⊆ supp(s). In short x ∈ 〈s〉 for all x ∈ I. �
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We apply this to the object s = kosG(H) of Construction 3.14.

3.21. Proposition. For every subgroup H 6 G, the object kosG(H) generates the
tt-ideal Ker(ResGH) of K(G).

Proof. We apply Corollary 3.20 to I = Ker(ResGH) and s = kosG(H). We have s ∈ I

by Lemma 3.18. Conditions (1) and (2) hold since s0 = k and s1 = k(G/H) by
Proposition 3.15 and Frobenius gives s1⊗I = k(G/H)⊗I = IndGH ResGH(I) = 0. �

We can apply the above discussion to H = 1 and I = Ker(ResG1 ) = Kac(G).

3.22. Proposition. The tt-functor ΥG : K(G)�Db(kG) induces an open inclusion
υG : VG ↪→ Spc(K(G)) where VG = Spc(Db(kG)) ∼= Spech(H•(G, k)). The closed
complement of VG is the support of kosG(1) = ⊗IndG1 (0→ k

1−→ k → 0).

Proof. The homeomorphism Spc(Db(kG)) ∼= Spech(H•(G, k)) follows from the tt-
classification [BCR97]; see [Bal10b, Theorem 57]. By Recollection 3.12, the map
υG := Spc(ΥG) is a homeomorphism onto its image, and the complement of this
image is supp(Kac(G)) = supp(kosG(1)), by Proposition 3.21 applied to H = 1. In
particular, supp(Kac(G)) is a closed subset, not just a Thomason. �

3.23. Remark. The notation for the so-called cohomological open VG has been cho-
sen to evoke the classical projective support variety VG(k) = Proj(H•(G, k)) ∼=
Spc(stmod(kG)), which consists of VG without its unique closed point, H+(G; k).

We can also describe the kernel of restriction for classes of subgroups.

3.24. Corollary. For every collection H of subgroups of G, we have an equality of
tt-ideals in K(G) ⋂

H∈H

Ker(ResGH) =
〈 ⊗
H∈H

kosG(H)
〉
.

Proof. This is direct from Proposition 3.21 and the general fact that 〈x〉 ∩ 〈y〉 =
〈x⊗ y〉. (In the case of H = ∅, the intersection is K(G) and the tensor is 1.) �

4. Restriction, induction and geometric fixed-points

In the previous section, we saw how much of Spc(K(G)) comes from Db(kG).
We now want to discuss how much is controlled by restriction to subgroups, to see
how far the ‘standard’ strategy of [BS17] gets us.

4.1. Remark. The tt-categories K(G) and Db(kG), as well as the Weyl groups G//H
are functorial in G. To keep track of this, we adopt the following notational system.

Let α : G → G′ be a group homomorphism. We write α∗ : K(G′) → K(G) for
restriction along α, and similarly for α∗ : Db(kG′)→ Db(kG). When applying the
contravariant Spc(−), we simply denote Spc(α∗) by α∗ : Spc(K(G))→ Spc(K(G′))
and similarly for α∗ : VG → VG′ on the spectrum of derived categories.

As announced, Weyl groups G//H = (NGH)/H of subgroups H 6 G will play
a role. Since α(NGH) 6 NG′(α(H)), every homomorphism α : G → G′ induces a
homomorphism ᾱ : G//H → G′//α(H). Combining with the above, these homomor-
phisms ᾱ define functors ᾱ∗ and maps ᾱ∗. For instance, ᾱ∗ : VG//H → VG′//α(H) is
the continuous map induced on Spc(Db(k(−))) by ᾱ : G//H → G′//α(H).

Following tradition, we have special names when α is an inclusion, a quotient or
a conjugation. For the latter, we choose the lightest notation possible.
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(a) For conjugation, for a subgroupG 6 G′ and an element x ∈ G′, the isomorphism
cx : G ∼→ Gx induces a tt-functor c∗x : K(Gx) ∼→ K(G) and a homeomorphism

(−)x := (cx)∗ = Spc(c∗x) : Spc(K(G)) ∼ // Spc(K(Gx))
P

� // Px.

Note that if x = g ∈ G belongs to G itself, the functor c∗g : K(G) → K(G) is
isomorphic to the identity and therefore we get the useful fact that

(4.2) g ∈ G =⇒ Pg = P for all P ∈ Spc(K(G)).

Similarly we have a conjugation homeomorphism p 7→ px on the cohomological
opens VG

∼→ VGx , which is the identity if x ∈ G. When H 6 G is a further
subgroup then conjugation yields homeomorphisms VG//H

∼→ VGx//Hx still denoted
P 7→ Px. Again, if x = g ∈ NGH, so [g]H defines an element in G//H, the
equivalence (cg)∗ : Db(G//H) ∼→ Db(G//H) is isomorphic to the identity. Thus

(4.3) g ∈ NG(H) =⇒ pg = p for all p ∈ VG//H .

(b) For restriction, take α the inclusion K ↪→ G of a subgroup. We write

(4.4) ρK = ρGK := Spc(ResGK) : Spc(K(K))→ Spc(K(G))

and similarly for derived categories. When H 6 K is a subgroup, we write
ρ̄K : VK//H → VG//H for the map induced by restriction along K//H ↪→ G//H.
Beware that ρK is not necessarily injective, already on VK → VG, as ‘fusion’ phe-
nomena can happen: If g ∈ G normalizes K, then Q and Qg in VK have the same
image in VG by (4.2) but are in general different in VK .
(c) For inflation, let N P G be a normal subgroup and let α = proj : G�G/N be
the quotient homomorphism. We write

(4.5) πG/N = π
G/N
G := Spc(InflG/NG ) : Spc(K(G))→ Spc(K(G/N))

and similarly for derived categories. ForH 6 G a subgroup, we write π̄G/NG : VG//H →
V(G/N)//(HN/N) for the map induced by proj : G//H → (G/N)//(HN/N). (Note that
this homomorphism is not always surjective, e.g. with G = D8 and N ' C×2

2 .)

4.6. Recollection. One verifies that the ResGH a IndGH adjunction is monadic, see for
instance [Bal16, § 4], and that the associated monad AH ⊗ − is separable, where
AH := k(G/H) = IndGH k ∈ perm(G; k). The ring structure on AH is given by
the usual unit η : k → k(G/H), mapping 1 to

∑
γ∈G/H γ, and the multiplica-

tion µ : AH⊗AH → AH that is characterized by µ(γ⊗γ) = γ and µ(γ⊗γ′) = 0 for
all γ 6= γ′ in G/H. The ring AH is separable and commutative. The tt-category
Mod(AH) = ModK(G)(AH) of AH -modules in K(G) identifies with K(H), in such a
way that extension-of-scalars to AH (i.e. along η) coincides with restriction ResGH .
Similarly, extension-of-scalars along the isomorphism cg−1 : AHg

∼→ AH , being an
equivalence, is the inverse of its adjoint, that is ((cg−1)∗)−1 = c∗g, hence is the
conjugation tt-functor c∗g : K(Hg) ∼→ K(H) of Remark 4.1.

4.7. Proposition. The continuous map ρH : Spc(K(H)) → Spc(K(G)) of (4.4)
is a closed map and for every y ∈ K(H), we have ρH(supp(y)) = supp(IndGH(y))
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in Spc(K(G)). In particular, Im(ρH) = supp(k(G/H)). Moreover, there is a co-
equalizer of topological spaces (independent of the choices of representatives g)∐

[g]∈H\G/H

Spc(K(H ∩ gH)) ⇒ Spc(K(H)) ρH−−→ supp(k(G/H))

where the two left horizontal maps are, on the [g]-component, induced by the re-
striction functor and by conjugation by g followed by restriction, respectively.

Proof. We invoke [Bal16, Theorem 3.19]. In particular, we have a coequalizer
(4.8) Spc(Mod(AH ⊗AH))⇒ Spc(Mod(AH))→ supp(AH)
where the two left horizontal maps are induced by the canonical ring morphisms
AH⊗η and η⊗AH : AH → AH⊗AH . For any choice of representatives [g] ∈ H\G/H
the Mackey isomorphism ⊕

[g]∈H\G/H

AH∩gH
∼→ AH ⊗AH

maps [x]H∩gH to [x]H ⊗ [x · g]H . We can then plug this identification in (4.8). The
second homomorphism η ⊗ AH followed by the projection onto the factor indexed
by [g] becomes the composite AH

cg−1
−−−→ AgH

η
�AH∩gH . See Recollection 4.6. �

4.9. Corollary. For P,P′ ∈ Spc(K(H)) we have ρH(P) = ρH(P′) in Spc(K(G)) if
and only if there exists g ∈ G and Q ∈ Spc(K(H ∩ gH)) such that

P = ρHH∩gH(Q) and P′ =
(
ρ
gH
H∩gH(Q)

)g
using Remark 4.1 for the notation (−)g : Spc(K(gH)) ∼→ Spc(K(H)).

Proof. This is [Bal16, Corollary 3.12], which implies the set-theoretic part of the
coequalizer of Proposition 4.7. �

We single out a particular case.

4.10. Corollary. If H 6 Z(G) is central in G (for example, if G is abelian) then
restriction induces a closed immersion ρH : Spc(K(H)) ↪→ Spc(K(G)). �

4.11. Remark. In view of Proposition 4.7, the image of the map induced by restric-
tion Im(ρH) = supp(k(G/H)) coincides with the support of the tt-ideal generated
by IndGH(K(H)). Following the construction of the geometric fixed-points func-
tor ΦG : SHc(G)→ SHc in topology, we can consider the Verdier quotient

K̃(G) := K(G)
〈IndGH(K(H)) | H � G〉

obtained by modding-out, in tensor-triangular fashion, everything induced from all
proper subgroups H. This tt-category K̃(G) has a smaller spectrum than K(G),
namely the ‘geometric open’ of the preamble, the complement in Spc(K(G)) of the
closed subset ∪H�G Im(ρH) covered by proper subgroups. This method has worked
nicely in [BS17, BGH20, PSW22] because, in those instances, this Verdier quotient
is equivalent to the non-equivariant version of the tt-category under consideration.
However, this fails for K̃(G), for instance K̃(C2) is not equivalent to K(1) = Db(k):

SHc(G)
〈IndGH(SHc(H)) | H � G〉

∼= SHc but K(G)
〈IndGH(K(H)) | H � G〉

6∼= K(1).
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For small groups, for instance for cyclic p-groups Cpn , the tt-category K̃(G) is
reasonably complicated and one could still compute Spc(K(G)) through an analysis
of K̃(G). However, the higher the p-rank, the harder it becomes to control K̃(G).

One can already see the germ of the problem with G = C2, see (2.12):

Spc(K(C2)) =
M(C2) M(1)

P

We have given names to the three primes. The only proper subgroup is H = 1 and
the image of ρ1 = Spc(Res1) is simply the single closed point {M(1)} = supp(kC2).
Chopping off this induced part, leaves us with the open Spc(K̃(C2)) = {M(C2),P}.
So geometric fixed points ΦC2 : K(C2)→ K̃(C2) detects both of these points. (This
also proves that K̃(G) 6= K(1) = Db(k) since Db(k) would have only one point in its
spectrum.) However there is no need for a tt-functor detecting M(C2) and P again,
since P is already in the cohomological open VC2 detected by Db(kC2). In other
words, geometric fixed points see too much, not too little: The target category K̃(G)
is too complicated in general. And as the group grows, this issue only gets worse,
as the reader can check with Klein-four in Example 8.10.

In conclusion, we need tt-functors better tailored to the task, namely tt-functors
that detect just what is missing from VG. In the case of C2, we expect a tt-functor
to Db(k), to catch M(C2), but for larger groups the story gets more complicated
and involves more complex subquotients of G, as we explain in the next section.

5. Modular fixed-points functors

Motivated by Remark 4.11, we want to find a replacement for geometric fixed
points in the setting of modular representation theory. In a nutshell, our con-
struction amounts to taking classical Brauer quotients [Bro85, § 1] on the level of
permutation modules and then passing to the tt-categories K(G) and T(G). We
follow a somewhat different route than [Bro85] though, more in line with the con-
struction of the geometric fixed-points discussed in Remark 4.11. We hope some
readers will benefit from our exposition.

It is here important that char(k) = p is positive.

5.1. Warning. A tt-functor ΨH : K(G)→ K(G//H) such that ΨH(k(X)) ∼= k(XH),
as in (2.6), cannot exist unless H is a p-subgroup. Indeed, if P 6 G is a p-Sylow
then since [G :P ] is invertible in k, the unit 1 = k is a direct summand of k(G/P )
in K(G). A tt-functor ΨH cannot map 1 to zero. Thus ΨH(k(G/P )) = k((G/P )H)
must be non-zero, forcing (G/P )H 6= ∅. If [g] ∈ G/P is fixed by H then Hg 6 P
and therefore H must be a p-subgroup. (If char(k) = 0 this would force H = 1.)

5.2. Recollection. A collection F of subgroups of G is called a family if it is closed
under conjugation and subgroups. For instance, given H 6 G, we have the family

FH =
{
K 6 G

∣∣ (G/K)H = ∅
}

=
{
K 6 G

∣∣H 66G K
}
.

For N P G a normal subgroup, it is FN =
{
K 6 G

∣∣N 66 K }.
In view of Warning 5.1, we must focus attention on p-subgroups. The following

standard lemma would not be true without the characteristic p hypothesis.
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5.3. Lemma. Let N P G be a normal p-subgroup. Let H,K 6 G be subgroups such
that N 6 H and N 66 K. Then every kG-linear homomorphism that factors as
f : k(G/H) `−→ k(G/K) m−→ k must be zero.

Proof. By Recollection 3.5 and k-linearity, we can assume that m is the augmen-
tation and that ` = ε ◦ cg ◦ η as in (3.6), where g ∈ G is some element, where we
set L = H ∩ gK and where ε : k(G/Lg)� k(G/K), cg : k(G/L) ∼→ k(G/Lg) and
η : k(G/H)� k(G/L) are the usual maps, using L 6 H and Lg 6 K. The compos-
ite m ◦ ε ◦ cg is an augmentation map again, hence our map f is the composite

f : k(G/H)
η
� k(G/L)

ε
� k.

So f maps [e]H to
∑
γ∈H/L 1 = |H/L| in k. Now, the p-group N 6 H acts on the

set H/L by multiplication on the left. This action has no fixed point, for otherwise
we would have N 6H L 6G K and thus N 6 K, a contradiction. Therefore the
N -set H/L has order divisible by p. So |H/L| = 0 in k and f = 0 as claimed. �

5.4. Proposition. Let N P G be a normal p-subgroup. Then the permutation
category of the quotient G/N is an additive quotient of the permutation category
of G. More precisely, consider proj(FN ) = add\

{
k(G/K)

∣∣K ∈ FN
}
, the closure

of
{
k(G/K)

∣∣N 66 K } under direct sum and summands in perm(G; k)\. Consider
the additive quotient of perm(G; k)\ by this ⊗-ideal. (3) Then the composite

(5.5) perm(G/N ; k)\ //
InflG/N

G // perm(G; k)\ quot
// // perm(G;k)\

proj(FN )

is an equivalence of tensor categories.

Proof. By the Mackey formula and since FN is a family, proj(FN ) is a tensor ideal,
hence quot is a tensor-functor. Inflation InflG/NG : perm(G/N ; k)\ → perm(G; k)\ is
also a tensor-functor. It is moreover fully faithful with essential image the subcat-
egory add\

{
k(G/H)

∣∣N 6 H }. So we need to show that the composite

add\
{
k(G/H)

∣∣N 6 H } ↪→ perm(G; k)\� perm(G; k)\

add\
{
k(G/K)

∣∣N 66 K }
is an equivalence. Both functors in the composite are full. The composite is faithful
by Lemma 5.3, rigidity, additivity and the Mackey formula. Essential surjectivity is
then easy (idempotent-completion is harmless since the functor is fully-faithful). �

5.6. Construction. Let N P G be a normal p-subgroup. The composite of the
additive quotient functor with the inverse of the equivalence of Proposition 5.4
yields a tensor-functor on the categories of p-permutation modules

(5.7) ΨN : perm(G; k)\� perm(G; k)\

proj(FN )
∼→ perm(G/N ; k)\.

Applying the above degreewise, we get a tt-functor on homotopy categories Kb(−)

ΨN = ΨN ;G : K(G)−→K(G/N).

3Keep the same objects as perm(G; k)\ and define Hom groups by modding out all maps that
factor via objects of proj(FN ), as in the ordinary construction of the stable module category.
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5.8. Remark. Following up on Remark 4.11, we have constructed ΨN by modding-
out in additive fashion this time, everything induced from subgroups not contain-
ing N . We did it on the ‘core’ additive category and only then passed to homotopy
categories. Such a construction would not make sense on bounded derived cate-
gories, as ΨN has no reason to preserve acyclic complexes.

The classical Brauer quotient seems different at first sight. It is typically defined
at the level of individual kG-modules M by a formula like

(5.9) coker
(
⊕Q�N MQ

(TrNQ )Q−−−−−→MN
)
.

A priori, this definition uses the ambient abelian category of modules and one
then needs to verify that it preserves permutation modules, the tensor structure,
etc. Our approach is a categorification of (5.9): Proposition 5.4 recovers the cate-
gory perm(G/N ; k)\ as a tensor-additive quotient of perm(G; k)\, at the categorical
level, not at the individual module level. Amusingly, one can verify that it yields
the same answer (Proposition 5.12) – a fact that we shall not use at all.

We relax the condition that the p-subgroup is normal in the standard way.
5.10. Definition. Let H 6 G be an arbitrary p-subgroup. We define the modular
(or Brauer) H-fixed-points functor by the composite

ΨH;G : K(G)
ResGNGH−−−−−→ K(NGH) ΨH;NGH

−−−−−−→ K(G//H)
where NGH is the normalizer of H in G and G//H = (NGH)/H its Weyl group.
The second functor comes from Construction 5.6. Note that ΨH;G is computed
degreewise, applying the functors ResGNGH and ΨH;NGH at the level of perm(−; k)\.
5.11. Remark. We prefer the phrase ‘modular fixed-points’ to ‘Brauer fixed-points’,
out of respect for L. E. J. Brouwer and his fixed points. It also fits nicely in the
flow: naive fixed-points, geometric fixed-points, modular fixed-points. Finally, the
phrase ‘Brauer quotient’ would be unfortunate, as ΨH : K(G)→ K(G//H) is not a
quotient of categories in any reasonable sense.

Let us verify that our ΨH linearize the H-fixed-points of G-sets, as promised.
5.12. Proposition. Let H 6 G be a p-subgroup. The following square commutes
up to isomorphism:

G-sets
k(−)

//

(−)H

��

perm(G; k)\ �
�

//

ΨH
��

K(G)

ΨH

��

(G//H)-sets
k(−)

// perm(G//H; k)\ �
�

// K(G//H).

In particular, for every K 6 G, we have an isomorphism of k(G//H)-modules
(5.13) ΨH(k(G/K)) ∼= k((G/K)H) = k(NG(H,K)/K).
This module is non-zero if and only if H is subconjugate to K in G.
Proof. We only need to prove the commutativity of the left-hand square. As re-
striction to a subgroup commutes with linearization, we can assume that H P G
is normal. Let X be a G-set. Consider its G-subset XH (which is truly inflated
from G/H). Inclusion yields a morphism in perm(G; k), natural in X,
(5.14) fX : k(XH)→ k(X).
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We claim that this morphism becomes an isomorphism in the quotient perm(G;k)\
proj(FH) .

By additivity, we can assume that X = G/K for K 6 G. It is a well-known exercise
that (G/K)H = NG(H,K)/K, which in the normal case H P G boils down to G/K
or ∅, depending on whether H 6 K or not, i.e. whether K /∈ FH or K ∈ FH . In
both cases, fX becomes an isomorphism (an equality or 0 ∼→ k(G/K), respectively)
in the quotient by proj(FH). Hence the claim.

Let us now discuss the commutativity of the following diagram

G-sets
k(−)

//

(−)H

��

perm(G; k)\
quot

'' ''

perm(G; k)\

ΨH(Def. 5.10)

��

perm(G; k)\ quot
// // perm(G;k)\

proj(F)

G/H-sets
k(−)

// perm(G/H; k)\

InflG/H
G

OO

∼=

(Cor. 5.4)
77

perm(G/H; k)\

The module k(XH) in (5.14) can be written more precisely as k(InflG/HG (XH)) ∼=
InflG/HG k(XH). So the first part of the proof shows that the left-hand ‘hexagon’ of
the diagram commutes, i.e. the two functors G-sets → perm(G;k)\

proj(F) are isomorphic.
The result follows by definition of ΨH , recalled on the right-hand side. �

Here is how modular fixed points act on restriction.

5.15. Proposition. Let α : G→ G′ be a homomorphism and H 6 G a p-subgroup.
Set H ′ = α(H) 6 G′. Then the following square commutes up to isomorphism

K(G′) α∗ //

ΨH
′,G′

��

K(G)

ΨH;G

��

K(G′//H ′) ᾱ∗ // K(G//H).

Proof. Exercise. This already holds at the level of perm(−; k)\. �

5.16. Corollary. Let N P G be a normal p-subgroup. Then the composite functor
ΨN ◦ InflG/NG : K(G/N)→ K(G)→ K(G/N) is isomorphic to the identity. Conse-
quently, the map Spc(ΨH) is a split injection retracted by Spc(InflG/HG ).

Proof. Apply Proposition 5.15 to α : G�G/N and H = N , and thus H ′ = 1. The
second statement is just contravariance of Spc(−). �

Composition of two ‘nested’ modular fixed-points functors almost gives another
modular fixed-points functor. We only need to beware of Weyl groups.

5.17. Proposition. Let H 6 G be a p-subgroup and K̄ = K/H a p-subgroup
of G//H, for H 6 K 6 NGH. Then there is a canonical inclusion

(G//H)//K̄ = (NG//HK̄)/K̄ ↪→ (NGK)/K = G//K
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and the following square commutes up to isomorphism

K(G) ΨH;G
//

ΨK;G

��

K(G//H)

ΨK̄;G//H

��

K(G//K) Res // K
(
(G//H)//K̄

)
.

Proof. The inclusion comes from NNG(H)K ↪→ NGK and the rest is an exercise.
Again, everything already holds at the level of perm(−; k)\. �

5.18. Corollary. Let H 6 K 6 G be two p-subgroups with H P G normal. Then
(G/H)//(K/H) ∼= G//K and the following diagram commutes up to isomorphism

K(G) ΨH;G
//

ΨK;G
&&

K(G/H)

ΨK/H;G/H

��

K
(
G//K

)
.

Proof. The surjectivity of the canonical inclusion G/H//(K/H) ↪→ G//K of Propo-
sition 5.17 holds since H is normal in G. The result follows. �

5.19. Remark. We have essentially finished the proof of Proposition 2.7. It only
remains to verify that there are variants of the constructions and results of this
section for the big categories of Recollection 3.2. For a normal p-subgroup N P G,
the canonical functor on big additive categories

(5.20) Add\(
{
k(G/H)

∣∣N 6 H })→ Perm(G; k)\

Proj(FN )
is an equivalence of tensor categories, where

Proj(FN ) = Add\
{
k(G/K)

∣∣N 66 K }
is the closure of proj(FN ) under coproducts and summands. Since the tensor prod-
uct commutes with coproducts, Proj(FN ) is again a⊗-ideal in Perm(G; k)\. Fullness
and essential surjectivity of (5.20) are easy, and faithfulness reduces to the finite
case by compact generation. (A map f : P → Q in Perm(G; k) is zero if and only if
all composites P ′ α−→ P

f−→ Q are zero, for P ′ finitely generated. Such a composite
necessarily factors through a finitely generated direct summand of Q, etc.) As a
consequence, the analogue of Proposition 5.4 also holds for big categories.

Let us write S(G) for K(Perm(G; k)) = K(Perm(G; k)\), which is a compactly
generated tt-category with compact unit. (Compactly generated is not obvious:
see [BG21, Remark 5.12].) By the above discussion, the modular fixed-points func-
tor with respect to a p-subgroup H 6 G extends to the big categories S(−):

ΨH = ΨH;G : S(G)
ResGNGH−−−−−→ S(NGH)→ K

(
Perm(NGH; k)

Proj(FH)

)
InflG//H

NGH←−−−−−
∼

S(G//H).

Note that ΨH is a tensor triangulated functor that commutes with coproducts and
that maps K(G) into K(G//H). It follows that it restricts to ΨH : DPerm(G; k)→
DPerm(G//H; k). The analogues of Propositions 5.12, 5.15 and 5.17 and Corollar-
ies 5.16 and 5.18 all continue to hold for both S(−) and DPerm(−; k).
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This finishes our exposition of modular fixed-points functors ΨH on derived cate-
gories of permutation modules. We now start using them to analyze the tt-geometry.
First, we apply them to the Koszul complexes kosG(K) of Construction 3.14.

5.21. Lemma. Let H,K 6 G be two subgroups, with H a p-subgroup.
(a) If H 66G K, then ΨH(kosG(K)) generates K(G//H) as a tt-ideal.
(b) If H 6G K, then ΨH(kosG(K)) is acyclic in K(G//H).
(c) If H ∼G K, then ΨH(kosG(K)) generates Kac(G//H) as a tt-ideal.

Proof. For (a), we have NG(H,K) = ∅ and thus ΨH(k(G/K)) = 0 by Proposi-
tion 5.12. It follows that ΨH(kosG(K)) = (· · · → ∗ → 0 → k → 0) by Proposi-
tion 3.15. Thus the ⊗-unit 1K(G//H) = k[0] is a direct summand of ΨH(kosG(K)).

For (b) and (c), by invariance under conjugation, we can assume that H 6 K.
Let N := NGH be the normalizer of H. We have by Lemma 3.18 that

(5.22) ΨH;G(kosG(K)) = ΨH;N ResGN (kosG(K)) '
⊗

[g]∈N\G/K

ΨH;N( kosN (N∩gK)
)
.

For the index g = e (or simply g ∈ NGK), we can use H P N ∩K and compute

ΨH;N (kosN (N ∩K)) ∼= ΨH;N (InflN/HN kosN/H((N ∩K)/H)) by Lemma 3.17
∼= kosN/H((N ∩K)/H) by Corollary 5.16.

As this object is acyclic inK(N/H) so is the tensor in (5.22). Hence (b). Continuing
in the special case (c) with H = K, we have (N ∩ K)/H = 1 and the above
kosN/H(1) generates Kac(N/H) by Proposition 3.21. It suffices to show that all
the other factors in the tensor product (5.22) generate the whole K(G//H). This
follows from Part (a) applied to the group N ; indeed when g ∈ G r N we have
H 66N N ∩ gH (as H 6N N ∩ gH and H P N would imply H = gH). �

6. Conservativity via modular fixed-points

In this section, we explain why the spectrum of K(G) is controlled by modular
fixed-points functors ΨH together with the localizations ΥG : K(G)�Db(kG). It
stems from a conservativity result on the ‘big’ category T(G) = DPerm(G; k),
namely Theorem 6.12, for which we need some preparation.

6.1. Lemma. Suppose that G is a p-group. Let H 6 G be a subgroup and let Ḡ =
G//H be its Weyl group. The modular H-fixed-points functor ΨH : perm(G; k)\ →
perm(Ḡ; k)\ induces a ring homomorphism
(6.2) ΨH : EndkG(k(G/H))−→EndkḠ(k(Ḡ)).
This homomorphism is surjective with nilpotent kernel: (ker(ΨH))n = 0 for n� 1.
More precisely, it suffices to take n ∈ N such that Rad(kG)n = 0.

Proof. The reader can check this with Brauer quotients. We outline the argument.
By (5.13) we have ΨH(k(G/H)) ∼= k(NG(H,H)/H) = k(Ḡ), so the problem is well-
stated. Recollection 3.5 provides k-bases for both vector spaces in (6.2), namely

{ fg = ε ◦ cg ◦ η }[g]∈H\G/H and { cḡ }ḡ∈Ḡ
using the notation of (3.6) and (3.7). The homomorphism ΨH in (6.2) respects
those bases. Even better, it is a bijection from the part of the first basis indexed
by H\(NGH)/H onto the second basis, and it maps the rest of the first basis to
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zero. Indeed, when g ∈ NGH, we have fg = cg and ΨH(fg) = ΨH(cg) = cḡ
for ḡ = [g]H . On the other hand, when g ∈ G r NGH then ΨH(fg) = 0, by
the factorization (3.6) and the fact that ΨH(k(G/L)) = 0 for L = H ∩ gH with
g /∈ NGH, using again (5.13). Hence (6.2) is surjective and ker(ΨH) has basis {fg =
ε◦ cg ◦η}[g]∈H\G/H, g/∈NGH . One easily verifies that such an fg has image contained
in Rad(kG) · k(G/H), using that H ∩ gH is strictly smaller than H. Composing n
such generators fg1 ◦ · · · ◦ fgn then maps k(G/H) into Rad(kG)n · k(G/H) which
is eventually zero for n� 1, since G is a p-group. �

We now isolate a purely additive result that we shall of course apply to the case
where Ψ is a modular fixed-points functor.

6.3. Lemma. Let Ψ: A → D be an additive functor between additive categories.
Let B,C ⊆ A be full additive subcategories such that:
(1) Every object of A decomposes as B ⊕ C with B ∈ B and C ∈ C.
(2) The functor Ψ vanishes on C, that is, Ψ(C) = 0.
(3) The restricted functor Ψ�B : B→ D is full with nilpotent kernel. (4)
Let X ∈ Ch(A) be a complex such that Ψ(X) is contractible in Ch(D). Then X is
homotopy equivalent to a complex in Ch(C).

Proof. Decompose every Xi = Bi ⊕ Ci in A, using (1), for all i ∈ Z. We are going
to build a complex on the objects Ci in such a way that X• becomes homotopy
equivalent to C• in Ch(A\), where A\ is the idempotent-completion of A. As
both X• and C• belong to Ch(A), this proves the result. By (2), the complex
· · · → Ψ(Bi) → Ψ(Bi−1) → · · · is isomorphic to Ψ(X), hence it is contractible.
So each Ψ(Bi) decomposes in D\ as Di ⊕Di−1 in such a way that the differential
Ψ(Bi) = Di ⊕Di−1−→Ψ(Bi−1) = Di−1 ⊕Di−2 is just ( 0 1

0 0 ). Since Ψ�B : B → D

is full with nilpotent kernel by (3), we can lift idempotents. In other words, we can
decompose each Bi in the idempotent-completion B\ (hence in A\) as

Bi ' B′i ⊕B′′i
with Ψ(B′i) ' Di and Ψ(B′′i ) ' Di−1 in a compatible way with the decomposition
in D\. This means that when we write the differentials in X in components in A\

· · · → Xi = B′i ⊕B′′i ⊕ Ci

(
∗ bi ∗
∗ ∗ ∗
∗ ∗ ∗

)
−−−−−−→ Xi−1 = B′i−1 ⊕B′′i−1 ⊕ Ci−1 → · · ·

the component bi : B′′i → B′i−1 maps to the isomorphism Ψ(B′′i ) ' Di−1 ' Ψ(B′i−1)
in D\. Hence bi is already an isomorphism in B\ by (3) again. (Note that (3) passes
to B\ → D\.) Using elementary operations on Xi and Xi−1 we can replace X by
an isomorphic complex in A\ of the form

(6.4) · · · → Xi+1 → B′i ⊕B′′i ⊕ Ci

( 0 bi 0
∗ 0 ∗
∗ 0 ∗

)
−−−−−−→ B′i−1 ⊕B′′i−1 ⊕ Ci−1 → Xi−2 → · · ·

This being a complex forces the ‘previous’ differential Xi+1 → Xi to be of the
form

( ∗ ∗ ∗
0 0 0
∗ ∗ ∗

)
and the ‘next’ differential Xi−1 → Xi−2 to be of the form

(
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

)
.

We can then remove from X a direct summand in Ch(A\) that is a homotopically
trivial complex of the form · · · 0→ B′′i

∼→ B′i−1 → 0 · · · .

4There exists n� 1 such that if n composable morphisms f1, . . . , fn in B all go to zero in D

under Ψ then their composite fn ◦ · · · ◦ f1 is zero in B.
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The reader might be concerned about how to perform this reduction in all de-
grees at once, since we do not put boundedness conditions on X (thus preventing
the ‘obvious’ induction argument). The solution is simple. Do the above for all
differentials in even indices i = 2j. By elementary operations on X2j and X2j−1
for all j ∈ Z, we can replace X up to isomorphism into a complex whose even
differentials are of the form (6.4). We then remove the contractible complexes
· · · 0 → B′′2j

∼→ B′2j−1 → 0 · · · . We obtain in this way a homotopy equivalent
complex in A\ that we call X̃, where B′i, B′′i ∈ B\ and Ci ∈ C

(6.5) · · · → B′′2j+1 ⊕ C2j+1
( a2j+1 ∗
∗ ∗ )−−−−−−−→ B′2j ⊕ C2j

( ∗ ∗∗ ∗ )−−−−→ B′′2j−1 ⊕ C2j−1 → · · ·

in which the even differentials go to zero under Ψ, by the above construction.
In particular the homotopy trivial complex Ψ(X̃) ' Ψ(X) in D\ has the form
· · · 0−→ Ψ(B′′2j+1) Ψ(a2j+1)−−−−−−→ Ψ(B′2j)

0−→ · · · hence its odd-degree differentials Ψ(a2j+1)
are isomorphisms. It follows that a2j+1 : B′′2j+1 → B′2j is itself an isomorphism
by (3) again. Using new elementary operations (again in all degrees), we change
the odd-degree differentials of the complex X̃ in (6.5) into diagonal ones and we
remove the contractible summands 0 → B′′2j+1

∼→ B′2j → 0 as before, to get a
complex consisting only of the Ci in each degree i ∈ Z. In summary, we have
shown that X is homotopy equivalent to a complex C ∈ Ch(C) inside Ch(A\), as
announced. �

6.6. Remark. Of course, it would be silly to discuss conservativity of the functors
{ΨH}H6G since among them we find Ψ1 = Id. The interesting result appears when
each ΨH is used in conjunction with the derived category of G//H, or, in ‘big’ form,
its homotopy category of injectives. Let us remind the reader.

6.7. Recollection. In [BG22a], we prove that the homotopy category of injective RG-
modules, with coefficients in any regular ring R (e.g. our field k), is a localization
of DPerm(G;R). In our case, we have an inclusion JG : K Inj(kG) ↪→ DPerm(G; k),
inside K(Perm(G; k)), and this inclusion admits a left adjoint ΥG

(6.8)

DPerm(G; k)

ΥG
����

K Inj(kG).
OO
JG

OO

This realizes the finite localization of DPerm(G; k) with respect to the subcate-
goryKac(G) ⊆ K(G) = DPerm(G; k)c. In particular, ΥG preserves compact objects
and yields the equivalence ΥG : K(G)/Kac(G) ∼= Db(kG) ∼= K Inj(kG)c of (3.13),
also denoted ΥG for this reason. Note that ΥG◦JG ∼= Id as usual with localizations.

Let P 6 G be a subgroup. Observe that induction IndGP preserves injectives so
that JG ◦ IndGP ∼= IndGP ◦JP . Taking left adjoints, we see that

(6.9) ResGP ◦ΥG
∼= ΥP ◦ ResGP .

6.10. Notation. For each p-subgroup H 6 G, we are interested in the composite

Ψ̌H = Ψ̌H;G : DPerm(G; k) ΨH;G
// DPerm(G//H; k)

ΥG//H
// // K Inj(k(G//H))
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of the modular H-fixed-points functor followed by localization to the homotopy
category of injectives (6.8). We use the same notation on compacts

(6.11) Ψ̌H = Ψ̌H;G : K(G; k) ΨH;G
// K(G//H; k)

ΥG//H
// // Db(k(G//H)).

We are now ready to prove the first important result of the paper.

6.12. Theorem (Conservativity). Let G be a finite group. The above family of
functors Ψ̌H : T(G) → K Inj(k(G//H)), indexed by all the (conjugacy classes of)
p-subgroups H 6 G, collectively detects vanishing of objects of DPerm(G; k).

Proof. Let P 6 G be a p-Sylow subgroup. For every subgroup H 6 P , we
have P//H ↪→ G//H and Ψ̌H;P ◦ ResGP can be computed as ResG//HP//H ◦Ψ̌

H;G thanks
to Proposition 5.15 and (6.9). On the other hand, ResGP is (split) faithful, as
IndGP ◦ResGP admits the identity as a direct summand. Hence it suffices to prove
the theorem for the group P , i.e. we can assume that G is a p-group.

Let G be a p-group and F be a family of subgroups (Recollection 5.2). We
say that a complex X in Ch(Perm(G; k)) is of type F if every Xi is F-free, i.e. a
coproduct of k(G/K) for K ∈ F. So every complex is of type Fall = {all H 6 G}.
Saying that X is of type F1 = ∅ means X = 0. We want to prove that if X defines
an object in DPerm(G; k) and Ψ̌H(X) = 0 for all H 6 G then X is homotopy
equivalent to a complex X ′ of type F1 = ∅. We proceed by a form of ‘descending
induction’ on F. Namely, we prove:
Claim: Let X ∈ DPerm(G; k) be a complex of type F for some family F and let
H ∈ F be a maximal element of F for inclusion. If Ψ̌H(X) = 0 then X ∼= X ′ is
homotopy equivalent to a complex X ′ ∈ Ch(Perm(G; k)) of type F′ $ F.

By the above discussion, proving this claim proves the theorem. Explicitly, we
are going to prove this claim for F′ = F ∩ FH , that is, F with all conjugates of H
removed. By maximality of H in F, every K ∈ F is either conjugate to H or in F′.
Of course, for H ′ conjugate to H we have k(G/H ′) ' k(G/H) in Perm(G; k).

We apply Lemma 6.3 for A = Add
{
k(G/K)

∣∣K ∈ F
}
, B = Add(k(G/H)), C =

Add
{
k(G/K)

∣∣K ∈ F′
}
, D = Perm(G//H; k) and the functor Ψ = ΨH naturally.

Let us check the hypotheses of Lemma 6.3. Regrouping the terms k(G/K) into those
for which K is conjugate to H and those not conjugate to H, we get Hypothesis (1).
Hypothesis (2) follows immediately from (5.13) since (G/K)H = ∅ for every K ∈
F′. Finally, Hypothesis (3) follows from Lemma 6.1 and additivity. So it remains
to show that ΨH(X) is contractible. Since X is of type F and H is maximal, we
see that ΨH(X) ∈ Ch(Inj(k(G//H))) and applying ΥG//H gives the same complex
(up to homotopy). In other words, Ψ̌H(X) = 0 forces ΨH(X) to be contractible
and we can indeed get the above Claim from Lemma 6.3. �

7. The spectrum as a set

In this section, we obtain the description of all points of Spc(K(G)), as well as
some elements of its topology. We start with a general fact, which is now folklore.

7.1. Proposition. Let F : T → S be a coproduct-preserving tt-functor between ‘big’
tt-categories. Suppose that F is conservative. Then F detects ⊗-nilpotence of mor-
phisms f : x → Y in T, whose source x ∈ Tc is compact, i.e. if F (f) = 0 in S
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then there exists n � 1 such that f⊗n = 0 in T. In particlar, F : Tc → Sc detects
nilpotence of morphisms and therefore Spc(F ) : Spc(Sc)→ Spc(Tc) is surjective.

Proof. Using rigidity of compacts, we can assume that x = 1. Given a morphism
f : 1→ Y we can construct in T the homotopy colimit Y∞ := hocolimn Y

⊗n under
the transition maps f ⊗ id : Y ⊗n → Y ⊗(n+1). Let f∞ : 1 → Y∞ be the resulting
map. Now since F (f) = 0 it follows that F (Y∞) = 0 in S, as it is a sequential
homotopy colimit of zero maps. By conservativity of F , we get Y∞ = 0 in T. Since
1 is compact, the vanishing of f∞ : 1 → hocolimY ⊗n must already happen at a
finite stage, that is, the map f⊗n : 1 → Y ⊗n is zero for n � 1, as claimed. The
second statement follows from this, together with [Bal18, Theorem 1.4]. �

Combined with our Conservativity Theorem 6.12 we get:

7.2. Corollary. The family of functors Ψ̌H : K(G) → Db(k(G//H)), indexed by
conjugacy classes of p-subgroups H 6 G, detects ⊗-nilpotence. So the induced map∐

H∈Subp(G)

Spc(Db(k(G//H)))�Spc(K(G))

is surjective. �

7.3. Definition. Let H 6 G be a p-subgroup. We write (under Convention 1.8)
ψH = ψH;G := Spc(ΨH) : Spc(K(G//H))→ Spc(K(G))

for the map induced by the modular H-fixed-points functor. We write
ψ̌H = ψ̌H;G := Spc(Ψ̌H) : Spc(Db(G//H))→ Spc(K(G))

for the map induced by the tt-functor Ψ̌H = ΥG//H ◦ΨH of (6.11). In other words,
ψ̌H is the composite of the inclusion of Proposition 3.22 with the above ψH

ψ̌H : VG//H = Spc(Db(k(G//H)))
υG//H
↪→ Spc(K(G//H)) ψH−−→ Spc(K(G)).

7.4. Definition. Let H 6 G be a p-subgroup and p ∈ VG//H a ‘cohomological’ prime
over the Weyl group of H in G. We define a point in Spc(K(G)) by

P(H, p) = PG(H, p) := ψ̌H(p) = (Ψ̌H)−1(p).
Corollary 7.2 tells us that every point of Spc(K(G)) is of the form P(H, p) for some
p-subgroup H 6 G and some cohomological point p ∈ VG//H . Different subgroups
and different cohomological points can give the same P(H, p). See Theorem 7.16.

7.5. Remark. Although we shall not use it, we can unpack the definitions of PG(H, p)
for the nostalgic reader. Let us start with the bijection VG = Spc(Db(kG)) ∼=
Spech(H•(G, k)). Let p• ⊂ H•(G; k) = End•Db(kG)(1) be a homogeneous prime ideal
of the cohomology. The corresponding prime p in Db(kG) can be described as

p =
{
x ∈ Db(kG)

∣∣∃ ζ ∈ H•(G; k) such that ζ /∈ p• and ζ ⊗ x = 0
}
.

Consequently, the prime PG(H, p) of Definition 7.4 is equal to{
x ∈ K(G)

∣∣∃ ζ ∈ H•(G//H; k)r p• such that ζ ⊗ΨH(x) = 0 in Db(k(G//H))
}
.

7.6. Remark. By Proposition 5.15 and functoriality of Spc(−), the primes PG(H, p)
are themselves functorial in G. To wit, if α : G → G′ is a group homomorphism
and H is a p-subgroup of G then α(H) is a p-subgroup of G′ and we have
(7.7) α∗(PG(H, p)) = PG′(α(H), ᾱ∗p)
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in Spc(K(G′)), where α∗ : Spc(K(G)) → Spc(K(G′)) and ᾱ∗ : VG//H → VG′//α(H)
are as in Remark 4.1. We single out the usual suspects. Fix H 6 G a p-subgroup.
(a) For conjugation, let G 6 G′ and x ∈ G′. We get PG(H, p)x = PGx(Hx, px) for
every p ∈ VG//H . In particular, when x belongs to G itself, we get by (4.2)
(7.8) g ∈ G =⇒ PG(H, p) = PG(Hg, pg).
(b) For restriction, let K 6 G be a subgroup containing H and let p ∈ VK//H be a
cohomological point over the Weyl group of H in K. Then we have
(7.9) ρK(PK(H, p)) = PG(H, ρ̄K(p)),
in Spc(K(G)), where the maps ρK = (ResGK)∗ : Spc(K(K)) → Spc(K(G)) and
ρ̄K : VK//H → VG//H are spelled out around (4.4).
(c) For inflation, let N P G be a normal subgroup. Set Ḡ = G/N and H̄ = HN/N .
Then for every p ∈ VG//H , we have

(7.10) πḠ (PG(H, p)) = PḠ(H̄, πḠ p),

in Spc(K(Ḡ)), where the maps πḠ = (InflḠG)∗ : Spc(K(G)) → Spc(K(Ḡ)) and
π̄Ḡ : VG//H → VḠ//H̄ are spelled out around (4.5).

Our primes also behave nicely under modular fixed-points maps:

7.11. Proposition. Let H 6 G be a p-subgroup and let H 6 K 6 NGH defining a
‘further’ p-subgroup K/H 6 G//H. Then for every p ∈ V(G//H)//(K/H), we have

ψH;G(PG//H(K/H, p)) = PG(K, ρ̄(p))

in Spc(K(G)), where ρ̄ = Spc(ResG//K(G//H)//(K/H)) : V(G//H)//(K/H)−→VG//K . In par-
ticular, if H P G is normal, we have

ψH;G(PG/H(K/H, p)) = PG(K, p)
in Spc(K(G)), using that p ∈ V(G/H)//(K/H) = VG//K .

Proof. This is immediate from Proposition 5.17 and Corollary 5.18. �

The relation between Koszul objects and modular fixed-points functors, obtained
in Lemma 5.21, can be reformulated in terms of the primes PG(H, p).

7.12. Lemma. Let H 6 G be a p-subgroup and p ∈ VG//H . Let K 6 G be a subgroup
and kosG(K) be the Koszul object of Construction 3.14. Then kosG(K) ∈ PG(H, p)
if and only if H 6G K. (Note that the latter condition does not depend on p.)

Proof. We have seen in Lemma 5.21 (b) that if H 6G K then Ψ̌H(kosG(K)) = 0
in Db(k(G//H)), in which case kosG(K) ∈ (Ψ̌H)−1(0) ⊆ (Ψ̌H)−1(p) = PG(H, p)
for every p. Conversely, we have seen in Lemma 5.21 (a) that if H 66G K then
Ψ̌H(kosG(K)) generates Db(k(G//H)), hence is not contained in any cohomological
point p, in which case kosG(K) /∈ (Ψ̌H)−1(p) = PG(H, p). �

7.13.Corollary. If PG(H, p) ⊆ PG(H ′, p′) then H ′ 6G H. Therefore if PG(H, p) =
PG(H ′, p′) then H and H ′ are conjugate in G.

Proof. Apply Lemma 7.12 to K = H twice, for H being once H and once H ′. �

7.14. Proposition. Let H 6 G be a p-subgroup. Then the map ψ̌H : VG//H →
Spc(K(G)) is injective, that is, PG(H, p) = PG(H, p′) implies p = p′.
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Proof. Let N = NGH. By assumption we have ρGN (PN (H, p)) = ρGN (PN (H, p′)).
By Corollary 4.9, there exists g ∈ G and a prime Q ∈ Spc(K(N ∩ gN)) such that
(7.15) PN (H, p) = ρNN∩gN (Q) and PN (H, p′) =

(
ρ
gN
N∩gN (Q)

)g
.

By Corollary 7.2 for the group N ∩ gN , there exists a p-subgroup L 6 N ∩ gN and
some q ∈ V(N∩gN)//L such that Q = PN∩gN (L, q). By (7.7) we know where such a
prime PN∩gN (L, q) goes under the maps ρ = Spc(Res) of (7.15) and, for the second
one, we also know what happens under conjugation by Remark 7.6 (a). Applying
these properties to the above relations (7.15) we get

PN (H, p) = PN (L, q′) and PN (H, p′) = PN (Lg, q′′)
for suitable cohomological points q′ ∈ VN//L and q′′ ∈ VN//Lg that we do not need
to unpack. By Corollary 7.13 applied to the group N , we must have H ∼N L and
H ∼N Lg. But since H P N , this forces H = L = Lg and therefore g ∈ NGH = N .
In that case, returning to (7.15), we have N ∩Ng = N = Ng and therefore

PN (H, p) = Q and PN (H, p′) = Qg = Q

where the last equality uses g ∈ N and (4.2). Hence PN (H, p) = Q = PN (H, p′). As
H is normal in N the map ψH;N : Spc(K(N/H))−→ Spc(K(N)) is split injective
by Corollary 5.16, and we conclude that p = p′. �

We can now summarize our description of the set Spc(K(G)).

7.16. Theorem. Every point in Spc(K(G)) is of the form PG(H, p) as in Defini-
tion 7.4, for some p-subgroup H 6 G and some point p ∈ VG//H of the cohomological
open of the Weyl group of H in G. Moreover, we have PG(H, p) = PG(H ′, p′) if
and only if there exists g ∈ G such that H ′ = Hg and p′ = pg.

Proof. The first statement follows from Corollary 7.2. For the second statement,
the “if”-direction follows from (7.8). For the “only if”-direction assume PG(H, p) =
PG(H ′, p′). By Corollary 7.13, this forces H ∼G H ′. Using (7.8), we can replace
H ′ by Hg and assume that PG(H, p) = PG(H, p′) for p, p′ ∈ VG//H . We can then
conclude by Proposition 7.14. �

Here is an example of support, for the Koszul objects of Construction 3.14.

7.17. Corollary. Let K 6 G. Then supp(kosG(K)) =
{
P(H, p)

∣∣H 66G K
}
.

Proof. Since all primes are of the form P(H, p), it is a simple contraposition on
Lemma 7.12, for P(H, p) ∈ supp(kosG(K))⇔ kosG(K) /∈ P(H, p)⇔ H 66G K. �

We can use this result to identify the image of ψH . First, in the normal case:

7.18. Proposition. Let H P G be a normal p-subgroup. Then the continuous map
ψH = Spc(ΨH) : Spc(K(G/H))→ Spc(K(G))

is a closed immersion, retracted by Spc(InflG/HG ). Its image is the closed subset
(7.19) Im(ψH) =

{
PG(L, p)

∣∣H 6 L ∈ SubpG, p ∈ VG//L
}

=∩K 6≥Hsupp(kosG(K))

Furthermore, this image of ψH is also the support of the object

(7.20)
⊗
K∈FH

kosG(K)

and it is also the support of the tt-ideal ∩K∈FH Ker(ResGK).
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Proof. By Corollary 5.16, the map ψH has a continuous retraction hence is a closed
immersion as soon as we know that its image is closed. So let us prove (7.19).

By Proposition 7.11 and the fact that all points are of the form P(L, p), the
image of ψH is the subset

{
PG(L, p)

∣∣H 6 L, p ∈ VG//L }. Here we use H P G.
Corollary 7.17 tells us that every such point P(L, p) belongs to the support

of kosG(K) as long as L 66G K, which clearly holds if H 6 L and H 66 K.
Therefore Im(ψH) ⊆ ∩K∈FH supp(kosG(K)).

Conversely, let P(L, p) ∈ ∩K∈FH supp(kosG(K)) and let us show that H 6 L.
If ab absurdo, H 66 L then L ∈ FH is one of the indices K that appear in the
intersection ∩K∈FH supp(kosG(K)). In other words, P(L, p) ∈ supp(kosG(L)). By
Corollary 7.17, this means L 66G L, which is absurd. Hence the result.

The ‘furthermore part’ follows: The first claim is (7.19) since supp(x)∩supp(y) =
supp(x ⊗ y) and the second claim follows from Corollary 3.24. (For H = 1, the
result does not tell us much, as ψ1 = id and ⊗∅ = 1.) �

Let us extend the above discussion to not necessarily normal subgroups H.

7.21. Notation. Let H 6 G be an arbitrary subgroup. We define an object of K(G)

(7.22) zulG(H) := IndGNGH
( ⊗{

K6NGH
∣∣H 66K } kosNG(H)(K)

)
.

(Note that we use plain induction here, not tensor-induction as in Construction 3.14.)
If H P G is normal this zulG(H) is simply the object displayed in (7.20).

7.23. Corollary. Let H 6 G be a p-subgroup. Then the continuous map

ψH;G = Spc(ΨH;G) : Spc(K(G//H))→ Spc(K(G))

is a closed map, whose image is supp(zulG(H)) where zulG(H) is as in (7.22).

Proof. By definition ΨH;G = ΨH;NGH ◦ ResGNGH . We know the map induced on
spectra by the second functor ΨH;NGH by Proposition 7.18 and we can describe
what happens under the closed map Spc(Res) by Proposition 4.7. �

We record the answer to a question stated in the Introduction (Section 2):

7.24. Corollary. The support of the tt-ideal of acyclics Kac(G) is the union of the
images of the modular H-fixed-points maps ψH , for non-trivial p-subgroups H 6 G.

Proof. The points of Spc(K(G)) are of the form P(H, p). Such primes belong
to VG =

{
P(1, q)

∣∣ q ∈ VG
}
if and only if H is trivial. The complement is then

Supp(Kac(G)). Hence Supp(Kac(G)) ⊆ ∪H 6=1 Im(ψH). Conversely, for every p-
subgroup H 6= 1, the object zulG(H) of Corollary 7.23 is acyclic, since the tensor
is non-empty and any kosNGH(K) is acyclic. So Im(ψH) ⊆ Supp(Kac(G)). �

Let us now describe all closed points of Spc(K(G)).

7.25. Remark. Recall that in tt-geometry closed points M ∈ Spc(K) are exactly the
minimal primes for inclusion. Also every prime contains a minimal one.

For instance, the tt-category Db(kG) is local, with a unique closed point 0 =
Ker(Db(kG) → Db(k)). (In terms of homogeneous primes in Spech(H•(G, k)) the
zero tt-ideal p = 0 corresponds to the closed point p• = H+(G, k).)
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7.26. Definition. Let H 6 G be a p-subgroup. (This definition only depends on the
conjugacy class of H in G.) By Proposition 5.15, the following diagram commutes

(7.27)

K(G)
ResGH //

ΨH;G

��

F
H

''

K(H)

ΨH;H

��

K(G//H)
ResG//H1

// K(1) = Db(k).

We baptize FH = F
H;G the diagonal. Its kernel is one of the primes of Definition 7.4

(7.28) M(H) = MG(H) := Ker(FH) = PG(H, 0)
where 0 ∈ Spc(Db(k(G//H))) is the zero tt-ideal, i.e. the unique closed point of the
cohomological open VG//H of the Weyl group. (See Remark 7.25.) We can think of
F
H : K(G)→ Db(k) as a tt-residue field functor at the (closed) point M(H).

7.29. Example. For H = 1, we have M(1) = Ker
(

ResG1 : K(G) → Db(k)
)

=
Kac(G). In other words, M(1) = Υ−1

G (0) is the image under the open immersion
υG : VG ↪→ Spc(K(G)) of Proposition 3.22 of the unique closed point 0 ∈ VG of
Remark 7.25. In general, a closed point of an open is not necessarily closed in the
ambient space. Here M(1) is closed since by definition {M(1)} = Im(ρG1 ) where
ρG1 = Spc(ResG1 ). By Proposition 4.7, we know that Im(ρG1 ) = supp(k(G)) is closed.

7.30. Example. For H = G a p-group, we can give generators of the closed point
M(G) = 〈k(G/K) | K 6= G〉.

As M(G) = ker(ΨG : K(G) → Db(k)), inclusion ⊇ follows from Proposition 5.12.
For ⊆, let X ∈ M(G) be a complex that vanishes under ΨG. Splitting the mod-
ules Xn in each homological degree n into a trivial (i.e. a k-vector space with trivial
action) and non-trivial permutation modules, Lemma 6.3 shows thatX is homotopy
equivalent to a complex in the additive category generated by k(G/K), K 6= G.

7.31. Corollary. The closed points of Spc(K(G)) are exactly the tt-primes MG(H)
of (7.28) for the p-subgroups H 6 G. Furthermore, we have MG(H) = MG(H ′) if
and only if H is conjugate to H ′ in G.

Proof. Let us first verify that MG(H) is closed for every H 6 G. For H = 1,
we checked it in Example 7.29. For H 6= 1, we have MG(H) = PG(H, 0) =
ΨH(MG//H(1)). This gives the result since MG//H(1) is closed in Spc(K(G//H)),
by Example 7.29 again, and since ψH is a closed map by Corollary 7.23.

Now, every point p ∈ VG//H admits 0 in its closure in Spc(Db(k(G//H))) = VG//H .
(See Remark 7.25.) By continuity of ψ̌H : VG//H → Spc(K(G)), it follows that
ψ̌H(0) = MG(H) belongs to the closure of ψ̌H(p) = PG(H, p), which proves that
the MG(H) are the only closed points.

We already saw that P(H, 0) = P(H ′, 0) implies H ∼G H ′, in Theorem 7.16. �

We wrap up this section on the spectrum by discussing the strata defined by
modular fixed-points.

7.32. Proposition. For every p-subgroup H 6 G, consider the subset

VG(H) := Im(ψ̌H) = ψ̌H(VG//H)
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of Spc(K(G)). Then MG(H) is the unique closed point of Spc(K(G)) that belongs
to VG(H). We have a set-partition indexed by conjugacy classes of p-subgroups

(7.33) Spc(K(G)) =
∐

H∈(SubpG)/G

VG(H)

where each VG(H) is open in its closure.

Proof. The partition is immediate from Theorem 7.16. Each subset VG(H) ={
P(H, p)

∣∣ p ∈ VG//H
}

is a subset of the closed set Im(ψH). By Corollary 7.24
and Proposition 7.11, the complement of VG(H) in Im(ψH) consists of the images
Im(ψK) for every ‘further’ p-groupK, i.e. such that H � K 6 NG(H) and these are
closed by Corollary 7.23. Thus VG(H) is an open in the closed subset Im(ψH). �

7.34. Remark. We can use (7.33) to define a map Spc(K(G))→ (SubpG)/G. Corol-
lary 7.13 tells us that this map is continuous for the (Alexandrov) topology on
(SubpG)/G whose open subsets are the ones stable under subconjugacy.

Moreover, for H 6 G a p-subgroup, the square

Spc(K(G//H))

��

ψH
// Spc(K(G))

��

(Subp(G//H))/(G//H) �
�

// (SubpG)/G

commutes, where the bottom horizontal arrow is the canonical inclusion that sends
H 6 K 6 NG(H) to K. This follows from Proposition 7.11. Consequently, while
ψH might not be injective in general, we still have (ψH)−1(VG(H)) = VG//H .

8. Examples

Although the full treatment of the topology of Spc(K(G)) will require the addi-
tional technology of Part II, we can already present the answer for small groups.
Some of the most interesting phenomena are already visible once we reach p-rank
two in Example 8.10. Let us start with the easy examples.

8.1. Notation. Fix an integer n ≥ 0 and consider the following space Wn consisting
of 2n+ 1 points, with specialization relations pointing upward as usual:

(8.2) W
n =

m0 • • m1 mn−1 • • mn

p1 • · · · • pn

The closed subsets of Wn are simply the specialization-closed subsets, i.e. those that
contain a pi only if they contain mi−1 and mi. So the mi are closed points and the
pi are generic points of the n irreducible V-shaped closed subsets {mi−1, pi,mi}.

8.3. Proposition. Let G = Cpn be a cyclic p-group. Then Spc(K(Cpn)) is homeo-
morphic to the space Wn of (8.2).

More precisely, if we denote by 1 = Nn < Nn−1 < · · · < N0 = G the n + 1
subgroups of Cpn (5), then the points pi and mi in Spc(K(G)) are given by

mi = (Ψ̌Ni)−1(0) and pi = (Ψ̌Ni)−1(Dperf(k(G/Ni)))

where Ψ̌N = ΥG/N ◦ΨN : K(G)→ K(G/N)�Db(k(G/N)) is the tt-functor (6.11).
5The numbering of the Ni keeps track of the index, that is, G/Ni

∼= Cpi . This choice will
allow simple formulas for inflation and fixed-points, and for procyclic groups in Part III [BG23b].
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Proof. By Proposition 7.32, we have a partition of the spectrum in subsets

Spc(K(G)) =
n∐
i=0

VG(Ni) =
n∐
i=0

Im(ψ̌Ni)

and each VG(Ni) is homeomorphic to Spc(Db(kG/Ni)) = VG/Ni . For i > 0, each
VG(Ni) is a Sierpiński space {pi  mi = M(Ni)}, while VG(N0) is a singleton
set {m0 := M(G)}. In other words, we know the set Spc(K(G)) has the an-
nounced 2n+ 1 points and the unmarked specializations pi  mi below

(8.4)
m0 •

? ?

• m1 · · · mi−1 •
?

• mi · · · • mn−1 • mn

p1 • · · · • pi · · ·
?
• pn

We need to elucidate the topology. Since allmi = M(Ni) are closed (Corollary 7.31),
we only need to see where each pi specializes for 1 6 i 6 n. By Corollary 7.13,
the point pi = P(Ni, p) can only specialize to a P(Nj , q) for Nj ≥ Ni, that is, to
the points mj or pj for j 6 i. On the other hand, direct inspection using (5.13)
shows that supp(k(G/Ni−1)) =

{
mj
∣∣ j ≥ i− 1

}
∪
{
pj
∣∣ j ≥ i}. This closed subset

contains pi hence its closure. Combining those two observations, we have

{pi} ⊆
{
mj , pj

∣∣ j 6 i} ∩ ({mi−1} ∪
{
mj , pj

∣∣ j ≥ i}) = {mi−1, pi,mi}.

If any of the {pi} was smaller than {mi−1, pi,mi}, that is, if one of the specialization
relations pi  mi−1 marked with ‘?’ in (8.4) did not hold, then Spc(K(G)) would be
a disconnected space. This would force the rigid tt-category K(G) to be the product
of two tt-categories, which is clearly absurd, e.g. because EndK(G)(1) = k. �

With this identification, we can record the maps ψH of Definition 7.3 and the
maps ρK and πG/N of Remark 7.6, that relate different cyclic p-groups.

8.5. Lemma. Let n ≥ 0. We identify Spc(K(Cpn)) with Wn as in Proposition 8.3.
(a) Let 0 6 i 6 n and H = Ni = Cpn−i 6 Cpn , so that Cpn/H ∼= Cpi . The
map ψH : Wi → W

n induced by modular fixed points ΨH is the inclusion
ψ : Wi ↪→ W

n.

that catches the left-most points: p` 7→ p` and m` 7→ m`.
(b) Let 0 6 j 6 n and K = Cpj 6 Cpn . The map ρK : Wj → W

n induced by
restriction ResK is the inclusion

ρ : Wj ↪→ W
n

that catches the right-most points: m` 7→ m`+n−j and p` 7→ p`+n−j.
(c) Let 0 6 m 6 n. Inflation along Cpn�Cpm induces on spectra the map

π : Wn�W
m

that retracts ψ and sends everything else to mm, that is, for all 0 6 ` 6 n

π(p`) =
{

p` if ` 6 m
mm otherwise and π(m`) =

{
m` if ` 6 m
mm otherwise.

Proof. Part (a) follows from Proposition 7.11, while parts (b) and (c) follow from
Remark 7.6. �

Let us now move to higher p-rank.
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8.6. Example. Let E = (Cp)×r be the elementary abelian p-group of rank r. We
know that VE = Spc(Db(kE)) ∼= Spech(H•(E, k)) is homeomorphic to the space

(8.7) V
r := Spech(k[x1, . . . , xr]),

that is, projective space Pr−1
k with one closed point ‘on top’. For instance, V0

is a single point and V1 is a 2-point Sierpiński space. The example of r = 1 (see
Proposition 8.3 for n = 1) is not predictive of what happens in higher rank. Indeed,
by Proposition 7.32, the closed complement Supp(Kac(E)) is far from discrete in
general. It contains pr−1

p−1 copies of Vr−1 and more generally |Grp(d, r)| copies of
the d-dimensional Vd for d = 0, . . . , r− 1, where |Grp(d, r)| is the number of rank-d
subgroups of (Cp)×r. Here is a ‘low-resolution’ picture for Klein-four r = p = 2:

(8.8)

V
0

V
1

V
1

V
1

V
2

The dashed lines indicate ‘partial’ specialization relations: Some points in the lower
variety specialize to some points in the higher one; see Corollary 7.13. In rank 3,
the similar ‘low-resolution’ picture of Spc(K(C×3

2 )), still for p = 2, looks as follows:

(8.9)

V
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V
1

V
1

V
1

V
1

V
1
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1
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V
2

V
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2
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2

V
2

V
3

Each Vd has Krull dimension d ∈ {0, 1, 2, 3} and contains one of 16 closed points.

Let us now discuss the example of Klein-four and ‘zoom-in’ on (8.8) to display
every point at its actual height, as well as all specialization relations.

8.10. Example. Let G = C2 × C2 be the Klein four-group, in characteristic p = 2.
In Example 16.16, we shall see that the spectrum Spc(K(E)) is exactly as follows:

(8.11)

M(E)
•

M(N0)
•

M(N1)
•

M(N∞)
•

M(1)
•

•
P(N0)

•
P(N1)

•
P(N∞)

P
1
··· •0 •1 •∞

•P0

In this picture, N0, N1 and N∞ are the three cyclic subgroups of G. The colors
match those of (8.8). The green part is the cohomological open VE ' V2 as in (8.7),
that is, a P1 with a closed point on top; we marked with • the closed point M(1),
the three F2-rational points 0, 1, ∞ of P1 and its generic point P0; the notation P1···
and the dotted line indicate P1 r {0, 1,∞,P0}. The brown part is the support of
the acyclics, namely the union of the VE(H) for non-trivial subgroups H 6 E as
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in Proposition 7.32; it consists of three Sierpiński subspaces {P(Ni)  M(Ni)} '
VE/Ni ' V1 and the singleton {M(E)} ' VE/E ' V0.

The specializations involving points of P1··· are displayed with undulated lines,
indicating that all points share the same behavior. For instance, the gray undulated
line indicates that all points of P1··· specialize to M(E). The proof of this critical
fact will require the new tools of Part II.

8.12. Example. The spectrum of the quaternion group Q8 is very similar to that
of its quotient E := Q8/Z(Q8) ∼= C2 × C2, as we announced in (2.13). The
center Z := Z(Q8) ∼= C2 is the maximal elementary abelian 2-subgroup and
it follows that ResQ8

Z induces a homeomorphism VC2
∼→ VQ8 . In other words,

VQ8 is again a Sierpiński space {P,M(1)}. On the other hand, the center Z
is also the unique minimal non-trivial subgroup. It follows from Corollary 7.2
and Proposition 7.18 that Supp(Kac(Q8)) is the image under the closed immer-
sion ψZ of Spc(K(Q8/Z)). It only remains to describe the specialization relations
between the cohomological open VQ8 and its closed complement Supp(Kac(Q8)).
Since M(1) ∈ VQ8 is also a closed point in Spc(K(Q8)), we only need to decide
where the generic point P of VQ8 specializes in Spc(K(Q8)). Interestingly, P will
not be generic in the whole of Spc(K(Q8)). As P belongs to Im(ρZ), it suffices to
determine ρZ(MC2(C2)). The preimage of Im(ρZ) = supp(k(Q8/Z)) under ψZ is
suppE(ΨZ(k(Q8/Z))) = suppE(k(E)) = {ME(1)}. It follows that P specializes to
exactly one point: ψZ(ME(1)) = MQ8(Z) as depicted in (2.13).

9. Stratification

It is by now well-understood how to deduce stratification in the presence of a
noetherian spectrum and a conservative theory of supports. We follow the general
method of Barthel-Heard-Sanders [BHS22, BHS21].

9.1. Proposition. The spectrum Spc(K(G)) is a noetherian topological space.

Proof. Recall that a space is noetherian if every open is quasi-compact. It follows
that the continuous image of a noetherian space is noetherian. The claim now
follows from Corollary 7.2. �

We start with the key technical fact. Recall that coproduct-preserving exact
functors between compactly-generated triangulated categories have right adjoints
by Brown-Neeman Representability. We apply this to ΨH .

9.2. Lemma. Let N P G be a normal p-subgroup and ΨN
ρ : DPerm(G/N ; k) →

DPerm(G; k) the right adjoint of modular N -fixed points ΨN : DPerm(G; k) →
DPerm(G/N ; k). Then ΨN

ρ (1) is isomorphic to a complex s in perm(G; k), concen-
trated in non-negative degrees

s =
(
· · · → sn → · · · → s2 → s1 → s0 → 0→ 0 · · ·

)
with s0 = k and s1 = ⊕H∈FNk(G/H), where FN =

{
H 6 G

∣∣N 66 H }.
Proof. Following the recipe of Brown-Neeman Representability [Nee96], we give an
explicit description of ΨN

ρ (1) as the homotopy colimit in T(G) of a sequence of
objects x0 = 1

f0−→ x1
f1−→ · · · → xn

fn−→ xn+1 → · · · in K(G). This sequence is built
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together with maps gn : ΨN (xn)→ 1 in K(G/N) making the following commute

(9.3)
ΨN (x0) = 1

g0=id

ΨN (f0)
// · · · //

···

ΨN (xn)
ΨN (fn)

//

gn

��

ΨN (xn+1)

gn+1

vv

···

···

1

Note that such gn yield homomorphisms, natural in t ∈ DPerm(G; k), as follows

(9.4) αn,t : HomG(t, xn) ΨN−−→ HomG/N (ΨN (t),ΨN (xn)) (gn)∗−−−→ HomG/N (ΨN (t), 1)
where we abbreviate HomG for HomDPerm(G;k). We are going to build our sequence
of objects x0 → x1 → · · · and the maps gn so that for each n ≥ 0
(9.5) αn,t is an isomorphism for every t ∈

{
Σi k(G/H)

∣∣ i < n, H 6 G
}
.

It follows that, if we set x∞ = hocolimn xn and g∞ : ΨN (x∞) ∼= hocolimn ΨN (xn)→
1 the colimit of the gn, then the map

αt : HomG(t, x∞) ΨN−−→ HomG/N (ΨN (t),ΨN (x∞)) (g∞)∗−−−−→ HomG/N (ΨN (t), 1)

is an isomorphism for all t ∈
{

Σi k(G/H)
∣∣ i ∈ Z, H 6 G

}
. Since the k(G/H)

generate DPerm(G; k), it follows that αt is an isomorphism for all t ∈ DPerm(G; k).
Hence x∞ = hocolimn xn is indeed the image of 1 by the right adjoint ΨN

ρ .
Let us construct these sequences xn, fn and gn, for n ≥ 0. In fact, every

complex xn will be concentrated in degrees between zero and n, so that (9.5) is
trivially true for n = 0 (that is, for i < 0), both source and target of αn,t being
zero in that case. Furthermore, xn+1 will only differ from xn in degree n+ 1, with
fn being the identity in degrees 6 n. So the verification of (9.5) for n+ 1 will boil
down to checking the cases of t = Σi k(G/H) for i = n.

As indicated, we set x0 = 1 and g0 = id. We define x1 by the exact triangle

s1
ε−→ 1

f0−→ x1 → Σ(s1)
where s1 := ⊕H∈FNk(G/H) and εH : k(G/H) → k is the usual map. Note that
ΨN (s1) = 0 by (5.13), hence ΨN (f0) : 1 → ΨN (x1) is an isomorphism. We call g1
its inverse. One verifies that (9.5) holds for n = 1: For t = k(G/H) with H ∈ FN ,
both the source and target of α1,t are zero thanks to the definition of s1. For the
case where H ≥ N , there are no non-zero homotopies for maps k(G/H) → x1
thanks to Lemma 5.3.

Let us construct xn+1 and gn+1 for n ≥ 1. For every H 6 G let t = Σn(k(G/H))
and choose generators hH,1, . . . , hH,rH : t→ xn of the k-module HomG(t, xn), source
of αn,t. Define sn+1 = ⊕H6G ⊕rHi=1 k(G/H) in perm(G; k), a sum of rH copies
of k(G/H) for every H 6 G, and define hn : Σn(sn+1) → xn as being hH,i on the
i-th summand Σn k(G/H). Define xn+1 as the cone of hn in K(G):

(9.6) Σn(sn+1) hn−−→ xn
fn−→ xn+1 → Σn+1(sn+1).

Note that xn+1 only differs from xn in homological degree n + 1 as announced.
Since n ≥ 1, we get HomG/N (ΨN (xn+1), 1) ∼= HomG/N (ΨN (xn), 1) and there exists
a unique gn+1 : ΨN (xn+1) → 1 making (9.3) commute. It remains to verify that
αn+1,t is an isomorphism for t ∈

{
Σn k(G/H)

∣∣H 6 G
}
. Note that the target of

this map is zero. Applying HomG(Σn k(G/H),−) to the exact triangle (9.6) shows
that the source of αn+1,t is also zero, by construction. Hence (9.5) holds for n+ 1.
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This realizes the wanted sequence and therefore ΨN
ρ (1) ' hocolimn(xn) has the

following form:
· · · → sn → · · · → s2 → s1 → k → 0→ 0 · · ·

where s1 = ⊕H∈FNk(G/H) and sn ∈ perm(G; k) for all n. �

9.7. Remark. The above description of ΨN
ρ (1) gives a formula for the right ad-

joint ΨN
ρ : DPerm(G/N ; k) → DPerm(G; k) on all objects. Indeed, for every t ∈

DPerm(G/N ; k), we have a canonical isomorphism in DPerm(G; k)

ΨN
ρ (t) ∼= ΨN

ρ (ΨN InflG/NG (t)⊗ 1) ∼= InflG/NG (t)⊗ΨN
ρ (1)

using that ΨN ◦ InflG/NG
∼= Id and the projection formula. In other words, the right

adjoint ΨN
ρ is simply inflation tensored with the commutative ring object ΨN

ρ (1).

9.8. Lemma. Let H P G be a normal p-subgroup and ΨH
ρ : DPerm(G/H; k) →

DPerm(G; k) the right adjoint of modular H-fixed points ΨH : DPerm(G; k) →
DPerm(G/H; k). Then the object zulG(H) displayed in (7.20) belongs to the lo-
calizing tt-ideal of DPerm(G; k) generated by ΨH

ρ (1).

Proof. By Proposition 7.18, we know that the tt-ideal generated by zulG(H) is
exactly ∩K∈FH Ker ResGK . By Frobenius, the latter is the tt-ideal

{
x ∈ K(G)

∣∣ s1⊗
x = 0

}
where s1 = ⊕K∈FHk(G/K) is the degree one part of the complex s ' ΨH

ρ (1)
of Lemma 9.2. We can now conclude by Lemma 3.19 applied to this complex s and
x = zulG(H) that x must belong to the localizing tensor-ideal of DPerm(G; k)
generated by ΨH

ρ (1). (Note that s0 = 1 here.) �

Recall from Corollary 7.23 that the map ψH has closed image in Spc(K(G)).

9.9. Proposition. Let H 6 G be a p-subgroup and let ΨH
ρ : DPerm(G//H; k) →

DPerm(G; k) be the right adjoint of ΨH : DPerm(G; k) → DPerm(G//H; k). Then
the tt-ideal of K(G) supported on the closed subset Im(ψH) is contained in the
localizing tt-ideal of DPerm(G; k) generated by ΨH

ρ (1).

Proof. Let N = NGH. By definition, ΨH;G = ΨH;N ◦ResGN and therefore the right
adjoint is ΨH;G

ρ
∼= IndGN ◦ΨH;N

ρ . By Lemma 9.8, we can handle H P N hence we
know (see also Proposition 7.18) that the generator zulN (H) of the tt-ideal sup-
ported on Im(ψH;N ) belongs to Loc⊗(ΨH;N

ρ (1)) in DPerm(N ; k). Applying IndGN
and using the fact that ResGN is surjective up to direct summands (by separabil-
ity), we see that zulG(H) def= IndGN (zulN (H)) belongs to IndGN (Loc⊗(ΨH;N

ρ (1)) ⊆
Loc⊗(IndGN ΨH;N

ρ (1)) = Loc⊗(ΨH;G
ρ (1)) in DPerm(G; k). �

Let us now turn to stratification. By noetherianity, we can define a support
for possibly non-compact objects in the ‘big’ tt-category under consideration, here
DPerm(G; k), following Balmer-Favi [BF11, § 7]. We remind the reader.

9.10. Recollection. Every Thomason subset Y ⊆ Spc(K(G)) yields a so-called ‘idem-
potent triangle’ e(Y )→ 1→ f(Y )→ Σe(Y ) in T(G) = DPerm(G; k), meaning that
e(Y )⊗ f(Y ) = 0, hence e(Y ) ∼= e(Y )⊗2 and f(Y ) ∼= f(Y )⊗2. The left idempotent
e(Y ) is the generator of Loc⊗(K(G)Y ), the localizing tt-ideal of T(G) ‘supported’
on Y . The right idempotent f(Y ) realizes localization of T(G) ‘away’ from Y , that
is, the localization on the complement Y c.
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By noetherianity, for every point P ∈ Spc(K(G)), the closed subset {P} is
Thomason. Hence {P} ∩ (YP)c = {P}, where YP := supp(P) =

{
Q
∣∣P 6⊆ Q

}
is

always a Thomason subset. The idempotent g(P) in T(G) is then defined as

g(P) = e({P})⊗ f(YP).

It is built to capture the part of DPerm(G; k) that lives both ‘over {P}’ (thanks to
e({P})) and ‘over Y cP’ (thanks to f(YP)); in other words, g(P) lives exactly ‘at P’.
This idea originates in [HPS97]. It explains why the support is defined as

Supp(t) =
{
P ∈ Spc(K(G))

∣∣ g(P)⊗ t 6= 0
}

for every (possibly non-compact) object t ∈ DPerm(G; k).

9.11. Theorem. Let G be a finite group and let k be a field. Then the big tt-category
T(G) = DPerm(G; k) is stratified, that is, we have an order-preserving bijection

{Localizing tt-ideals L ⊆ T(G)} ∼←→ {Subsets of Spc(K(G))}

given by sending a subcategory L to the union of the supports of its objects; its
inverse sends a subset Y ⊆ Spc(K(G)) to LY :=

{
t ∈ T(G)

∣∣ Supp(t) ⊆ Y
}
.

Proof. By induction on the order of the group, we can assume that the result holds
for every proper subquotient G//H (with H 6= 1). By [BHS21, Theorem 3.21],
noetherianity of the spectrum of compacts reduces stratification to proving min-
imality of Loc⊗(g(P)) for every P ∈ Spc(K(G)). This means that Loc⊗(g(P))
admits no non-trivial localizing tt-ideal subcategory. If P belongs to the coho-
mological open VG = Spc(Db(kG)) then minimality at P in T = DPerm(G; k) is
equivalent to minimality at P in T(VG) ∼= K Inj(kG) by [BHS21, Proposition 5.2].
Since K Inj(kG) is stratified by [BIK11], we have the result in that case.

Let now P ∈ Supp(Kac(G)). By Corollary 7.24, we know that P = PG(H, p) for
some non-trivial p-subgroup 1 6= H 6 G and some cohomological point p ∈ VG//H .
(In the notation of Proposition 7.32, this means P ∈ VG(H).) Suppose that t ∈
Loc⊗(g(P)) is non-zero. We need to show that Loc⊗(t) = Loc⊗(g(P)), that is, we
need to show that g(P) ∈ Loc⊗(t).

Recall the tt-functor Ψ̌H : DPerm(G; k) → K Inj(kG//H)) from Notation 6.10.
By general properties of BF-idempotents [BF11, Theorem 6.3], we have Ψ̌K(g(P)) =
g((ψ̌K)−1(P)) in K Inj(k(G//K)) for every K ∈ SubpG. Since ψ̌K is injective by
Proposition 7.14, the fiber (ψ̌K)−1(P) is a singleton (namely p) if K ∼ H and is
empty otherwise. It follows that for all K 6∼ H we have Ψ̌K(g(P)) = 0 and therefore
Ψ̌K(t) = 0 as well. Since t is non-zero, the Conservativity Theorem 6.12 forces
the only remaining Ψ̌H(t) to be non-zero in K Inj(k(G//H)). This forces ΨH(t)
to be non-zero in T(G//H) as well, since Ψ̌H = ΥG//H ◦ ΨH . This object ΨH(t)
belongs to Loc⊗(ΨH(g(P))) = Loc⊗(g((ψH)−1(P))). Note that υG//H(p) is the only
preimage of P = PG(H, p) under ψH (see Remark 7.34). By induction hypothesis,
this localizing tt-ideal Loc⊗(ΨH(g(P))) is minimal. And it contains our non-zero
object ΨH(t). Hence ΨH(g(P)) ∈ Loc⊗(ΨH(t)). Applying the right adjoint ΨH

ρ , it
follows that ΨH

ρ ΨH(g(P)) ∈ ΨH
ρ (Loc⊗(ΨH(t))) ⊆ Loc⊗(t) where the last inclusion

follows by the projection formula for ΨH a ΨH
ρ . Hence by the projection formula

again we have in T(G) that

ΨH
ρ (1)⊗ g(P) ∈ Loc⊗(t).
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But we proved in Proposition 9.9 that the localizing tt-ideal generated by ΨH
ρ (1)

contains K(G)Im(ψH) and in particular e({P}) and a fortiori g(P). In short, we have
g(P) ∼= g(P)⊗2 ∈ Loc⊗(ΨH

ρ (1)⊗ g(P)) ⊆ Loc⊗(t) as needed to be proved. �

9.12.Corollary. The Telescope Conjecture holds for DPerm(G; k). Every smashing
tt-ideal S ⊆ DPerm(G; k) is generated by its compact part: S = Loc⊗(Sc).

Proof. This follows from noetherianity of Spc(K(G)) and stratification by [BHS21,
Theorem 9.11]. �

Part II. Topology of the spectrum and twisted cohomology

10. Introduction to Part II

After identifying all the points in the spectrum Spc(K(G)) of the permutation
tt-category (1.1) in Part I, we now want to describe the topology. This knowledge
will give us the classification of thick ⊗-ideals in K(G).

The colimit theorem. To discuss the tt-geometry of K(G), it is instructive
to keep in mind the bounded derived category of finitely generated kG-modules,
Db(kG), which is a localization of our K(G) by [BG23a, Theorem 5.13]. A theorem
of Serre [Ser65], famously expanded by Quillen [Qui71], implies that Spc(Db(kG))
is the colimit of the Spc(Db(kE)), for E running through the elementary abelian
p-subgroups of G; see [Bal16, § 4]. The indexing category for this colimit is an orbit
category: Its morphisms keep track of conjugations and inclusions of subgroups.

In Part I, we proved that Spc(K(G)) is set-theoretically partitioned into spectra
of derived categories Db(k(G//K)) for certain subquotients of G, namely the Weyl
groups G//K = (NGK)/K of p-subgroups K 6 G. It is then natural to expect
a more intricate analogue of Quillen’s result for the tt-category K(G), in which
subgroups are replaced by subquotients. This is precisely what we prove. The orbit
category has to be replaced by a category Ep(G) whose objects are elementary
abelian p-sections E = H/K, for p-subgroups K P H 6 G. The morphisms
in Ep(G) keep track of conjugations, inclusions and quotients. See Construction 11.1.

This allows us to formulate our reduction to elementary abelian groups:

10.1. Theorem (Theorem 11.10). There is a canonical homeomorphism
colim
E∈Ep(G)

Spc(K(E)) ∼→ Spc(K(G)).

The category Ep(G) has been considered before, e.g. in Bouc-Thévenaz [BT08].
Every morphism in Ep(G) is the composite of three special morphisms (Remark 11.3)

(10.2) E
'−→ E′ → E′′

!−→ E′′′

where E′ is a G-conjugate of E, where E′ 6 E′′ is a subgroup of E′′ and where
E′′ = E′′′/N is a quotient of E′′′ (sic!). The tt-category K(E) is contravariant
in E ∈ Ep(G) and the tt-functors corresponding to (10.2)

(10.3) K(E′′′) ΨN // K(E′′) Res // K(E′) ' // K(E)

yield the modular N -fixed-points functor ΨN introduced in Part I, and the standard
restriction functor and conjugation isomorphism. As we saw, the ΨN are a type of
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Brauer quotient that make sense on the homotopy category of permutation modules
but do not exist on derived or stable categories. They distinguish our results and
their proofs from the classical theory.

Twisted cohomology. The above discussion reduces the analysis of Spc(K(G))
to the case of elementary abelian p-groups E. As often in modular representation
theory, this case is far from trivial and can be viewed as the heart of the matter.

So let E be an elementary abelian p-group. Our methods will rely on ⊗-invertible
objects uN in K(E) indexed by the set N(E) =

{
N � E

∣∣ [E :N ] = p
}
of maximal

subgroups. These objects are of the form uN =
(
0→ k(E/N)→ k(E/N)→ k → 0

)
for p odd and uN =

(
0 → k(E/N) → k → 0

)
for p = 2. See Definition 12.3. We

use these ⊗-invertibles uN to construct a multi-graded ring

(10.4) H••(E) =
⊕
s∈Z

⊕
q∈NN(E)

HomK(E)
(
1, 1(q)[s]

)
,

where 1(q) is the ⊗-invertible
⊗

N∈N(E) u
⊗q(N)
N for every tuple q : N(E)→ N, that

we refer to as a ‘twist’. Without these twists we would obtain the standard Z-
graded endomorphism ring End•(1) := ⊕s∈Z Hom(1, 1[s]) of 1 which, for Db(kE),
is the cohomology H•(E, k), but for K(E) is reduced to the field k and therefore
rather uninteresting. We call H••(E) the (permutation) twisted cohomology of E.
Some readers may appreciate the analogy with cohomology twisted by line bundles
in algebraic geometry, or with Tate twists in motivic cohomology.

We can employ this multi-graded ring H••(E) to describe Spc(K(E)):

10.5. Theorem (Corollary 15.6). The space Spc(K(E)) identifies with an open
subspace of the homogeneous spectrum of H••(E) via a canonical ‘comparison map’.

The comparison map in question generalizes the one of [Bal10a], which landed
in the homogenous spectrum of End•(1) without twist. We also describe in Corol-
lary 15.6 the open image of this map by explicit equations in H••(E).

Dirac geometry. If the reader is puzzled by the multi-graded ring H••(E), here is
another approach based on a special open cover {U(H)}H6E of Spc(K(E)) indexed
by the subgroups of E and introduced in Proposition 13.11. Its key property is that
over each open U(H) all the ⊗-invertible objects uN are trivial: (uN )�U(H) ' 1[s]
for some shift s ∈ Z depending on H and N . For the trivial subgroup H = 1,
the open U(1) is the ‘cohomological open’ of Part I, that corresponds to the image
under Spc(−) of the localization K(E)�Db(kE). See Proposition 13.14. At the
other end, for H = E, we show in Proposition 13.17 that the open U(E) is the
‘geometric open’ that corresponds to the localization of K(E) given by the geo-
metric fixed-points functor. Compare Remark 4.11. For E of rank one, these two
opens U(1) and U(E) are all there is to consider. But as the p-rank of E grows,
there is an exponentially larger collection {U(H)}H6E of open subsets interpolat-
ing between U(1) and U(E). This cover {U(H)}H6E allows us to use the classical
comparison map of [Bal10a] locally. It yields a homeomorphism between each U(H)
and the homogeneous spectrum of the Z-graded endomorphism ring End•U(H)(1) in
the localization K(E)�U(H). In compact form, this can be rephrased as follows (a
Dirac scheme is to a usual scheme what a Z-graded ring is to a non-graded one):

10.6. Theorem (Corollary 15.4). The space Spc(K(E)), together with the sheaf of
Z-graded rings obtained locally from endomorphisms of the unit, is a Dirac scheme.
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Elementary abelian take-home. Let us ponder the Z-graded endomorphism
ring of the unit End•(1) for a moment longer. As we know, the ring End•K(E)(1) = k
is too small to provide geometric information. So we have developed two substitutes.
Our first approach is to replace the usual Z-graded ring End•(1) by a richer multi-
graded ring involving twists. This leads us to twisted cohomology H••(E) and
to Theorem 10.5. The second approach is to hope that the endomorphism ring
End•(1), although useless globally, becomes rich enough to control the topology
locally on Spc(K(E)), without leaving the world of Z-graded rings. This is what
we achieve in Theorem 10.6 thanks to the open cover {U(H)}H6E . As can be
expected, the two proofs are intertwined.

Touching ground. Combining Theorems 10.1 and 10.6 ultimately describes the
topological space Spc(K(G)) for all G, in terms of homogeneous spectra of graded
rings. In Sections 16 to 18 we improve and apply these results as follows.

In Section 16, we explain how to go from the ‘local’ rings End•U(H)(1) over the
open U(H), for each subgroup H 6 E, to the ‘global’ topology of Spc(K(E)).

In Theorem 17.13, we give a finite presentation by generators and relations of
the reduced k-algebra (End•U(H)(1))red generalizing the usual one for cohomology.

In Corollary 18.12, we express Spc(K(G)) for a general finite group G as the
quotient of a disjoint union of Spc(K(E)) for the maximal elementary abelian p-
sections E of G by maximal relations.

In Proposition 18.14, we prove that the irreducible components of Spc(K(G))
correspond to the maximal elementary abelian p-sections of G up to conjugation.
It follows that the Krull dimension of Spc(K(G)) is the sectional p-rank of G, the
maximal rank of elementary abelian p-sections. (For comparison, recall that for the
derived category these irreducible components correspond to maximal elementary
abelian p-subgroups, not sections, and the Krull dimension is the usual p-rank.)

And of course, we discuss more examples. Using our techniques, we com-
pute Spc(K(G)) for some notable groupsG, in particular Klein-four (Example 16.16)
and the dihedral group (Example 18.17).

For the reader’s convenience, we tried to keep Part II somewhat self-contained.
Here is a quick summary of the main ingredients we need from Part I.
10.7. Recollection. The canonical localization ΥG : K(G)�Db(kG) gives us an
open piece VG := Spc(Db(kG)) ∼= Spech(H•(G, k)) of the spectrum, that we call
the ‘cohomological open’. We write υG = Spc(ΥG) : VG ↪→ Spc(K(G)) for the
inclusion. For every H ∈ Subp(G) we denote by ΨH : K(G) → K(G//H) the
modular H-fixed-points tt-functor constructed in Section 5. It is characterized
by ΨH(k(X)) ' k(XH) on permutation modules and by the same formula de-
greewise on complexes. We write Ψ̌H = ΥG//H ◦ ΨH for the composite K(G) →
K(G//H)�Db(k(G//H)) all the way down to the derived category of G//H. For ev-
ery H ∈ Subp(G), the tt-prime M(H) = Ker(Ψ̌H) is a closed point of Spc(K(G)). It
is also M(H) = Ker(FH) where FH = ResG//H1 ◦ΨH : K(G) → K(G//H) → Db(k).
All closed points of Spc(K(G)) are of this form by Corollary 7.31. We write
ψH = Spc(ΨH) : Spc(K(G//H)) → Spc(K(G)) for the continuous map induced
by ΨH and ψ̌H = Spc(Ψ̌H) : VG//H

υ
↪→ Spc(K(G//H)) ψH−−→ Spc(K(G)) for its

restriction to the cohomological open of G//H. If we need to specify the ambi-
ent group we write ψH;G for ψH , etc. We saw in Section 7 that ψH is a closed
map, and a closed immersion if H P G is normal. Every prime P ∈ Spc(K(G))
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is of the form P = PG(H, p) := ψ̌H(p) for a p-subgroup H 6 G and a point
p ∈ VG//H in the cohomological open of the Weyl group of H, in a unique way up
to G-conjugation; see Theorem 7.16. Hence the pieces VG(H) := ψ̌(VG//H) yield
a partition Spc(K(G)) = tH∈Subp(G)/GVG(H) into relatively open strata VG(H),
homeomorphic to VG//H . The crux of the problem is to understand how these
strata VG(H) ' VG//H attach together topologically, to build the space Spc(K(G)).

11. The colimit theorem

To reduce the determination of Spc(K(G)) to the elementary abelian case, we
invoke the category Ep(G) of elementary abelian p-sections of a finite group G.
Recall that a section of G is a pair (H,K) of subgroups with K normal in H.

11.1. Construction. We denote by Ep(G) the category whose objects are pairs (H,K)
where K P H are p-subgroups of G such that H/K is elementary abelian. Mor-
phisms (H,K)→ (H ′,K ′) are defined to be elements g ∈ G such that

K ′ 6 Kg 6 Hg 6 H ′.

Composition of morphisms is defined by multiplication in G. Note that the rank of
the elementary abelian group H/K increases or stays the same along any morphism
(H,K)→ (H ′,K ′) in this category.

11.2. Examples. Let us highlight three types of morphisms in Ep(G).
(a) We have an isomorphism g : (H,K) ∼→ (Hg,Kg) in Ep(G) for every g ∈ G.
Intuitively, we can think of this as the group isomorphism cg : H/K ∼→ Hg/Kg.
(b) For every object (H ′,K ′) in Ep(G) and every subgroup H 6 H ′ containing K ′,
we have a well-defined object (H,K ′) and the morphism 1: (H,K ′) → (H ′,K ′).
Intuitively, we think of it as the inclusion H/K ′ ↪→ H ′/K ′ of a subgroup.
(c) For (H,K) in Ep(G) and a subgroup L̄ = L/K of H/K, for K 6 L 6 H, there
is another morphism in Ep(G) associated to 1 ∈ G, namely 1: (H,L) → (H,K).
This one does not correspond to an intuitive group homomorphism H/L 99K H/K,
as K is smaller than L. Instead, H/L is the quotient of H/K by L̄ P H/K. This
last morphism will be responsible for the modular L̄-fixed-points functor.

11.3. Remark. Every morphism g : (H,K)→ (H ′,K ′) in Ep(G) is a composition of
three morphisms of the above types (a), (b) and (c) in the following canonical way:

H Hg H ′ H ′

∇
(a)
// ∇

(b)
// ∇

(c)
// ∇

K Kg Kg K ′

where the first is given by g ∈ G and the last two are given by 1 ∈ G.

11.4. Construction. To every object (H,K) in Ep(G), we associate the tt-category
K(H/K) = Kb(perm(H/K; k)). For every morphism g : (H,K)→ (H ′,K ′) in Ep(G),
we set K̄ = Kg/K ′ and we define a functor of tt-categories:

K(g) : K(H ′/K ′) ΨK̄−−→ K(H ′/Kg) Res−−→ K(Hg/Kg)
c∗g−→ K(H/K)

using that (H ′/K ′)/K̄ = H ′/Kg for the modular fixed-points functor ΨK̄ , and
using that Hg/Kg is a subgroup of H ′/Kg for the restriction.
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It follows from Proposition 5.15 and Corollary 5.18 that K(−) is a contravariant
(pseudo) functor on Ep(G) with values in tt-categories:
(11.5) K : Ep(G)op−→ tt-Cat .
We can compose this with Spc(−), which incidentally makes the coherence of the
2-isomorphisms accompanying (11.5) irrelevant, and obtain a covariant functor
from Ep(G) to topological spaces. Let us compare this diagram of spaces (and its
colimit) with the space Spc(K(G)). For each (H,K) ∈ Ep(G), we have a tt-functor

(11.6) K(G) ResGH−−−→ K(H) ΨK−−→ K(H/K)
which yields a natural transformation from the constant functor (H,K) 7→ K(G)
to the functor K : Ep(G)op → tt-Cat of (11.5). The above ΨK is ΨK;H . Since H 6
NGK, the tt-functor (11.6) is also ResG//KH/K ◦Ψ

K;G : K(G)→ K(G//K)→ K(H/K).
Applying Spc(−) to this observation, we obtain a commutative square:

(11.7)

Spc(K(H/K)) ψK;H
//

ρH/K
��

ϕ(H,K)

))

Spc(K(H))
ρH
��

Spc(K(G//K))
ψK;G

// Spc(K(G))

whose diagonal we baptize ϕ(H,K). In summary, we obtain a continuous map
(11.8) ϕ : colim

(H,K)∈Ep(G)
Spc(K(H/K))→ Spc(K(G))

whose component ϕ(H,K) at (H,K) is the diagonal map in (11.7).

11.9. Lemma. (a) Each of the maps Spc(K(g)) : Spc(K(H/K))→ Spc(K(H ′/K ′))
in the colimit diagram (11.8) is a closed immersion.
(b) Each of the components ϕ(H,K) : Spc(K(H/K)) → Spc(K(G)) of (11.8) is
closed and preserves the dimension of points (i.e. the Krull dimension of their clo-
sure).

Proof. These statements follow from two facts, see Recollection 10.7: When N P G
is normal the map ψN : Spc(K(G/N)) ↪→ Spc(K(G)) is a closed immersion. When
H 6 G is any subgroup, the map ρH : Spc(K(H)) → Spc(K(G)) is closed, hence
lifts specializations, and it moreover satisfies ‘Incomparability’ by [Bal16]. �

We are now ready to prove Theorem 10.1:

11.10. Theorem. For any finite group G, the map ϕ in (11.8) is a homeomorphism.

Proof. Each component ϕ(H,K) is a closed map and thus ϕ is a closed map. For
surjectivity, by Recollection 10.7, we know that Spc(K(G)) is covered by the sub-
sets ψK(VG//K), over all p-subgroups K 6 G. Hence it suffices to know that the
Im(ρE) cover VG//K = Spc(Db(G//K)) as E 6 G//K runs through all elementary
p-subgroups. (Such an E must be of the form H/K for an object (H,K) ∈ Ep(G).)
This holds by a classical result of Quillen [Qui71]; see [Bal16, Theorem 4.10].

The key point is injectivity. Take P ∈ Spc(K(H/K)) and P′ ∈ Spc(K(H ′/K ′))
with same image in Spc(K(G)). Write P = PH/K(L/K, p) for suitable arguments
(K 6 L 6 H, p ∈ VH/L) and note that the map induced by 1: (H,L) →
(H,K) in Ep(G) sends PH/L(1, p) ∈ Spc(K(H/L)) to P. So we may assume
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L = K. By Remark 7.6, the image of P = PH/K(1, p) in Spc(K(G)) is PG(K, ρ̄(p))
where ρ̄ : VH/K → VG//K is induced by restriction. Similarly, we may assume
P′ = PH′/K′(1, p′) for p′ ∈ VH′/K′ and we have PG(K, ρ̄(p)) = PG(K ′, ρ̄′(p′))
in Spc(K(G)) and need to show that P and P′ are identified in the colimit (11.8).

By Theorem 7.16, the relation PG(K, ρ̄(p)) = PG(K ′, ρ̄′(p′)) can only hold be-
cause of G-conjugation, meaning that there exists g ∈ G such that K ′ = Kg and
ρ̄′(p′) = ρ̄(p)g in VG//K′ . Using the map g : (H,K) → (Hg,Kg) in Ep(G) we may
replace H,K, p by Hg,Kg, pg and reduce to the case K = K ′. In other words,
we have two points P = PH/K(1, p) ∈ Spc(K(H/K)) and P′ = PH′/K(1, p′) ∈
Spc(K(H ′/K)) corresponding to two p-subgroups H,H ′ 6 G containing the same
subgroupK as a normal subgroup and two cohomological primes p ∈ VH/K and p′ ∈
VH′/K such that ρ̄(p) = ρ̄′(p′) in VG//K under the maps ρ̄ and ρ̄′ induced by restric-
tion along H/K 6 G//K and H ′/K 6 G//K respectively.

If we let Ḡ = G//K = (NGK)/K, we have two elementary abelian p-subgroups
H̄ = H/K and H̄ ′ = H ′/K of Ḡ, each with a point in their cohomological open, p ∈
VH̄ and p′ ∈ VH̄′ , and those two points have the same image in the cohomological
open VḠ of the ‘ambient’ group Ḡ. By Quillen [Qui71] (or [Bal16, § 4]) again, we
know that this coalescence must happen because of an element ḡ ∈ Ḡ, that is, a g ∈
NGK, and a prime q ∈ VH̄∩gH̄′ that maps to p and to p′ under the maps VH̄∩gH̄′ →
VH̄ and VH̄∩gH̄′ → VH̄′ respectively. But our category Ep(G) contains all such
conjugation-inclusion morphisms coming from the orbit category of G. Specifically,
we have two morphisms 1: (H ∩ gH ′,K)→ (H,K) and g : (H ∩ gH ′,K)→ (H ′,K)
in Ep(G), under which the point P(H∩gH′)/K(1, q) maps to PH/K(1, p) = P and
PH′/K(1, p′) = P′ respectively. This shows that P = P′ in the domain of (11.8) as
required. �

11.11. Remark. By Proposition 9.1, the space Spc(K(G)) is noetherian. Hence the
topology is entirely characterized by the inclusion of primes. Now, suppose that P
is the image under ϕ(H,K) : Spc(K(E)) → Spc(K(G)) of some P′ ∈ Spc(K(E)) for
an elementary abelian subquotient E = H/K corresponding to a section (H,K) ∈
Ep(G). Then the only way for another prime Q ∈ Spc(K(G)) to belong to the
closure of P is to be itself the image of some point Q′ of Spc(K(E)) in the closure
of P′. This follows from Lemma 11.9. In other words, the question of inclusion of
primes can also be reduced to the elementary abelian case.

12. Invertible objects and twisted cohomology

In this section we introduce a graded ring whose homogeneous spectrum helps
us understand the topology on Spc(K(G)), at least for G elementary abelian. This
graded ring, called the twisted cohomology ring (Definition 12.16), consists of mor-
phisms between 1 and certain invertible objects. It all starts in the cyclic case.

12.1. Example. Let Cp = 〈σ | σp = 1〉 be the cyclic group of prime order p, with a
chosen generator. We write kCp = k[σ]/(σp − 1) as k[τ ]/τp for τ = σ − 1. Then
the coaugmentation and augmentation maps become:

η : k 1 7→τp−1

−−−−−→ kCp and ε : kCp
τ 7→0−−−→ k.

For p odd, we denote the first terms of the ‘standard’ minimal resolution of k by

up = (0→ kCp
τ−→ kCp

ε−→ k → 0).
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We view this in K(Cp) with k in homological degree zero. One can verify directly
that up is ⊗-invertible, with u⊗−1

p = u∨p
∼= (0 → k

η−→ kCp
τ−→ kCp → 0). Alterna-

tively, one can use the conservative pair of functors FH : K(Cp) → Db(k) for H ∈
{Cp , 1}, corresponding to the only closed points M(Cp) and M(1) of Spc(K(Cp)).
Those functors map up to the ⊗-invertibles k and k[2] in Db(k), respectively.

For p = 2, we have a similar but shorter ⊗-invertible object in K(C2)

u2 = (0→ kC2
ε−→ k → 0)

again with k in degree zero.

12.2. Notation. To avoid constantly distinguishing cases, we abbreviate

2′ :=
{

2 if p > 2
1 if p = 2.

For any finite group G and any index-p normal subgroup N , we can inflate the
⊗-invertible up of Example 12.1 along π : G�G/N ' Cp to a ⊗-invertible in K(G).

12.3. Definition. Let N �G be a normal subgroup of index p. We define

(12.4) uN :=
{
· · · → 0→ k(G/N) τ−→ k(G/N) ε−→ k → 0→ · · · if p is odd

· · · → 0→ 0 → k(G/N) ε−→ k → 0→ · · · if p = 2

with k in degree zero. We also define two morphisms

aN : 1→ uN and bN : 1→ uN [−2′]

as follows. The morphism aN is the identity in degree zero, independently of p:

1

aN
��

= · · · // 0 //

��

k //

1
��

0 // · · ·

uN = · · · // k(G/N)
ε
// k // 0 // · · ·

The morphism bN is given by η : k → k(G/N) in degree zero, as follows:

1

bN ��

= k //

η
��

0
��

uN [−1] = k(G/N)
ε
// k

and
1

bN ��

= k //

η
��

0
��

// 0
��

uN [−2] = k(G/N)
τ
// k(G/N)

ε
// k

where the target uN is shifted once to the right for p = 2 (as in the left-hand
diagram above) and shifted twice for p > 2 (as in the right-hand diagram).

When p is odd there is furthermore a third morphism cN : 1 → uN [−1], that is
defined to be η : k → k(G/N) in degree zero. This cN will play a lesser role.

In statements made for all primes p, simply ignore cN in the case p = 2 (or think
cN = 0). Here is an example of such a statement, whose meaning should now be
clear: The morphisms aN and bN , and cN (for p odd), are inflated from G/N .

12.5. Remark. Technically, uN depends not only on an index-p subgroup N�G but
also on the choice of a generator of G/N , to identify G/N with Cp. If one needs
to make this distinction, one can write uπ for a chosen epimorphism π : G�Cp.
This does not change the isomorphism type of uN , namely ker(π) = ker(π′) implies
uπ ∼= uπ′ . (We expand on this topic in Remark 17.2.)



THE GEOMETRY OF PERMUTATION MODULES 45

12.6. Lemma. Let N � G be a normal subgroup of index p and let q ≥ 1. Then
there is a canonical isomorphism in K(G)

u⊗qN
∼= (· · · 0→ k(G/N) τ−→ k(G/N) τp−1

−−−→ · · · τ−→ k(G/N) ε−→ k → 0 · · · )
where the first k(G/N) sits in homological degree 2′ · q and k sits in degree 0.

Proof. It is an exercise over the cyclic group Cp. Then inflate along G�G/N . �

12.7. Remark. The morphism bN : 1 → uN [−2′] of Definition 12.3 is a quasi-iso-
morphism and the fraction

ζN := (bN [2′])−1 ◦ aN : 1→ uN ← 1[2′]

is a well-known morphism ζN ∈ HomDb(kG)(1, 1[2′]) = H2′(G, k) in the derived
category Db(kG). For G elementary abelian, these ζN generate the cohomology
k-algebra H•(G, k), on the nose for p = 2 and modulo nilpotents for p odd.

We sometimes write ζ+
N = aN

bN
for ζN in order to distinguish it from the inverse

fraction ζ−N := bN
aN

that exists wherever aN is inverted. Of course, when both aN
and bN are inverted, we have ζ−N = (ζ+

N )−1 = ζ−1
N .

12.8. Remark. The switch of factors (12) : uN ⊗ uN ∼= uN ⊗ uN can be computed
directly to be the identity (over Cp, then inflate). Alternatively, it must be multi-
plication by a square-one element of Aut(1) = k×, hence ±1. One can then apply
the tensor-functor ΨG : K(G)→ Db(k), under which uN goes to 1, to rule out −1.

It follows that for p odd, uN [−1] has switch −1, and consequently every mor-
phism 1→ uN [−1] must square to zero. In particular cN ⊗cN = 0. This nilpotence
explains why cN will play no significant role in the topology.

We can describe the image under modular fixed-points functors of the⊗-invertible
objects uN and of the morphisms aN and bN . (We leave cN as an exercise.)

12.9. Proposition. Let H P G be a normal p-subgroup. Then for every index-p
normal subgroup N �G, we have in K(G/H)

ΨH(uN ) ∼=
{
uN/H if H 6 N
1 if H 66 N

and under this identification

ΨH(aN ) =
{
aN/H if H 6 N

11 if H 66 N and ΨH(bN ) =
{
bN/H if H 6 N

0 if H 66 N.

Proof. Direct from Definition 12.3 and ΨH(k(X)) ∼= k(XH) for X = G/N . �

For restriction, there is an analogous pattern but with the cases ‘swapped’.

12.10. Proposition. Let H 6 G be a subgroup. Then for every index-p normal
subgroup N �G, we have in K(H)

ResGH(uN ) ∼=
{

1[2′] if H 6 N
uN∩H if H 66 N

and under this identification

ResGH(aN ) =
{

0 if H 6 N
aN∩H if H 66 N and ResGH(bN ) =

{
11 if H 6 N

bN∩H if H 66 N.

Proof. Direct from Definition 12.3 and the Mackey formula for ResGH(k(G/N)). �
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We can combine the above two propositions and handle ΨH for non-normal H,
since by definition ΨH;G = ΨH;NGH ◦ ResGNGH . Here is an application of this.

12.11. Corollary. Let H 6 G be a p-subgroup and N � G of index p. Recall the
‘residue’ tt-functor FH = Res1 ◦ΨH : K(G)→ Db(k) at the closed point M(H).
(a) If H 66 N then FH(aN ) is an isomorphism.
(b) If H 6 N then FH(bN ) is an isomorphism.

Proof. We apply Proposition 12.10 for NGH 6 G and Proposition 12.9 for H �
NGH. For (a), H 66 N forces NGH 66 N and H 66 N ∩ NGH. Hence ΨH(aN ) =
ΨH;NGH ResNGH(aN ) = ΨH;NGH(aN∩NGH) = 11 is an isomorphism. Similarly
for (b), if NGH 6 N then ΨH(bN ) is an isomorphism and if NGH 66 N it is the
quasi-isomorphism b(N∩NGH)/H . Thus FH(bN ) is an isomorphism in Db(k). �

Let us now prove that the morphisms aN and bN , and cN (for p odd), generate
all morphisms from the unit 1 to tensor products of uN ’s. This is a critical fact.

12.12. Lemma. Let N1, . . . , N` be index-p normal subgroups of G and abbreviate
ui := uNi for i = 1, . . . , ` and similarly ai := aNi and bi := bNi and ci := cNi (see
Definition 12.3). Let q1, . . . , q` ∈ N be non-negative integers and s ∈ Z. Then every
morphism f : 1→ u⊗q11 ⊗ · · · ⊗ u⊗q`` [s] in K(G) is a k-linear combination of tensor
products of (i.e. a ‘polynomial’ in) the morphisms ai and bi, and ci (for p odd).

Proof. We proceed by induction on `. The case ` = 0 is just End•K(G)(1) = k.
Suppose ` ≥ 1 and the result known for ` − 1. Up to reducing to ` − 1, we can
assume that the N1, . . . , N` are all distinct. Set for readability
v := u⊗q11 ⊗ · · · ⊗ u⊗q`−1

`−1 [s], N := N`, u := u` = uN and q := q`

so that f is a morphism of the form
f : 1→ v ⊗ u⊗q .

We then proceed by induction on q ≥ 0. We assume the result known for q−1 (the
case q = 0 holds by induction hypothesis on `). The proof will now depend on p.

Suppose first that p = 2. Consider the exact triangle in K(G)

(12.13)

u⊗(q−1) =

aN
��

· · · 0 // 0 //

��

k(G/N) τ // · · · τ // k(G/N) ε // k // 0 · · ·

u⊗q =

��

· · · 0 // k(G/N) τ // k(G/N) τ //

��

· · · τ // k(G/N) ε //

��

k //

��

0 · · ·

k(G/N)[q] = · · · 0 // k(G/N) // 0 // · · · // 0 // 0 // 0 · · ·

where k is in degree zero. (See Lemma 12.6.) Tensoring the above triangle with v
and applying HomG(1,−) := HomK(G)(1,−) we get an exact sequence
(12.14)

HomG(1, v ⊗ u⊗(q−1)) ·aN // HomG(1, v ⊗ u⊗q) // HomG(1, v ⊗ k(G/N)[q])

f 7−→

∈

f ′ ∈ HomN (1,ResGN (v)[q])

Our morphism f belongs to the middle group. By adjunction, the right-hand term
is HomN (1,ResGN (v)[q]). Now since all N1, . . . , N` = N are distinct, we can apply
Proposition 12.10 to compute ResGN (v) and we know by induction hypothesis (on `)
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that the image f ′ of our f in this group HomN (1,ResGN (v)[q]) is a k-linear combi-
nation of tensor products of aNi∩N and bNj∩N for 1 6 i, j 6 `− 1, performed over
the group N . We can perform the ‘same’ k-linear combination of tensor products
of ai’s and bj ’s over the group G, thus defining a morphism f ′′ ∈ HomG(1, v[q]).
We can now multiply f ′′ with b⊗qN : 1 → u⊗qN [−q] to obtain a morphism f ′′bqN in
the same group HomG(1, v⊗ u⊗q) that contains f . Direct computation shows that
the image of this f ′′bqN in HomN (1,ResN (v)[s]) is also equal to f ′. The key point
is that b⊗qN is simply η : k → k(G/N) in degree q and this η is also the unit of the
ResGN a IndGN adjunction. In other words, the difference f − f ′′bqN comes from the
left-hand group HomG(1, v ⊗ u⊗(q−1)) in the exact sequence (12.14), reading

f = f ′′bqN + f ′′′aN

for some f ′′′ ∈ HomG(1, v ⊗ u⊗(q−1)). By induction hypothesis (on q), f ′′′ is a
polynomial in ai’s and bj ’s. Since f ′′ also was such a polynomial, so is f .

The proof for p odd follows a similar pattern of induction on q, with one compli-
cation. The cone of the canonical map aN : u⊗(q−1)

N → u⊗qN is not simply k(G/N)
in a single degree as in (12.13) but rather the complex

C :=
(
· · · → 0→ k(G/N) τ−−→ k(G/N)→ 0→ · · ·

)
with k(G/N) in two consecutive degrees 2q and 2q − 1. So the exact sequence

(12.15) HomG(1, v ⊗ u⊗(q−1)) ·aN // HomG(1, v ⊗ u⊗q) // HomG(1, v ⊗ C)

has a more complicated third term than the one of (12.14). That third term
HomG(1, v ⊗ C) itself fits in its own exact sequence associated to the exact trian-
gle k(G/N)[2q − 1] τ−→ k(G/N)[2q − 1] → C → k(G/N)[2q]. Each of the terms
HomG(1, v ⊗ k(G/N)[∗]) ∼= HomN (1,ResGN (v)[∗]) can be computed as before, by
adjunction. The image of f in HomN (1,ResGN (v)[2q]) can again be lifted to a
polynomial f ′bqN : 1 → v ⊗ u⊗q so that the image of the difference f − f ′bqN in
HomG(1, v ⊗ C) comes from some element in HomN (1,ResGN (v)[2q − 1]). That
element may be lifted to a polynomial f ′′bq−1

N cN : 1→ v ⊗ u⊗q, and we obtain

f = f ′bqN + f ′′bq−1
N cN + f ′′′aN

for some f ′′′ ∈ HomG(1, v ⊗ u⊗(q−1)) similarly as before. �

We can now assemble all the hom groups of Lemma 12.12 into a big graded ring.

12.16. Definition. We denote the set of all index-p normal subgroups of G by

(12.17) N = N(G) :=
{
N �G

∣∣ [G :N ] = p
}
.

Let NN = N
N(G) = {q : N(G) → N} be the monoid of twists, i.e. tuples of non-

negative integers indexed by this finite set. Consider the (Z× NN)-graded ring

(12.18) H••(G) = H••(G; k) :=
⊕
s∈Z

⊕
q∈NN

HomK(G)

(
1 ,
⊗
N∈N

u
⊗q(N)
N [s]

)
.

Its multiplication is induced by the tensor product in K(G). We call H••(G) the
(permutation) twisted cohomology ring of G. It is convenient to simply write

(12.19) 1(q) =
⊗
N∈N

(uN )⊗q(N)
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for every twist q ∈ NN(G) and thus abbreviate Hs,q(G) = Hom
(
1, 1(q)[s]

)
.

12.20. Remark. The graded ring H••(G) is graded-commutative by using only the
parity of the shift, not the twist; see Remark 12.8. In other words, we have

h1 · h2 = (−1)s1·s2 h2 · h1 when hi ∈ Hsi,qi(G).
For instance, for p odd, when dealing with the morphisms aN and bN , which land
in even shifts of the object uN , we do not have to worry too much about the order.
This explains the ‘unordered’ notation ζN = aN

bN
used in Remark 12.7.

The critical Lemma 12.12 gives the main property of this construction:
12.21. Theorem. The twisted cohomology ring H••(G) of Definition 12.16 is a k-
algebra generated by the finitely many elements aN and bN , and cN (for p odd), of
Definition 12.3, over all N �G of index p. In particular H••(G) is noetherian. �
12.22. Example. The reader can verify by hand that H••(C2) = k[aN , bN ], without
relations, and that H••(Cp) = k[aN , bN , cN ]/〈c2N 〉 for p odd, where in both cases
N = 1 is the only N ∈ N(Cp). This example is deceptive, for the {aN , bN , cN}N∈N
usually satisfy some relations, as the reader can already check for G = C2 ×C2 for
instance. We systematically discuss these relations in Section 17.

We conclude this section with some commentary.
12.23. Remark. The name ‘cohomology’ in Definition 12.16 is used in the loose
sense of a graded endomorphism ring of the unit in a tensor-triangulated category.
However, since we are using the tt-category K(G) and not Db(kG), the ring H••(G)
is quite different from H•(G, k) in general. In fact, H••(G) could even be rather
dull. For instance, if G is a non-cyclic simple group then N(G) = ∅ and H••(G) =
k. We will make serious use of H••(G) in Section 15 to describe Spc(K(G)) for
G elementary abelian. In that case, H•(G, k) is a localization of H••(G). See
Example 14.13.
12.24. Remark. By Proposition 12.9, there is no ‘collision’ in the twists: If there
is an isomorphism 1(q)[s] ' 1(q′)[s′] in K(G) then we must have q = q′ in N

N

and s = s′ in Z. The latter is clear from F
G(uN ) ∼= 1 in Db(k), independently of N .

We then conclude from F
N (1(q)) ' 1[2′q(N)] in Db(k), for each N ∈ N.

12.25. Remark. We only use positive twists q(N) in (12.18). The reader can verify
that already for G = Cp cyclic, the Z2-graded ring ⊕(s,q)∈Z2 Hom(1, u⊗qp [s]) is not
noetherian. See for instance [DHM24] for p = 2. However, negatively twisted
elements tend to be nilpotent. So the Z× ZN-graded version of H••(G) may yield
the same topological information as our Z× NN-graded one. We have not pushed
this investigation of negative twists, as it brought no benefit to our analysis.

13. An open cover of the spectrum

In this section, we extract some topological information about Spc(K(G)) from
the twisted cohomology ring H••(G) of Definition 12.16 and the maps aN and bN
of Definition 12.3, associated to every index-p normal subgroup N in N = N(G).

Recall from Construction 3.14 that we can use tensor-induction to associate to
every subgroup H 6 G a Koszul object kosG(H) = ⊗IndGH(0 → k

1−→ k → 0). It
generates in K(G) the tt-ideal Ker(ResGH), see Proposition 3.21:
(13.1) 〈kosG(H)〉K(G) = Ker

(
ResGH : K(G)→ K(H)

)
.
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13.2. Lemma. Let N �G be a normal subgroup of index p. Then we have:
(a) In K(G), the object cone(aN ) generates the same thick subcategory as k(G/N).
In particular, supp(cone(aN )) = supp(k(G/N)).
(b) In K(G), the object cone(bN ) generates the same thick tensor-ideal as kosG(N).
In particular, supp(cone(bN )) = supp(kosG(N)) = supp(Ker(ResGN )).

Proof. For p = 2, we have cone(aN ) = k(G/N)[1] so the first case is clear. For p
odd, we have cone(aN )[−1] ' (0 → k(G/N) τ−→ k(G/N) → 0) = cone(τ�k(G/N)).
Hence cone(aN ) ∈ thick(k(G/N)). Conversely, since τp = 0, the octahedron axiom
inductively shows that k(G/N) ∈ thick(cone(τ�k(G/N))). This settles (a).

For (b), the complex s := cone(bN )[2′] becomes split exact when restricted to N
since it is inflated from an exact complex on G/N . In degree one we have s1 =
k(G/N), whereas s0 = k. Hence Corollary 3.20 tells us that the complex s generates
the tt-ideal Ker(ResGN : K(G)→ K(N)). We conclude by (13.1). �

13.3. Corollary. Let N �G be of index p. Then cone(aN )⊗ cone(bN ) = 0.

Proof. By Lemma 13.2 it suffices to show k(G/N) ⊗ kosG(N) = 0. By Frobenius,
this follows from ResGN (kosG(N)) = 0, which holds by (13.1). �

We now relate the spectrum of K(G) to the homogeneous spectrum of H••(G),
in the spirit of [Bal10a]. The comparison map of [Bal10a] is denoted by ρ• but we
prefer a more descriptive notation (and here, the letter ρ is reserved for Spc(Res)).

13.4. Proposition. There is a continuous ‘comparison’ map

compG : Spc(K(G))−→ Spech(H••(G))

mapping a tt-prime P to the ideal generated by those homogeneous f ∈ H••(G)
whose cone does not belong to P. It is characterized by the fact that for all f

(13.5) comp−1
G (Z(f)) = supp(cone(f)) =

{
P
∣∣ f is not invertible in K(G)/P

}
where Z(f) =

{
p
∣∣ f ∈ p

}
is the closed subset of Spech(H••(G)) defined by f .

Proof. The fact that the homogeneous ideal compG(P) is prime comes from [Bal10a,
Theorem 4.5]. Equation (13.5) is essentially a reformulation of the definition. �

13.6. Remark. The usual notation for Z(f) would be V (f), and D(f) for its open
complement. Here, we already use V for VG and for VG(H), and the letter D is
certainly overworked in our trade. So we stick to Z(f) and Z(f)c.

13.7. Notation. In view of Proposition 13.4, for any f , the open subset of Spc(K(G))

(13.8) open(f) := open(cone(f)) =
{
P
∣∣ f is invertible in K(G)/P

}
is the preimage by compG : Spc(K(G)) → Spech(H••(G)) of the principal open
Z(f)c =

{
p
∣∣ f /∈ p

}
. It is the open locus of Spc(K(G)) where f is invertible. In

particular, our distinguished elements aN and bN (see Definition 12.3) give us the
following open subsets of Spc(K(G)), for every N ∈ N(G):

open(aN ) = comp−1
G (Z(aN )c), the open where aN is invertible, and

open(bN ) = comp−1
G (Z(bN )c), the open where bN is invertible.

Since (cN )2 = 0 by Remark 12.8, we do not have much use for open(cN ) = ∅.
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13.9. Corollary. With notation as above, we have for every N �G of index p

open(aN ) ∪ open(bN ) = Spc(K(G)).

Proof. We compute open(aN ) ∪ open(bN ) = open(cone(aN )) ∪ open(cone(bN )) =
open(cone(aN )⊗ cone(bN )) = open(0K(E)) = Spc(K(G)), using Corollary 13.3. �

13.10. Remark. Every object uN is not only ⊗-invertible in K(G) but actually lo-
cally trivial over Spc(K(G)), which is a stronger property in general tt-geometry.
Indeed, Corollary 13.9 tells us that around each point of Spc(K(G)), either uN be-
comes isomorphic to 1 via aN , or uN becomes isomorphic to 1[2′] via bN . This holds
for one invertible uN . We now construct a fine enough open cover of Spc(K(G))
such that every uN is trivialized on each open.

13.11. Proposition. Let H 6 G be a p-subgroup. Define an open of Spc(K(G)) by

(13.12) U(H) = UG(H) :=
⋂
N∈N
H 66N

open(aN ) ∩
⋂
N∈N
H6N

open(bN ).

Then the closed point M(H) ∈ Spc(K(G)) belongs to this open U(H). Conse-
quently {U(H)}H∈Subp(G) is an open cover of Spc(K(G)).

Proof. The point M(H) = Ker(FH) belongs to U(H) by Corollary 12.11. It follows
by general tt-geometry that {U(H)}H is a cover: Let P ∈ Spc(K(G)); there exists a
closed point in {P}, that is, some M(H) that admits P as a generalization; but then
M(H) ∈ U(H) forces P ∈ U(H) since open subsets are generalization-closed. �

For a p-group, we now discuss U(H) at the two extremes H = 1 and H = G.

13.13. Recollection. Let G be a p-group and F = F (G) = ∩N∈N(G)N be its Frattini
subgroup. So F �G and G/F is the largest elementary abelian quotient of G.

13.14. Proposition. Let G be a p-group with Frattini subgroup F . The closed
complement of the open UG(1) is the support of kosG(F ), i.e. the closed support
of the tt-ideal Ker(ResGF ) of K(G). In particular, if G is elementary abelian then
UG(1) is equal to the cohomological open VG = Spc(Db(kG)) ∼= Spech(H•(G, k)).

Proof. By definition, U(1) = ∩N∈N open(bN ). By Lemma 13.2, its closed comple-
ment is ∪N∈N supp(kosG(N)). By Corollary 7.17, for every K 6 G

(13.15) supp(kosG(K)) =
{
P(H, p)

∣∣H 66G K
}

(taking all possible p ∈ VG//H). It follows that our closed complement of U(1) is

∪N∈N(G) supp(kosG(N)) (13.15)=
{
P(H, p)

∣∣ ∃N ∈ N(G) such that H 66G N
}

=
{
P(H, p)

∣∣H 66 ∩N∈N(G)N
}

=
{
P(H, p)

∣∣H 66 F } (13.15)= supp(kosG(F )).

The statement with Ker(ResGF ) then follows from (13.1). Finally, if G is elementary
abelian then F = 1 and Ker(ResG1 ) = Kac(G) is the tt-ideal of acyclic complexes.
The complement of its support is Spc(K(G)/Kac(G)) = Spc(Db(kG)) = VG. �

In the above proof, we showed that ∪N∈N supp(kos(N)) = supp(kos(F )) thanks
to the fact that ∩N∈NN = F . So the very same argument gives us:
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13.16. Corollary. Let G be a p-group and let N1, . . . , Nr ∈ N(G) be some index-p
subgroups such that N1 ∩ · · · ∩Nr is the Frattini subgroup F . (This can be realized
with r equal to the p-rank of G/F .) Then UG(1) = ∩ri=1 open(bNi) already. Hence
if P ∈ open(bNi) for all i = 1, . . . , r then P ∈ open(bN ) for all N ∈ N(G). �

Let us turn to the open UG(H) for the p-subgroup at the other end: H = G.
13.17. Proposition. Let G be a p-group. Then the complement of the open UG(G)
is the union of the images of the spectra Spc(K(H)) under the maps ρH = Spc(ResH),
over all the proper subgroups H � G.
Proof. By Lemma 13.2, the closed complement of U(G) = ∩N∈N open(aN ) equals
∪N∈N supp(k(G/N)). For every H 6 G, we have supp(k(G/H)) = Im(ρH); see
Proposition 4.7 if necessary. This gives the result because restriction to any proper
subgroup factors via some index-p subgroup, since G is a p-group. �

13.18. Remark. Let G be a p-group. This open complement U(G) of ∪H�G Im(ρH)
could be called the ‘geometric open’. Indeed, the localization functor

ΦG : K(G)� K(G)
〈k(G/H) | H � G〉

corresponding to U(G) is analogous to the way the geometric fixed-points functor
is constructed in topology. For more on this topic, see Remark 4.11.
13.19. Remark. For G not a p-group, the open U(G) is not defined (we assume
H ∈ Subp(G) in Proposition 13.11) and the ‘geometric open’ is void anyway as
we have Im(ρP ) = Spc(K(G)) for any p-Sylow P � G. The strategy to analyze
non-p-groups is to first descend to the p-Sylow, using that ResP is faithful.
13.20. Remark. We saw in Proposition 13.17 that the complement of U(G) is covered
by the images of the closed maps ρH = Spc(ResH) for H � G. We could wonder
whether another closed map into Spc(K(G)) covers U(G) itself. The answer is
the closed immersion ψF : Spc(K(G/F )) ↪→ Spc(K(G)) induced by the modular
fixed-points functor ΨF with respect to the Frattini subgroup F �G. This can be
deduced from the results of Section 11 or verified directly, as we now outline. Indeed,
every prime P = PG(K, p) for K 6 G and p ∈ VG//K comes by Quillen from some
elementary abelian subgroup E = H/K 6 G//K = (NGK)/K. One verifies that
unless NGK = G and H = G, the prime P belongs to the image of ρG′ for a proper
subgroup G′ of G. Thus if P belongs to U(G), we must have E = H/K = G/K for
K P G. Such a K must contain the Frattini and the result follows.

14. Twisted cohomology under tt-functors

Still for a general finite group G, we gather some properties of the twisted coho-
mology ring H••(G) introduced in Definition 12.16. We describe its behavior under
specific tt-functors, namely restriction, modular fixed-points and localization onto
the open subsets UG(H). Recall that N = N(G) =

{
N �G

∣∣ [G :N ] = p
}
.

14.1. Remark. Twisted cohomology H••(G) is graded over a monoid of the form
Z× N`. The ring homomorphisms induced by the above tt-functors will be homo-
geneous with respect to a certain homomorphism γ on the corresponding grading
monoids, meaning of course that the image of a homogeneous element of degree (s, q)
is homogeneous of degree γ(s, q). The ‘shift’ part (in Z) is rather straightforward.
The ‘twist’ part (in N`) will depend on the effect of said tt-functors on the uN .
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Let us start with modular fixed-points, as they are relatively easy.

14.2. Construction. Let H P G be a normal subgroup. By Proposition 12.9, the
tt-functor ΨH : K(G)→ K(G/H) maps every uN for N 6≥ H to 1, whereas it maps
uN for N ≥ H to uN/H . This defines a homomorphism of grading monoids

(14.3) γ = γΨH : Z× NN(G) → Z× NN(G/H)

given by γ(s, q) = (s, q̄) where q̄(N/H) = q(N) for every N/H ∈ N(G/H). In
other words, q 7→ q̄ is simply restriction N

N(G)�N
N(G/H) along the canonical

inclusion N(G/H) ↪→ N(G). By Proposition 12.9, for every twist q ∈ NN(G), we
have a canonical isomorphism ΨH(1(q)) ∼= 1(q̄). Therefore the modular fixed-points
functor ΨH defines a ring homomorphism also denoted

(14.4)
ΨH : H••(G) // H••(G/H)(

1
f−→ 1(q)[s]

)
� //

(
1

ΨH(f)−−−−→ ΨH(1(q)[s]) ∼= 1(q̄)[s]
)

which is homogeneous with respect to γΨH in (14.3).

Restriction is a little more subtle, as some twists pull-back to non-trivial shifts.

14.5. Construction. Let α : G′ → G be a group homomorphism. Restriction along α
defines a tt-functor α∗ = InflImα

G′ ◦ResGImα : K(G)→ K(Imα)→ K(G′). Combining
Proposition 12.10 for ResGImα with the obvious behavior of the uN under inflation
(by construction), we see that α∗(uN ) ∼= 1[2′] if N ≥ Imα and α∗(uN ) ∼= uα−1(N)
if N 6≥ Imα (which is equivalent to α−1(N) ∈ N(G′)). Hence for every (s, q) ∈
Z × N

N(G) we have a canonical isomorphism α∗(1(q)[s]) ∼= 1(q′)[s′] where s′ =
s+ 2′

∑
N≥Imα q(N) and q′ : N(G′)→ N is defined for every N ′ ∈ N(G′) as

q′(N ′) =
∑

N∈N(G) s.t. α−1(N)=N ′
q(N).

(In particular q′(N ′) = 0 if N ′ 6≥ ker(α).) These formulas define a homomomor-
phism (s, q) 7→ (s′, q′) of abelian monoids that we denote

(14.6) γ = γα∗ : Z× NN(G) → Z× NN(G′).

The restriction functor α∗ defines a ring homomorphism

(14.7)
α∗ : H••(G) // H••(G′)(

1
f−→ 1(q)[s]

) � //
(
1

α∗(f)−−−−→ α∗(1(q)[s]) ∼= 1(q′)[s′]
)

which is homogeneous with respect to γα∗ in (14.6).

14.8. Remark. For instance, α : G�G/H can be the quotient by a normal sub-
group H P G. In that case α∗ is inflation, which is a section of modular fixed-
points ΨH . It follows that the homomorphism ΨH in (14.4) is split surjective.
(This also means that the composed effect on gradings γΨH ◦ γα∗ = id is trivial.)

Without changing the group G, we can also localize the twisted cohomology
ring H••(G) by restricting to an open U(H) of Spc(K(G)), as defined in Proposi-
tion 13.11. Recall the elements aN , bN ∈ H••(G) from Definition 12.3.
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14.9. Definition. Let H 6 G be a p-subgroup. Let SH ⊂ H••(G) be the multiplica-
tive subset of the graded ring H••(G) generated by all aN such that H 66 N and
all bN such that H 6 N , for all N ∈ N(G). Recall that the aN and bN are central
by Remark 12.20. We define a Z-graded ring
(14.10) O•G(H) :=

(
H••(G)[S−1

H ]
)

0-twist

as the twist-zero part of the localization of H••(G) with respect to SH . Explicitly,
the homogeneous elements of O•G(H) consist of fractions f

g where f, g ∈ H••(G)
are such that g : 1 → 1(q)[t] is a product of the chosen aN , bN in SH , meaning
that 1(q)[t] is the ⊗-product of the corresponding uN for aN and uN [−2′] for bN ,
whereas f : 1 → 1(q)[s] is any morphism in K(G) with the same N-twist q as the
denominator. Thus O•G(H) is Z-graded by the shift only: The degree of f

g is the
difference s− t between the shifts of f and g.

14.11. Remark. It follows from Lemma 12.12 (and Remark 12.24) that the Z-graded
ring O•G(H) is generated as a k-algebra by the elements{

ζ+
N , ξ

+
N

∣∣H 6 N } ∪ { ζ−N , ξ−N ∣∣H 66 N }
where ζ+

N = aN/bN is of degree +2′ and ζ−N = bN/aN of degree −2′ as in Re-
mark 12.7, and where (only for p odd) the additional elements ξ±N are ξ+

N := cN/bN
of degree +1, and ξ−N := cN/aN of degree −1. (For p = 2, simply ignore the ξ±N .)
In general, all these elements satisfy some relations; see Theorem 17.13. Beware
that here ξ−N is never the inverse of ξ+

N . In fact, both are nilpotent.

In fact, we can perform the central localization of the whole category K(G)

L(H) = LG(H) := K(G)[S−1
H ]

with respect to the central multiplicative subset SH of Definition 14.9.

14.12. Construction. The tt-category L(H) = K(G)[S−1
H ] has the same objects

as K(G) and morphisms x → y of the form f
g where g : 1 → u belongs to SH ,

for u a tensor-product of shifts of uN ’s according to g (as in Definition 14.9) and
where f : x → u ⊗ y is any morphism in K(G) with ‘same’ twist u as the denom-
inator g. This category K(G)[S−1

H ] is also the Verdier quotient of K(G) by the
tt-ideal 〈

{
cone(g)

∣∣ g ∈ SH }〉 and the above fraction f
g corresponds to the Verdier

fraction x
f
// u⊗ y y.

g⊗1
oo See [Bal10a, § 3] if necessary.

The Z-graded endomorphism ring End•L(H)(1) of the unit in L(H) = K(G)[S−1
H ]

is thus the Z-graded ring (S−1
H H••(G))0-twist = O•G(H) of Definition 14.9.

There is a general localization K�U of a tt-category K over a quasi-compact
open U ⊆ Spc(K) with closed complement Z. It is defined as K�U = (K/KZ)\. If
we apply this to U = U(H), we deduce from (13.12) that U = ∩g∈SH open(g)
has closed complement Z = ∪g∈SH supp(cone(g)) whose tt-ideal K(G)Z is the
above 〈

{
cone(g)

∣∣ g ∈ SH
}
〉. In other words, the idempotent-completion of our

LG(H) = K(G)[S−1
H ] is exactly K(G)�U(H). As with any localization, we know that

Spc(LG(H)) is a subspace of Spc(K(G)), given here by U = ∩g∈SH open(g) = U(H).

14.13. Example. For G = E elementary abelian and the subgroup H = 1, the
category LE(1) = K(E)�U(1) in Construction 14.12 is simply the derived category
LE(1) = Db(E), by Proposition 13.14. In that case, O•E(1) ∼= H•(E; k) is the actual
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cohomology ring of E. Since H = 1 6 N for all N , we are inverting all the bN and
no aN . As noted in Corollary 13.16, we obtain the same ring (the cohomology of E)
as soon as we invert enough bN1 , . . . , bNr , namely, as soon as N1 ∩ · · · ∩Nr = 1.

We again obtain an induced homomorphism of multi-graded rings.

14.14. Construction. Let H 6 G be a p-subgroup and consider the above central
localization (−)�U(H) : K(G)�LG(H). As explained in Remark 13.10, the mor-
phisms aN and bN give us explicit isomorphisms (uN )�U(H) ∼= 1 if N 6≥ H and
(uN )�U(H) ∼= 1[2′] if N ≥ H. This yields a homomorphism on the grading

(14.15) γ = γU(H) : Z× NN(G) → Z

defined by γ(s, q) = s+ 2′
∑
N≥H q(N) and we obtain a ring homomorphism

(14.16) (−)�U(H) : H••(G)−→End•LG(H)(1) = O•G(H)

which is homogeneous with respect to the homomorphism γU(H) of (14.15).

14.17. Remark. It is easy to verify that the continuous maps induced on homoge-
neous spectra by the ring homomorphisms constructed above are compatible with
the comparison map of Proposition 13.4. In other words, if F : K(G)→ K(G′) is a
tt-functor and if the induced homomorphism F : H••(G)→ H••(G′) is homogenous
with respect to γ = γF : Z×NN(G) → Z×NN(G′), for instance F = ΨH or F = α∗

as in Constructions 14.2 and 14.5, then the following square commutes:

(14.18)

Spc(K(G′))
Spc(F )

//

compG′
��

Spc(K(G))

compG
��

Spech(H••(G′))
Spech(F )

// Spech(H••(G)).

This follows from F (cone(f)) ' cone(F (f)) in K(G′) for any f ∈ H••(G).

14.19. Remark. Similarly, for every H ∈ Subp(G) the following square commutes

(14.20)

UG(H) = Spc(LG(H)) �
�

//

compL(H)

��

Spc(K(G))

compG
��

Spech(O•G(H)) �
�

// Spech(H••(G))

where the left-hand vertical map is the classical comparison map of [Bal10a] for the
tt-category LG(H) and the ⊗-invertible 1[1]. The horizontal inclusions are the ones
corresponding to the localizations with respect to SH , as in Constructions 14.12
and 14.14. In fact, it is easy to verify that the square (14.20) is cartesian, in
view of UG(H) =

⋂
g∈SH open(g) =

⋂
g∈SH comp−1

G (Z(g)c) by Construction 14.12
and (13.5).

We can combine the above functors. Here is a useful example.
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14.21. Proposition. Let H P G be a normal subgroup such that G/H is elementary
abelian. Then we have a commutative square

(14.22)

VG/H = Spc(Db(k(G/H))) ψ̌H
//

compDb(k(G/H)) '
��

Spc(K(G))

compG
��

Spech(H•(G/H, k)) �
�

// Spech(H••(G))

and in particular, its diagonal compG ◦ψ̌H is injective.

Proof. The functor Ψ̌H : K(G)→ Db(k(G/H)) is the modular fixed-points functor
ΨH : K(G) → K(G/H) composed with ΥG/H : K(G/H)�Db(k(G/H)), which is
the central localization (−)�U(1) over the cohomological open, by Proposition 13.14;
see Example 14.13. Thus we obtain two commutative squares (14.20) and (14.18):

Spc(Db(k(G/H))) �
� υG/H

//

compDb(k(G/H)) '
��

Spc(K(G/H))
compG/H
��

ψH
// Spc(K(G))

compG
��

Spech(H•(G/H, k)) �
�
// Spech(H••(G/H)) �

�
// Spech(H••(G))

the left-hand one for the central localization of K(G/H) over the open UG/H(1) =
VG/H , and the right-hand one for the tt-functor ΨH : K(G)→ K(G/H). Note that
the bottom-right map is injective because the ring homomorphism in question,
ΨH : H••(G)→ H••(G/H) defined in (14.4), is surjective by Remark 14.8. �

15. The elementary abelian case

In this central section, we apply the general constructions of Sections 12 to 14 in
the case of G = E elementary abelian. We start with a key fact that is obviously
wrong in general (e.g. for a non-cyclic simple group, the target space is just a point).

15.1. Proposition. Let E be an elementary abelian group. The comparison map
compE : Spc(K(E))→ Spech(H••(E))

of Proposition 13.4 is injective.

Proof. Let H,N 6 E with [E :N ] = p. Suppose first that H 66 N . We use the
map ψ̌H = Spc(Ψ̌H) : VE/H → Spc(K(E)) of Recollection 10.7. Then

(ψ̌H)−1(open(bN )) = (ψ̌H)−1(open(cone(bN ))) by definition, see (13.8)
= open(cone(Ψ̌H(bN ))) by general tt-geometry
= open(cone(0 : 1→ 1)) by Proposition 12.9
= open(1⊕ 1[1]) = ∅.

Thus Im(ψ̌H) does not meet open(bN ) when H 66 N . Suppose now that H 6 N . A
similar computation as above shows that (ψ̌H)−1(open(bN )) = Spc(Db(k(E/H)))
since in that case Ψ̌H(bN ) is an isomorphism in Db(k(E/H)). Therefore Im(ψ̌H) ⊆
open(bN ) when H 6 N . Combining both observations, we have

(15.2) Im(ψ̌H) ∩ open(bN ) 6= ∅ ⇐⇒ H 6 N.

Let now P,Q ∈ Spc(K(E)) be such that compE(P) = compE(Q) in Spech(H••(E)).
Say P = PE(H, p) and Q = PE(K, q) for H,K 6 E and p ∈ VE/H and q ∈ VE/K .
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(See Recollection 10.7.) The assumption compE(P) = compE(Q) implies that P ∈
open(f) if and only if Q ∈ open(f), for every f ∈ H••(E). In particular applying
this to f = bN , we see that for every index-p subgroup N�E we have P ∈ open(bN )
if and only if Q ∈ open(bN ). By (15.2), we have for every N ∈ N(E)

H 6 N ⇐⇒ K 6 N.

Since E is elementary abelian, this forces H = K. So we have two points p, q ∈
VE/H that go to the same image under VE/H

ψ̌H−−→ Spc(K(E)) compE−−−−→ Spech(H••(E))
but we know that this map in injective by Proposition 14.21 for G = E. �

In fact, we see that the open U(H) of Spc(K(E)) defined in Proposition 13.11
matches perfectly the open Spech(O•E(H)) of Spech(H••(E)) in Definition 14.9.

15.3. Theorem. Let E be an elementary abelian p-group. Let H 6 E be a subgroup.
Then the comparison map of Proposition 13.4 restricts to a homeomorphism

compE : U(H) ∼→ Spech(O•E(H))
where O•E(H) is the Z-graded endomorphism ring of the unit 1 in the localiza-
tion LE(H) of K(E) over the open U(H).

Proof. Recall the tt-category L(H) = LE(H) := K(E)[S−1
H ] of Construction 14.12,

where SH ⊂ H••(E) is the multiplicative subset generated by the homogeneous ele-
ments

{
aN
∣∣H 66 N }∪{ bN ∣∣H 6 N } of Definition 14.9. In view of Remark 14.19,

it suffices to show that the map compL(H) : Spc(L(H))→ Spech(O•E(H)) is a home-
omorphism. We have injectivity by Proposition 15.1. We also know that O•E(H) is
noetherian by Theorem 12.21. It follows from [Bal10a] that compL(H) is surjective.
Hence it is a continuous bijection and we only need to prove that it is a closed map.

We claim that L(H) is generated by its ⊗-unit 1. Namely, let J = thickL(H)(1)
be the thick subcategory of L(H) generated by 1 and let us see that J = L(H).
Observe that J is a sub-tt-category of L(H). Let N ∈ N be an index-p subgroup.
We claim that k(E/N) belongs to J. If N 6≥ H, then aN is inverted in L(H), so
k(E/N) = 0 in L(H) by Lemma 13.2 (a). If N ≥ H, then bN : 1 → uN [−2′] is
inverted, so uN ∈ J and we conclude again by Lemma 13.2 (a) since aN : 1→ uN is
now a morphism in J. For a general proper subgroup K < E, the module k(E/K)
is a tensor product of k(E/N) for some N ∈ N. (Here we use E elementary
abelian again.) Hence k(E/K) also belongs to J as the latter is a sub-tt-category
of L(H). In short J contains all generators k(E/H) for H 6 E. Therefore L(H) =
J is indeed generated by its unit. It follows from this and from noetherianity
of End•L(H)(1) = O•E(H) that Hom•L(H)(x, y) is a finitely generated O•E(H)-module
for every x, y ∈ L(H). We conclude from a general tt-geometric fact, observed by
Lau [Lau23, Proposition 2.7], that the map comp must then be closed. �

15.4. Corollary. Let E be an elementary abelian p-group. Let O•E be the sheaf of
Z-graded rings on Spc(K(E)) obtained by sheafifying U 7→ End•K(E)�U

(1). Then
(Spc(K(E)),O•E) is a Dirac scheme in the sense of [HP23].

Proof. We identified an affine cover {U(H)}H6E in Theorem 15.3. �

15.5. Remark. This result further justifies the notation for the ring O•E(H) in Def-
inition 14.9. Indeed, this O•E(H) is also the ring of sections O•E(U(H)) of the
Z-graded structure sheaf O•E over the open U(H) of Proposition 13.11.
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15.6. Corollary. Let E be an elementary abelian p-group. Then the comparison
map of Proposition 13.4 is an open immersion. More precisely, it defines a home-
omorphism between Spc(K(E)) and the following open subspace of Spech(H••(E)):

(15.7)
{
p ∈ Spech(H••(E))

∣∣ for all N � E of index p either aN /∈ p or bN /∈ p
}
.

Proof. By Proposition 15.1, the (continuous) comparison map is injective. There-
fore, it being an open immersion can be checked locally on the domain. By Propo-
sition 13.11, the open U(H) form an open cover of Spc(K(E)). Theorem 15.3 tells
us that each U(H) is homeomorphic to the following open of Spech(H••(E))

U ′(H) :=
⋂
N 6≥H

Z(aN )c ∩
⋂
N≥H

Z(bN )c

(recall that Z(f)c =
{
p
∣∣ f /∈ p

}
is our notation for a principal open). So it suffices

to verify that the union ∪H6E U ′(H), is the open subspace of the statement (15.7).
Let p ∈ U ′(H) for some H 6 E and let N ∈ N(E); then clearly either N 6≥ H in
which case aN /∈ p, or N ≥ H in which case bN /∈ p. Conversely let p belong to
the open (15.7) and define H = ∩M∈N s.t. bM /∈pM . We claim that p ∈ U ′(H). Let
N ∈ N. If N 6≥ H then bN ∈ p by construction of H and therefore aN /∈ p. So the
last thing we need to prove is that N ≥ H implies bN /∈ p. One should be slightly
careful here, as H was defined as the intersection of the M ∈ N such that bM /∈ p,
and certainly such M ’s will contain H, but we need to see why every N ≥ H
satisfies bN /∈ p. This last fact follows from Corollary 13.16 applied to E/H. �

15.8. Example. Consider the spectrum of K(Cp) for the cyclic group Cp of order p.
By Example 12.22, the reduced ring O•Cp(1)red is k[ζ+] with ζ+ = a/b in degree 2′

while O•Cp(Cp)red = k[ζ−] with ζ− = b/a. (The former is also Example 14.13.)
Each of these has homogeneous spectrum the Sierpiński space and we easily deduce
that

(15.9) Spc(K(Cp)) =
•

U(Cp)

•

GH
U(1)

confirming the computation of Spc(K(Cpn)) in Proposition 8.3 for n = 1.
We can also view this as an instance of Corollary 15.6. Namely, still by Ex-

ample 12.22, the reduced ring H••(Cp)red is k[a, b] with a in degree 0 and b in
degree −2′. Its homogeneous spectrum has one more point at the top:

Spech(H••(Cp)) =
•

•
Z(a)c

•
GH Z(b)c

and this superfluous closed point 〈a, b〉 lies outside of the open subspace (15.7).

15.10. Remark. Let K 6 H 6 E. The functor ΨK : K(E) → K(E/K) passes, by
Proposition 12.9, to the localizations over UE(H) and UE/K(H/K), respectively.
On the Z-graded endomorphisms rings, we get a homomorphism ΨK : O•E(H) →
O•E/K(H/K) that on generators aN , bN is given by the formulas of Proposition 12.9.
By Remark 14.8 this homomorphism ΨK : O•E(H)→ O•E/K(H/K) is surjective.

15.11.Proposition. For every elementary abelian group E, the spectrum Spc(K(E))
admits a unique generic point ηE, namely the one of the cohomological open VE.
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Proof. We proceed by induction on the p-rank. Let us write ηE = PE(1,
√

0) for the
generic point of VE , corresponding to the ideal

√
0 of nilpotent elements in H•(E; k).

Similarly, for every K 6 E, let us write ηE(K) = PE(K, ηE/K) for the generic point
of the stratum VE(K) ' VE/K . We need to prove that every point ηE(K) belongs
to the closure of ηE = ηE(1) in Spc(K(E)). It suffices to show this for every cyclic
subgroup H < E, by an easy induction argument on the rank, using the fact that
ψH : Spc(K(E/H)) ↪→ Spc(K(E)) is closed. So let H 6 E be cyclic.

Note that inflation InflE/HE : K(E/H) → K(E) passes to the localization of the
former with respect to all bN/H for all N ∈ N(E) containing H (which is just the
derived category of E/H) and of the latter with respect to the corresponding bN :

(15.12) InflE/HE : Db(k(E/H))−→K(E)
[{
bN
∣∣N ≥ H }−1]

.

This being a central localization of a fully-faithful functor with respect to a mul-
tiplicative subset in the source, it remains fully-faithful. One can further localize
both categories with respect to all non-nilpotent f ∈ H•(E/H; k) in the source, to
obtain a fully-faithful

(15.13) InflE/HE : Db(k(E/H))[
{
f
∣∣ f 6∈ √0

}−1]−→L

where L is obtained from K(E) by first inverting all bN for N ≥ H as in (15.12)
and then inverting all InflE/HE (f) for f ∈ H•(E/H; k)r

√
0.

At the level of spectra, Spc(L) is a subspace of Spc(K(E)). By construction,
it meets the closed subset Im(ψH) ∼= Spc(K(E/H)) of Spc(K(E)) only at the
image of the generic point ηE(H). Indeed, inverting all bN for N ≥ H on Im(ψH)
corresponds to inverting all bN/H in K(E/H), hence shows that Spc(L) ∩ Im(ψH)
is in the image under ψH of the cohomological open VE/H . Similarly, inverting
all f /∈

√
0 removes all non-generic points of VE/H . In particular, the generic point

ηE(H) of VE(H) is now a closed point of the subspace Spc(L) of Spc(K(E)).
Using that (15.13) is fully-faithful and that the endomorphism ring of the source

is the cohomology of E/H localized at its generic point (in particular not a product
of two rings), we see that L is not a product of two tt-categories and therefore
Spc(L) is not disconnected. Also ηE belongs to Spc(L) and is distinct from ηE(H).
Hence the closed point ηE(H) ∈ Spc(L) cannot be isolated. Thus ηE(H) belongs
to the closure of some other point in Spc(L).

Let then Q ∈ Spc(K(E)) be a point in the subspace Spc(L), such that Q 6= ηE(H)
and ηE(H) ∈ {Q}, which reads Q ( ηE(H). We know by Corollary 7.13 that this
can only occur for Q = P(H ′, p) with H ′ 6 H, that is, either H ′ = H or H ′ = 1
since here H was taken cyclic. The case H ′ = H is excluded, as in the subspace
Spc(L) the only prime of the form P(H, q) that remained was ηE(H) itself, and Q

is different from ηE(H). Thus H ′ = 1, which means that Q ∈ VE = {ηE(1)} and
we therefore have ηE(H) ∈ {Q} ⊆ {ηE(1)} as claimed. �

We can now determine the Krull dimension of the spectrum of K(E).

15.14. Proposition. Let E be a elementary abelian p-group. Then the Krull di-
mension of Spc(K(E)) is the p-rank of E.

Proof. By Proposition 13.11, the dimension of Spc(K(E)) is the maximum of the
dimensions of the open subsets U(H), for H 6 E. Each of these spaces has the
same generic point ηE (by Proposition 15.11) and a unique closed point M(H) by
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Proposition 13.11 (and the fact that M(K) ∈ U(H) forces K and H to be contained
in the same subgroups N ∈ N(G) by Proposition 12.9, which in turn forces K = H
because E is elementary abelian). Using Theorem 15.3 we translate the problem
into one about the graded ring O•E(H). Let ηE = p0 ( p1 ( · · · ( pn = M(H)
be a chain of homogeneous prime ideals in O•E(H). Note that pn−1 belongs to
the open Z(f)c of Spech(O•E(H)) for some f = ζ+

N , H 6 N , or some f = ζ−N ,
H 66 N . Each of these has non-zero degree so the graded ring O•E(H)[f−1] is
periodic. We deduce that dim(Spech(O•E(H))) is the maximum of 1 + dim(R)
where R ranges over the ungraded rings R = O•E(H)[f−1](0) for f as above. The
reduced ring Rred is a finitely generated k-algebra with irreducible spectrum, hence
a domain. Therefore dim(R) = dim(Rred) is the transcendence degree of the residue
field at the unique generic point. As observed above, this generic point is the same
for all H 6 E, namely the generic point of U(1) = Spc(Db(kE)). We conclude that
dim(Spc(K(E))) = dim(Spc(Db(kE))) which is indeed the p-rank of E. �

15.15. Remark. In fact, the proof shows that all closed points M(H) ∈ Spc(K(E))
have the same codimension (height), namely the p-rank of E.

15.16. Remark. Thus for E elementary abelian, the Krull dimension of Spc(K(E)) is
the same as the Krull dimension of the classical cohomological open Spc(Db(kE)) ∼=
Spech(H•(E, k)). In other words, the spectrum of K(E) is not monstrously different
from that of Db(kE), at least in terms of dimension, or ‘vertical complexity’. There
is however ‘horizontal complexity’ in Spc(K(E)): each U(H) has its own shape and
form, and there are as many U(H) as there are subgroups H 6 E. We give a finite
presentation of the corresponding k-algebras O•E(H) in Section 17.

16. Closure in elementary abelian case

In this section, E is still an elementary abelian p-group. Following up on Re-
mark 11.11, we can now use Theorem 15.3 to analyze inclusion of tt-primes P,Q
in K(E), which amounts to asking when Q belongs to {P} in Spc(K(E)).

16.1. Remark. Using again that every ψH : Spc(K(E/H)) ↪→ Spc(K(E)) is a closed
immersion, induction on the p-rank easily reduces the above type of questions
to the case where the ‘lower’ point P belongs to UE(1) = VE . More generally,
given a closed piece Z of the cohomological open VE , we consider its closure Z̄
in Spc(K(E)) = tH6EVE(H) and we want to describe the part Z̄ ∩ VE(H) in each
stratum VE(H) ∼= VE/H for H 6 E.

16.2. Construction. Let H 6 E be a subgroup of our elementary abelian group E.
Consider the open subsets UE(H) of Proposition 13.11, the cohomological open
UE(1) = VE and their intersection UE(H)∩VE . Consider also the stratum VE(H) =
ψ̌H(VE/H), that is a closed subset of UE(H) homeomorphic to VE/H via ψ̌H :

UE(H) VE

VE/H
-  ψ̌H

;;

UE(H) ∩ VE
3 S

ff

, �

::
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On graded endomorphism rings of the unit (Definition 14.9) this corresponds to

(16.3)

O•E(H)
ΨH

zzzz
Q

""

H•(E; k)

Q′

{{

H•(E/H; k) O•E(UE(H) ∩ VE)

where Q is the localization of O•E(H) with respect to ζ−N = bN
aN

for all N 6≥ H, where
Q′ is the localization of O•E(1) = H•(E, k) with respect to ζ+

N = aN
bN

for all N 6≥ H
and where ΨH is the epimorphism of Remark 15.10 for K = H.

16.4. Lemma. With above notation, let I ⊆ H•(E, k) be a homogeneous ideal of
the cohomology of E. Define the homogeneous ideal J = ΨH(Q−1(〈Q′(I)〉)) in the
cohomology H•(E/H; k) of E/H by ‘carrying around’ the ideal I along (16.3):

Q−1(〈Q′(I)〉)6

{{

I:

}}

J := ΨH(Q−1(〈Q′(I)〉)) 〈Q′(I)〉
�

cc

Let Z be the closed subset of VE defined by the ideal I. Then the closed subset
of VE/H defined by J is exactly the intersection Z̄ ∩ VE(H) of the closure Z̄ of Z
in Spc(K(E)) with the subspace VE/H , embedded via ψ̌H .

Proof. Once translated by Theorem 15.3, it is a general result about the multi-
graded ring A = H••(E). We have two open subsets, U(H) = ∩s∈SHZ(s)c and VE =
U(1) = ∩s∈S1Z(s)c for the multiplicative subsets SH and S1 of Definition 14.9.
These open subsets are ‘Dirac-affine’, meaning they correspond to the homogenous
spectra of the Z-graded localizations S−1

H (A)0-twist = O•E(H) and S−1
1 (A)0-twist =

O•E(1) = H•(E; k), where (−)0-twist refers to ‘zero-twist’, as before. The intersec-
tion of those two affine opens corresponds to inverting both SH and S1, that is,
inverting

{
bN
aN

∣∣N 6≥ H
}
from O•E(H) and

{
aN
bN

∣∣N 6≥ H
}
from H•(E; k). This

explains the two localizations Q and Q′ and why their targets coincide.
The intersection U(H) ∩ Z̄ coincides with the closure in U(H) of U(H) ∩ Z.

The latter is a closed subset of U(H) ∩ VE defined by the ideal 〈Q′(I)〉. The
preimage ideal Q−1(〈Q′(I)〉) then defines that closure U(H) ∩ Z̄ in U(H). Finally,
to further intersect this closed subset of U(H) with the closed subset VE/H =
Im(Spech(ΨH)), it suffices to project the defining ideal along the corresponding
epimorphism ΨH : O•E(H)�H•(E/H; k). �

Before illustrating this method, we need a technical detour via polynomials.

16.5. Lemma. Let I be a homogeneous ideal of the cohomology H•(E, k) and let
1 6= H � E be a fixed non-trivial subgroup. Suppose that the only homogeneous
prime containing I and all the ζN for N ≥ H (Remark 12.7) is the maximal
ideal H+(E, k). Then there exists in I a homogeneous (6) polynomial f of the form

f =
∏
M 6≥H

ζdM +
∑
m

λm ·
∏
N∈N

ζ
m(N)
N

6The grading is the usual N-grading in which all the ζN have the same degree 2′. In particular,
the first term

∏
M 6≥H

ζd
M in f has degree 2′ · d · |

{
M ∈ N

∣∣M 6≥ H }|.
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for some integer d ≥ 1 and scalars λm ∈ k and finitely many exponents m ∈ NN

that satisfy the following properties:
(16.6) m(N) ≥ 1 for at least one N ≥ H and m(N ′) < d for all N ′ 6≥ H.

Proof. For simplicity, we work in the subring H∗ ⊆ H•(E, k) generated by the ζN .
(For p = 2, this is the whole cohomology anyway and for p odd we only miss
nilpotent elements, which are mostly irrelevant for the problem, as we can always
raise everything in sight to a large p-th power.) Let us denote the maximal ideal
by m = 〈ζN | N ∈ N〉. It is also convenient to work in the quotient N-graded ring

A∗ := H∗(E, k)/I

which is generated, as a k-algebra, by the classes ζ̄N of all ζN modulo I.
The assumption about Z(I +

{
ζN
∣∣N ≥ H

}
) = {m} implies that m has some

power contained in I + 〈
{
ζN
∣∣N ≥ H }〉. In other words when N ′ 6≥ H we have

(16.7) (ζ̄N ′)d ∈ 〈ζ̄N | N ≥ H〉A∗

for d� 1 that we take large enough to work for all the (finitely many) N ′ 6≥ H.
Consider this ideal J = 〈 ζ̄N | N ≥ H 〉 of A∗ more carefully. It is a k-linear

subspace generated by the classes θ̄m of the following products in H∗

(16.8) θm :=
∏
N∈N

(ζN )m(N)

with m ∈ N
N such that m(N) ≥ 1 for at least one N ≥ H. We claim that

J is in fact generated over k by the subset of the θ̄m for the special m ∈ N
N

satisfying (16.6). Indeed, let J ′ ⊆ J be the k-subspace generated by the θ̄m for
the special m. Then we can prove that the class θ̄m of each product (16.8) belongs
to J ′, by using (16.7) and (descending) induction on the number

∑
N≥H m(N), for

a fixed total degree
∑
N m(N). We conclude that J = J ′.

By (16.7), the monomial
∏
M 6≥H(ζ̄M )d belongs to J and therefore to J ′: It is a

k-linear combination of monomials of the form θ̄m for m ∈ NN satisfying (16.6).
Returning from A∗ = H∗(E, k)/I to H∗(E, k), the difference between

∏
M 6≥H(ζM )d

and the same k-linear combination of the lifts θm in H∗(E, k) is an element of I,
that we call f and that fulfills the statement. �

16.9. Proposition. Let Z ⊂ VE be a non-empty closed subset of the cohomological
open and let 1 6= H � E be a non-trivial subgroup. Suppose that in VE, the subset Z
intersects the image of the cohomological open of H in the smallest possible way:

Z ∩ ρH(VH) = {M(1)}.

Consider the closure Z̄ of Z in the whole spectrum Spc(K(E)). Then Z̄ does not
intersect the stratum VE(H) = ψH(VE/H). Hence M(H) does not belong to Z̄.

Proof. Let I ⊂ H•(E, k) be the homogeneous ideal that defines Z. The closed
image ρH(VH) is given by the (partly redundant) equations ζN = 0 for all N ≥ H.
It follows that the intersection Z∩ρH(VH) is defined by the ideal I+〈 ζN | N ≥ H 〉.
So our hypothesis translates exactly in saying that I satisfies the hypothesis of
Lemma 16.5. Hence there exists a homogeneous element of I

f =
∏
M 6≥H

ζdM +
∑
m

λm
∏
N∈N

ζ
m(N)
N
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for scalars λm ∈ k and finitely many exponents m ∈ NN satisfying (16.6). We can
now use Lemma 16.4 and follow Diagram (16.3) with the ideal I and particularly
with its element f . The elementQ′(f) is just f seen inO•E(UE(H)∩VE). But it does
not belong to the image of O•E(H) under Q because f contains some bM with M 6≥
H in denominators in the ζM ’s. Still, we can multiply Q′(f) by

∏
M 6≥H( bMaM )d =∏

M 6≥H(ζM )−d to get a degree-zero homogeneous element

(16.10) f̃ = 1 +
∑
m

λm
∏
N∈N

ζ
m′(N)
N

in the ideal 〈Q′(f)〉, where we set the exponent m′(N) := m(N)− d if N 6≥ H and
m′(N) := m(N) if N ≥ H. Note that by (16.6) the exponent m′(N) is negative
if N 6≥ H and is non-negative if N ≥ H and strictly positive for at least one N ≥ H.
Both types of exponents of ζN are allowed in O•E(H), namely, when N 6≥ H, the
element ζ−N = bN

aN
exists in O•E(H). In other words, the element f̃ ∈ 〈Q′(f)〉 satisfies

f̃ = Q(1 + g̃)
where g̃ ∈ O•E(H) belongs to the ideal 〈ζN | N ≥ H〉 in O•E(H) and must be
of degree zero by homogeneity. Now, for N ≥ H, we have ΨH(ζN ) = ζN/H
by Proposition 12.9. It follows that ΨH(g̃) belongs to the maximal ideal 〈 ζN̄ |
N̄ ∈ N(E/H)〉 ⊆ H+(E/H, k) of H•(E/H, k) and still has degree zero. This
forces ΨH(g̃) = 0 and therefore ΨH(1 + g̃) = 1 in H•(E/H, k). In the notation
of Lemma 16.4, we have shown that J contains 1, which implies that Z̄ ∩ VE(H) =
∅. �

16.11. Corollary. Let Z ⊂ VE be a closed subset of the cohomological open, strictly
larger than the unique closed point M(1) of VE. Suppose that in VE, the subset Z
intersects the images of all proper subgroups trivially, i.e. Z ∩

(⋃
H�E ρH(VH)

)
=

{M(1)}. Then the closure Z̄ of Z in the whole spectrum Spc(K(E)) has only one
more point, namely Z̄ = Z ∪ {M(E)}.

Proof. By Proposition 16.9, we see that Z̄ does not meet any stratum VE(H) for
H 6= E. Thus the only point of Spc(K(E)) outside of Z itself, hence outside
of VE , that remains candidate to belong to Z̄ must belong to supp(Kac(E)) r
∪H�EVE(H) = VE(E) = {M(E)}. We know that M(E) = 〈k(E/H) | H � E〉
in K(E), by Example 7.30. Take P ∈ Z different from M(1). Since P does not
belong to any Im(ρH) = supp(k(E/H)) by assumption, it must contain k(E/H).
Consequently, M(E) ⊆ P, meaning that M(E) ∈ {P} ⊆ Z̄. �

16.12. Corollary. Let E be an elementary abelian group of rank r. Let P be a point
of height r− 1 in the cohomological open VE, that is, a closed point of the classical
projective support variety VE(k) := VEr{M(1)} ∼= Proj(H•(E, k)) ∼= P

r−1
k . Suppose

that P does not belong to the image ρH(VH) of the support variety of any proper
subgroups H � E. Then the closure of P in Spc(K(E)) is exactly the following

{P} = {M(E),P,M(1)}.

Proof. Apply Corollary 16.11 to Z = {P,M(1)}, the closure of P in VE . �

16.13. Example. We can review the proof of Proposition 16.9 in the special case
of Corollary 16.12, to see how elements like f ∈ O•E(1) and f̃ ∈ O•E(H) come
into play. We do it in the special case where P is a k-rational point (e.g. if k is
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algebraically closed). Let 1 6= H � E be a non-trivial subgroup (the case r = 1
being trivial). Choose N0, N1 � E index-p subgroups with H 6 N0 and H 66 N1.
They define coordinates ζ0, ζ1 in Pr−1 (where ζi = ζNi as in Remark 12.7). There
exists a hyperplane of Pr−1

(16.14) λ0ζ0 + λ1ζ1 = 0, [λ0 : λ1] ∈ P1(k),
going through the rational point P. Note that λ1 6= 0 as P /∈ Z(ζ0) = ρN0(VN0), by
assumption. As in Lemma 16.4, the following two localizations agree
(16.15) O•E(H)

[
(ζ−N )−1 | H 66 N

]
= O•E(1)

[
(ζ+
N )−1 | H 66 N

]
where N � E ranges over the index-p subgroups as usual. We find a lift

f̃ := λ0ζ0ζ
−
N1

+ λ1 ∈ O•E(H)

of the element f = λ0ζ0 + λ1ζ1 ∈ O•E(1) of (16.14) suitably multiplied by ζ−1
1 =

ζ−N1
in the localization (16.15). Then we have ΨH(ζ−N1

) = 0 since H 66 N1, by
Proposition 12.9, so ΨH(f̃) = λ1 ∈ k× is an isomorphism. We deduce that cone(f̃)
belongs to M(H)r P, which shows that P does not specialize to M(H).

16.16. Example. Let E = C2 × C2 be the Klein-four group. Let us justify the
description of Spc(K(E)) announced in Example 8.10 in some detail:

(16.17)

M(E)
•

M(N0)
•

M(N1)
•

M(N∞)
•

M(1)
•

•
ηE(N0)

•
ηE(N1)

•
ηE(N∞)

P
1
··· •

0
•
1
•
∞

•ηE
By Recollection 10.7, we have a partition of the spectrum as a set

Spc(K(E)) = VE(E) t VE(N0) t VE(N1) t VE(N∞) t VE ,
where we write N0, N1, N∞ for the three cyclic subgroups C2 and where VE = VE(1)
is the cohomological open as usual. Let us review those five parts VE(H) =
ψH(VE/H) separately, in growing order of complexity, i.e. from left to right in (16.17).

For H = E, the stratum VE(E) = ψE(VE/E) = {M(E)} is just a closed point.
For each cyclic subgroupNi < E, the quotient E/Ni ' C2 is cyclic, so Spc(E/Ni)

is the space of Example 15.8. Its image under ψNi is {ME(E), ηE(Ni),ME(Ni)},
defining the (brown) point ηE(Ni) := ψNi(ηE/Ni), as in the proof of Proposi-
tion 15.11. The stratum VE(Ni) is the image of the cohomological open VE/Ni
only, that is, the Sierpiński space {ηE(Ni),M(Ni)}, whose non-closed point ηE(Ni)
is the generic point of the irreducible {ME(E), ηE(Ni),ME(Ni)} in Spc(K(E)).

Finally, forH = 1, the cohomological open VE = Spc(Db(kE)) ∼= Spech(k[ζ0, ζ1])
is a P

1
k with a closed point M(1) on top. We denote by ηE the generic point

of Spc(K(E)) as in Proposition 15.11 and by 0, 1,∞ the three F2-rational points
of P1

k (in green). The notation P
1··· refers to all remaining points of P1

k. The
undulated lines indicate that all points of P1··· have the same behavior. Namely,
ηE specializes to all points of P1··· and every point of P1··· specializes to M(1) and
the (red) undulated line towards M(E) indicates that all points of P1··· specialize
to M(E), as follows from Corollary 16.12. (Note that the latter was rather involved:
Its proof occupies most of this section, and relies on technical Lemma 16.5.)
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We have described the closure of every point in Spc(K(E)), except for the F2-
rational points 0, 1,∞. For this, we use the closed immersion ρNi : Spc(K(Ni)) ↪→
Spc(K(E)) induced by restriction ResNi . The point i is the image of the generic
point ηNi of the V-shaped space Spc(K(Ni)) of Example 15.8. Hence its closure
is Im(ρNi) = {M(Ei), i,M(1)}. So specializations are exactly those of (16.17).

We revisit this picture in more geometric terms in Example 18.2.

16.18. Remark. It is possible to extend Corollary 16.12 to a general finite group G
by means of the Colimit Theorem 11.10. Let Z ⊆ Spc(K(G)) be a one-dimensional
irreducible closed subset. Write its generic point as P = P(K, p) for (unique)
K ∈ Subp(G)/G and p ∈ VG//K . By Quillen applied to Ḡ = G//K, there exists a
minimal elementary abelian subgroup E 6 Ḡ such that p ∈ Im(ρE : VE → VḠ),
also unique up to Ḡ-conjugation. This E 6 Ḡ = (NGK)/K is given by E = H/K
for H 6 NGK containing K. Then P = ϕ(H,K)(Q) where Q ∈ Spc(K(E)) is given
by Q = PE(1, q) for some q ∈ VE . By Lemma 11.9, the map ϕ(H,K) : Spc(K(E))→
Spc(K(G)) is closed and preserves the dimension of points. It follows that Q is also
the generic point of a one-dimensional irreducible in Spc(K(E)). By minimality
of E, the point Q ∈ VE does not belong to VH′ for any proper subgroup H ′ <
E. By Corollary 16.12, we have {Q} = {ME(E),Q,ME(1)} in Spc(K(E)). The
map ϕ(H,K) sends this subset to {MG(H),P,MG(K)}. In summary, every one-
dimensional irreducible subset of Spc(K(G)) is of the form Z = {M(H),P,M(K)},
where H and K are uniquely determined by the generic point P via the above
method.

17. Presentation of twisted cohomology

We remain in the case of an elementary abelian group E. In this section we
want to better understand the local Z-graded rings O•E(H) that played such an
important role in Section 15. Thankfully they are reasonable k-algebras.

17.1. Terminology. Recall that we write Cp = 〈σ | σp = 1 〉 for the cyclic group
of order p with a chosen generator σ. For brevity we call an Fp-linear surjection
π : E�Cp a coordinate. For two coordinates π, π′ we write π ∼ π′ if ker(π) =
ker(π′). Finally, for a subgroup H, we often abbreviate H | π to mean H 6 ker(π).

Recall from Definition 12.3 and Remark 12.5 that each coordinate π yields an
invertible object uπ = π∗up in K(E). It comes with maps aπ, bπ, cπ : k → uπ[∗].

17.2. Remark. If π ∼ π′ then there exists a unique λ ∈ F
×
p such that π′ = πλ.

Hence, if p = 2 then necessarily π = π′ and uπ = uπ′ . On the other hand,
if p > 2 is odd then we still have uπ ∼= uπ′ as already mentioned. Explicitly,
consider the automorphism λ : Cp → Cp that sends σ to σλ. The isomorphism
uπ = π∗up

∼→ π∗λ∗up = (πλ)∗up = uπ′ will be the pullback π∗Λ along π of
an isomorphism of complexes Λ: up

∼→ λ∗up. This isomorphism Λ can be given
explicitly by the identity in degree 0 and by the kCp-linear maps kCp → λ∗kCp in
degree 1 (resp. 2) determined by 1 7→ 1 (resp. 1 7→ 1 + σ + · · ·σλ−1). One checks
directly that Λ ◦ ap = ap and Λ ◦ bp = λ · bp. By applying π∗ we obtain

(π∗Λ) ◦ aπ = aλπ and (π∗Λ) ◦ bπ = λ · bλπ.(17.3)
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17.4. Lemma. Given coordinates π1 6∼ π2 set π3 = π−1
1 π−1

2 . Write ui, ai and bi
for uπi , aπi and bπi in K(E). Then we have the relation

a1b2b3 + b1a2b3 + b1b2a3 = 0
as a map from 1 to (u1 ⊗ u2 ⊗ u3)[−2′ · 2] in K(E). (See Notation 12.2 for 2′.)

Proof. Let Ni = ker(πi) for i = 1, 2, 3, which are all distinct. Let N = N1∩N2∩N3
be the common kernel, which is of index p2 in E. By inflation along E�E/N ,
it suffices to prove the lemma for E = Cp × Cp and π1 and π2 the two projec-
tions on the factors. We abbreviate u for the complex of permutation kE-modules
u := u1 ⊗ u2 ⊗ u3. Consider the permutation module M := kCp ⊗ kCp ⊗ kCp ∼=
k(E/N1)⊗ k(E/N2)⊗ k(E/N3) which appears as a summand in various degrees of
the complex u. One element in M is of particular interest:

m :=
p−1∑

i1,i2=0
σi1 ⊗ σi2 ⊗ σ−i1−i2 .

It is easy to check that m is E-invariant, thus defines a kE-linear map m̃ : k →M ,
that can be used to define the required homotopies. This depends on p. If p = 2,
the homotopy is given by m̃ when viewed from 1 to the only M -entry of u[−2] in
degree one. If p > 2, the homotopy is given by (m̃, m̃, m̃) as a map from 1 to the
three M -entries of u[−4] in degree one. Verifications are left to the reader. �

17.5. Construction. We construct a commutative k-algebra O•E(H) by generators
and relations. Its generators are indexed by coordinates π : E�Cp (Terminol-
ogy 17.1) {

ζ+
π

∣∣π s.t. H 6 ker(π)
}
∪
{
ζ−π
∣∣π s.t. H 66 ker(π)

}
.

These generators come equipped with a degree in Z: If H | π the generator ζ+
π is

set to have degree 2′, whereas if H - π the generator ζ−π is set to have degree −2′.
We impose the following four families of homogeneous relations. First for every
coordinate π and every λ ∈ F×p (for p odd), we have a rescaling relation
(a) ζ+

πλ
= λζ+

π if H | π and ζ−
πλ

= λ−1ζ−π if H - π′

and whenever π3 = π−1
1 π−1

2 and π1 6∼ π2, writing ζ±i := ζ±πi , we impose one of the
following relations, inspired by Lemma 17.4:
(b) ζ+

1 + ζ+
2 + ζ+

3 = 0, if H | π1 and H | π2 (and therefore H | π3)
(c) ζ−1 + ζ−2 + ζ−1 ζ

−
2 ζ

+
3 = 0, if H - π1 and H - π2 but H | π3

(d) ζ−1 ζ
−
2 + ζ−2 ζ

−
3 + ζ−3 ζ

−
1 = 0 if H - πi for all i = 1, 2, 3.

Since these relations are homogeneous, the ring O•E(H) is a Z-graded ring.

17.6. Remark. We could also define a multi-graded commutative k-algebra H••(E)
generated by all aπ, bπ subject to the relations in (17.3) and Lemma 17.4. This
algebra H••(E) would be Z × NN-graded with aπ in degree (0, 1ker(π)) and bπ in
degree (−2′, 1ker(π)). Then O•E(H) is simply the ‘zero-twist’ part of the localization
of H••(E) with respect to the aπ, bπ that become invertible in U(H), that is, those aπ
such that H - π and those bπ such that H | π, as in Definition 14.9.

17.7. Remark. By (17.3) and Lemma 17.4, there exists a canonical homomorphism
(17.8) O•E(H)→ O•E(H)
mapping ζ+

π to aπ
bπ

and ζ−π to bπ
aπ

.
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17.9. Example. Let H = 1. Recall from Example 14.13 that O•E(1) is the cohomol-
ogy ring. Then the homomorphism (17.8) is the standard one O•E(1) → H•(E; k),
that maps ζ+

π to the usual generator ζπ = π∗(ζCp). Note that here H = 1 | π
for all π, so there is no ζ−π . For E elementary abelian, it is well-known that this
homomorphism O•E(1) → H•(E; k) is an isomorphism modulo nilpotents. See for
instance [Car96].

For two subgroups H,K 6 E, the open subsets UE(H) and UE(K) can intersect
in Spc(K(E)). Similarly, we can discuss what happens with the rings O•E(H).

17.10. Proposition. Let H,K 6 E be two subgroups. Define S = S(H,K) ⊂
O•E(H) to be the multiplicative subset generated by the finite set{

ζ+
π

∣∣ for π with H | π and K - π
}
∪
{
ζ−π
∣∣ for π with H - π and K | π

}
and similarly, swapping H and K, let T = S(K,H) ⊂ O•E(K) be the multiplicative
subset generated by

{
ζ+
π

∣∣H - π and K | π
}
∪
{
ζ−π
∣∣H | π and K - π

}
. Then we

have a canonical isomorphism of (periodic) Z-graded rings
S−1O•E(H) ∼= T−1O•E(K)

and in particular of their degree-zero parts. Thus the open of Spech(O•E(H)) defined
by S is canonically homeomorphic to the open of Spech(O•E(K)) defined by T .

Proof. The left-hand side S−1O•E(H) is the (‘zero-twist’ part of the) localization
of the multi-graded ring H••(E) of Remark 17.6 with respect to{

aπ
∣∣H - π

}
∪
{
bπ
∣∣H | π } ∪ { aπ ∣∣H | π,K - π

}
∪
{
bπ
∣∣H - π,K | π

}
=
{
aπ
∣∣H - π or K - π

}
∪
{
bπ
∣∣H | π or K | π

}
which is symmetric in H and K. This completes the proof. �

17.11. Remark. The above isomorphism is compatible with the homomorphism (17.8),
namely the obvious diagram commutes when we perform the corresponding local-
izations on O•E(H) and O•E(K).

17.12. Proposition. Let K 6 H 6 E. There is a canonical split epimorphism
‘ΨK : O•E(H)�O•E/K(H/K) whose kernel is 〈 ζ−π | K - π 〉. It is compatible with
the homomorphism ΨK of Remark 15.10, in that the following diagram commutes

O•E(H)

‘ΨK
����

(17.8)
// O•E(H)

ΨK
����

O•E/K(H/K)
(17.8)

// O•E/K(H/K).

Proof. Set H̄ := H/K 6 Ē := E/K. Similarly, for every coordinate π : E�Cp
such that K | π, let us write π̄ : E/K�Cp for the induced coordinate. The mor-
phism ‘ΨK will come from a morphism “ΨK : H••(E) → H••(E/K), with respect
to the homomorphism of gradings (14.3). As these algebras are constructed by
generators and relations (Remark 17.6), we need to give the image of generators.
In view of Proposition 12.9 we define “ΨK : H••(E)→ H••(E/K) on generators by

aπ 7→

{
aπ̄ if K | π
1 if K - π

bπ 7→

{
bπ̄ if K | π
0 if K - π.
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It is easy to see that the relations in H••(E) are preserved; thus the map “ΨK is well-
defined. Let $ : E�E/K and for every π̄ : Ē�Cp consider the coordinate π =
π̄◦$ : E�Cp. Then H̄ | π̄ if and only if H | π. It follows that the morphism passes
to the localizations ‘ΨK : O•E(H)�O•E/K(H/K) as announced. The statement
about its kernel is easy and commutativity of the square follows from the fact
(Remark 15.10) that ΨK treats the aπ and bπ according to the same formulas.

The section of ‘ΨK is inspired by inflation. Namely, aπ̄ 7→ aπ and bπ̄ 7→ bπ
defines a map of graded k-algebras H••(Ē) → H••(E) that is already a section
to “ΨK and passes to the localizations. �

17.13. Theorem. The canonical homomorphism (17.8) induces an isomorphism

O•E(H)red
∼→ O•E(H)red

of reduced Z-graded k-algebras.

Proof. It follows from Remark 14.11 that the map is surjective. We will now show
that the closed immersion Spech(O•E(H)) ↪→ Spech(O•E(H)) is surjective—this will
complete the proof, by the usual commutative algebra argument, which can be
found in [HP23, Lemma 2.22] for the graded case. By Theorem 15.3, this is equiv-
alent to showing the surjectivity of the composite with compE , that we baptize βH

(17.14) βH : UE(H) compE
' // Spech(O•E(H)) �

�
// Spech(O•E(H)).

We proceed by induction on the order of the subgroup H. If H = 1 the result
follows from Example 17.9. So suppose that H 6= 1 and pick a homogeneous
prime p ∈ Spech(O•E(H)). We distinguish two cases.

If for every coordinate π : E�Cp such that H - π we have ζ−π ∈ p then p
belongs to V (

{
ζ−π
∣∣H - π

}
), which we identify with the image of Spech(O•E/H(1))

by Proposition 17.12 applied to K = H. Namely, we have a commutative square

UE(H)

βH

��

UE/H(1)

β1

��

ψH
oo

Spech(O•E(H)) Spech(O•E/H(1))
Spech(‘ΨH)
oo

and since the right-hand vertical arrow is surjective by the case already discussed,
we conclude that p belongs to the image of βH in (17.14) as well.

Otherwise, there exists a coordinate π1 such that H - π1 and ζ−π1
/∈ p. Let

K := H ∩ ker(π1) and let S = S(H,K) be defined as in Proposition 17.10:

S =
{
ζ−π
∣∣ for π with H - π and K | π

}
.

We claim that p belongs to the open of Spech(O•E(H)) defined by S. Indeed, let
ζ−π2
∈ S, that is for π2 with H - π2 and K | π2, and let us show that ζ−π2

/∈ p.
If π2 ∼ π1 this is clear from ζ−π1

/∈ p and the relation (a) in O•E(H). If π2 6∼ π1,
let h ∈ H r K (so that h generates the cyclic group H/K ∼= Cp). As π1(h) 6= 1
and π2(h) 6= 1 we may replace π1 by an equivalent coordinate π̃1 := πλ1 such that
π̃1(h) = π2(h)−1 and therefore H | π3 := π̃−1

1 π−1
2 . Then relation (c) exhibits ζ−π̃1

as a multiple of ζ−π2
. As the former does not belong to p (by the previous case),
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neither does ζ−π2
. At this point we may apply Proposition 17.10 for our subgroups H

and K. By Remark 17.11, we have a commutative triangle:

UE(H) ∩ UE(K)
βH

uu

βK

**

Spech(O•E(H)[S−1]) oo ≈ // Spech(O•E(K)[T−1])

We just proved that p belongs to the open subset in the bottom left corner. As K
is a proper subgroup of H, we know that βK is surjective by induction hypothesis
and we conclude that p belongs to the image of βH as well. �

17.15. Remark. In Theorem 17.13 we have proved something slightly more precise,
namely that the map

(17.16) O•E(H)→ O•E(H)/〈ξ±π 〉

(where π ranges over all coordinates) is surjective with nilpotent kernel. We expect
that O•E(H) is already reduced, which would imply that (17.16) is in fact an isomor-
phism of graded rings. In particular, for p = 2 we expect that O•E(H) ∼→ O•E(H).

18. Applications and examples

In this final section, we push our techniques further and compute more examples.

18.1. Remark. For E elementary abelian, Corollary 15.4 and Theorem 17.13 al-
low us to think of the geometry of Spc(K(E)), beyond its mere topology, by
viewing Spc(K(E)) as a Dirac scheme. Consider further the ‘periodic’ locus of
Spc(K(E)), which is the open complement of the closed points

{
M(H)

∣∣H 6 E };
see Recollection 10.7. This is analogous to considering the projective support va-
riety Proj(H•(E, k)) ∼= P

r−1
k by removing the ‘irrelevant ideal’ M(1) = H+(E, k)

from Spech(H•(E, k)). To avoid confusion with the phrase ‘closed points’, we now
refer to theM(H) as very closed points, allowing us to speak of closed points of Pr−1

k

in the usual sense (as we did in Corollary 16.12). Removing those finitely many ‘ir-
relevant’ points allows us to draw more geometric pictures by depicting the (usual)
closed points of the periodic locus, as in classical algebraic geometry.

In fact, for any finite group G, we can speak of the periodic locus of Spc(K(G))
to mean the open Spc′(K(G)) := Spc(K(G)) r

{
M(H)

∣∣H ∈ Subp(G)
}
obtained

by removing the ‘irrelevant’ very closed points. However, we do not endow these
spectra with a scheme-theoretic structure beyond the elementary abelian case, since
we do not have Corollary 15.4 in general. We postpone a systematic treatment of
the periodic locus to later work. For now we focus on examples.

18.2. Example. Let us revisit Klein-four, with the notation of Example 16.16. From
the picture in (16.17) we see that the union of the open subsets UE(1) and UE(E)
only misses (three) very closed points hence covers the periodic locus. We have

(18.3)
O•E(1) =

k[ζ+
N0
, ζ+
N1
, ζ+
N∞

]
〈ζ+
N0

+ ζ+
N1

+ ζ+
N∞
〉

(= H∗(E; k)) ,

O•E(E) =
k[ζ−N0

, ζ−N1
, ζ−N∞ ]

〈ζ−N0
ζ−N1

+ ζ−N1
ζ−N∞ + ζ−N∞ζ

−
N0
〉
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and their homogeneous spectra are both a projective line with a unique closed point
added. (For O•E(E), the coordinate transformation for i = 0, 1, ζ−Ni 7→ ζ̃−i := ζ−Ni +
ζ−N∞ , identifies the ring with k[ζ̃−0 , ζ̃

−
1 , ζ

−
N∞

]/〈ζ̃−0 ζ̃
−
1 + (ζ−N∞)2〉, which corresponds

to the image of a degree-two Veronese embedding of P1 in P2.) Removing the very
closed points (Remark 18.1), it is a straightforward exercise to check that the two
lines are glued along the open complement of the F2-rational points, according to the
rule (ζ+

Ni
)−1 = ζ−Ni . In other words, we obtain the following picture of Spc′(K(E)):

Figure 3. A P
1
k with three doubled points.

To translate between this picture and the one in (16.17), think of the blue part
as P1···, the three green points as the F2-rational points i = 0, 1,∞ in UE(1) = VE
and the brown points as the ηE(Ni) in UE(E).
18.4. Example. In view of later applications let us consider the action induced on
spectra by the involution on E = C2 × C2 that interchanges the two C2-factors.
Let us say that the two factors correspond to the subgroups N0 and N1. On the
generators ζ±Ni of O

•
E(1) and O•E(E) in (18.3), the effect of the involution is

ζ±N0
7→ ζ±N1

ζ±N1
7→ ζ±N0

ζ±N∞ 7→ ζ±N∞ .

The subrings of invariants in O•E(1) and O•E(E) are, respectively,
k[e+

1 , e
+
2 , ζ

+
N∞

]
〈e+

1 + ζ+
N∞
〉
∼= k[e+

2 , ζ
+
N∞

] and
k[e−1 , e

−
2 , ζ

−
N∞

]
〈e−1 ζ

−
N∞

+ e−2 〉
∼= k[e−1 , ζ

−
N∞

]

where e±1 = ζ±N0
+ ζ±N1

and e±2 = ζ±N0
ζ±N1

are the first and second symmetric polyno-
mials in ζ±N0

and ζ±N1
. Thus e±i has degree ±i. The homogeneous spectra of these

rings (with unique very closed point removed) are again two projective lines (7) and
they are glued together along the complement of two points. In other words, the
quotient of Spc′(K(E)) by the involution is a P1

k with two doubled points:

Figure 4. A P
1
k with two doubled points.

Alternatively, the topological space underlying this quotient may be obtained
more directly at the level of Figure 3. Indeed, this involution fixes the two colored
points corresponding to∞, fixes no other points, and swaps the points correspond-
ing to 0 with the points corresponding to 1, respecting the color. So, again, the
quotient can be pictured as a P1

k with only two doubled points as in Figure 4.

7More precisely, as already in Example 18.2, we are dealing with weighted projective spaces
which happen to be isomorphic to projective lines.
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Let us return to general finite groups. We want to optimize the Colimit Theo-
rem 11.10 by revisiting the category of elementary abelian p-sections Ep(G).

18.5. Remark. In Construction 11.1, we gave a ‘raw’ version of the morphisms
in the indexing category Ep(G), which could be fine-tuned without changing the
colimit (11.8). As with any colimit, we can quotient-out the indexing category
Ep(G)� Ēp(G) by identifying any two morphisms that induce the same map by the
functor under consideration, here Spc(K(−)). We then still have

(18.6) colim
(H,K)∈Ēp(G)

Spc(K(H/K)) ∼→ Spc(K(G)).

The same holds for any intermediate quotient Ep(G)� Ẽp(G)� Ēp(G). For instance
if Z(G) denotes the center of G, we can consider the category Ẽp(G) obtained
from Ep(G) by modding out the obvious right action of the group Z(G) ·H ′ on each
hom set homEp(G)((H,K), (H ′,K ′)).

Let us illustrate how such reductions can be used in practice.

18.7. Example. Let G = Cpn be the cyclic group of order pn. As with any abelian
group, using Z(G) = G, the reduced category Ēp(G) discussed in Remark 18.5 just
becomes a poset. Here, if we denote by 1 = Hn < Hn−1 < · · · < H1 < H0 = G the
tower of subgroups of G then the poset Ēp(G) looks as follows:

(H0, H1) · · · (Hn−1, Hn)

(H0, H0)

77

(H1, H1)

gg 88

· · · (Hn−1, Hn−1)

55
hh

(Hn, Hn)

hh

From Theorem 11.10 we deduce that Spc(K(G)) is the colimit of the diagram

V V V

∗
>>

∗
`` >> ^^

· · ·
@@

∗
``

with ∗ = Spc(K(1)) and V = Spc(K(Cp)) the V-shaped space in (15.9). In the
above diagram, the arrow to the right (resp. left) captures the left-most (resp.
right-most) point of V . We conclude that the spectrum of K(Cpn) is equal to

(18.8)
m0 • • m1 mn−1 • • mn

p1 • · · · • pn

This example reproves Proposition 8.3. It will provide the starting point for our
upcoming work on the tt-geometry of Artin motives over finite fields.

18.9. Remark. The category of elementary abelian p-sections Ep(G) is a finite EI-
category, meaning that all endomorphisms are invertible. The same is true of its
reduced versions Ẽp(G) and Ēp(G) in Remark 18.5. Theorem 11.10 then implies
formally that Spc(K(G)) is the quotient of the spectra for the maximal elementary
abelian p-sections by the maximal relations. Let us spell this out.

18.10. Construction. Let I be a finite EI-category. The (isomorphism classes of)
objects in I inherit a poset structure with x ≤ y if HomI(x, y) 6= ∅. Maximal objects
Max(I) ⊆ I are by definition the maximal ones in this poset. Now, let x1, x2 be two
objects in I, possibly equal. The category Rel(x1, x2) of spans x1 ← y → x2 (or
‘relations’) between x1 and x2, with obvious morphisms (on the y part, compatible
with the spans), is also a finite EI-category and we may consider its maximal objects.
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18.11. Notation. We denote by Maxelab
p-sec(G) the set of maximal objects in Ep(G).

A word of warning: In general, there can be more maximal elementary abelian
p-sections than just the elementary abelian p-sections of maximal rank.

18.12. Corollary. Let G be a finite group. The components ϕ(H,K) of (11.7) induce
a homeomorphism between the following coequalizer in topological spaces

(18.13) coeq
( ∐

E1
g1←−L g2−→E2

maximal relations

Spc(K(L))
Spc(K(g1))

//

Spc(K(g2))
//

∐
E∈Maxelab

p-sec(G)

Spc(K(E))
)

and Spc(K(G)), for ‘maximal relations’ in Ep(G) or any variant of Remark 18.5.

Proof. Applying Theorem 11.10 we obtain

Spc(K(G)) ' coeq
( ∐

E1
g1←−L g2−→E2

Spc(K(L))
Spc(K(g1))

//

Spc(K(g2))
//

∐
E∈Ep(G)

Spc(K(E))
)

where E ranges over all elementary abelian p-sections and (g1, g2) over all relations.
There is a canonical map from the coequalizer in the statement to this one and it
is straightforward to produce an inverse, as with any finite EI-category. �

We can apply Corollary 18.12 to find the irreducible components of Spc(K(G)).

18.14. Proposition. The set of irreducible components of Spc(K(G)) is in bijec-
tion with the set Maxelab

p-sec(G) of maximal elementary abelian p-sections of G up to
conjugation, via the following bijection with generic points:

Maxelab
p-sec(G)/G

∼←→ Spc(K(G))0

(H,K) 7−→ ϕ(H,K)(ηH/K).

In particular, dim(Spc(K(G))) =p -ranksec(G) is the sectional p-rank of G.

Proof. We use coequalizer (18.13). Recall from Proposition 15.11 that Spc(K(E))
for an elementary abelian p-group E is always irreducible. We get immediately
that the map Maxelab

p-sec(G)/G�Spc(K(G))0 is a surjection. Assume now that
ϕE(ηE) = ϕE′(ηE′) for E,E′ ∈ Maxelab

p-sec(G) and let us show that E and E′ are
conjugate p-sections. By Corollary 18.12, there exists a finite sequence of maximal
relations responsible for the identity ϕE(ηE) = ϕE′(ηE′) and we will treat one re-
lation at a time. More precisely, assuming that the generic point in Spc(K(E1)) is
in the image of (the map on spectra induced by) some relation E1

g1←− L
g2−→ E2,

with E1, E2 ∈ Maxelab
p-sec(G), we will show below that both gi are conjugation iso-

morphisms (type (a) in Examples 11.2). In particular, E1, E2 are conjugate. And
as conjugation identifies the unique generic points in the spectra for E1 and E2 one
can apply induction on the number of relations to conclude.

As the map induced by g1 is a closed immersion (Lemma 11.9) it must be a
homeomorphism once its image contains the generic point. From this, we deduce
that g1 itself must be an isomorphism. (Indeed, the map induced by restriction
to a proper subgroup of E1 is not surjective, already on the cohomological open.
And similarly, the map induced by modular fixed-points with respect to a non-
trivial subgroup of E1 does not even meet the cohomological open.) Hence L ' E1
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is maximal too and therefore g2 is also an isomorphism. The only isomorphisms
in Ep(G) are conjugations (Remark 11.3) and we conclude.

The second statement follows from this together with Proposition 15.14. �

18.15. Remark. For G not elementary abelian, we already saw with G = Q8 in
Example 8.12 that Spc(K(G)) can have larger Krull dimension than Spc(Db(kG)).
And indeed, Q8 has sectional p-rank two and p-rank one.

18.16. Remark. For every maximal (H,K) ∈ Maxelab
p-sec(G), since ϕ(H,K) is a closed

map, it yields a surjection ϕ(H,K) : Spc(K(E))� {ϕH,K(ηH/K)} from the spectrum
of the elementary abelian E = H/K onto the corresponding irreducible component
of Spc(K(G)). We illustrate this with G = D8 in Example 18.17 below, where said
surjection coincides with the folding of Example 18.4.

18.17. Example. Let us compute Spc(K(D8)) for G = D8 = 〈 r, s | r4 = s2 = 1, rs =
sr−1 〉 the dihedral group of order 8. We label its subgroups as follows (8):

D8

K = 〈r2, s〉 C4 = 〈r〉 K ′ = 〈r2, r3s〉

L0 = 〈s〉 L1 = 〈r2s〉 C2 = 〈r2〉 L′0 = 〈rs〉 L′1 = 〈r3s〉

1

Since L0 and L1 (resp. L′0 and L′1) are G-conjugate, by the element r, we have
exactly eight very closed points M(H) for H ∈ Subp(G)/G. We shall focus on the
open complement of these very closed points, i.e. the periodic locus Spc′(K(D8))
of Remark 18.1, which is of Krull dimension one. Since all maps in the coequalizer
diagram (18.13) preserve the dimension of points (Lemma 11.9) we may first remove
these very closed points and then compute the coequalizer.

Let us describe Maxelab
p-sec(D8) and the maximal relations. In addition to the

maximal elementary abelian subgroups K and K ′ there is one maximal elementary
abelian subquotient D8/C2. So we have three maximal sections: Maxelab

p-sec(D8) =
{(K, 1), (K ′, 1), (D8, C2)}. We compute the relations in the category Ẽ2(D8) which
is obtained from E2(D8) by quotienting each hom-set hom((H,M), (H ′,M ′)) by
the action of H ′, as in Remark 18.5. One then easily finds by inspection five non-
degenerate (9) maximal relations up to isomorphism, pictured as follows:

(18.18)

(D8, C2)

(K,C2)
55

ww

(K ′, C2)
ii

''

(K, 1)
r %%

(C2, 1)oo // (K ′, 1)
r
vv

8The two Klein-four subgroups are called K and K′. The names L0 and L1 for the cyclic
subgroups of K (resp. L′0 and L′1 in K′) are chosen to evoke N0 and N1 in Example 16.16. The
third cyclic subgroup, N∞, corresponds to C2 = Z(D8) and is common to K and K′.

9 that is, not of the form x
id←− x id−→ x (which would not affect the coequalizer (18.13) anyway)
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Here, the loops labeled r represent the relations (K, 1) 1←− (K, 1) r−→ (K, 1), and
similarly for K ′. All unlabeled arrows are given by 1 ∈ D8, as in Examples 11.2 (b)-
(c). We explain below the brown/green color-coding in the other three relations.

Hence the space Spc′(K(D8)) is a quotient of three copies of the space Spc′(K(E))
for E the Klein-four group, equal to P1

k with three doubled points as in Figure 3.
Let us discuss the relations. We start with the self-relation corresponding to the

loop r on (K, 1). As the conjugation by r on K simply swaps the subgroups L0
and L1, we deduce from Example 18.4 that the quotient of Spc′(K(K)) by this
relation is a P1

k with two doubled points, as in Figure 4. The same is true for K ′.
At this stage we have identified the three irreducible components (see Figure 5)

and the three remaining relations will tell us how to glue these components.

Figure 5. Three P1
k with several points doubled.

The three sides of the ‘triangle’ (18.18) display maximal relations that identify
a single point of one irreducible component with a single point of another. Indeed,
each of the middle sections K/C2, K ′/C2 and C2/1 is a C2, whose periodic locus is
a single point ηC2 (Example 15.8). Each edge in (18.18) identifies the image of that
single point ηC2 in the two corresponding irreducible components in Figure 5. The
color in (18.18) records the color of that image: A brown point or a green point in
the P1

k with doubled points. Let us do all three. First, the relation between the two
Klein-fours, K and K ′, at the bottom of (18.18), identifies the two green points
corresponding to C2, as we are used to with projective support varieties. Then, the
last two relations in (18.18), on the sides, identify a brown point in the K- or K ′-
component with the green point in the D8/C2-component corresponding to K/C2
and K ′/C2, respectively. This is a direct verification, for instance using that
(ψC2)−1(Im(ρD8

K )) = (ψC2)−1(suppD8(k(D8/K))) = suppD8/C2(ΨC2(k(D8/K))) =
suppD8/C2(k(D8/K)) = Im(ρD8/C2

K/C2
) in Spc(K(D8/C2)).

Thus we obtain Spc′(K(D8)) from these three identifications on the space of
Figure 5. The result is the space that appeared in Figure 1:
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Figure 6. Three P1
k with several points doubled and some identified.
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