Homework 1

Solution to problem 3

3 Consider the set $T=\left\{\left(t, u t^{2}, u^{2} t, u^{3}\right) \mid u, t \in \mathbb{A}^{1}\right\} \subset \mathbb{A}^{4}$. Show that T is an algebraic set and find its ideal $\mathcal{I}(T)$. Prove that T is in fact an affine variety.

Remark. Almost everyone identified polynomials and proved that their zero set is equal to T so I will not do this here. To show that T is an affine variety, it suffices to note that it is the image of the morphism $\mathbb{A}^{2} \rightarrow \mathbb{A}^{4}$ essentially given in the statement of the problem.

The tricky part is to show that the polynomials identified actually generate $\mathcal{I}(T)$. More explicitly, let $I \subset k[x, y, z, w]$ be the ideal generated by $g_{1}=x^{3} w-y z, g_{2}=y w-z^{2}, g_{3}=x^{3} z-y^{2}$. The arguments referred to above establish that $\mathcal{Z}(I)=T$ and that \sqrt{I} is a prime ideal. What we would like to show is that in fact $I=\sqrt{I}$. Since it doesn't seem more difficult to show that I is prime, we will do that instead. Establishing that an ideal is radical or prime tends to be tricky (although computer algebra systems are good at it).

Claim. I is prime.

Proof. Let $R=k[x, y, z, w] / I$. I will prove below that x is not a zerodivisor in R hence $R \subset R_{x}$ and it suffices to show that R_{x} is a domain. But

$$
\begin{aligned}
R_{x} & \cong k\left[x, x^{-1}, y, z, w\right] /\left\langle w-x^{-3} y z, y w-z^{2}, z-x^{-3} y^{2}\right\rangle \\
& \cong k\left[x, x^{-1}, y\right] /\left\langle y\left(x^{-3} y x^{-3} y^{2}\right)-\left(x^{-3} y^{2}\right)^{2}\right\rangle \\
& =k\left[x, x^{-1}, y\right],
\end{aligned}
$$

which is indeed a domain.

If α is a monomial in x, y, z, w and $f \in A=k[x, y, z, w]$, I will say that f contains α if one of the terms of f is divisible by α. I will use the following fact.

Fact. We can divide with remainder by g_{1}, g_{2}, g_{3}, i.e. every $f \in A$ can be represented as $f=$ $\left(\Sigma_{i} p_{i} g_{i}\right)+r$ where r does not contain any of $x^{3} w, y w, x^{3} z$. (I will refer to an r satisfying these conditions as being in normal form.) Moreover, r is uniquely determined, and if $r \neq 0$ then $f \notin I$.

Proof. This follows from the theory of Gröbner bases. ${ }^{1}$ More specifically, it is easy to check that the g_{1}, g_{2}, g_{3} satisfy Buchberger's criterion so they form a Gröbner basis (with respect to the deglex order).

In particular, every element of R is represented by a polynomial in normal form. Thus let f be a polynomial in normal form.

[^0]Claim. If $x f=0$ in R then $f=0$ in R. (Hence x is not a zero-divisor in R.)

Proof. Collect the terms of f into groups: $f=f_{z}+f_{w}+f_{w w}+g$ where

- f_{z} is those terms divisible by $x^{2} z$, but not by w,
- f_{w} is those terms divisible by $x^{2} w$, but not by w^{2},
- $f_{w w}$ is those terms divisible by $x^{2} w^{2}$,
- g is the remaining terms.

Then $x f=x f_{z}+x f_{w}+x f_{w w}+x g$ and applying the division algorithm we obtain the polynomial in normal form

$$
\frac{f_{z}}{x^{2} z} y^{2}+\frac{f_{w}}{x^{2} w} y z+\frac{f_{w w}}{x^{2} w^{2}} z^{3}+x g,
$$

which by our assumption and the fact mentioned above must equal 0 . Using repeatedly that $f_{z}, f_{w}, f_{w w}, g$ are in normal form we deduce:

- the last summand is the only one containing x hence $g=0$;
- from the remaining ones, the first summand is the only one containing y^{2} hence $f_{z}=0$;
- the second summand is then the only one containing y thus $f_{w}=0$;
- and this implies $f_{w w}=0$ as well.

We conclude that $f=0$ in R.

[^0]: ${ }^{1}$ For a two page summary see https://math. berkeley.edu/~bernd/what-is.pdf

