Homework 1

Due: January 20, 2017

1 Let $X \subset \mathbb{A}^{4}$ be the algebraic set defined by the polynomials $x y-z w, x z-y^{2}, y(w-1)$. Find its irreducible components and corresponding prime ideals.

2 Show that for a topological space X, the following are equivalent:
(a) X is irreducible.
(b) The intersection of any two non-empty open subsets of X is non-empty (and open).
(c) Every non-empty open subset of X is dense.
(d) Every non-empty open subset of X is irreducible.
(e) The image of every continuous map $X \rightarrow Y$ is irreducible.

3 Consider the set $T=\left\{\left(t, u t^{2}, u^{2} t, u^{3}\right) \mid u, t \in \mathbb{A}^{1}\right\} \subset \mathbb{A}^{4}$. Show that T is an algebraic set and find its ideal $\mathcal{I}(T)$. Prove that T is in fact an affine variety. Hint: For the last statement, part (e) of the previous exercise may be helpful.

4 Let X be the affine variety $\mathcal{Z}\left(x^{2}+y^{2}-1\right) \subset \mathbb{A}^{2}$ and consider the rational function $f=\frac{y+1}{x}$ on X. Determine at which points f is regular. Hint: Beware of $\operatorname{char}(k)$.

5 For this problem assume that char $(k)=p>0$. Define the Frobenius morphism $F_{p}: \mathbb{A}^{n} \rightarrow$ \mathbb{A}^{n} by $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}^{p}, \ldots, x_{n}^{p}\right)$. Establish the following properties of F_{p} :
(a) It is indeed a morphism of affine varieties.
(b) It is a homeomorphism of topological spaces.
(c) It is not an isomorphism of affine varieties.

