Homework 2

Due: January 27, 2017

1 (a) Consider the canonical map $\mathbb{A}^{n+1} \backslash\{0\} \rightarrow \mathbb{P}^{n}$ which sends $\left(x_{0}, \ldots, x_{n}\right)$ to $\left[x_{0}: \cdots: x_{n}\right]$. Prove that this is a morphism of varieties.
(b) Give an example of a continuous map between varieties which is not a morphism.

2 (a) Show that every morphism $\mathbb{A}^{n} \rightarrow \mathbb{A}^{1}$ has closed image.
(b) Give an example of a morphism $\mathbb{A}^{n} \rightarrow \mathbb{A}^{m}$ whose image is not closed.

3 Consider the Veronese embedding $v_{3,1}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ and denote its image by X. As mentioned in class, X is a projective variety.
(a) Find 3 homogeneous polynomials which generate the vanishing ideal $\mathcal{I}(X)$ of X.
(b) Show that $\mathcal{I}(X)$ cannot be generated by 2 homogeneous polynomials.
(c) Let Y be the affine variety obtained by intersecting X with one of the standard opens $\mathbb{A}^{3} \cong U_{i} \subset \mathbb{P}^{3}$. Show that $\mathcal{I}(Y)$ is generated by 2 polynomials.

4 Part of this exercise is for you to learn the notion of (co)products in a category if you don't know it already. A good place to do so is Chapter 1 of Ravi Vakil's "Foundations of Algebraic Geometry". In fact, these notes start with the definition of a product.
(a) Let A and B be two affine k-algebras. Show that $A \otimes_{k} B$ is a coproduct of A and B in the category of affine k-algebras.
(b) Deduce that if $X \subset \mathbb{A}^{m}$ and $Y \subset \mathbb{A}^{n}$ are affine varieties then $X \times Y \subset \mathbb{A}^{m+n}$ with the induced topology is a product of X and Y in the category of varieties.

5 Recall that a conic (hypersurface) in \mathbb{P}^{n} is the projective variety in \mathbb{P}^{n} defined by an irreducible homogeneous polynomial of degree 2. Now, assume that $\operatorname{char}(k) \neq 2$. Show that every conic in \mathbb{P}^{2} is isomorphic to \mathbb{P}^{1}. Hint: Every symmetric bilinear form has an orthogonal basis.

