Winter 2017 Martin Gallauer

Homework 2

Due: January 27, 2017

- 1 (a) Consider the canonical map $\mathbb{A}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ which sends (x_0, \ldots, x_n) to $[x_0 : \cdots : x_n]$. Prove that this is a morphism of varieties.
 - (b) Give an example of a continuous map between varieties which is not a morphism.
- ${f 2}$ (a) Show that every morphism ${\Bbb A}^n o {\Bbb A}^1$ has closed image.
 - (b) Give an example of a morphism $\mathbb{A}^n \to \mathbb{A}^m$ whose image is not closed.
- **3** Consider the Veronese embedding $v_{3,1} : \mathbb{P}^1 \to \mathbb{P}^3$ and denote its image by X. As mentioned in class, X is a projective variety.
 - (a) Find 3 homogeneous polynomials which generate the vanishing ideal $\mathcal{I}(X)$ of X.
 - (b) Show that $\mathcal{I}(X)$ cannot be generated by 2 homogeneous polynomials.
 - (c) Let Y be the affine variety obtained by intersecting X with one of the standard opens $\mathbb{A}^3 \cong U_i \subset \mathbb{P}^3$. Show that $\mathcal{I}(Y)$ is generated by 2 polynomials.
- 4 Part of this exercise is for you to learn the notion of (co)products in a category if you don't know it already. A good place to do so is Chapter 1 of Ravi Vakil's "Foundations of Algebraic Geometry". In fact, these notes start with the definition of a product.
 - (a) Let A and B be two affine k-algebras. Show that $A \otimes_k B$ is a coproduct of A and B in the category of affine k-algebras.
 - (b) Deduce that if $X \subset \mathbb{A}^m$ and $Y \subset \mathbb{A}^n$ are affine varieties then $X \times Y \subset \mathbb{A}^{m+n}$ with the induced topology is a product of X and Y in the category of varieties.
- 5 Recall that a conic (hypersurface) in \mathbb{P}^n is the projective variety in \mathbb{P}^n defined by an irreducible homogeneous polynomial of degree 2. Now, assume that $\operatorname{char}(k) \neq 2$. Show that every conic in \mathbb{P}^2 is isomorphic to \mathbb{P}^1 . *Hint: Every symmetric bilinear form has an orthogonal basis.*