Homework 3

Due: February 3, 2017

- 1 In class we defined the tangent space at p, T_pX , of a variety X. It is natural to want to assemble all these spaces (for varying $p \in X$) together into the tangent bundle TX of X. More precisely, TX should come with a morphism $\pi : TX \to X$ whose fibers are the tangent spaces: $\pi^{-1}(p) = T_pX$. We want to explore to what extent this construction can be performed inside the category of varieties.
 - (a) As a warm-up, define $T\mathbb{A}^n$. Notice that it is indeed a variety.
 - (b) How would you define TX when X is an affine variety? Is TX a variety? What is a necessary condition on X for this possibly to be true?
 - (c) How would you approach the case of arbitrary varieties? What are the problems in carrying out your idea?
- **2** Recall that a function $f: U \to \mathbb{C}$ on an open subset $U \subset \mathbb{C}$ is analytic if for every $z_0 \in U$ there exists $\varepsilon > 0$ and $f_n \in \mathbb{C}$ such that

$$f(z) = \sum_{n \ge 0} f_n (z - z_0)^n, \qquad |z - z_0| < \varepsilon,$$

where $\sum_{n\geq 0} f_n \varepsilon^n$ converges absolutely. f is invertible (i.e. 1/f is analytic) if and only if $f(z) \neq 0$ for all $z \in U$.

- (a) Define, for every open subset $U \subset \mathbb{C}$, $\mathcal{C}^{\omega}(U)$ to be the set of analytic functions on U. Show that, with the obvious restriction morphisms, this yields a sheaf of \mathbb{C} -algebras.
- (b) Prove that the stalks of \mathcal{C}^{ω} are local rings.
- (c) For $U \subset \mathbb{C}$ open define $\mathcal{C}^{\omega,\times}(U) \subset \mathcal{C}^{\omega}(U)$ to be the set of invertible analytic functions. Show that $\mathcal{C}^{\omega,\times}$ is a sheaf of abelian groups and that the exponential function defines a morphism of sheaves of abelian groups $\exp : \mathcal{C}^{\omega} \to \mathcal{C}^{\omega,\times}$.
- (d) Show that the induced morphism \exp_{z_0} on stalks is surjective for all $z_0 \in \mathbb{C}$.
- (e) Show that $\exp_U : \mathcal{C}^{\omega}(U) \to \mathcal{C}^{\omega,\times}(U)$ is not surjective in general.
- **3** Let X be a topological space, and let \mathcal{B} be a base for the topology of X which is closed under intersection. Every presheaf F on X restricts to a "presheaf $F|_{\mathcal{B}}$ on \mathcal{B} " (i.e. a presheaf on the full subcategory of Top(X) spanned by \mathcal{B}).
 - (a) Formulate when a presheaf on \mathcal{B} should be called a sheaf.
 - (b) Prove that $(\bullet)|_{\mathcal{B}} : \operatorname{Sh}(X) \to \operatorname{Sh}(\mathcal{B})$ is an equivalence of categories. (If it isn't then your definition in part (a) is not the right one...)