Homework 3

Due: February 3, 2017

1 In class we defined the tangent space at $p, \mathrm{~T}_{p} X$, of a variety X. It is natural to want to assemble all these spaces (for varying $p \in X$) together into the tangent bundle $\mathrm{T} X$ of X. More precisely, $\mathrm{T} X$ should come with a morphism $\pi: \mathrm{T} X \rightarrow X$ whose fibers are the tangent spaces: $\pi^{-1}(p)=\mathrm{T}_{p} X$. We want to explore to what extent this construction can be performed inside the category of varieties.
(a) As a warm-up, define TA^{n}. Notice that it is indeed a variety.
(b) How would you define $\mathrm{T} X$ when X is an affine variety? Is $\mathrm{T} X$ a variety? What is a necessary condition on X for this possibly to be true?
(c) How would you approach the case of arbitrary varieties? What are the problems in carrying out your idea?

2 Recall that a function $f: U \rightarrow \mathbb{C}$ on an open subset $U \subset \mathbb{C}$ is analytic if for every $z_{0} \in U$ there exists $\varepsilon>0$ and $f_{n} \in \mathbb{C}$ such that

$$
f(z)=\Sigma_{n \geq 0} f_{n}\left(z-z_{0}\right)^{n}, \quad\left|z-z_{0}\right|<\varepsilon,
$$

where $\Sigma_{n \geq 0} f_{n} \varepsilon^{n}$ converges absolutely. f is invertible (i.e. $1 / f$ is analytic) if and only if $f(z) \neq 0$ for all $z \in U$.
(a) Define, for every open subset $U \subset \mathbb{C}, \mathcal{C}^{\omega}(U)$ to be the set of analytic functions on U. Show that, with the obvious restriction morphisms, this yields a sheaf of \mathbb{C}-algebras.
(b) Prove that the stalks of \mathcal{C}^{ω} are local rings.
(c) For $U \subset \mathbb{C}$ open define $\mathcal{C}^{\omega, \times}(U) \subset \mathcal{C}^{\omega}(U)$ to be the set of invertible analytic functions. Show that $\mathcal{C}^{\omega, x}$ is a sheaf of abelian groups and that the exponential function defines a morphism of sheaves of abelian groups exp : $\mathcal{C}^{\omega} \rightarrow \mathcal{C}^{\omega, x}$.
(d) Show that the induced morphism $\exp _{z_{0}}$ on stalks is surjective for all $z_{0} \in \mathbb{C}$.
(e) Show that $\exp _{U}: \mathcal{C}^{\omega}(U) \rightarrow \mathcal{C}^{\omega, \times}(U)$ is not surjective in general.

3 Let X be a topological space, and let \mathcal{B} be a base for the topology of X which is closed under intersection. Every presheaf F on X restricts to a "presheaf $\left.F\right|_{\mathcal{B}}$ on \mathcal{B} " (i.e. a presheaf on the full subcategory of $\operatorname{Top}(X)$ spanned by $\mathcal{B})$.
(a) Formulate when a presheaf on \mathcal{B} should be called a sheaf.
(b) Prove that $\left.(\bullet)\right|_{\mathcal{B}}: \operatorname{Sh}(X) \rightarrow \operatorname{Sh}(\mathcal{B})$ is an equivalence of categories. (If it isn't then your definition in part (a) is not the right one...)

