Winter 2017 Martin Gallauer

Homework 4

Due: February 10, 2017

1 Let (X, \mathcal{O}_X) be a ringed space. We are going to associate to it a locally ringed space (X^l, \mathcal{O}_{X^l}) as follows.¹ A point of X^l is a pair (x, \mathfrak{p}) where $x \in X$ and $\mathfrak{p} \in \text{Spec}(\mathcal{O}_{X,x})$. Now, let $U \subset X$ be an open subset and $f \in \mathcal{O}_X(U)$ a section. Define the associated distinguished open subset to be

$$D(U, f) = \{ (x, \mathfrak{p}) \mid x \in U, f_x \notin \mathfrak{p} \} \subset X^l,$$

where f_x denotes the germ of f at x.

- (a) Show that the distinguished open subsets are closed under (finite) intersections. We let these be a base for the topology on X^l . Show that the canonical map $\pi : X^l \to X$ which sends (x, \mathfrak{p}) to x is continuous.
- (b) For $V \subset X^l$ an open subset, we define $\mathcal{O}_{X^l}(V)$ to be the families

$$(s(x,\mathfrak{p}))_{x,\mathfrak{p}}\in\prod_{(x,\mathfrak{p})\in V}(\mathcal{O}_{X,x})_{\mathfrak{p}}$$

such that every $(x, \mathfrak{p}) \in V$ has an open neighborhood $D(U, f) \subset V$ with a section $a/f^n \in \mathcal{O}_X(U)[1/f]$ whose germs satisfy

$$s(y, \mathfrak{q}) = a_y / f_y^n$$

for all $(y, \mathfrak{q}) \in D(U, f)$. Show that this defines a sheaf of rings \mathcal{O}_{X^l} on X^l .

- (c) Lift $\pi: X^l \to X$ to a morphism of ringed spaces $(\pi, \pi^{\sharp}): (X^l, \mathcal{O}_{X^l}) \to (X, \mathcal{O}_X).$
- (d) Verify that for $(x, \mathfrak{p}) \in X^l$ the induced morphism on stalks

$$\pi_{(x,\mathfrak{p})}:\mathcal{O}_{X,x}\to\mathcal{O}_{X^l,(x,\mathfrak{p})}$$

is precisely the localization of $\mathcal{O}_{X,x}$ at \mathfrak{p} . In particular, (X^l, \mathcal{O}_{X^l}) is a locally ringed space.

- (e) Prove that (X^l, \mathcal{O}_{X^l}) is not a scheme in general.
- **2** We will continue studying the construction in problem 1. Suppose $(\varphi, \varphi^{\sharp}) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a morphism of ringed spaces.
 - (a) Define $\varphi^l : X^l \to Y^l$ by $(x, \mathfrak{p}) \mapsto (\varphi(x), \varphi_x^{-1}(\mathfrak{p}))$. Prove that $(\varphi^l)^{-1}(D(U, f)) = D(\varphi^{-1}(U), \varphi^{\sharp}(f))$ and deduce that φ^l is continuous.
 - (b) Lift φ^l to a morphism of locally ringed spaces $(\varphi^l, \varphi^{l,\sharp}) : (X^l, \mathcal{O}_{X^l}) \to (Y, \mathcal{O}_{Y^l})$. Deduce that we constructed a functor $\mathcal{RS} \to \mathcal{LRS}$ from ringed spaces to locally ringed spaces.

¹The construction will generalize the construction in class of Spec(R) for R a ring.

(c) Check that the square

is commutative.

(d) Prove that this construction is *universal*, i.e. for every ringed space (Y, \mathcal{O}_Y) and every morphism of ringed spaces $(\varphi, \varphi^{\sharp}) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ where (X, \mathcal{O}_X) is a locally ringed space, there is a unique morphism of locally ringed spaces completing the diagram

$$(X, \mathcal{O}_X) \xrightarrow{(\varphi, \varphi^{\sharp})} (Y, \mathcal{O}_Y)$$

$$\uparrow^{(\pi, \pi^{\sharp})}_{(Y^l, \mathcal{O}_{Y^l})}$$

In other words, there is an adjunction

forget :
$$\mathcal{LRS} \rightleftharpoons \mathcal{RS} : (\bullet)^l$$