Homework 7

Due: March 3, 2017

- **1** Consider a morphism of schemes $f : X \to Y$. Prove that the following conditions are equivalent:
 - (a) f is locally of finite type.
 - (b) For every affine open $U \subset Y$, $f^{-1}(U)$ has an open covering by affine opens $(V_i)_i$ such that $\mathcal{O}_X(V_i)$ is a finitely generated $\mathcal{O}_Y(U)$ -algebra for all *i*.
 - (c) For every affine open $U \subset Y$ and every affine open $V \subset f^{-1}(U)$, $\mathcal{O}_X(V)$ is a finitely generated $\mathcal{O}_Y(U)$ -algebra.
- **2** Let $f: X \to Y$ be an immersion. Show that f can be factored as $f = j \circ i$, where j is an open immersion, and i is a closed immersion.

Remark. It is not true in general that f also factors as $f = i \circ j$ where i is a closed immersion, and j an open immersion. (Although this is true under mild assumptions.) Here is an example which you might want to think about (no need to hand it in).

Let k be a field and $X = \mathbb{A}_k^{\infty} = \text{Spec}(k[x_1, x_2, \ldots])$. Let $j: U = \bigcup_{n \in \mathbb{N}} D(x_n) \to X$ be the open immersion. On $D(x_n)$ consider the closed immersion $Z_n \to D(x_n)$ defined by the ideal

$$\langle x_1^n, x_2^n, \dots, x_{n-1}^n, x_n - 1, x_{n+1}, x_{n+2}, \dots \rangle \subset k[x_1, x_2, \dots][1/x_n].$$

It is easy to see that these glue to a closed immersion $i : Z \to U$. Hence we get an immersion $f = j \circ i$. Why is there no factorization of f as an open immersion followed by a closed immersion? (*Hint: use the description of closed subschemes of an affine scheme given in class.*)

- **3** Let R be a ring and $p \in \mathbb{N}$ a prime number. R is said to be of characteristic p if $p \cdot 1_R = 0$ in R. A scheme X is said to be of characteristic p if for every open $U \subset X$, $\mathcal{O}_X(U)$ is of characteristic p.
 - (a) Prove that the following conditions are equivalent:
 - i. X is of characteristic p.
 - ii. For every $x \in X$, $\mathcal{O}_{X,x}$ is of characteristic p.
 - iii. $\mathcal{O}_X(X)$ is of characteristic p.
 - iv. There exists a morphism of schemes $X \to \operatorname{Spec}(\mathbb{F}_p)$, where the latter denotes the finite field with p elements.
 - (b) Let X be a scheme of characteristic p. Prove that there is a unique morphism of schemes $F_p: X \to X$ such that
 - F_p is the identity on the underlying topological space.
 - For any open $U \subset X$, F_p acts on $\mathcal{O}_X(U)$ by $r \mapsto r^p$.
 - F_p is called the *absolute Frobenius*.
 - (c) Let $\overline{\mathbb{F}}_p$ be an algebraic closure of \mathbb{F}_p . For a finite type \mathbb{F}_p -scheme X, define a canonical morphism

$$X(\mathbb{F}_{p^e}) \to X(\overline{\mathbb{F}}_p)^{F_p^e}$$

where the right hand side denotes the subset of morphisms $f : \operatorname{Spec}(\overline{\mathbb{F}}_p) \to X$ such that $f = F_p \circ \cdots \circ F_p \circ f$ (F_p is composed *e* times). Prove that the map is bijective.