Winter 2017 Martin Gallauer

Homework 8

Due: March 10, 2017

- **1** Let X be a proper variety over an algebraically closed field k. Prove that $\mathcal{O}_X(X) = k$. Hint: Identify regular functions with morphisms to the affine line. Which assumptions on X did you actually use in your proof?
- **2** Let X be a scheme, G a finite group which acts faithfully on X (in other words, $G \subset \operatorname{Aut}(X)$ is a finite subgroup). A quotient of X by G is a scheme denoted by X/G together with a morphism $\pi: X \to X/G$ such that for every scheme Y, the induced map

 $\hom(X/G,Y) \xrightarrow{\circ\pi} \hom(X,Y)^G$

is a bijection. (Of course, the right hand side denotes the set of $f : X \to Y$ such that $f \circ \sigma = f$ for all $\sigma \in G$.)

- (a) Let A be a ring on which the finite group G acts faithfully, and denote by $A^G \subset A$ the subring of G-invariants, $\pi : X = \text{Spec}(A) \to \text{Spec}(A^G)$ the induced morphism of affine schemes. Establish the following:
 - i. G acts faithfully on X by $\sigma \mapsto \text{Spec}(\sigma^{-1})$.
 - ii. Given two points $x, y \in X$, show that they lie in the same *G*-orbit if and only if $\pi(x) = \pi(y)$.
 - iii. A is an integral extension of A^G .
 - iv. π is a quotient map (on the underlying topological spaces).
 - v. $\pi: X = \operatorname{Spec}(A) \to \operatorname{Spec}(A^G)$ is a quotient of X by G.
- (b) (corrected:) Back to the general situation, prove that X/G exists if every $x \in X$ admits an affine open neighborhood stable under G.
- (c) Assume that X/G exists and that X is separated. Show that X/G is separated.