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Class groups

Let K be a number field and let OK and ClK denote its ring of integers
and its class group respectively.

The finite abelian group ClK encodes useful information about the
arithmetic in OK .

The class group of a number field is therefore one of the most
fundamental and well-studied invariants in number theory.

In the case of quadratic number fields, the most accessible part of the
class group is its 2-part.
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The 2-part of ClQ(
√
−p)

We look at a very special family of number fields Q(
√
−p), where p is a

prime number. Let ClQ(
√
−p) be its class group. We are interested in the

2-part of ClQ(
√
−p), i.e.

ClQ(
√
−p)[2

∞] := {g ∈ ClQ(
√
−p) : the order of g is a power of 2}.

Theorem 1 (Gauss’s genus theory)

The group ClQ(
√
−p)[2

∞] is cyclic, so ClQ(
√
−p)[2

∞] ∼= Z/2nZ for some
integer n ≥ 0.

Definition 2

Write hp := |ClQ(
√
−p)[2

∞]|. By Theorem 1 hp determines the
isomorphism class of ClQ(

√
−p)[2

∞].
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Previous results

The following results are known:

2 | hp ⇔ p ≡ 1 mod 4

4 | hp ⇔ p ≡ 1 mod 8

8 | hp ⇔ p ≡ 1 mod 8 and

(
1 + i

p

)
= 1.

Each of the conditions on the right hand side is equivalent to p splitting
completely in some number field K . Then density results follow
immediately from Chebotarev’s Density Theorem.
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Can we continue this?

In view of the previous results one can hope to find a number field K
such that 16 | hp if and only if p splits completely in K . However, such a
field has not been found yet.
Despite this obstacle we prove that the primes p for which 16 | hp has the
density as predicted by the Cohen-Lenstra heuristics, namely 1

16 .

Theorem 3 (joint with Djordjo Milovic)

Let p be a prime number such that 8 | hp. Let ep = 1 if ClQ(
√
−p) if

16 | hp and ep = −1 otherwise. Then there exists an absolute constant
δ > 0 such that ∑

p≤X
8|hp

ep � X 1−δ

under the assumption of a short character sum conjecture.
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Vinogradov’s method

Let {ap} be a sequence of complex numbers of absolute value bounded
by 1 indexed by the prime numbers. Suppose that one wishes to show a
“power-saving” estimate for {ap}, i.e.∑

p≤X

ap � X 1−δ for some absolute constant δ > 0. (1)

Vinogradov’s method

Suppose we can extend {ap} to a sequence {an}n∈Z>0 , also of absolute
value bounded by 1, for which we can prove power-saving estimates for∑

n≤N
n≡0 mod d

an,

which are called congruence sums, and for∑
m≤M

∑
n≤N

αmβnamn,

which are called general bilinear sums, then (1) holds.
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The proof

Suppose that 8 | hp. We need a criterion of the shape

16 | hp ⇔ f (p) = 1,

where f (p) ∈ {±1}. Several such criteria are known, but we use a
criterion due to Bruin and Hemenway. After some reduction steps f (p)
becomes similar to a so-called “spin symbol”.

A “spin symbol” is a Jacobi symbol of the shape(
σ(α)

α

)
K

,

where K is a fixed number field and σ is a fixed automorphism of K .

Such a “spin symbol” has been dealt with in a paper due to Friedlander,
Iwaniec, Mazur and Rubin using Vinogradov’s method. We managed to
adapt their proof to our setting.
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The proof II

Our estimate for the bilinear sums is standard and follows the earlier
mentioned paper by Friedlander, Iwaniec, Mazur and Rubin. For the
congruence sums we needed a novel idea, based on lattice point counting
and the geometry of numbers. We sketch the new idea here.

Let K be a number field of degree n, OK its ring of integers and M a
submodule of OK of rank r “sufficiently large”.

Definition 4

Let α ∈ OK and factor (α) = gq, where Ng and Nq are co-prime, Ng is
square-full and Nq is square-free. Then we call g the square-full part of α.

Goal: estimate the number of α ∈M with |α(i)| ≤ X 1/n such that the
square-full part of α is large, i.e. Ng ≥ X δ for some fixed δ > 0.
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The solution

Fix g for now and a basis of M, so we can identify M with Zr . We are
going to estimate

Eg(X ) := {α ∈M : α ≡ 0 mod g, |α(k)| ≤ X 1/n for all k}

instead. Define
Λg := {α ∈M : α ≡ 0 mod g}

and
SX := {(a1, . . . , ar ) ∈ Rr : ai � X 1/n}.

Then |Eg(X )| ≤ |Λg ∩ SX |.
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The solution II

Now apply lattice point counting techniques. These imply that

|Λg ∩ SX | ≈
∣∣∣∣Vol(SX )

det Λg

∣∣∣∣
up to some error depending on the successive minima of the lattice Λg.

Key observation: the first successive minimum, i.e. the length of the
shortest non-zero vector of Λg, is large. In combination with Minkowski’s
theorem on successive minima of symmetric convex bodies this allows us
to control the error term and also det Λg.


