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Class groups

Let K be a number field and let Ok and Clk denote its ring of integers
and its class group respectively.

The finite abelian group Clk encodes useful information about the
arithmetic in Ok.

The class group of a number field is therefore one of the most
fundamental and well-studied invariants in number theory.

In the case of quadratic number fields, the most accessible part of the
class group is its 2-part.



The 2-part of Cly, /=5

We look at a very special family of number fields Q(y/—p), where p is a
prime number. Let Cly, /=) be its class group. We are interested in the
2—part of C/Q(\/jp), i.e.

Cly(y=p)[27] == {g € Cly(/=p) : the order of g is a power of 2}.

Theorem 1 (Gauss’s genus theory)

The group Cly(/=5)[2°°] is cyclic, so Cly,/=5)[2°°] = Z/2"Z for some
integer n > 0.

Definition 2

Write hy, := |Cly,/=5)[2*°]|. By Theorem 1 h, determines the
isomorphism class of Cly,/=5)[2%].



Previous results

The following results are known:

2|hp o p=1 mod4
4| h,<p=1 mod8

.
8|h,< p=1 mod 8 and ( :’):1.

Each of the conditions on the right hand side is equivalent to p splitting
completely in some number field K. Then density results follow
immediately from Chebotarev's Density Theorem.



Can we continue this?

In view of the previous results one can hope to find a number field K
such that 16 | h, if and only if p splits completely in K. However, such a
field has not been found yet.

Despite this obstacle we prove that the primes p for which 16 | h, has the
density as predicted by the Cohen-Lenstra heuristics, namely %.

Theorem 3 (joint with Djordjo Milovic)

Let p be a prime number such that 8 | hy. Let e, = 1 if Cly /=) if
16 | hp, and e, = —1 otherwise. Then there exists an absolute constant

6 > 0 such that
D e XIT?

p<X
8[hp

under the assumption of a short character sum conjecture.



Vinogradov’'s method

Let {a,} be a sequence of complex numbers of absolute value bounded
by 1 indexed by the prime numbers. Suppose that one wishes to show a
“power-saving” estimate for {a,}, i.e.

Z ap, < X179 for some absolute constant § > 0. (1)
p<X
Vinogradov’s method

Suppose we can extend {a,} to a sequence {ap}nez.,, also of absolute
value bounded by 1, for which we can prove power-saving estimates for

E an,

n<N
n=0 mod d

which are called congruence sums, and for

Z Z &mBramn,

m<M n<N

which are called general bilinear sums, then (1) holds.



The proof

Suppose that 8 | h,. We need a criterion of the shape
16| hy & f(p) = 1,

where f(p) € {£1}. Several such criteria are known, but we use a
criterion due to Bruin and Hemenway. After some reduction steps f(p)
becomes similar to a so-called “spin symbol”.

A “spin symbol” is a Jacobi symbol of the shape

),

where K is a fixed number field and o is a fixed automorphism of K.

Such a “spin symbol” has been dealt with in a paper due to Friedlander,
Iwaniec, Mazur and Rubin using Vinogradov's method. We managed to
adapt their proof to our setting.



The proof Il

Our estimate for the bilinear sums is standard and follows the earlier
mentioned paper by Friedlander, lwaniec, Mazur and Rubin. For the
congruence sums we needed a novel idea, based on lattice point counting
and the geometry of numbers. We sketch the new idea here.

Let K be a number field of degree n, Ok its ring of integers and M a
submodule of Ok of rank r “sufficiently large”.

Definition 4
Let oo € Ok and factor () = gq, where Ng and Nq are co-prime, Ng is
square-full and Ngq is square-free. Then we call g the square-full part of .

Goal: estimate the number of o € M with |a()| < X/" such that the
square-full part of « is large, i.e. Ng > X? for some fixed § > 0.



The solution

Fix g for now and a basis of M, so we can identify M with Z". We are
going to estimate

E,(X):={aeM:a=0 mod g,|a®| < X" for all k}

instead. Define
Ng:={aeM:a=0 mod g}

and
Sx =={(a1,...,a,) € R : a; < X"},

Then |E4(X)| < |Ag N Sx|.



The solution 1l

Now apply lattice point counting techniques. These imply that

V0|(5x)

A | —t
Ag 01 5xl ‘ det A\,

up to some error depending on the successive minima of the lattice Ag.

Key observation: the first successive minimum, i.e. the length of the
shortest non-zero vector of Ay, is large. In combination with Minkowski's
theorem on successive minima of symmetric convex bodies this allows us
to control the error term and also det Ag.



