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Deformations via differential graded Lie algebras

Deformation theory is useful in many areas of Mathematics. It starts from the observation that often a structure
X, like the multiplication map of an algebra, a complex structure, a riemannian metric, etc. depends smoothly on
real parameters. This means that the set S of all such structures is equipped with a notion of smooth paths. A
deformation of X is a smooth path R→ S, ε 7→ Xε through X = X0. If all structures Xε are isomorphic, we call
it a trivial deformation. Non-trivial deformations, i.e. deformations up to isomorphism can be viewed as paths in
the moduli space M of structures of type X modulo isomorphisms.

Differentiating a smooth deformation at ε = 0 yields an infinitesimal deformation. Owing to the structure of
M, which typically has singular points, strata, etc. the differentiation requires a derived approach in which the
tangent space is replaced with a differential complex in which deformations in S are given by cochains and trivial
deformations by coboundaries. Finding the right complex can be quite involved.
The prototypical example for this example is Gerstenhaber’s work [4], who has shown that the infinitesimal
deformations mε of an associative algebra (A,m) over a field k are controlled by the second order Hochschild
cohomology group HH2(A) of A with coefficients in itself. The idea behind this is encoded in the associativity of
mε, i.e. mε(mε(a, b), c) = mε(a,mε(b, c)) for all a, b, c in A, which gives rise to the cocycle condition of m1 ∈ H2(A).
Moreover, viewing the Hochschild complex H•+1(A) together with the Gerstenhaber bracket [., .] and the Hochschild
differential δ as a differential graded Lie algebra (dgLa), it has been shown that the set of infinitesimal deformations
of A is precisely described via the set MC(H•+1(A)) of Maurer-Cartan elements of the Hochschild dgLa.

Definition. Let (g, [., .], ∂) be a differential graded Lie algebra. A Maurer-Cartan element of g is a homogeneous
degree 1 element α ∈ g1 which satisfies the Maurer-Cartan equation

∂α+
1

2
[α, α] = 0.

In many more examples, the deformation theory of structures is described in this way by a dgLa, such as
commutative algebras (Harrison cohomology), Lie algebras (Chevalley-Eilenberg cohomology), complex structures
(Kodaira-Spencer cohomology), etc. This has led to the conjecture that every deformation theory is governed by a
dgLa. Using the modern language of higher category theory, Lurie [9], and independently Pridham [12] have proved
this.

Theorem (Lurie, Pridham). Over a field of characteristic zero, there is an equivalence of ∞-categories between the
∞-category of formal moduli problems and the ∞-category of differential graded Lie algebras.

However, as promising as this theorem sounds, constructing (a computable model of) the dgLa controlling a specific
deformation problem turns out to be very difficult. Kontsevich has called this an “art” [5].
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For instance, the deformation theory of Lie groups is yet not fully described. It is known (cf. [10]) that infinitesimal
deformations of a Lie group G are described by the group cohomology with values in the adjoint representation g.
Surprisingly, the question of the dgLa that governs these deformations remains open.

Lie groupoids and Lie algebroids

We are primarily interested in the deformation theory of so-called Lie groupoids, which are geometric objects
that model a large class of geometric structures, such as representations, foliations, orbifolds, differentiable stacks,
convolution C∗-algebras, etc.
A groupoid is a small category in which all morphisms are isomorphisms. As such, a groupoid can be viewed as a
generalization of the notion of a group, where there are many identities, namely the set of objects M of the category,
and where the set of groupoid elements G is given by the arrows between these objects. The groupoid multiplication

is then simply the composition of the (composable) arrows. It is customary to denote a groupoid by G
s−−−−→→
t

M ,

where the parallel maps s and t associate the source and target objects to each arrow g ∈ G respectively.
A Lie groupoid is a groupoid internal to the categoryMfld of smooth manifolds, where the source and target maps
are surjective submersions. The following figure depicts a Lie groupoid and its structure maps (inspired from [3]).
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Some of the geometric objects that can be described via Lie groupoids are shown in the following examples.

• A Lie group G can be viewed as a Lie groupoid with a single object G⇒ {∗}.

• A smooth manifold M is a Lie groupoid M ⇒M over itself where s and t are the identity maps.

• Given a smooth manifold M , one can define the pair groupoid M ×M ⇒M , where s(x, y) = y and t(x, y) = x.

• To every smooth action of a Lie group G on a smooth manifold M one can associate the action groupoid GnM ⇒M ,
where the space of objects is M and the space of arrows is G×M with s(g, x) = x and t(g, x) = g · x.

• Let P → M be a principal G-bundle. Then, one can construct the gauge groupoid Gauge(P ) ⇒ M , where M is the
space of objects and the quotient (P × P )/G with respect to the diagonal action of G on P × P is the space of arrows.

A Lie groupoid has an infinitesimal counterpart, its Lie algebroid, which generalizes the relation between a Lie group
and its Lie algebra. Abstractly, a Lie algebroid is a vector bundle A→M together with a Lie bracket on its space
of smooth sections Γ(A) with a vector bundle map ρ : A→ TM called the anchor, satisfying a Leibniz rule.
Just like the Lie algebra g of a Lie group G consists of the right-invariant vector fields on G, the Lie algebroid A
associated to the Lie groupoid G ⇒ M is defined by its right-invariant vector fields. However, we restrict the
vector fields to be tangent to the source fibers, where right translation is well-defined. Then, A is defined by the
pullback of the subbundle ker(Ts) ⊂ TG by the unit map 1 : M → G (which associates to each object its identity
arrow). Hence, the fibers of A = 1∗(ker(Ts)) are precisely the tangent spaces to the source fibers at the units of the
groupoid as depicted in the following figure.
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The anchor of A is given by the restriction of Tt to A and the Lie bracket on Γ(A) is defined using the identification
of Γ(A) with the space of right-invariant vector fields on G.

Deformation cohomology of a Lie groupoid

Deformations of Lie groupoids have first been investigated by Crainic, Mestre and Struchiner in [2] through a
careful analysis of the cohomology theory controlling such deformations. The authors have constructed the so-called
deformation complex C∗def(G) of a Lie groupoid G ⇒M , whose cohomology group H∗def(G) controls the deformations
of G. In particular, they have shown that deformations of a Lie groupoid G give rise to 2-cocycles and, hence, to
cohomology classes in H2

def(G). Let G ⇒ M be a Lie groupoid and A = Lie(G) its Lie algebroid; denote by G(k) the
set of k composable arrows.

Definition. The deformation complex (C∗def(G), δ) of G is defined as follows:

• For k ≥ 1 the k-cochains c ∈ Ck
def(G) are the smooth maps

c : G(k) −→ TG, (g1, . . . , gk) 7→ c(g1, . . . , gk) ∈ Tg1G

which are s-projectable, i.e. Ts ◦ c(g1, . . . , gk) does not depend on g1. The differential is defined by

(δc)(g1, . . . , gk+1) := − Tm̄(c(g1g2, . . . , gk+1), c(g2, . . . , gk+1))

+
k∑

i=2

(−1)ic(g1, . . . , gigi+1, . . . , gk+1) + (−1)k+1c(g1, . . . , gk).

where m̄(g1, g2) = g1g
−1
2 denotes the division map of G, defined on arrows with the same source.

• For k = 0 the cochains are given by C0
def(G) := Γ(A). The differential of c ∈ Γ(A) is defined by

δ(c) := −→c +←−c

where −→c and ←−c are the induced right- and left-invariant vector fields of c respectively.

Similar to rigidity results of compact Lie groups (cf. [11]), one obtains rigidity of proper and compact Lie groupoids.
Recall that G is a proper groupoid if the map g 7→ (s(g), t(g)) is a proper map.

Theorem (Crainic, Mestre, Struchiner).

• Proper Lie groupoids are rigid with respect to (s, t)-constant deformations.

• Compact Lie groupoids are rigid with respect to s-constant deformations.

One application is deformations of Lie group representations. A representation of a Lie group G on a
finite-dimensional vector space V is a linear G-action on V . It can be encoded by the action groupoid Gn V ⇒ V .
This relationship has been investigated in [1]. Another application is deformations of differentiable stacks, which
are by definition presented by Lie groupoids. One can think of differentiable stacks as Lie groupoids up to Morita
equivalence.

Open question: What is the dgLa controlling the deformation theory of a Lie group(oid)?

Approaches of Lurie-Pridham and Kontsevich-Soibelman

In our attempt to understand the deformation theory of Lie groupoids, two approaches to be explored in this PhD
project are:

Lurie-Pridham: Applying their theorem to Lie group(oid)s

As mentioned above, Lurie and Pridham have formalized the equivalence of deformation problems and dgLa’s using higher
category theory. Because of its high level of abstraction, we first must spell out the details of Lurie’s theorem (and its
proof) in order to find the dgLa controlling deformations of Lie groups and Lie groupoids.

Kontsevich-Soibelman: A geometric version of the deformation theory of linear operads

An operad consists of sets of operations satisfying relations, such as the multiplication and unit of an algebra satisfying
associativity and unitality. A large class of algebraic structures can be encoded by operads.

Operadic methods have been extensively used in deformation theory, such as in the deformation quantization of Poisson
manifolds by Kontsevich [6]. Furthermore, the deformation theory of algebras over linear operads is well understood (cf.
[7], [8]). By this method, we recover the expected Hochschild dgLa in the case of associative algebras.

We are interested in a geometric realization of the Kontsevich-Soibelman approach, where we can go from algebras of
operads in smooth spaces to linear operads by a procedure of differentiation. In a first step, we will try to describe the
deformation theory of Lie groups in this way and then generalize this to Lie groupoids.
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