BONN INTERNATIONAL GRADUATE SCHOOL OF MATHEMATICS

L_{∞} -algebroids of Higher Groupoids in Tangent Categories

Aintablian, Lory

Advisor: Christian Blohmann

(Higher) Lie groupoids

A groupoid is a small category in which all morphisms are isomorphisms.

I will denote it by $\mathcal{G}_1 \xrightarrow{r}_{l} \mathcal{G}_0$, where \mathcal{G}_1 is the set of arrows, \mathcal{G}_0 the set of objects, and r, l the source and target maps.

Definition. A Lie groupoid is a groupoid internal to the category \mathcal{M} fld of smooth manifolds, where r and l are surjective submersions.

Example. • *G* Lie group \rightsquigarrow Lie groupoid with one object $G \rightrightarrows \{*\}$.

• M smooth manifold \rightsquigarrow the **pair groupoid** $M \times M \rightrightarrows M$, where r(x, y) = y and l(x, y) = x.

A simplicial manifold is a simplicial object in Mfld, that is, a functor $\mathcal{G} : \Delta^{\mathrm{op}} \to \mathrm{Mfld}, [m] \mapsto \mathcal{G}_m$, where Δ denotes the category of finite ordinals. Explicitly, it is given by a family of smooth manifolds $\{\mathcal{G}_m\}_{m\geq 0}$ together with face and degeneracy maps satisfying the *simplicial relations* of Δ , as depicted below

 $\mathfrak{G}_0 \rightleftharpoons \mathfrak{G}_1 \rightleftharpoons \mathfrak{G}_2 \cdots$

A simplicial manifold \mathcal{G} is **Kan** if the natural restriction map

$$\operatorname{Hom}(\Delta^m, \mathfrak{G}) \longrightarrow \operatorname{Hom}(\Lambda^m_i, \mathfrak{G}) \tag{1}$$

is a surjective submersion for all $m \in \mathbb{N}$ and $0 \leq j \leq m$. Here, Δ^m denotes the standard simplicial *m*-simplex, and Λ^m_j denotes the *j*-th horn of Δ^m , which is obtained by removing the *j*-th face from Δ^m .

Definition ([Hen08], [Zhu09]). A Lie ∞ -groupoid is a Kan simplicial manifold. For $n \in \mathbb{N}$, a Lie *n*-groupoid is a Kan simplicial manifold such that (1) is a diffeomorphism for all m > n and $0 \le j \le m$.

Remark. A Lie 1-groupoid is (the nerve of) a usual Lie groupoid.

Similarly, one can define a higher groupoid in any category \mathfrak{C} equipped with a *Grothendieck pretopology* as Kan simplicial objects in \mathfrak{C} .

Differentiation of global objects

Global geometric object // Infinitesimal object

- One of the main approaches: Notion of smooth paths.
- Leads to the notion of tangent vectors, tangent spaces, tangent maps, etc. in the category at hand.
- Need of a good differential calculus (e.g. Cartan calculus, tangent structure...).

The Lie algebroid of a Lie groupoid

A Lie groupoid has an infinitesimal counterpart, its Lie algebroid. Abstractly, a Lie algebroid is a vector bundle $A \to M$ together with a Lie bracket on its space $\Gamma(A)$ of smooth sections with a vector bundle map $\rho: A \to TM$ called the *anchor*, satisfying a Leibniz rule.

Just like the Lie algebra \mathfrak{g} of a Lie group G consists of the right-invariant vector fields on G, the Lie algebroid A associated to a Lie groupoid $\mathfrak{G}_1 \rightrightarrows \mathfrak{G}_0$ is defined by its right-invariant vector fields. However, we restrict the vector fields to be tangent to the right fibers, where right translation is well-defined. Then, A is defined by the pullback of the subbundle $\ker(Tr) \subset T\mathfrak{G}_1$ by the unit map $1: \mathfrak{G}_0 \to \mathfrak{G}_1$. Hence, the fibers of $A = 1^*(\ker(Tr))$ are precisely the tangent spaces to the right fibers at the units of the groupoid as depicted in the following picture.

The anchor of A is given by the restriction of Tl to A and the Lie bracket on $\Gamma(A)$ is defined using the identification of $\Gamma(A)$ with the space of right-invariant vector fields on \mathcal{G}_1 .

Open question: What are the infinitesimal counterparts of higher Lie groupoids?

Ševera's construction

In [Šev06], Ševera has shown a method of differentiation:

Higher Lie groupoids Kan simplicial manifolds

using

- The odd line $\mathbb{R}^{0|1}$ as an infinitesimal model, where $\mathbb{R}^{0|1} = (*, \mathcal{O}_{\mathbb{R}^{0|1}})$ with $C^{\infty}(\mathbb{R}^{0|1}) := \mathcal{O}_{\mathbb{R}^{0|1}}(*) = S(\theta)$.
- <u>Hom</u> $(\mathbb{R}^{0|k}, M) \cong T[k]M$ for $k \ge 1$ for all supermanifolds M.
- $\exists \operatorname{Hom}(\mathbb{R}^{0|1}, M) \supseteq \operatorname{End}(\mathbb{R}^{0|1}) \iff$ structure of a complex on $\Omega(M)$ (\mathbb{Z} -grading and the de Rham differential).

Ševera's main idea suggests replacing $\mathbb{R}^{0|1}$ by the nerve $(\mathbb{R}^{0|1})^{\bullet+1}$ of the pair groupoid of $\mathbb{R}^{0|1}$. Let \mathcal{G} be a simplicial manifold.

The integral sign above denotes the *categorical end*, which is a special limit of some diagram.

Theorem?. Let \mathfrak{G} be a Lie *n*-groupoid. Then, $T\mathfrak{G} = \int_{[m]\in\Delta_{\leq n+1}^{\operatorname{op}}} \underline{\operatorname{Hom}}((\mathbb{R}^{0|1})^{m+1}, \mathfrak{G}_m)$ exists in the category of graded manifolds.

Categorical generalization of Ševera's construction

Let $n \in \mathbb{N}$ and let \mathcal{C} be a category equipped with a Grothendieck pretopology and an abstract tangent functor (in the sense of Rosický). Let \mathcal{G} be an *n*-groupoid in \mathcal{C} .

Definition. The Lie *n*-algebroid $\mathcal{L}(\mathcal{G})$ of \mathcal{G} is

$$\mathcal{L}(\mathfrak{G}) := \int_{[m] \in \Delta_{\leq n+1}^{\mathrm{op}}} T^{m+1} \mathfrak{G}_m \,. \tag{2}$$

Remark. For a fixed object $C \in \mathcal{C}$, the iterated tangent bundle $T^{\bullet+1}C$ has a cosimplicial structure, and hence the end in equation (2) is well-defined.

Remark. The definition of $\mathcal{L}(\mathcal{G})$ given in (2) is compatible with Ševera's approach. Namely,

$$T\mathcal{G} = \int_{[m]\in\Delta_{\leq n+1}^{\mathrm{op}}} \underline{\mathrm{Hom}}((\mathbb{R}^{0|1})^{m+1}, \mathcal{G}_m) \cong \int_{[m]\in\Delta_{\leq n+1}^{\mathrm{op}}} T[m+1]\mathcal{G}_m \cong \mathcal{L}(\mathcal{G})$$

Open question: How are the (higher) Lie brackets encoded in $\mathcal{L}(\mathcal{G})$?

Computing the end

Since ends are special limits, using Mac Lane's formula [ML98, prop. 1, p. 220], one can compute the end $\mathcal{L}(\mathcal{G})$.

Theorem. The Lie n-algebroid of \mathcal{G} is precisely given by the following fiber product

$$\mathcal{L}(\mathfrak{G}) \cong T^1 \mathfrak{G}_0 \times_{R_{0,1}} T^2 \mathfrak{G}_1 \times_{R_{1,2}} \cdots \times_{R_{n,n+1}} T^{n+2} \mathfrak{G}_{n+1}, \qquad (3)$$

where

$$\mathbf{R}_{i-1,i} = (T^i \mathcal{G}_i)^i \times (T^{i+1} \mathcal{G}_{i-1})^{i+1}$$

for $i \in \{1, \ldots, n+1\}$.

Proof. The formula given in (3) is the limit of the following diagram:

Note that the formula given in (3) and its proof assert that $\mathcal{L}(\mathcal{G})$ is obtained via powers of the tangent bundles of the nerve of \mathcal{G} under some relations imposed by the (co)face and (co)degeneracy maps.

Remark. When n = 1 and $\mathcal{C} = \mathcal{M}$ fld (and hence \mathcal{G} is the nerve of a Lie groupoid), we recover the *symmetric* version of the usual Lie algebroid of \mathcal{G} . That is, we recover $\mathcal{L}(\mathcal{G})$ without making a choice between the left and right maps.

Conjecture 1. The (co)face-relations in the highest box together with the (co)degeneracy-relations in the lower boxes imply all the other relations.

Conjecture 2. There are natural actions of the symmetric groups S_i on $T^i \mathcal{G}_{i-1}$ for all $i \in \{2, \ldots, n+2\}$ and $\mathcal{L}(\mathcal{G})$ is invariant under these actions.

Conjectures 1 and 2 hold in the case of usual Lie groupoids.

References

[Hen08] André Henriques. Integrating L_{∞} -algebras. Compos. Math., 144(4):1017–1045, 2008.

- [Kel05] Max Kelly. Basic concepts of enriched category theory. Reprints in Theory and Applications of Categories, (10):1–136, 2005.
- [ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[Šev06] Pavol Ševera. L_{∞} -algebras as 1-jets of simplicial manifolds (and a bit beyond). 2006.

[Zhu09] Chenchang Zhu. n-groupoids and stacky groupoids. Int. Math. Res. Not., 2009(21):4087–4141, 2009.

2022 Max Planck Institute for Mathematics lory@mpim-bonn.mpg.de