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(Higher) Lie groupoids

A groupoid is a small category in which all morphisms are isomorphisms. I will denote it by G1
r−−−−→→
l

G0,
where G1 is the set of arrows, G0 the set of objects, and r, l the right (target) and left (source) maps.

Definition. A Lie groupoid is a groupoid internal to the category Mfld of smooth manifolds, where r and
l are surjective submersions.
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Example. • G Lie group ⇝ Lie groupoid with one object G⇒ {∗}.

• M smooth manifold ⇝ the pair groupoid M × M ⇒M , where r(x, y) = y and l(x, y) = x.

Remark. Given a Lie groupoid G = G1 ⇒ G0, its nerve NG is a simplicial manifold, where
NGn = G1 ×G0 · · · ×G0 G1︸ ︷︷ ︸

n-times
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One may observe that all horns of NG can be filled and all horns of degree > 1 can be filled uniquely.

A simplicial manifold G : ∆op → Mfld, [m] 7→ Gm, depicted by

G0 G1 G2 · · ·

is Kan if the horn projection
Gm

∼= Hom(∆m, G) −→ Hom(Λm
j , G) (1)

is a surjective submersion for all m ∈ N and 0 ≤ j ≤ m.

Definition ( [Hen08], [Zhu09]). A Lie ∞-groupoid is a Kan simplicial manifold. For n ∈ N, a Lie n-
groupoid is a Kan simplicial manifold such that (1) is a diffeomorphism for all m > n and 0 ≤ j ≤ m.

Remark. A Lie n-groupoid is (n + 1)-coskeletal.

More generally, one can define higher groupoid objects in any category C equipped with a Grothendieck
pretopology as Kan simplicial objects in C.

The Lie algebroid of a Lie groupoid

A Lie groupoid has an infinitesimal counterpart, its Lie algebroid. Abstractly, a Lie algebroid is a vector
bundle A → M together with a Lie bracket on its space Γ(A) of smooth sections with a vector bundle map
ρ : A → TM called the anchor, satisfying a Leibniz rule.

Just like the Lie algebra g of a Lie group G consists of the right-invariant vector fields on G, the Lie algebroid
A associated to a Lie groupoid G1 ⇒ G0 is defined by the right-invariant vector fields on G1. However, we
restrict the vector fields to be tangent to the right fibers, where right translation is well-defined. Then,

A := ker(Tr)|G0 −→ G0 ,

with fibers the tangent spaces to the right fibers at the units of the groupoid as depicted below
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The anchor of A is given by the restriction of T l to A and the Lie bracket on Γ(A) is defined using the
identification of Γ(A) with the space of right-invariant vector fields on G1.

Ševera’s construction: revisited
In [Šev06], Ševera has shown a method of differentiation from higher Lie groupoids to higher Lie algebroids
using the supermanifold R0|1 as an infinitesimal model and the fact that Hom(R0|1, M) is represented by the
odd tangent bundle ΠTM for any (super)manifold M . Ševera’s main idea suggests replacing R0|1 by the nerve
(R0|1)•+1 of the pair groupoid of R0|1. Let G be a simplicial manifold.

ΠTM = Hom (R0|1 , M)

LG :=
∫

[m]∈∆op
Hom ((R0|1)m+1, Gm)

( [Kel05])
enrichment of

functor
categories Ševera simplicial

manifold

The integral sign above denotes the categorical end, which is a universal construction and in particular a
special limit of some diagram. Moreover, (co)ends support a calculus [Lor21].

Categorical generalization of Ševera’s construction
Let n ∈ N and let C be a category equipped with a Grothendieck pretopology and an abstract tangent functor
T : C → C in the sense of Rosický [Ros84] (cf. [Blo23, section 2]). Let G be an n-groupoid in C.

Definition. The Lie n-algebroid Lie(G) of G is defined by

Lie(G) :=
∫

[m]∈∆op
≤n+1

T m+1Gm . (2)

Remark. The iterated tangent bundle T •+1 has an augmented cosimplicial structure, using the fact that T
is a monad. Hence, the end in equation (2) is well-defined.

Note that the definition of Lie(G) is compatible with Ševera’s approach (up to degree shift of the fibers) using
the fact that (ΠT )kM ∼= Hom((R0|1)k, M) for all (super)manifolds M and k ≥ 1.

Computing the end

Theorem (Blohmann, K.). The Lie n-algebroid of G is isomorphic to the following fiber product
Lie(G) ∼= T 1G0 ×R1 T 2G1 ×R2 · · · ×Rn+1 T n+2Gn+1 , (3)

where
Ri = (T iGi)i × (T i+1Gi−1)i+1.

for i ∈ {1, . . . , n + 1}.

Proof. Since ends are special limits, one can compute the end Lie(G) (cf. [ML98, prop. IX.5.1]) explicitly and
obtain the limit of the following diagram

T 1G0 T 2G1 T 3G2 · · · T n+1Gn T n+2Gn+1· · · · · · ...

Note that the formula given in (3) and its proof assert that Lie(G) is obtained via powers of the tangent
bundles of the nerve of G under some relations imposed by the (co)face and (co)degeneracy maps.

Remark. When n = 1 and C = Mfld, we recover the symmetric version of the usual Lie algebroid of G. That
is, we recover Lie(G) without making a choice between the left and right maps.

Proposition (K.). The (co)face-relations in the highest box together with the (co)degeneracy-relations in the
lower boxes imply all the other relations.

The cohomological vector field

Given a vector bundle A → M , it is due to Vaintrob [Vai97] that the Lie algebroid structures on A are in
one-to-one correspondence with cohomological vector fields on the degree one graded manifold A[1], which
has core M and sheaf of functions O(A[1]) = Γ(Λ•A∗). In this way, Lie n-algebroids are defined as N-graded
manifolds of degree n together with a cohomological vector field.

Given a Lie n-groupoid, in order to fully capture the structure of Lie(G), our aim is to understand the sheaf of
functions on Lie(G) and the cohomological vector field. Using the fact that O(ΠTM) is the cochain complex
of differential forms on M , we define

O(Lie(G)) :=
∫ [m]∈∆op

≤n+1 Hom((ΠT )m+1Gm,R) ∼=
∫ [m]∈∆op

≤n+1
O((ΠT )m+1Gm) .

By construction, O(Lie(G)) is a differential graded algebra.

It is still an open question and work-in-progress how this generalizes to categories with a Grothendieck pre-
topology and an abstract tangent functor.
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