GEOMETRICAL CONSTRUCTIONS USING ONLY A RULER

NJTEH MKHSIAN AND LORY AINTABLIAN

Course: Math 213
Date: April 2014

Objective: We will prove that every construction that can be done with compass and straightedge can be done with straight-edge alone given a fixed circle in the plane.

Outline:

1. Definition
2. Historical Background
3. Some Useful Theorems
4. Problems and Solutions
5. Conclusion
6. References

1. Definition

A point P in the Euclidean plane is said to be constructible if it is one of the following:

- The intersection point of two lines
- The intersection point of a line and a circle
- The intersection point of two circles

2. Historical Background

From the times of ancient Greece, mathematicians attempted constructions using a compass and straight edge only. In their constructions, the Greek got stuck on three famous problems:

- Squaring the circle
- Doubling the cube
- Trisecting an angle

It wasn't until the 19th century that these constructions were proven impossible using a compass and a ruler alone.

Lorenzo Mascheroni (1797) and Dane Georg Mohr (1672) gave a proof that every point constructible with a compass and a straight edge can be constructed using a compass alone.

Jean Victor Poncelet (1822) conjectured and Jacob Steiner (1833) proved that every point constructible with a compass and a straight edge can be constructed using a straight edge alone given a fixed circle and its center.

3. Some Useful Theorems

Theorem 1:

Given a trapezoid, the straight line joining the point of intersection of its diagonals and the point of intersection of its non-parallel sides bisects each of the parallel sides.

Figure 1

Theorem 2: (Converse of Thales' Theorem)
If a line d cuts the two sides AC and AB of a triangle ABC in points M and N respectively such that $\frac{A M}{M C}=\frac{A N}{N B}$, then d is parallel to side BC .

Figure 2

Theorem 3: (Ceva's Theorem)
If the cevians $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}$ and CC^{\prime} of a triangle ABC are concurrent, then $\frac{A C^{\prime}}{C^{\prime} B} \times \frac{B A^{\prime}}{A^{\prime} C} \times \frac{C B^{\prime}}{B^{\prime} A}=1$

Figure 3

4. Problems and Solutions

Problem 1: Given a segment AB and its midpoint C . Through a given point D lying outside AB , draw a straight line parallel to AB .

Solution:

Join AD
Take any point E on AD
Join BD, BE and EC
EC cuts BD in F
Join AF
AF meets EB in G
DG is the required line

Figure 4

Reason: In triangle AEB: EC, AG and BD are concurrent
$\Rightarrow \frac{A C}{C B} \times \frac{B G}{G E} \times \frac{E D}{D A}=1$
but, $\mathrm{AC}=\mathrm{CB}(\mathrm{C}$ is the midpoint of AB$)$
$\Rightarrow \frac{B G}{G E}=\frac{D A}{E D}$
$\Rightarrow \mathrm{DC} / / \mathrm{AB}$, by Theorem 3
Problem 2: Given two parallel straight lines a and b. Bisect the given segment AB on a.

Solution:

Take a point D on b and join AD
Take a point E on AD and join BE
BE cuts b in F
Join BD and AF. They meet in G
Join EG
ABFD is a trapezoid (since a and b are parallel)
G is the intersection of its diagonals and E is the intersection of its non-parallel sides $\Rightarrow \mathrm{GE}$ cuts AB at its midpoint, by Theorem 1

Figure 5
Problem 3: Given two parallel straight lines a and b. Through a point L lying outside a and b , draw a straight line parallel to a and b .

Solution:

Take an arbitrary segment DE on the line b
Bisect it using Problem 2
Construct the line parallel to b through L, by Problem 1

a

Figure 6

For the following problems, it's given a fixed circle cand its center A.
Problem 4: Given a line d. Through a point D not on d, draw a straight line parallel to d.
(i) If d passes through the center A of the given circle c .

Solution:

d intersects c in B and C
Since d passes through the center of the circle c, BC is a diameter
Hence, A is the midpoint of BC
Construct a line through D parallel to d, by Problem 1

Figure 7
(ii) If d intersects the circle c , but does not pass through its center A .

Solution:

d intersects c in B and C
Join CA and BA
CA and BA cut c in D^{\prime} and E respectively Join ED'
Notice that $\angle \mathrm{BCE}, \angle \mathrm{CED}$ ', $\angle \mathrm{ED}$ 'B and $\angle \mathrm{D}^{\prime} \mathrm{BC}$ are 90 (inscribed in a semi-circle) \Rightarrow The quadrilateral BCED ' is a rectangle and hence $\mathrm{BC} / / \mathrm{D}^{\prime} \mathrm{E}$
Having two parallel lines d and D'E, and a given point D, Construct a line through D parallel to d, by Problem 3

Figure 8
(iii) If does not intersect the circle c .

Solution:

Take a point B on d
Join AB. It cuts the circle c in C and D'
Take a point E different from C and D^{\prime} on c
Draw the line d' parallel to CD' through E

Case 1:
d' cuts c in another point F and d' cuts d in G
Join AE and AF. They meet c in I and H respectively
Join HI. It cuts d in J
HI // EF (HIFE is a rectangle)
\Rightarrow HFGJ is a trapezoid
A is the midpoint of FH
and AB is parallel to the sides FG and HJ of the trapezoid HFGJ
$\Rightarrow \mathrm{B}$ is the midpoint of GJ (By the midpoint theorem in a trapezoid)
Having a segment GJ on d with its midpoint B,
Construct the line parallel to d through D, by Problem 1.
Case 2:
d' in tangent to c
By similar steps, construction follows

Figure 9

Problem 5: Given a straight line a. Through a given point B, draw a straight line perpendicular to a .
(i) If a intersects c in two distinct points C and D , and a doesn't pass through A .

Solution:

Join CA. It cuts c in another point E
Join ED
Then, $\angle \mathrm{EDC}=90$ (inscribed in a semi-circle)
$\Rightarrow \mathrm{ED} \perp \mathrm{a}$
Construct a line through B parallel to ED, by Problem 4(ii)

Figure 10
(ii) If a does not intersect c.

Solution:

Take a point C inside the circle c
Draw through C the parallel a' to the given line a, by Problem 4(iii)
a^{\prime} certainly cuts c (since C is inside c)
Let D and E be the points of intersection of a' and c
Draw through D the perpendicular d to a', by Problem 5(i)
$\mathrm{d} \perp \mathrm{a}^{\prime}$ and $\mathrm{a} / / \mathrm{a}^{\prime} \Rightarrow \mathrm{d} \perp \mathrm{a}$
Construct through B the parallel e to d, by Problem 4(iii)
$\mathrm{d} \perp \mathrm{a}$ and $\mathrm{e} / / \mathrm{d} \Rightarrow \mathrm{e} \perp \mathrm{a}$
So, e is the required line

Note: If a passes through A, by similar steps the required line can be constructed

Figure 11

Problem 6: A circle a is given by its center C and radius CB (but not sketched) and given a straight line b . Construct the points of intersection of the circle a and the line b .

Solution:

Draw the radius AD of c parallel to BC
Join BD and AC. They meet in E
Take a point F on b
Join CF and draw through A the parallel h to CF
Join FE. It cuts h in G
Draw through G the parallel g to b . It cuts c in H and I
Join EH and EI. They cut b in L and M respectively
L and M are the points of intersection of the circle a and line b
(The proof of this can be found in the resources mentioned at the end)

Figure 12

Problem 7: Given the centers B and E of circles a and b and their radii BC and ED respectively. Construct the points of intersection of the circles a and b .

Solution:

Join CD and BE
Take the midpoint F of CD
Join EF and BF
Draw h, the perpendicular to BF through C
Draw i, the perpendicular to EF through D
h and i meet in G
G is the radical center of the circles a, b, and c
Draw j , the perpendicular to BE through G
Then, j is the radical axis of a and b

We know that the points of intersection lie on the radical axis of a and b
Thus, the problem is reduced to finding the points of intersection of j and one of the circles a or b, which can be handled by Problem 6 .
(The proof of this can be found in the resources mentioned at the end)

Figure 13

5. Conclusion

Every construction that can be done with compass and straight-edge can be done with straightedge alone given a fixed circle in the plane.

6. References

(i) A. S. Smogorzhevskii "Ruler in Geometrical Constructions" (Volume 5)
(ii) J. Steiner "Geometrical constructions carried out with straight lines and a fixed circle" (Berlin, 1833)

