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1 Introduction

Theorem 1.1 (Serre-Deligne). Let f =
∞∑
n=1

an(f)qn ∈ Sk(Γ0(N)) be a newform of level N and

weight k. If K = Kf = Q ({an(f)}∞n=1) is the number field corresponding to f , and λ - N is a
non-archimedean place of Kf , then there is a continuous representation ρf,λ : GQ → GL2(Kλ)
which is unramified at all primes p with (p, λ) = (p,N) = 1, and such that ρf,λ(Frobp) ∈ GL2(Kλ)
has characteristic polynomial x2 − ap(f) + pk−1 = 0 for all such primes p.

Our primary goal is to explain the construction of this representation in the case k = 2.

2 Modular Curves and Modular Forms

In this section we review the definitions and basic properties of modular curves and modular forms,
our primary objects of study.

2.1 Modular Curves

Let H = {z ∈ C| Im z > 0} be the upper half plane, and let SL2(Z) act on H via Möbius trans-

formations (i.e. as
Ç
a b
c d

å
z = az + b

cz + d
). For any N > 0 let Γ(N) = ker(SL2(Z) � SL2(Z/NZ))

and say that a subgroup Γ ⊆ SL2(Z) is a congruence subgroup if Γ ⊇ Γ(N) for some N . The most
commonly occurring examples of congruence subgroups are the following:

Γ0(N) :=
®
γ ∈ SL2(Z)

∣∣∣∣∣γ ≡
Ç
∗ ∗
0 ∗

å
(mod N)

´
, Γ1(N) :=

®
γ ∈ SL2(Z)

∣∣∣∣∣γ ≡
Ç

1 ∗
0 1

å
(mod N)

´
.

For any congruence subgroup Γ ⊆ SL2(Z) let Y (Γ) = Γ\H and let X(Γ) be the standard com-
pactification of Y (Γ). Then X(Γ) is a compact Riemann surface, and is thus a smooth projective
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algebraic curve over C. The curves X(Γ) are known as modular curves. Also let J(Γ) := Jac(X(Γ))
be the Jacobian of X(Γ).

For convenience, we let X0(N) := X(Γ0(N)) and X1(N) := X(Γ1(N)), and define Y0(N), Y1(N),
J0(N) and J1(N) similarly.

The curves Y0(N) and Y1(N) have the following interpretation as moduli spaces (justifying the
term ‘modular curve’)

Theorem 2.1. For N ≥ 1 let

S0(N) := {(E,C)|E is an elliptic curve, C ⊆ E is a cyclic subgroup of order N}/∼=
S1(N) := {(E,P )|E is an elliptic curve, P ∈ E has order exactly N}/∼=

then there are natural isomorphisms S0(N) ∼= Y0(N) and S1(N) ∼= Y1(N).

The following alternate description of S0(pN) (and thus Y0(pN)) for p - N prime will be used later:

Theorem 2.2. If p is prime and p - N , then

S0(pN) =
®Å
E

ψ−→ E′, C

ã∣∣∣∣∣ E and E′ are elliptic curves, (E,C) ∈ S0(N),
ψ is an isogeny with degψ = p

´
/∼=

From now on, we will identify Y0(N) with S0(N).

2.2 Modular Forms

We now define the spacesMk(Γ) and Sk(Γ), of modular forms and cusp forms, respectively, corre-
sponding to a congruence subgroup Γ.

For any holomorphic function f ∈ H(H), any α =
Ç
a b
c d

å
∈ SL2(Z) and any k ∈ Z define

f [α]k ∈ H(H) by

(f [α]k)(z) = (cz + d)−kf(α(z)) = 1
(cz + d)k f

Å
az + b

cz + d

ã
.

Now let Γ ⊆ SL2(Z) be a congruence subgroup. We say that f is weakly modular of weight k with
respect to Γ if f [α]k = f for all α ∈ Γ. Note that if f is weakly modular with respect to Γ, then
f [α]k is weakly modular with respect to α−1Γα.

Now if Γ is a congruence subgroup then γh :=
Ç

1 h
0 1

å
∈ Γ for some h ≥ 1 (as Γ(N) ⊆ Γ for some

N ≥ 1 and γN ∈ Γ(N)). Hence if f is weakly modular with respect to Γ, then

f(z) = (f [γh]k)(z) = f(z + h)

2



and so f is periodic with period h. It then follows that f has a Fourier expansion:

f(z) =
∞∑

n=−∞
anq

n
h

with qh = e2πiz/h. We say that f is holomorphic at (resp. vanishes at) ∞ if an = 0 for all n < 0
(resp. for n ≤ 0). Note that this definition is independent of the choice of h.

If f is weakly modular of weight k with respect to Γ, we say that f is modular, and write f ∈Mk(Γ),
if f [α]k is holomorphic at ∞ for all α ∈ SL2(Z). We say that f is a cusp form, and write f ∈ Sk(Γ)
if f [α]k vanishes at ∞ for all α ∈ SL2(Z). We say that f has level N if it is modular with respect
to Γ1(N) or Γ0(N).

Note that if Γ = Γ0(N) or Γ1(N) then
Ç

1 1
0 1

å
∈ Γ, and so if f ∈Mk(Γ), then f(z + 1) = f(z) by

the above, and so f has a q-expansion f = ∑∞
n=0 an(f)qn, where q = q1 = e2πiz. If f ∈ Sk(Γ) then

a0(f) = 0 (but this condition is not sufficient to ensure f ∈ Sk(Γ)).

The following consequence of the Riemann-Roch Theorem gives modular forms much of their power:

Proposition 2.3. For any congruence subgroup Γ ⊆ SL2(Z) and any k ∈ Z, Mk(Γ), and hence
Sk(Γ), is finite dimensional.

In fact, in most cases, one can give explicit formulas for Mk(Γ) and Sk(Γ) in terms of Γ and k.
However, these formulas are often quite cumbersome, and so we will not state them. The special
case below will be important later.

Note that if α =
Ç
a b
c d

å
∈ SL2(Z), then we have the identity dα(z) = (cz + d)−2dz. Thus if

f ∈M2(Γ) then f(z)dz is invariant under the action of Γ, and so defines a holomorphic differential
form on Γ\H = Y (Γ), and thus a meromorphic differential form on X(Γ). In fact, we have

Proposition 2.4. The map f(z) 7→ f(z)dz gives an isomorphism S2(Γ) ∼= Ω1
hol(X(Γ)). In partic-

ular, dimC S2(Γ) = genus(X(Γ)).

In light of Proposition 2.4, we may now identify S2(Γ) with Ω1
hol(X(Γ)). This gives us the following

useful description of the Jacobian J(Γ) of X(Γ):

Corollary 2.5. For any congruence subgroup Γ, there is a lattice Λ(Γ) ⊆ S2(Γ)∨, and a natural
isomorphism J(Γ) ∼= S2(Γ)∨/Λ(Γ).

3 Hecke Operators

Much of the arithmetic significance of the modular curves X0(N) comes from the Hecke operators
{Tn|n ∈ Z+} acting on the modular Jacobians J0(N) and the space of cusp forms Sk(Γ0(N)).
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In this section, we summarize the construction of these operators. We will initially define the
Hecke operators Tp for p prime as correspondences X0(N)  X0(N), and then deduce the other
interpretations of Tp from this. Therefore we must first introduce the notion of correspondences.

3.1 Correspondences

If X and Y are smooth, projective curves, then a correspondence X  Y is roughly a multivalued
map from X to Y . Explicitly:

Definition 3.1. A correspondence C : X  Y is a smooth, projective curve C together with
surjective morphisms α : C � X and β : C � Y .

By basic algebraic geometry, a map f : X → Y of curves induces maps f∗ : Jac(Y ) → Jac(X)
and f∗ : Jac(X) → Jac(Y ) on Jacobians, and maps f∗ : Ω1

hol(Y ) → Ω1
hol(X) and trf : Ω1

hol(X) →
Ω1

hol(Y ) on differential forms. Moreover, the maps on differential forms are the pullbacks associated
to the maps on Jacobians, under the identification Ω1

hol(Jac(X)) = Ω1
hol(X) (that is, f∗ = (f∗)∗

and trf = (f∗)∗). It follows that a correspondence C : X  Y induces maps:

C : Jac(X) α∗−→ Jac(C) β∗−→ Jac(Y )

C : Ω1
hol(Y ) β∗−→ Ω1

hol(C) trα−−→ Ω1
hol(Y )

and moreover, the map C : Ω1
hol(Y )→ Ω1

hol(X) is the pullback of the map C : Jac(X)→ Jac(Y ).

Intuitively, one can think of this construction as starting with a multivalued function C : X  Y ,
then adding up outputs of the function to get a single valued function C : X → Jac(Y ), and then
finally extending this to a map C : Jac(X)→ Jac(Y ) by additivity.

3.2 Hecke Operators

Now pick any N ≥ 1. For each prime p - N , we will define a correspondence Tp : X0(N) X0(N)
as follows. Define maps α, β : Y0(pN)→ Y0(N) by

α

Å
E

ψ−→ E′, C

ã
= (E,C), β

Å
E

ψ−→ E′, C

ã
= (E′, ψ(C)),

where we use the characterization of Y0(pN) from Theorem 2.2. These maps can be shown to
be algebraic morphisms. Hence α and β are rational maps X0(pN) 99K X0(N), and so (by the
classification of smooth projective algebraic curves) extend uniquely to surjective morphisms α, β :
X0(pN)→ X0(N). We define Tp : X0(N) X0(N) to be the correspondenceX0(N) α←− X0(pN) β−→
X0(N).

One can similarly define correspondences Tp : X0(N)  X0(N) for p|N (here we must use a
different modular curve, X0

0 (N, p), in place of X0(pN)), but for the sake of simplicity we omit the
precise definition.
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Thus we have a family of correspondences Tp : X0(N)  X0(N), where p ranges over all primes.
These induce operators Tp : J0(N) → J0(N) which in turn induce operators Tp : Ω1

hol(X0(N)) →
Ω1

hol(X0(N)). By Proposition 2.4, Tp in fact induces an operator Tp : S2(Γ0(N)) → S2(Γ0(N)).
By generalizing Proposition 2.4, one can show that Tp in fact induces operators Tp : Sk(Γ0(N))→
Sk(Γ0(N)), for all k ∈ Z.

Just as the action of Tp on J0(N) determines the action of Tp on S2(Γ0(N)), the action of Tp on
S2(Γ0(N)) determines the action of Tp on J0(N). Explicitly,

Proposition 3.1. For any N and any prime p, the action of Tp on S2(Γ0(N)) induces a natural
action on S2(Γ0(N))∨. Under this action, we have TpΛ(Γ0(N)) ⊆ Λ(Γ0(N)), and so Tp acts on
J0(N) = S2(Γ0(N))∨/Λ(Γ0(N)). This action coincides with the action defined above.

The operators Tp : J0(N)→ J0(N) have explicit descriptions in terms of moduli spaces:

Proposition 3.2. For any prime p (including the case p|N) and any (E,C) ∈ Y0(N), we have

Tp(E,C) =
∑

Cp⊆E[p]
Cp∼=Z/pZ
Cp∩C=0

(E/Cp, (C + Cp)/Cp) .

This extends by linearity and continuity to determine a unique morphism Tp : J0(N)→ J0(N).

One can also describe the action of Tp on the space Sk(Γ0(N)) of cusp forms in terms of q-expansions.

Proposition 3.3. Take f =
∞∑
n=1

an(f)qn ∈ Sk(Γ0(N)) and let Tpf =
∞∑
n=1

an(Tpf)qn ∈ Sk(Γ0(N)).

Then we have
an(Tpf) = apn(f) + pk−11N (p)an/p(f)

where

1N (p) :=
{

1 p - N
0 p|N

and we interpret an/p(f) = 0 if p - n.

Using either Proposition 3.2 or 3.3 we get following useful corollary

Corollary 3.4. For any primes p and q, we have that TpTq = TqTp. Hence {Tp|p prime} is a
commuting family of linear operators on both J0(N) and Sk(Γ0(N)).

As another immediate corollary of Proposition 3.3, we see that a1(Tpf) = ap(f) for all primes p.

The formula in Proposition 3.3 now suggests the following definition:
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Definition 3.2. We define the Hecke operators {Tn|n ∈ Z+} inductively as follows: Let T1 = id.
For any prime p, and any r ≥ 2, define Tpr = TpTpr−1 − pk−11N (p)Tpr−2 . Finally for any m,n ∈ Z+
with gcd(m,n) = 1, define Tmn = TmTn,

One can easily verify that these definitions were chosen to ensure that a1(Tnf) = an(f) for all n
and all f ∈ Sk(Γ0(N)).

3.3 The Hecke algebra

For many of the applications of Hecke operators it will be helpful to shift our focus away from the
individual Hecke operators Tn, and towards the algebra generated by them. Explicitly, we make
the following definitions:

Definition 3.3. Fix N, k ≥ 1 and define

TZ = Z [{Tn|n ∈ Z+}] = Z [{Tp|p prime}] ⊆ EndC(Sk(Γ0(N)))
TC = C [{Tn|n ∈ Z+}] = C [{Tp|p prime}] ⊆ EndC(Sk(Γ0(N))).

While TZ and TC certainly depend on N and k, we typically omit these from our notation.

By definition, it now follows that Sk(Γ0(N)) is a TZ (and a TC) module for all k. Also by
Proposition 3.1, it follows that Λ(Γ0(N)) is a TZ-module, and so the quotient module J0(N) =
S2(Γ0(N))∨/Λ(Γ0(N)) is naturally a TZ-module.

Note that Corollary 3.4 ensures that TZ and TC are commutative. The primary advantage to
considering TZ and TC instead of the individual Hecke operators is the following simple result:

Proposition 3.5. TZ is a finite-rank Z-module. TC is a finite-dimensional C-vector space.

Proof. (sketch)

We have TC ⊆ EndC(Sk(Γ0(N))) ∼= MdimC Sk(Γ0(N))(C) and so dimC TC ≤ (dimC Sk(Γ0(N)))2.

For TZ, we give the argument only for k = 2, as this has the strongest geometric interpretation.
The action of TZ on S2(Γ0(N)) induces a faithful action of TZ on S2(Γ0(N))∨. As each Tn acts on
J0(N), one can show using Corollary 2.5, that Tn(Λ(Γ0(N))) ⊆ Λ(Γ0(N)) for all n.

Thus TZ acts on Λ(Γ0(N)) and so we have a homomorphism

TZ → EndZ(Λ(Γ0(N))) ∼= M2 dimC S2(Γ0(N))(Z).

This homomorphism is injective, as Λ(Γ0(N)) spans S2(Γ0(N))∨, and so rkTZ ≤ 4(dimC S2(Γ0(N)))2.
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Proposition 3.5 allows us to consider a single ‘finite’ object, instead of an infinite collection of
operators. As an immediate result of this corollary, we can see that there much be infinitely
many ‘nontrivial’ relations among the operators {Tp|p prime} whereas up to this point, they had
appeared to be entirely unrelated. These relations encode turn out to encode a huge amount of
number theoretic information.

The following useful lemma gives more information about the structure of TC

Lemma 3.6. The map TC×S2(Γ0(N))→ C given by (T, f) 7→ a1(Tf) is a nondegenerate pairing.
This pairing then gives S2(Γ0(N))∨ the structure of a free rank one TC-module. This module
structure is precisely the one induced by the usual action of TC on S2(Γ0(N)).

Proof. (sketch) Clearly the pairing (T, f) 7→ a1(Tf) is bilinear. If, for some f ∈ S2(Γ0(N)),
a1(Tf) = 0 for all T , then for all n ≥ 1, an(f) = a1(Tnf) = 0, giving f = 0, so the pairing
is nondegenerate in the second component. Similarly if, for some T ∈ TC, a1(Tf) = 0 for all
f ∈ S2(Γ0(N)), then for all T ′ ∈ TC we have a1(T ′(Tf)) = a1(T (T ′f)) = 0 (as TC is commutative).
By nondegeneracy in the second component, Tf = 0 for all f ∈ S2(Γ0(N)), which implies that
T = 0. So indeed the pairing is nondegenerate.

Most of the remaining statements follow easily from this. The final statement follows by noting
that the isomorphism TC ∼= S2(Γ0(N))∨ is actually a TZ-module isomorphism, since a1((T ′T )f) =
a1(T (T ′f)).

Appealing to more advanced results, one can strengthen this argument to show

Lemma 3.7. We have rkTZ = dimC TC = dimC S2(Γ0(N)). Hence the natural map TZ⊗ZC→ TC,
induced by TZ ↪→ TC, is an isomorphism.

As the Hecke operators {Tn| gcd(n,N) > 1} behave somewhat differently from those in {Tn| gcd(n,N) = 1},
it will sometimes be useful to exclude the former. Hence we define the following subalgebra of TZ.

Definition 3.4. Fix N, k ≥ 1 and define

T∗Z = Z [{Tn|n ∈ Z+, gcd(n,N) = 1}] = Z [{Tp|p prime, p - N}] ⊆ TZ.

We will call T∗Z the anemic Hecke algebra.

4 Eigenforms and Newforms

In order to better understand the action of the Hecke operators on the vector space Sk(Γ0(N)), we
would like to find a basis of simultaneous eigenvectors for the action of the operators {Tn|n ∈ Z+}
on Sk(Γ0(N)) (thus making the Hecke operators simultaneously diagonalizable). Unfortunately this
is not possible in general. In this section we try to come as close as possible to giving Sk(Γ0(N)) a
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basis of eigenvectors (called eigenforms). We shall construct a subspace Sk(Γ0(N))new of S2(Γ0(N)),
which will have a basis of eigenforms (which we will refer to as newforms). Finally, we will show
how the Hecke algebra can be used to associate an abelian variety, Af , to each newform f , and
moreover, gives a decomposition of J0(N) into a product of these abelian varieties.

These abelian varieties, Af , will be used in the next section to construct the Galois representations
associated to newforms.

4.1 The Petersson Inner Product

Recall from linear algebra that a commuting family of self-adjoint, linear operators on a hermitian
inner product space is simultaneously diagonalizable. It is thus natural to attempt to equip Sk(Γ)
with a natural inner product.

Definition 4.1. If Γ ⊆ SL2(Z) is a congruence subgroup and k ≥ 1 then define ( , )Γ : Sk(Γ) ×
Sk(Γ)→ C by

(f, g)Γ :=
∫
X(Γ)

f(x+ iy)g(x+ iy)yk dxdy
y2

(where
∫
X(Γ) denotes integration over a fundamental domain for the action of Γ on H). ( , )Γ is

referred to as the Petersson inner product on Sk(Γ).

Proposition 4.1. The Petersson inner product is a well-defined hermitian inner product on Sk(Γ).

When Γ = Γ0(N), we have the following result

Theorem 4.2. For any f, g ∈ Sk(Γ0(N)) and any n with gcd(n,N) = 1, we have (Tnf, g)Γ0(N) =
(f, Tng)Γ0(N), and so Tn = T ∗n . Thus Sk(Γ0(N)) has an (orthogonal) basis of simultaneous eigen-
forms for the set {Tn| gcd(n,N) = 1}, and thus for T∗Z.

Unfortunately, for gcd(n,N) > 1, it is no longer necessarily true that Tn = T ∗n , and so the eigenforms
guaranteed by Theorem 4.2 may not be eigenforms for Tn. In the next section, we partially remove
this restriction.

4.2 Oldforms and Newforms

We first quote a standard result about transformations of modular forms

Lemma 4.3. If f ∈ Sk(Γ0(M)) and g(z) = f(dz) for some d ≥ 1, then for any N ≥ 1 with dM |N ,
g ∈ Sk(Γ0(N)). Moreover, for any n with gcd(n,N/M) = 1, (Tng)(z) = (Tnf)(dz).

This means that some of the modular forms in Sk(Γ0(N)), in some sense, ‘belong’ to Sk(Γ0(M))
for M < N . We would like to distinguish these forms from the ones which do come from any lower
levels. Explicitly we make the following definitions:
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Definition 4.2. For any N, k ≥ 1, let

Sk(Γ0(N))old = 〈f(dz)|f ∈ Sk(Γ0(M)), dM |N〉 ≤ Sk(Γ0(N))

and let Sk(Γ0(N))new = (Sk(Γ0(N))old)⊥ (where orthogonal complements are taken with respect
to the Petersson inner product). Sk(Γ0(N))old and Sk(Γ0(N))new are referred to as the spaces of
oldforms and newforms, respectively.

One should think of Sk(Γ0(N))new as the space of cusp forms which were ‘created’ at level N .

Theorem 4.2 and the last statement of Lemma 4.3 prove part of the following Lemma (although a
different argument is required to to deal with Tp for p|N)

Proposition 4.4. The spaces Sk(Γ0(N))old and Sk(Γ0(N))new are preserved by Tn for all n ∈ Z+
and so, are TZ-modules. It follows (by Theorem 4.2) that Sk(Γ0(N))old and Sk(Γ0(N))new both
have orthogonal bases of simultaneous eigenforms for T∗Z.

The following (difficult) result gives a useful criterion for recognizing oldforms:

Theorem 4.5. Take f ∈ Sk(Γ0(N)). If an(f) = 0 for all n with gcd(n,N) = 1, then f ∈
Sk(Γ0(N))old.

Note that the condition is certainly not necessary. For instance, if f ∈ Sk(Γ0(M)), then f ∈
Sk(Γ0(N))old, for all N > M with M |N , but it need not be the case that an(f) = 0 for any n.

Using Theorem 4.5, we finally obtain the promised result about eigenforms in Sk(Γ0(N))new.

Theorem 4.6. If f ∈ Sk(Γ0(N))new is an eigenform for all of {Tn| gcd(n,N) = 1}, then it is an
eigenform for all of {Tn|n ∈ Z+}. Hence Sk(Γ0(N))new has an orthogonal basis of eigenforms for
{Tn|n ∈ Z+}, and thus for TZ.

Proof. We first show that if g ∈ Sk(Γ0(N))new is an eigenform1 for all of {Tn| gcd(n,N) = 1}, then
a1(g) 6= 0. Assume that a1(g) = 0. Then for any n ∈ Z+ with gcd(n,N) = 1, we have Tng = ξng
for some ξn ∈ C, and so

an(g) = a1(Tng) = a1(ξng) = ξna1(g) = 0.

By Theorem 4.5, this implies that g ∈ Sk(Γ0(N))old. But as Sk(Γ0(N))old∩Sk(Γ0(N))new = 0, this
implies that g = 0, a contradiction.

It thus follows that a1(f) 6= 0, and so we can assume WLOG that a1(f) = 1. Now say that
Tnf = ξnf for all n with gcd(n,N) = 1. Then we have

an(f) = a1(Tnf) = a1(ξnf) = ξna1(f) = ξn.

1Here we do not consider 0 to be an eigenform.
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Now for any m ∈ Z+, let gm = Tmf−am(f)f , so that a1(g) = a1(Tmf)−am(f) = 0. By Proposition
4.4, gm ∈ Sk(Γ0(N))new. Now if gcd(n,N) = 1

Tngm = Tn(Tmf − am(f)f) = Tm(Tnf)− am(f)(Tnf) = Tm(an(f)f)− am(f)(an(f)f)
= an(f)(Tmf − am(f)f) = an(f)gm.

By the above result, it follows that gm = 0, and so Tmf = am(f)f for all m ∈ Z+. The remaining
claims are automatic.

By the proof of Theorem 4.6, an eigenform, f , in Sk(Γ0(N))new can be normalized so that a1(f) = 1.

Definition 4.3. A newform of level N is an eigenform f ∈ Sk(Γ0(N))new with a1(f) = 1.

By Theorem 4.6, the newforms of level N form an orthogonal basis for Sk(Γ0(N))new.

By the above, Sk(Γ0(N)) has a basis consisting of the the level N newforms, together with certain
oldforms, i.e. eigenforms in Sk(Γ0(N))old. It is natural to ask whether these oldforms are actually
newforms of a lower level (and so each basis element was ‘created’ at some level, the newforms are
just those that were created at level N). Indeed, we have the following

Theorem 4.7. For any N, k ≥ 1, the set

{f(dz)|f is a newform of level M and dM |N}

is an orthogonal basis for Sk(Γ0(N)).

We are thus justified in only studying newforms.

4.3 The Action of TZ on a Newform

Let f ∈ Sk(Γ0(N)) be a newform (so that a1(f) = 1). We shall consider the action of the Hecke
algebra TZ on f , and thereby show that the Fourier coefficients, an(f), are all algebraic integers,
and all lie in some number field Kf . This observation provides one of the main links between the
study of modular forms, and algebraic number theory.

If f is a newform, then it is an eigenform for each Tn, and so is an eigenform for TZ. Hence there
is a ring homomorphism ξ : TZ → C, defined by Tf = ξ(T )f for all T ∈ TZ. By the argument in
the proof of Theorem 4.6, ξ(Tn) = an(f) for all n. As TZ has finite rank,

ξ(TZ) = ξ(Z[{Tn|n ∈ Z+}]) = Z[{ξ(Tn)|n ∈ Z+}] = Z[{an(f)|n ∈ Z+}] ⊆ C

has finite rank as well. By basic algebraic number theory, we have thus proved the following:

Theorem 4.8. If f ∈ Sk(Γ0(N)) is a newform, then Kf := Q[{an(f)|n ∈ Z+}] is a number field,
and an(f) ∈ OKf for all n.
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Now that the Fourier coefficients of f lie in a number field, Kf , it is now natural to consider the
Galois conjugates of f . Explicitly, if σ ∈ Gal(Q/Q), then define fσ := ∑∞

n=1 an(f)σqn. Unsurpris-
ingly2, we have the following

Proposition 4.9. If f is a newform of level N , and σ ∈ Gal(Q/Q), then fσ is also a newform of
level N .

In light of this result, it is often customary to redefine a newform to be a Galois-conjugacy class
{fσ|σ ∈ Gal(Q/Q)}. We shall adopt this convention for the rest of this paper.

4.4 The Abelian Variety associated to a Newform

For the remainder of this section, let f be a newform of weight 2 and level N . We shall associate
to f an abelian variety, Af , of dimension [Kf : Q] (which will later be used to construct Galois
representations).

For convenience, we will let g = dim J0(N) = dimTC and d = [Kf : Q]. Also to simplify notation,
let S2 = S2(Γ0(N)), J0 = J0(N) and Λ = Λ(Γ0(N)) (see Corollary 2.5).

We shall construct Af as a quotient of the Jacobian J0. Explicitly, let

If = ker(TZ
ξ−→ C) = {T ∈ TZ|Tf = 0},

so that If is an ideal of TZ and rk If = rkTZ − rk ξ(TZ) = g − d. Now define Af = J0/IfJ0. We
have the following

Theorem 4.10. Af is an abelian variety of dimension [Kf : Q]. Moreover, Af can be defined over
Q.

Recall from Lemma 3.6 that we have a natural isomorphisms TC ∼= S∨2 and J0 ∼= TC/Λ. Also as the
action of TZ on TC by multiplication induces the action of TZ on J0, we must have that TZ(Λ) ⊆ Λ,
and so Λ(Γ0(N)) is a TZ-module.

By Theorem 4.7, the newforms of level M (ranging over all M |N) essentially form a basis for
S2, and so we have a decomposition S2 =

⊕
M |N

⊕
f level M
newform

[f ]d(N/M), where d(N/M) is the number of

divisors of N/M (recall that a ‘newform’ refers to a Galois conjugacy class of forms). It follows
that

TC = S∨2 =
⊕
M |N

⊕
f level M
newform

([f ]∨)d(N/M)

It can be shown that passing to the quotient now gives:
2It should be noted that the proof of Proposition 4.9 is nontrivial. Indeed, the notion of modular forms (and by

extension, newforms) is defined analytically, and so one cannot merely take the definition of a modular form and
apply σ to it. Nevertheless, Proposition 4.9 is true, and can be proven (with a significant amount of work).
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Theorem 4.11. There is a Q-isogeny3

J0(N) ∼−→
⊕
M |N

⊕
f level M
newform

A
d(N/M)
f

Thus, at least up to isogeny, the abelian varieties Af completely determine J0(N).

3a surjective Q-morphism of abelian varieties with finite kernel
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5 Tate Modules and Galois Representations

Let A be an abelian variety over a perfect field k. In this section, we construct the Tate module,
Ta`(A) of A (where ` 6= char k is prime) and give its basic properties. This module will be a free
Z`-module of rank 2(dimA), and moreover, the absolute Galois group Gk := Gal(k/k) of k will act
on Ta`(A). Thus the Tate module of A will define a representation ρA,` : Gk → GL2 dimA(Z`).

Now for the remainder of this paper, f will represent a newform of weight 2 and level N . In
Theorem 4.10 we constructed an abelian variety Af/Q of dimension [Kf : Q] corresponding to f .
Constructing the Tate module of Af will now give a Galois representation ρf,` = ρAf ,` : GQ →
GL2[Kf :Q](Z`). This is almost the representation promised in Theorem ??, except that this is a
2[Kf : Q]-dimensional representation, instead of the promised 2-dimensional representation. We
shall get around this difficulty by considering the action of TZ/If on Af , and showing that this
allows us to decompose ρf,` into a product ∏λ|` ρf,λ of two dimensional representations (where λ
ranges over all primes in OKf lying over `).

5.1 The Tate Module of an Abelian Variety

Fix a perfect field k (e.g. a field of characteristic zero or a finite field) and let A/k be an abelian
variety of dimension d ≥ 1. Recall the following standard result

Proposition 5.1. For any integer n ≥ 1, if either char k = 0 or gcd(n, char k) = 1, then A[n] ∼=
(Z/nZ)2d.

As the addition map + : A×A→ A is defined over k, for any σ ∈ Gk the map σ : A(k)→ A(k) is
a group homomorphism. Now for any n, the multiplication by n map, [n] : A(k)→ A(k) is defined
over k, and moreover A[n] = ker[n] ⊆ A(k). It follows that σ[n] = [n]σ for all σ ∈ Gk, and so
Gk acts on ker[n] = A[n]. Thus A[n] defines is a Gk-module, and so defines a (continuous) map
Gk → Aut(A[n]).

Now pick a prime ` 6= char k. For any r ≥ 1, we have A[`r] ∼= (Z/`rZ)2d by Proposition 5.1,
and so for each r ≥ 1, we have a continuous map Gk → GL2d(Z/`rZ). Now for any r ≥ 1, the
multiplication by ` map [`] : A[`r+1] � A[`r] is a group homomorphism which is defined over k,
and so is a homomorphism of Gk-modules. This thus defines an inverse system of Gk-modules:

· · ·� A[`3]� A[`2]� A[`].

By taking the inverse limit of this sequence, we the Tate module

Definition 5.1. For a prime ` 6= char k, Ta`(A) := lim←−A[`r] with the induced action of Gk.

Since A[`r] ∼= (Z/`rZ)2d, it follows that Ta`(A) ∼= Z2d
` as a group, and so the action of Gk defines

a continuous homomorphism ρA,` : Gk → GL2d(Z`).
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It will often be convenient to define V`(A) := Ta`(A) ⊗Z` Q`, so that V`(A) ∼= Q2d
` defines a

continuous homomorphism ρA,` : Gk → GL2d(Q`) (this has the advantage of allowing us to work
over vector spaces instead of Z`-modules).

As might be expected, the construction A → Ta`(A) is functorial. Explicitly, let A and A′ be
abelian varieties over k, and let f : A → A′ be a morphism of abelian varieties over k. By
definition, f : A(k) → A′(k) is a group homomorphism, and so it restricts to a homomorphism
f : A[`r] → A′[`r] for all r. As f is defined over k, this is in fact a map of Gk-modules. It follows
that f induces a map fTa : Ta`(A) → Ta`(A′) of Gk-modules. In particular, it follows that the
endomorphism ring Endk(A) of A acts on the Ta`(A), and this action commutes with the action of
Gk.

It is often useful to consider abelian varieties only up to isogeny (and so to not care explicitly about
the isomorphism class of an abelian variety). Thus we would like Ta`(A) not to depend to heavily
on the isomorphism class of A. Indeed we have the following
Proposition 5.2. If f : A → A′ is a k-isogeny of abelian varieties, then fTa : V`(A) → V`(A′) is
an isomorphism of Gk-modules.

Proof. We shall first show that fTa : Ta`(A) → Ta`(A′) is injective. Assume that fTa(x) = 0 for
some x ∈ Ta`(A). As x ∈ Ta`(A) = lim←−A[`r], we can write x = (x1, x2, . . .) where xr ∈ A[`r] and
xr = [`]xr+1 for all r ≥ 1.

Now by definition, fTa(x) = (f(x1), f(x2), . . .), so if fTa(x) = 0, then f(xr) = 0 for all r, and so
xr ∈ ker f for all r. But also, xr ∈ A[`r] ⊆ A[`∞] := ⋃∞

s=1A[`s] for all r, and so xr ∈ (ker f)∩A[`∞].
But now ker f is finite (by the definition of isogeny) and so (ker f) ∩ A[`∞] is also finite. But now
as (ker f) ∩ A[`∞] ⊆ A[`∞] = ⋃∞

s=1A[`s], we have (ker f) ∩ A[`∞] ⊆ A[`r0 ] for some r0. Hence
xr ∈ A[`r0 ] for all r.

But this implies that xr = [`r0 ]xr+r0 ∈ [`r0 ]A[`r0 ] = 0 for all r, and so x = 0. Thus f : Ta`(A) →
Ta`(A′) is injective.

It now follows that fTa : V`(A) → V`(A′) is also injective. Indeed, say that fTa(x) = 0 for some
x ∈ V`(A). By the definition of V`(A) = Ta`(A) ⊗Z` Q`, we have mx ∈ Ta`(A) for some m > 0.
Thus fTa(mx) = mfTa(x) = 0, and so mx = 0, giving x = 0 (recall that charQ` = 0).

But now as V`(A) and V`(A′) are vector spaces of the same dimension (as A and A′ are isogenous,
they have the same dimension), it follows that fTa is also surjective. Thus it is a bijection, and
thus a Gk-module isomorphism.

Note that this does not imply that fTa : Ta`(A) → Ta`(A′) is an isomorphism. In particular,
recalling the isogeny from Theorem 4.11, we have
Corollary 5.3. For any N and `,

V`(J0(N)) ∼=
⊕
M |N

⊕
f level M
newform

V`(Af )d(N/M).
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The component representations, V`(Af ) will play a big role in later.

From now on, assume that k ⊆ C (in particular, char k = 0). In this case, we can give an alternate
description of Ta`(A) which is often easier to work with.

Note that A(C) is an abelian variety over C, and so is a complex torus. We can thus write
A(C) = Cd/Λ for some lattice Λ ∈ Cd. Now for any n, we have the natural identification

A[n] = (Cd/Λ)[n] =
Å 1
n

Λ
ã
/Λ ∼= Λ/nΛ.

Moreover, under this identification, the map [`] : A[`r+1]→ A[`r] corresponds to the quotient map
Λ/`r+1Λ� Λ/`rΛ. Thus we can identify

Ta`(A) = lim←−A[`r] = lim←−Λ/`rΛ = lim←−(Λ⊗Z Z/`rZ) = Λ⊗Z lim←−Z/`rZ = Λ⊗Z Z`,

and similarly, V`(A) = Ta`(A)⊗Z` Q` = Λ⊗Z Z` ⊗Z` Q` = Λ⊗Z Q`.

Now let f : A→ A′ be a k-morphism of abelian varieties. Let A(C) = Cd/Λ and A′(C) = Cd′/Λ′. As
f : A(C)→ A′(C) is a morphism of complex tori, f is induced by some C-linear map fC : Cd → Cd′

with f(Λ)→ Λ′. In particular, f induces a Z-linear map fZ : Λ→ Λ′ (and f is determined by fZ).
Extending scalars to Z`, fZ induces a map fZ` : Λ⊗Z Z` → Λ′⊗Z Z`, and it can easily be seen that,
under the above identifications, fZ` = fTa. In particular, the action of Endk(A) on A induces an
action of Endk(A) on Λ, and so makes Λ into a Endk(A)-module. We now have Ta`(A) ∼= Λ⊗Z Z`
as Endk(A)-modules.

Therefore, the functor A 7→ Ta`(A) (sending abelian varieties to Z`-modules) can be completely
described in terms of the lattice Λ (this in particular, allows for easy passage from Ta`(A) to Ta`′(A)
for ` 6= `′).

This picture however, does adequately describe the action of Gk on Ta`(A). Indeed, there is no
natural action of Gk on Λ, and so the action of Gk must be defined at the level of Λ ⊗Z Z`. The
main reason for this is that, by treating A as a complex torus, the above construction completely
ignores the algebraic structure of A/k, where as the action of Gk is defined entirely in terms of this
algebraic structure. For instance, we know by our general theory that Gk must act on Λ/`rΛ for
all r (as this space is identified with A[`r]), but actually determining this action is generally quite
difficult.

As a result of considerations like this, it is in general quite difficult to relate the Endk(A)-module
structure of Ta`(A) to its Gk-module structure. Much of the significance of the Eichler-Shimura
relations (discussed later) is that they do provide a nontrivial relationship between the actions of
EndQ(J0(N)) (or rather, the action of TZ ⊆ EndQ(J0(N))) and GQ on Ta`(J0(N)).

To conclude this section, we discuss one more result which will be useful later when we consider
reductions of modular curves. Let k = Q, and let A/Q be an abelian variety of dimension d. Pick
some prime p, such that A has good reduction at p (that is, that AFp is still a smooth abelian variety
over Fp). The reduction of A at p gives a surjective group homomorphism π : A(Q) � AFp(Fp).
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Now by Theorem 5.1, A[n] ∼= (Z/nZ)2d ∼= AFp [n] provided that p - n. It follows that, for all primes
` 6= p, π induces an isomorphism Ta`(A) ∼−→ Ta`(AFp) of Z`-modules. Moreover, the actions of
GQ and GFp on Ta`(A) and Ta`(AFp), respectively, are ‘compatible’ under this isomorphism in the
manner described below

Theorem 5.4. If A/Q is an abelian variety with good reduction at p, then the map π : A(Q) �
A(Fp) induces an isomorphism πTa : Ta`(A)

∼=−→ Ta`(AFp). Moreover, if ϕp ∈ GFp is the Frobenius
automorphism ϕp(x) = xp, and Frobp ∈ GQ is any lift of ϕp, then πTa ◦ Frobp = ϕp ◦ πTa.

5.2 The Galois Representation associated to a Newform

Now again let f be a weight 2 newform of levelN . Also letK = Kf and let d = [K : Q]. By Theorem
4.10, f determines an abelian variety, Af , of dimension d which is defined over Q. By the previous
section, Ta`(Af ) defines a continuous Galois representation ρf,` := ρAf ,` : GQ → GL2d(Q`). If d = 1
(so that K = Q), then this is the two-dimensional Galois representation promised in Theorem ??.
However, in the general case, this will be a 2d-dimensional representation, not a two dimensional
representation. To produce 2-dimensional representation, we must consider the action of TZ on
Ta`(Af ).

As TZ acts on J0 := J0(N), it acts on Af = J0/IfJ0. Moreover, If clearly acts trivially on Af , and
so we in fact have a (faithful) action of TZ/If on Af . Now using the homomorphism ξ : TZ → C,
we may identify TZ/If with ξ(TZ) = Z[{an(f)|n ∈ Z+}] ⊆ C, and so we have an action of ξ(TZ) on
Af . By passing to the Tate module, this gives us an action of ξ(TZ) on Ta`(Af ). Moreover, as the
action of TZ on J0, and the quotient map J0 � Af are both defined over Q, the action of ξ(TZ) on
Af is defined over Q. It follows that the action of ξ(TZ) on Ta`(Af ) commutes with the action of
GQ.

Now for convenience we pass from Ta` to V`. Recall that V`(A) = Ta`(Af ) ⊗Z` Q` is a Q`-vector
space, and the Q`-action commutes with both the ξ(TZ) action and the GQ action. Since the ξ(TZ)
and Q` actions commute, we in fact have an action of ξ(TZ)⊗ZQ`. Now by basic algebraic number
theory, we have a natural isomorphism

ξ(TZ)⊗Z Q`
∼= (ξ(TZ)⊗Z Q)⊗Q Q`

∼= Q[{an(f)|n ∈ Z+}]⊗Q Q`
∼= K ⊗Q Q`

∼=
∏
λ|`
Kλ,

where the final product is taken over primes in OK lying over `. It follows that V`(Af ) de-
composes as a product V`(Af ) ∼=

∏
λ|`
Vλ(Af ), where for each λ, Vλ(Af ) := eλV`(Af ) with eλ =

(0, . . . , 0, 1, 0, . . . , 0) ∈ ∏λ|`Kλ. As the action of ∏λ|`Kλ commutes with the action of GQ, each
Vλ(Af ) is a GQ-module.

Moreover, for each λ, Kλ ⊆
∏
λ|`Kλ acts naturally (and nontrivially) on Vλ(Af ), and this action

commutes with the action of GQ. Hence Vλ(Af ) is a Kλ-vector space, and GQ acts on Vλ(Af ) by
Kλ-linear maps. It thus remains to show the following
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Proposition 5.5. For any λ|`, dimKλ Vλ(Af ) = 2.

Proof. Let Af (C) = Cd/Λ for some lattice Λ ⊆ Cd. We have that EndQ(Af ) acts on Λ by the
discussion in the previous section, and so (as ξ(TZ) ⊆ EndQ(Af )), Λ is a ξ(TZ)-module. Let
ΛQ = Λ⊗Z, so that ΛQ is a ξ(TZ)⊗Z Q = K-vector space. Note that V`(Af ) = ΛQ ⊗Q Q`, and so

Vλ(Af ) = V`(Af )⊗∏
λ′|`Kλ′

Kλ = (ΛQ ⊗Q Q`)⊗K⊗QQ` Kλ = ΛQ ⊗K Kλ.

It follows that

dimKλ Vλ(Af ) = dimKλ(ΛQ ⊗K Kλ) = dimK ΛQ = dimQ ΛQ
dimQK

= rk Λ
[K : Q] = 2(dimAf )

[K : Q] = 2[K : Q]
[K : Q] = 2.

So indeed, for any ` and any λ|` (and thus any prime λ in OK), we have an action of GQ on
a 2-dimensional Kλ-vector space Vλ(Af ), which gives a continuous homomorphism ρf,λ : GQ →
GL2(Kλ), as promised in Theorem ??.

6 The Eichler-Shimura Relations

We have now constructed a family of Galois representations ρf,λ : GQ → GL2(Kλ) for a weight 2
newform f of level N , with Kf = K. Thus far, however, these Galois representations have no clear
relation to f , besides the fact that f was used in their construction. As promised in Theorem ??,
for almost all primes, p, (namely p - `N), the characteristic polynomial of ρf,λ(Frobp) is determined
by the original Fourier coefficients {an(f)} of f . Specifically, it is x2 − ap(f)x + p (recall that we
are only considering the case k = 2).

This condition essentially characterizes ρf,λ as the set {Frobp |p - `N} is dense in GQ by Chebotarev
density4. This often allows us to treat the construction of ρf,λ as a ‘black box.’ Namely, once we
know that ρf,λ exists (by the above construction) we can often forget the precise details of the
construction, and simply study the characteristic polynomials of Frobp. This simplification is even
more useful in the k 6= 2 case, when the construction of ρf,λ is significantly more complicated.

Our main goal in this section is to sketch the proof of this fact. The bulk of the argument lies
in establishing the Eichler-Shimura relations, which give a description of the Hecke operator Tp :
J0(N) → J0(N) modulo p (for p - N). From now on, fix some N ≥ 1, and let p be a prime with
p - N . First we need the following result:

Theorem 6.1. The modular curve X0(N) and the modular Jacobian J0(N) both have good reduc-
tion at p.

4Technically some care is necessary here, as Frobp is not defined in GQ, even up to conjugation, since every prime
is ramified in Q/Q. Thus the above statement must be refined slightly. However, we do not concern ourselves with
this.
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This means that X0(N) defines a smooth curve, denoted ‹X0(N), over Fp whose Jacobian, J̃0(N),
is the reduction of J0(N) at p. It turns out that the moduli space interpretation of X0(N) given
in Theorem 2.1, also applies to ‹X0(N) (where our elliptic curves are taken over Fp, instead of C).
In fact this even applies (in some sense) when p|N . We shall use these facts freely without proof
(and without a precise statement).

As ‹X0(N) is defined in characteristic p, there is a natural morphism ϕp : ‹X0(N) → ‹X0(N) given
by x 7→ xp. This induces pushforward and pullback maps ϕp,∗, ϕ∗p : J̃0(N) → J̃0(N). The Eichler-
Shimura relations state the following:

Theorem 6.2 (Eichler-Shimura). If p is a prime and p - N , then the Hecke operator Tp : J0(N)→
J0(N) reduces to a morphism ‹Tp : J̃0(N)→ J̃0(N), and we have ‹Tp = ϕp,∗ + ϕ∗p in EndFp(J̃0(N)).

Proof. (sketch) Recall the definition of Tp as a correspondence Tp : X0(N) X0(N) given in Section
3.2. We would like to reduce the maps α, β : X0(pN)→ X0(N) to maps α̃, β̃ : ‹X0(pN)→ ‹X0(N),
and use these maps to define a correspondence ‹Tp : ‹X0(N)  ‹X0(N). Unfortunately this is
somewhat problematic, as the curve X0(pN) has bad reduction at p, and so we cannot construct‹X0(pN) as a smooth curve over Fp.

Luckily, the reduction of ‹X0(pN) at p is still ‘good enough’ to allow us to describe it nicely. We
shall need the following lemma

Lemma 6.3. If E and E′ are elliptic curves over Fp, and ψ : E → E′ is an isogeny with degψ = p,
then up to isomorphism, either ψ = ϕp : E → Eϕp or ψ = ϕ̂p : Eϕp → E.

Here Eϕp is the elliptic curve over Fp obtained by applying ϕp to the polynomials defining E. Also,
for any isogeny ψ : E → E′, ψ̂ : E′ → E is the dual isogeny (which can be thought of as the
pullback map associated to ψ, by identifying Jac(E) = E and Jac(E′) = E′). It can be shown that
ψ ◦ ψ̂ = ψ̂ ◦ ψ = [degψ] and degψ = deg ψ̂.

Proof. (Lemma 6.3) Since degψ = p, we have that ψ̂ ◦ ψ = [p] : E → E. Now in characteristic p,
the map [p] : E → E is not separable, and so degins([p]) > 1. Hence

(degins ψ)(degins ψ̂) = degins(ψ ◦ ψ̂) = degins([p]) > 1.

Thus either degins ψ > 1 or degins ψ̂ > 1.

If degins ψ > 1, then as degins ψ|degψ = p, it follows that degins ψ = p, and so degsep ψ = 1,
and so ψ is purely inseparable. But, up to isomorphism, the only purely inseparable morphisms in
characteristic p are powers of ϕp. As degψ = p = degϕp, it follows that ψ = ϕp, up to isomorphism.
On the other hand, if degins ψ̂ > 1, then by the same argument ψ̂ = ϕp, and so ψ = ϕ̂p.

It is worth noting that the two cases in Lemma 6.3 are not mutually exclusive - it is possible that
ψ = ϕp = ϕ̂p. By the argument above we can see that this happens iff degins[p] = p2 or equivalently,

18



degsep[p] = 1. Since #E[p] = degsep[p], this happens iff E[p] = 0, which (by definition) happens iff
E is a supersingular elliptic curve.

Now treat ‹X0(pN) as (the compactification of) the moduli space S0(pN) from Theorem 2.2. By
Lemma 6.3, we can divide S0(pN) into two sets, those

Å
E

ψ−→ E′, C

ã
with ψ = ϕp and those with

ψ = ϕ̂p. Thus we would expect ‹X0(pN) to be a union of two smooth curves over Fp, glued together
at a finite collection of points. Indeed we have the following

Proposition 6.4. Define the maps i, j : ‹X0(N)→ ‹X0(pN) (at the level of moduli spaces) by

i(E,C) =
(
E

ϕp−→ Eϕp , C
)
, j(E,C) =

Ç
Eϕp

“ϕp−→ E,Cϕp
å
.

Then we have ‹X0(pN) = i(‹X0(N)) ∪ j(‹X0(N)) ∼= ‹X0(N) ∪Σ ‹X0(N), where Σ = i(‹X0(N)) ∩
j(‹X0(N)) ↪→ ‹X0(N) is the set of points in ‹X0(N) corresponding to supersingular elliptic curves.

We are now ready to finish the proof of Theorem 6.2. Define α̃, β̃ : ‹X0(pN)→ ‹X0(N), as in Section
3.2, by

α̃

Å
E

ψ−→ E′, C

ã
= (E,C), β̃

Å
E

ψ−→ E′, C

ã
= (E′, ψ(C)).

Notice that we have

α̃(i(E,C)) = α̃
(
E

ϕp−→ Eϕp , C
)

= (E,C)

α̃(j(E,C)) = α̃

Ç
Eϕp

“ϕp−→ E,Cϕp
å

= (Eϕp , Cϕp)

β̃(i(E,C)) = α̃
(
E

ϕp−→ Eϕp , C
)

= (Eϕp , Cϕp)

β̃(j(E,C)) = α̃

Ç
Eϕp

“ϕp−→ E,Cϕp
å

= (E,C)

and so α̃ ◦ i = β̃ ◦ j = id and α̃ ◦ j = β̃ ◦ i = ϕp, as maps ‹X0(N) → ‹X0(N) (and thus are all
bijections).

Now up to birational equivalence, ‹X0(pN) looks like two disjoint copies of ‹X0(N). The definitions
of pushforward and pullback of maps ‹X0(pN)→ ‹X0(N) are thus defined for all but finitely many
points of ‹X0(N) and ‹X0(pN) (specifically for points not in Σ). Thus for any (E,C) ∈ ‹X0(N) r Σ,
we have the following computation:‹Tp(E,C) = β̃∗(α̃∗(E,C)) = β̃∗ (i(α̃ ◦ i)∗(E,C) + j(α̃ ◦ j)∗(E,C)) = β̃∗

Ä
i(E,C) + jϕ∗p(E,C)

ä
= β̃∗

(
i(E,C) + pj(Eϕ

−1
p , Cϕ

−1
p )
)

= β̃(i(E,C)) + pβ̃(j(Eϕ
−1
p , Cϕ

−1
p ))

= (Eϕp , Cϕp) + p(Eϕ
−1
p , Cϕ

−1
p ) = ϕp,∗(E,C) + ϕ∗p(E,C).
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Thus ‹Tp = ϕp,∗ + ϕ∗p on a Zariski-open subset of J̃0(N). As these are both morphisms of J̃0(N),
we get that ‹Tp = ϕp,∗ + ϕ∗p on all of J̃0(N) by continuity.

Now we also have ϕp,∗ ◦ ϕ∗p = ϕ∗p ◦ ϕp,∗ = [degϕp] = [p] by standard facts about Jacobians. Thus
in EndFp(J̃0(N)), ϕp,∗ and ϕ∗p satisfy the polynomial

(x− ϕp,∗)(x− ϕ∗p) = x2 − (ϕp,∗ + ϕ∗p)x+ ϕp,∗ ◦ ϕ∗p = x2 − ‹Tpx+ [p]

Now pick a prime ` 6= p and consider the Tate module Ta`(J̃0(N)). Writing ϕp,Ta := (ϕp,∗)Ta we
have that

ϕ2
p,Ta − ‹Tp,Taϕp,Ta + p = 0

in End(Ta`(J̃0(N))).

Now by Theorem 5.4, we have an isomorphism πTa : Ta`(J0(N)) ∼−→ Ta`(J̃0(N)). Moreover, we
have πTa ◦ Frobp = ϕp ◦ πTa and πTa ◦ Tp = ‹Tp,Ta ◦ πTa (since ‹Tp is the reduction of Tp modulo p),
we have that

Frob2
p−Tp Frobp +p = 0

in End(Ta`(J0(N))) (where Frobp ∈ End(Ta`(J0(N))) comes from the action of GQ on Ta`(J0(N))).

Extending coefficients to Q`, we see that this relation holds in V`(J0(N)). Now by Corollary 5.3 and
the work of Section 5.2, we see that (for any f and λ|`), Vλ(Af ) is a direct summand of V`(J0(N)).
Thus in Vλ(Af ) we still have

ρf,λ(Frobp)2 − Tpρf,λ(Frobp) + p = 0.

But now, recalling the definition of the action of Kλ on Vλ(Af ), we see that Tp acts on Vλ(Af ) as
ap(f) ∈ K ⊆ KΛ, and so ρf,λ(Frobp) ∈ GL(Vλ(Af )) satisfies

ρf,λ(Frobp)2 − ap(f)ρf,λ(Frobp) + p = 0.

This implies that the minimal polynomial of ρf,λ(Frobp) over Kλ divides x2 − ap(f)x + p. Now
provided that ρf,λ(Frobp) is not a scalar, the minimal polynomial of ρf,λ(Frobp) has degree 2, and
so its minimal polynomial, and thus its characteristic polynomial, is just x2 − ap(f)x+ p.

In the unlikely event that ρf,λ(Frobp) is a scalar (so that its minimal polynomial has degree 1),
some more care must be taken. It is possible (through and argument which we will not give) to
show that det ρf,λ(Frobp) = p independently of the above argument. This, combined with the
above work, is enough to ensure that x2 − ap(f)x + p is the minimal polynomial of ρf,λ(Frobp).
(Explicitly, if ρf,λ(Frobp) is a scalar with determinant p, then ρf,λ(Frobp) = ±√p. Since ρf,λ(Frobp)
satisfies x2 − ap(f)x + p, one of the roots of this polynomial must be ±√p. Hence the other
root is also p

±√p = ±√p, and so x2 − ap(f)x + p = (x ∓ √p)2, the characteristic polynomial of
ρf,λ(Frobp) = ±√p.)
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