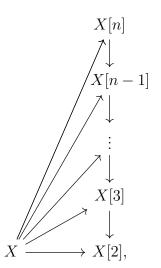
THE SIXTH k-INVARIANT OF BSO(3)

ABSTRACT. We give some concrete information on the sixth k-invariant of BSO(3). In the first section we review Postnikov towers in order to fix notation. In the second section we give the k-invariants up to k^5 , following [1]. We carry out some calculations done in that paper in more detail, and explicitly identify the mod 2 reduction of the fourth k-invariant k^4 . In the third section we determine k^6 up to two possibilities. This is a rough draft and there will very likely some errors. See references for the mathoverflow post that initiated this note. All Postnikov tower technique used here was obtained from Akbulut's paper [4].

1. Postnikov towers

Recall that the Postnikov tower of a (let us restrict to simply connected) cell complex X is a sequence of fibrations

:



where the arrow $X \to X[n]$ induces an isomorphism on $\pi_{\leq n}$ and $\pi_{>n}X[n] = 0$. The fibrations $X[n] \to X[n-1]$ are principal $K(\pi_n X, n)$ fibrations classified by maps

$$X[n-1] \xrightarrow{k_n} K(\pi_n X, n+1),$$

i.e. by cohomology classes in $H^{n+1}(X[n-1], \pi_n X)$ which we call the k-invariants of X. The nth k-invariant is the cohomology class that tells us how to fiber an Eilenberg–Maclane space over X[n-1] in order to create X[n].

Observe that since the fiber of $X[n+1] \to X[n]$ is n-connected, any map of a finite complex Y to X is homotopic to a map from Y to some X[n]. Given a map $Y \to X[n]$,

this will lift through the fibration $X[n+1] \to X[n]$ if and only if the pullback of the k-invariant k^{n+1} vanishes in Y.

The k-invariants of the Postnikov tower of X can be identified in the following way: Suppose we have the map $X \xrightarrow{f_n} X[n]$ in the Postnikov tower. Since $\pi_{n+1}X = 0$ and the map induces an isomorphism on $\pi_{\leq n}$, the fiber F of the map is n-connected (meaning, $\pi_{\leq n}F = 0$). So, $H_{n+1}(F;\mathbb{Z}) = \pi_{n+1}F$, which in turn equals $\pi_{n+1}X$. Now, in $H^{n+1}(F;\pi_{n+1}F)$ there is a canonical class, observed through the identification

$$H^{n+1}(F; \pi_{n+1}F) = Hom_{\mathbb{Z}}(H_{n+1}F, \pi_{n+1}F).$$

The canonical class is the inverse of the Hurewicz homomorphism $\pi_{n+1}F \to H_{n+1}F$ (which is an isomorphism here since F is n-connected). Call this cohomology class the fundamental class of F. The k-invariant k^{n+2} is then the transgression of the fundamental class of F in the spectral sequence for the fibration $F \to X \to X[n]$. We can approach this class by considering the following segment of the Serre long exact sequence:

$$H^{n+1}(F; \pi_{n+1}F) \xrightarrow{\tau} H^{n+2}(X[n]; \pi_{n+1}F) \xrightarrow{f_n^*} H^{n+2}(X; \pi_{n+1}F).$$

This transgression of the fundamental class, i.e. the k-invariant, will also be the transgression of the fundamental class (by construction) of the fiber in the fibration $K(\pi_{n+1}F, n+1) \to X[n+1] \to X[n]$ that we obtain.

2. The k-invariants for BSO(3)[5]

Let us now restrict to the space BSO(3). Calculating its Postnikov tower is a somewhat doable task—we know the cohomology of BSO(3), and the fundamental class of the fiber of $BSO(3) \to BSO(3)[n]$ is the generator of $\pi_{n+1}BSO(3) = \pi_nSO(3) = \pi_nS^3$ (for $n \ge 2$). So, as long as we know π_nS^2 , there is hope for calculating k^{n+2} .

To begin, BSO(3)[2] will be a $K(\pi_2BSO(3), 2)$, i.e. a $K(\mathbb{Z}_2, 2)$. Since $H^2(BSO(3); \mathbb{Z}_2) = \mathbb{Z}_2$, the map $BSO(3) \to BSO(3)[2] = K(\mathbb{Z}_2, 2)$ can be none other than w_2 , the second Stiefel-Whitney class. Now, consider the fibration $F \to BSO(3) \stackrel{w_2}{\to} BSO(3)[2]$, where F is the homotopy fiber of w_2 . Since $\pi_3BSO(3) = 0$ (this is in fact the only higher homotopy group of BSO(3) that vanishes), the fiber F is in fact 3-connected, not just 2-connected. We see that $\pi_4F = \pi_4BSO(3) = \pi_3S^3 = \mathbb{Z}$. Therefore the k-invariant to obtain BSO(3)[3] = BSO(3)[4] from BSO(3)[2] will be a map

$$BSO(3)[2] \xrightarrow{k^4} K(\mathbb{Z}, 5),$$

i.e. a class in $H^5(K(\mathbb{Z}_2,2);\mathbb{Z})$.

The bad news is that integral k-invariants are hard to identify, stemming from the complicated integral cohomology of Eilenberg-Maclane spaces. The good news is that this is the only integral k-invariant that will show up in the Postnikov tower of BSO(3) (since $\pi_{\geq 5}BSO(3)$ is torsion), and this particular k-invariant was calculated classicaly (see [3]) for much of what is discussed in this section.) The k-invariant is the Pontryagin square

$$H^2(-;\mathbb{Z}_2) \xrightarrow{P} H^4(-;\mathbb{Z}_4)$$

followed by the coboundary map $H^4(-;\mathbb{Z}_4) \xrightarrow{\delta} H^5(-;\mathbb{Z})$ coming from the long exact sequence in cohomology associated to the short exact sequence of groups

$$0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}_4 \to 0.$$

Now we move on to k^5 . The homotopy fiber F of $BSO(3) \to BSO(3)[4]$ is 4–connected, with $\pi_5 F = \pi_5 BSO(3) = \mathbb{Z}_2$, and so k^5 is a cohomology class in $H^6(BSO(3)[4];\mathbb{Z}_2)$. We calculate $H^6(BSO(3)[4];\mathbb{Z}_2)$ by using the spectral sequence in \mathbb{Z}_2 cohomology associated to the fibration $K(\mathbb{Z},4) \to BSO(3)[4] \to K(\mathbb{Z}_2,2)$.

Recall that $H^*(K(\mathbb{Z}_2, n); \mathbb{Z}_2)$ is singly generated by the fundamental class as an algebra that is a module over the Steenrod algebra. So, a basis of $H^*(K(\mathbb{Z}_2, 2); \mathbb{Z}_2)$ is given by products of Sq^Ii_2 , where Sq^I is any admissible composition of Steenrod squares, and i_2 is the fundamental class. Similarly, $H^*(K(\mathbb{Z}, n); \mathbb{Z}_2)$ is singly generated by the mod 2 reduction of the fundamental class i_n as an algebra that is a module over the Steenrod algebra, with the caveat that $Sq^1i_n = 0$ (since i_n admits an integral lift). Here is the relevant part of the E_2 page of the spectral sequence for $K(\mathbb{Z}, 4) \to BSO(3)[4] \to K(\mathbb{Z}_2, 2)$ over \mathbb{Z}_2 :

7	Sq^3i_4							
6	Sq^2i_4							
5		•						
4	i_4	•	i_2i_4		•	•	•	•
3	•	•			•	•	•	•
2	•	•		•	•	•	•	
1				•			•	
0	•	•	i_2	Sq^1i_2	i_2^2	$Sq^2Sq^1i_2,$	$(Sq^1i_2)^2,$	$(Sq^1i_2)i_2^2,$
						$i_2 Sq^1 i_2$	i_2^3	$(Sq^2Sq^1i_2)i_2$
	0	1	2	3	4	5	6	7

It will help to first determine the transgression of the fundamental class i_4 , i.e. d_5i_4 (where d_5 denotes the differential on E_5 , which goes 5 units right and 4 units down). Recall that integrally, the transgression of i_4 is δPi_2 . To figure out what it is modulo 2, we observe a few things: First of all, the transgression mod 2 is non-zero. Indeed, otherwise $K(\mathbb{Z}_2,2) \times K(\mathbb{Z},4)$ would be the homotopy 4-type of BSO(3) at the prime 2. However, the relation $w_2^2 = p_1 \mod 2$ in the cohomology of BSO(3) tells us that this cannot be. Secondly, note that $Sq^1(d_5i_4) = 0$ since d_5i_4 has an integral lift, namely δPi_2 . A basis for $H^5(K(\mathbb{Z}_2,2);\mathbb{Z}_2)$ is given by $Sq^2Sq^1i_2$ and $i_2Sq^1i_2$, and we see, using

the Adem relations $Sq^1Sq^2 = Sq^3$ and $Sq^1Sq^1 = 0$, that

$$Sq^{1}(Sq^{2}Sq^{1}i_{2}) = Sq^{3}Sq^{1}i_{2} = (Sq^{1}i_{2})^{2} \neq 0,$$

$$Sq^{1}(i_{2}Sq^{1}i_{2}) = Sq^{1}i_{2}Sq^{1}i_{2} + i_{2}Sq^{1}Sq^{1}i_{2} = (Sq^{1}i_{2})^{2} \neq 0.$$

We conclude that

$$d_5i_4 = \delta Pi_2 \mod 2 = Sq^2Sq^1i_2 + i_2Sq^1i_2.$$

As we see in the above diagram for the spectral sequence of the fibration $K(\mathbb{Z},4) \to BSO(3)[4] \to K(\mathbb{Z}_2,2)$, the classes $(Sq^1i_2)^2$ and i_2^3 will survive to E_{∞} and define classes in $H^6(BSO(3)[4];\mathbb{Z}_2)$, namely $p^*(Sq^1i_2)^2$ and $p^*i_2^3$, where p is the map $BSO(3)[4] \to K(\mathbb{Z}_2,2)$. Recall that p was in fact the map that picks out the second Stiefel-Whitney class w_2 , and so these classes in $H^6(BSO(3)[4];\mathbb{Z}_2)$ are w_2^3 and $(Sq^1w_2)^2 = w_3^2$. (The map $BSO(3) \to BSO(3)[4]$ is a 4-equivalence, so we do indeed have w_2 and w_3 in the cohomology of BSO(3)[4].)

The other classes that might contribute to $H^6(BSO(3)[4]; \mathbb{Z}_2)$ are i_2i_4 and $\operatorname{Sq}^2 i_4$. We see that

$$d_5(i_2i_4) = i_2d_5i_4 = i_2Sq^2Sq^1i_2 + i_2^2Sq^1i_2,$$

which is non-zero since $H^*(K(\mathbb{Z}_2,2);\mathbb{Z}_2)$ is free as a \mathbb{Z}_2 polynomial ring over the variables $\operatorname{Sq}^I i_2$. So, $i_2 i_4$ does not contribute to cohomology. As for $Sq^2 i_4$, we first remark that $Sq^k d = dSq^k$ in spectral sequence calculations, whenever both sides of the equation make sense. For example, we have

$$d_7 Sq^2 i_4 = Sq^2 d_5 i_4 = Sq^2 Sq^2 Sq^1 i_2 + Sq^2 (i_2 Sq^1 i_2)$$

= $i_2^2 Sq^1 i_2 + Sq^1 i_2 Sq^1 Sq^1 i_2 + i_2 Sq^2 Sq^1 i_2 = i_2 (i_2 Sq^1 i_2 + Sq^2 Sq^1 i_2).$

We used the Adem relation $Sq^2Sq^2Sq^1 = 0$. Now, recall that $d_5i_4 = i_2Sq^1i_2 + Sq^2Sq^1i_2$, and so on E_7 , $i_2Sq^1i_2 + Sq^2Sq^1i_2$ is the zero class. Therefore $d_7Sq^2i_4 = 0$ and Sq^2i_4 gives the third and last basis element in $H^6(BSO(3)[4]; \mathbb{Z}_2)$.

$$H^6(BSO(3)[4]; \mathbb{Z}_2) = \operatorname{span}(w_2^3, w_3^2, x),$$

where x is a class that pulls back to Sq^2i_4 by the inclusion $K(\mathbb{Z},4) \to BSO(3)[4]$ in the fibration $K(\mathbb{Z},4) \to BSO(3)[4] \to K(\mathbb{Z}_2,2)$.

Now, the k-invariant $BSO(3)[4] \xrightarrow{k^5} K(\mathbb{Z}_2, 6)$ is some \mathbb{Z}_2 -combination of w_2^3, w_3^2, x . In [1] it is argued that this class is non-zero (an alternative way of showing that a k-invariant is non-zero will be used in the next section), and the coefficient along x is non-zero.

3. The sixth k-invariant of BSO(3)

The map $BSO(3) \to BSO(3)[5]$ has 5-connected homotopy fiber F which satisfies $\pi_6 F = \pi_6 BSO(3) = \pi_5 S^3 = \mathbb{Z}_2$, and so the sixth k-invariant for BSO(3) is a class $k^6 \in H^7(BSO(3)[5];\mathbb{Z}_2)$. We calculate $H^7(BSO(3)[5];\mathbb{Z}_2)$ from the spectral sequence for the fibration $K(\mathbb{Z}_2,5) \to BSO(3)[5] \to BSO(3)[4]$. Recall our notation for the cohomology of BSO(3)[4]: We determined it from the fibration $K(\mathbb{Z},4) \xrightarrow{i} BSO(3)[4] \xrightarrow{p} K(\mathbb{Z}_2,2)$, and $H^6(BSO(3)[4];\mathbb{Z}_2)$ is spanned by $p^*i_2^3$, $p^*(Sq^1i_2)^2$, and x, where $i^*x = Sq^2i_4$. Here i_2 and i_4 denote the mod 2 fundamental classes of $K(\mathbb{Z}_2,2)$ and $K(\mathbb{Z},4)$ respectively.

Before considering the spectral sequence for $K(\mathbb{Z}_2, 5) \to BSO(3)[5] \to BSO(3)[4]$, we will need to figure out $H^7(BSO(3)[4]; \mathbb{Z}_2)$, so we revisit the spectral sequence $K(\mathbb{Z}, 4) \to BSO(3)[4] \to K(\mathbb{Z}_2, 2)$.

7	Sq^3i_4	•	•	•	•	•	•	•
6	Sq^2i_4							
5	•			•	•	•	•	•
4	i_4			$(Sq^1i_2)i_4$	•	•	•	٠
3				•		•	•	•
2	•				•	•	•	•
1	•				`.		•	•
0			i_2	Sq^1i_2	i_2^2	$Sq^2Sq^1i_2,$	$(Sq^1i_2)^2,$	$(Sq^1i_2)i_2^2,$
						$i_2 Sq^1 i_2$	i_2^3	$(Sq^2Sq^1i_2)i_2$
	0	1	2	3	4	5	6	7

Recall that $d_5i_4 = Sq^2Sq^1i_2 + i_2Sq^1i_2$. We also saw that $d_7Sq^2i_4 = (Sq^1i_2)i_2^2 + (Sq^2Sq^1i_2)i_2$, and so $K(\mathbb{Z}_2,2)$ itself will contribute a single class to $H^7(BSO(3)[4];\mathbb{Z}_2)$, namely $[(Sq^1i_2)i_2^2] = [(Sq^2Sq^1i_2)i_2)]$. There are two more potential contributors to $H^7(BSO(3)[4];\mathbb{Z}_2)$, namely Sq^3i_4 and $(Sq^1i_2)i_4$. First, we see that

$$\begin{split} d_8Sq^3i_4 &= Sq^3d_5i_4 = Sq^3(Sq^2Sq^1i_2 + i_2Sq^1i_2) \\ &= Sq^3Sq^2Sq^1i_2 + i_2Sq^3Sq^1i_2 + Sq^1i_2Sq^2Sq^1i_2 \\ &= i_2(Sq^1i_2)^2 + Sq^1i_2Sq^2Sq^1i_2 \\ &= (Sq^1i_2)(i_2Sq^1i_2 + Sq^2Sq^1i_2.). \end{split}$$

This equation descends to one on the E_8 page, and since the right hand factor is the zero class (thanks to $d_7Sq^2i_4$), we have that Sq^3i_4 gives a class in $H^7(BSO(3)[4]; \mathbb{Z}_2)$. As for $(Sq^1i_2)i_4$, we have

$$d_5((Sq^1i_2)i_4) = Sq^1i_2d_5i_4$$

$$= Sq^1i_2(Sq^2Sq^1i_2 + i_2Sq^1i_2)$$

$$= Sq^1i_2Sq^2Sq^1i_2 + i_2(Sq^1i_2)^2,$$

which is non-zero on E_5 .

Let us denote the class that Sq^3i_4 creates by y. This is a class that pulls back to Sq^3i_4 under the inclusion $K(\mathbb{Z},4) \to BSO(3)[4]$. Now we go to the spectral sequence for $K(\mathbb{Z}_2,5) \to BSO(3)[5] \to BSO(3)[4]$.

7	Sq^2i_5	•	•		•	٠		
6	Sq^1i_5	ė	•			٠	•	•
5	i_5		i_2i_5	•	•	•		
4	•		•	•		•		
3	•	•	•		•	٠	•	•
2	•	•	•		•	٠	•	•
1	•	•	•		•	٠	•	•
0	•	•	i_2	•	•	•	$x, p^*i_2^3,$	$p^*(Sq^1i_2)i_2^2,$
							$p^*(Sq^1i_2)^2$	y
	0	1	2	3	4	5	6	7

Since $d_6i_5 = x$, and $i^*x = Sq^2i_4$, we have that $i^*d_7Sq^1i_5 = Sq^1i^*d_6i_5 = Sq^1Sq^2i_4$, and so

$$d_7 Sq^1 i_5 = y + \epsilon \cdot p^* (Sq^1 i_2) i_2^2,$$

where $\epsilon \in \mathbb{Z}_2$.

Before we proceed, let us argue that k^6 must be non-zero. Indeed, otherwise $BSO(3) \to BSO(3)[4] \times K(\mathbb{Z}_2, 5)$ would be a 5-equivalence. However,

$$H^5(BSO(3)[4] \times K(\mathbb{Z}_2,5); \mathbb{Z}_2) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$$

(spanned by $Sq^2Sq^1i_2\otimes 1$ and $1\otimes i_5$), while $H^5(BSO(3);\mathbb{Z}_2)=\mathbb{Z}_2$ (spanned by w_2w_3). Since $d_7Sq^1i_5=y+\epsilon\cdot p^*(Sq^1i_2)i_2^2$, we conclude that there are only two possible classes in $H^7(BSO(3)[5];\mathbb{Z}_2)$; namely the class $p^*(Sq^1i_2)i_2^2$ (which might be cohomologous to y) and Sq^2i_5 . Now, Sq^2i_5 must survive to define a class, since otherwise the k-invariant k^6 (which we saw must be non-zero) would have to be (cohomologous to) $p^*(Sq^1i_2)i_2^2$. But $p^*(Sq^1i_2)i_2^2$ must survive through all stages of the Postnikov tower of BSO(3), since it will become $(Sq^1w_2)w_2^2=w_3w_2^2$, a non-zero class in $H^7(BSO(3);\mathbb{Z}_2)$.

Denote by z the class that Sq^2i_5 becomes in $H^7(BSO(3)[5]; \mathbb{Z}_2)$. We conclude that the k-invariant k^6 is equal to $z + \varepsilon \cdot y$, where $\varepsilon \in \mathbb{Z}_2$. If it is the case that $d_7Sq^1i_5 = y$, then $k^6 = z$.

References

- [1] Antieau, B. and Williams, B., 2014. On the classification of oriented 3-plane bundles over a 6-complex. Topology and its Applications, 173, pp.91-93.
- [2] Alex Kruckman's Adem relations calculator, https://math.berkeley.edu/ kruckman/adem/
- [3] https://mathoverflow.net/questions/250303/the-fifth-k-invariant-of-bso3
- [4] Akbulut, S., 1996. On universal relations in gauge theory. Transactions of the American Mathematical Society, 348(4), pp.1329-1355.