
THE SIXTH k-INVARIANT OF BSO(3)

Abstract. We give some concrete information on the sixth k-invariant of BSO(3).
In the first section we review Postnikov towers in order to fix notation. In the second
section we give the k-invariants up to k5, following [1]. We carry out some calculations
done in that paper in more detail, and explicitly identify the mod 2 reduction of the
fourth k-invariant k4. In the third section we determine k6 up to two possibilities.
This is a rough draft and there will very likely some errors. See references for the
mathoverflow post that initiated this note. All Postnikov tower technique used here
was obtained from Akbulut’s paper [4].

1. Postnikov towers

Recall that the Postnikov tower of a (let us restrict to simply connected) cell complex
X is a sequence of fibrations

...

X[n]

X[n− 1]

...

X[3]

X X[2],

where the arrow X → X[n] induces an isomorphism on π≤n and π>nX[n] = 0. The
fibrations X[n]→ X[n− 1] are principal K(πnX,n) fibrations classified by maps

X[n− 1]
kn−→ K(πnX,n+ 1),

i.e. by cohomology classes in Hn+1(X[n − 1], πnX) which we call the k-invariants of
X. The nth k-invariant is the cohomology class that tells us how to fiber an Eilenberg–
Maclane space over X[n− 1] in order to create X[n].

Observe that since the fiber of X[n + 1] → X[n] is n–connected, any map of a finite
complex Y to X is homotopic to a map from Y to some X[n]. Given a map Y → X[n],
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this will lift through the fibration X[n + 1] → X[n] if and only if the pullback of the
k-invariant kn+1 vanishes in Y .

The k-invariants of the Postnikov tower of X can be identified in the following way:
Suppose we have the map X

fn→ X[n] in the Postnikov tower. Since πn+1X = 0 and
the map induces an isomorphism on π≤n, the fiber F of the map is n–connected (mean-
ing, π≤nF = 0). So, Hn+1(F ;Z) = πn+1F , which in turn equals πn+1X. Now, in
Hn+1(F ; πn+1F ) there is a canonical class, observed through the identification

Hn+1(F ; πn+1F ) = HomZ(Hn+1F, πn+1F ).

The canonical class is the inverse of the Hurewicz homomorphism πn+1F → Hn+1F
(which is an isomorphism here since F is n–connected). Call this cohomology class the
fundamental class of F . The k–invariant kn+2 is then the transgression of the funda-
mental class of F in the spectral sequence for the fibration F → X → X[n]. We can
approach this class by considering the following segment of the Serre long exact sequence:

Hn+1(F ; πn+1F )
τ−→ Hn+2(X[n]; πn+1F )

f∗n−→ Hn+2(X; πn+1F ).

This transgression of the fundamental class, i.e. the k-invariant, will also be the
transgression of the fundamental class (by construction) of the fiber in the fibration
K(πn+1F, n+ 1)→ X[n+ 1]→ X[n] that we obtain.

2. The k-invariants for BSO(3)[5]

Let us now restrict to the space BSO(3). Calculating its Postnikov tower is a some-
what doable task– we know the cohomology of BSO(3), and the fundamental class of
the fiber of BSO(3) → BSO(3)[n] is the generator of πn+1BSO(3) = πnSO(3) = πnS

3

(for n ≥ 2). So, as long as we know πnS
2, there is hope for calculating kn+2.

To begin, BSO(3)[2] will be aK(π2BSO(3), 2), i.e. aK(Z2, 2). SinceH2(BSO(3);Z2)
= Z2, the map BSO(3)→ BSO(3)[2] = K(Z2, 2) can be none other than w2, the second
Stiefel–Whitney class. Now, consider the fibration F → BSO(3)

w2→ BSO(3)[2], where
F is the homotopy fiber of w2. Since π3BSO(3) = 0 (this is in fact the only higher
homotopy group of BSO(3) that vanishes), the fiber F is in fact 3–connected, not just
2–connected. We see that π4F = π4BSO(3) = π3S

3 = Z. Therefore the k-invariant to
obtain BSO(3)[3] = BSO(3)[4] from BSO(3)[2] will be a map

BSO(3)[2]
k4−→ K(Z, 5),

i.e. a class in H5(K(Z2, 2);Z).
The bad news is that integral k–invariants are hard to identify, stemming from the

complicated integral cohomology of Eilenberg–Maclane spaces. The good news is that
this is the only integral k–invariant that will show up in the Postnikov tower of BSO(3)
(since π≥5BSO(3) is torsion), and this particular k–invariant was calculated classicaly
(see [3]) for much of what is discussed in this section.) The k–invariant is the Pontryagin
square

H2(−;Z2)
P−→ H4(−;Z4)
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followed by the coboundary map H4(−;Z4)
δ−→ H5(−;Z) coming from the long exact

sequence in cohomology associated to the short exact sequence of groups

0→ Z→ Z→ Z4 → 0.

Now we move on to k5. The homotopy fiber F of BSO(3) → BSO(3)[4] is 4–
connected, with π5F = π5BSO(3) = Z2, and so k5 is a cohomology class in
H6(BSO(3)[4];Z2). We calculate H6(BSO(3)[4];Z2) by using the spectral sequence in
Z2 cohomology associated to the fibration K(Z, 4)→ BSO(3)[4]→ K(Z2, 2).

Recall thatH∗(K(Z2, n);Z2) is singly generated by the fundamental class as an algebra
that is a module over the Steenrod algebra. So, a basis of H∗(K(Z2, 2);Z2) is given by
products of SqIi2, where SqI is any admissible composition of Steenrod squares, and i2
is the fundamental class. Similarly, H∗(K(Z, n);Z2) is singly generated by the mod 2
reduction of the fundamental class in as an algebra that is a module over the Steenrod
algebra, with the caveat that Sq1in = 0 (since in admits an integral lift). Here is the
relevant part of the E2 page of the spectral sequence for K(Z, 4) → BSO(3)[4] →
K(Z2, 2) over Z2:

7 Sq3i4 · · · · · · ·

6 Sq2i4 · · · · · · ·

5 · · · · · · · ·

4 i4 · i2i4 · · · · ·

3 · · · · · · · ·

2 · · · · · · · ·

1 · · · · · · · ·

0 · · i2 Sq1i2 i22 Sq2Sq1i2, (Sq1i2)
2, (Sq1i2)i

2
2,

i2Sq
1i2 i32 (Sq2Sq1i2)i2

0 1 2 3 4 5 6 7

It will help to first determine the transgression of the fundamental class i4, i.e. d5i4
(where d5 denotes the differential on E5, which goes 5 units right and 4 units down).
Recall that integrally, the transgression of i4 is δP i2. To figure out what it is modulo
2, we observe a few things: First of all, the transgression mod 2 is non-zero. Indeed,
otherwise K(Z2, 2) × K(Z, 4) would be the homotopy 4–type of BSO(3) at the prime
2. However, the relation w2

2 = p1 mod 2 in the cohomology of BSO(3) tells us that
this cannot be. Secondly, note that Sq1(d5i4) = 0 since d5i4 has an integral lift, namely
δP i2. A basis for H5(K(Z2, 2);Z2) is given by Sq2Sq1i2 and i2Sq1i2, and we see, using
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the Adem relations Sq1Sq2 = Sq3 and Sq1Sq1 = 0, that

Sq1(Sq2Sq1i2) = Sq3Sq1i2 = (Sq1i2)
2 6= 0,

Sq1(i2Sq
1i2) = Sq1i2Sq

1i2 + i2Sq
1Sq1i2 = (Sq1i2)

2 6= 0.

We conclude that
d5i4 = δP i2 mod 2 = Sq2Sq1i2 + i2Sq

1i2.

As we see in the above diagram for the spectral sequence of the fibration K(Z, 4) →
BSO(3)[4]→ K(Z2, 2), the classes (Sq1i2)2 and i32 will survive to E∞ and define classes
in H6(BSO(3)[4];Z2), namely p∗(Sq1i2)

2 and p∗i32, where p is the map BSO(3)[4] →
K(Z2, 2). Recall that p was in fact the map that picks out the second Stiefel–Whitney
class w2, and so these classes in H6(BSO(3)[4];Z2) are w3

2 and (Sq1w2)
2 = w2

3. (The
map BSO(3) → BSO(3)[4] is a 4–equivalence, so we do indeed have w2 and w3 in the
cohomology of BSO(3)[4].)

The other classes that might contribute to H6(BSO(3)[4];Z2) are i2i4 and Sq2 i4. We
see that

d5(i2i4) = i2d5i4 = i2Sq
2Sq1i2 + i22Sq

1i2,

which is non-zero since H∗(K(Z2, 2);Z2) is free as a Z2 polynomial ring over the variables
SqI i2. So, i2i4 does not contribute to cohomology. As for Sq2i4, we first remark that
Sqkd = dSqk in spectral sequence calculations, whenever both sides of the equation make
sense. For example, we have

d7Sq
2i4 = Sq2d5i4 = Sq2Sq2Sq1i2 + Sq2(i2Sq

1i2)

= i22Sq
1i2 + Sq1i2Sq

1Sq1i2 + i2Sq
2Sq1i2 = i2(i2Sq

1i2 + Sq2Sq1i2).

We used the Adem relation Sq2Sq2Sq1 = 0. Now, recall that d5i4 = i2Sq
1i2 + Sq2Sq1i2,

and so on E7, i2Sq1i2+Sq2Sq1i2 is the zero class. Therefore d7Sq2i4 = 0 and Sq2i4 gives
the third and last basis element in H6(BSO(3)[4];Z2).

H6(BSO(3)[4];Z2) = span(w3
2, w

2
3, x),

where x is a class that pulls back to Sq2i4 by the inclusion K(Z, 4)→ BSO(3)[4] in the
fibration K(Z, 4)→ BSO(3)[4]→ K(Z2, 2).

Now, the k-invariant BSO(3)[4] k5−→ K(Z2, 6) is some Z2–combination of w3
2, w

2
3, x. In

[1] it is argued that this class is non-zero (an alternative way of showing that a k-invariant
is non-zero will be used in the next section), and the coefficient along x is non-zero.

3. The sixth k-invariant of BSO(3)

The map BSO(3) → BSO(3)[5] has 5–connected homotopy fiber F which satisfies
π6F = π6BSO(3) = π5S

3 = Z2, and so the sixth k–invariant for BSO(3) is a class k6 ∈
H7(BSO(3)[5];Z2). We calculate H7(BSO(3)[5];Z2) from the spectral sequence for the
fibration K(Z2, 5)→ BSO(3)[5]→ BSO(3)[4]. Recall our notation for the cohomology
of BSO(3)[4]: We determined it from the fibrationK(Z, 4) i−→ BSO(3)[4]

p−→ K(Z2, 2),
and H6(BSO(3)[4];Z2) is spanned by p∗i32, p∗(Sq1i2)2, and x, where i∗x = Sq2i4. Here
i2 and i4 denote the mod 2 fundamental classes of K(Z2, 2) and K(Z, 4) respectively.
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Before considering the spectral sequence for K(Z2, 5)→ BSO(3)[5]→ BSO(3)[4], we
will need to figure out H7(BSO(3)[4];Z2), so we revisit the spectral sequence K(Z, 4)→
BSO(3)[4]→ K(Z2, 2).

7 Sq3i4 · · · · · · ·

6 Sq2i4 · · · · · · ·

5 · · · · · · · ·

4 i4 · · (Sq1i2)i4 · · · ·

3 · · · · · · · ·

2 · · · · · · · ·

1 · · · · · · · ·

0 · · i2 Sq1i2 i22 Sq2Sq1i2, (Sq1i2)
2, (Sq1i2)i

2
2,

i2Sq
1i2 i32 (Sq2Sq1i2)i2

0 1 2 3 4 5 6 7

Recall that d5i4 = Sq2Sq1i2 + i2Sq
1i2. We also saw that d7Sq2i4 = (Sq1i2)i

2
2 +

(Sq2Sq1i2)i2, and so K(Z2, 2) itself will contribute a single class to H7(BSO(3)[4];Z2),
namely [(Sq1i2)i

2
2] = [(Sq2Sq1i2)i2)]. There are two more potential contributors to

H7(BSO(3)[4];Z2), namely Sq3i4 and (Sq1i2)i4. First, we see that

d8Sq
3i4 = Sq3d5i4 = Sq3(Sq2Sq1i2 + i2Sq

1i2)

= Sq3Sq2Sq1i2 + i2Sq
3Sq1i2 + Sq1i2Sq

2Sq1i2

= i2(Sq
1i2)

2 + Sq1i2Sq
2Sq1i2

= (Sq1i2)(i2Sq
1i2 + Sq2Sq1i2.).

This equation descends to one on the E8 page, and since the right hand factor is the
zero class (thanks to d7Sq2i4), we have that Sq3i4 gives a class in H7(BSO(3)[4];Z2).

As for (Sq1i2)i4, we have

d5((Sq
1i2)i4) = Sq1i2d5i4

= Sq1i2(Sq
2Sq1i2 + i2Sq

1i2)

= Sq1i2Sq
2Sq1i2 + i2(Sq

1i2)
2,

which is non-zero on E5.
Let us denote the class that Sq3i4 creates by y. This is a class that pulls back to

Sq3i4 under the inclusion K(Z, 4) → BSO(3)[4]. Now we go to the spectral sequence
for K(Z2, 5)→ BSO(3)[5]→ BSO(3)[4].
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7 Sq2i5 · · · · · · ·

6 Sq1i5 · · · · · · ·

5 i5 · i2i5 · · · · ·

4 · · · · · · · ·

3 · · · · · · · ·

2 · · · · · · · ·

1 · · · · · · · ·

0 · · i2 · · · x, p∗i32, p∗(Sq1i2)i
2
2,

p∗(Sq1i2)
2 y

0 1 2 3 4 5 6 7

Since d6i5 = x, and i∗x = Sq2i4, we have that i∗d7Sq1i5 = Sq1i∗d6i5 = Sq1Sq2i4, and
so

d7Sq
1i5 = y + ε · p∗(Sq1i2)i22,

where ε ∈ Z2.
Before we proceed, let us argue that k6 must be non-zero. Indeed, otherwiseBSO(3)→

BSO(3)[4]×K(Z2, 5) would be a 5–equivalence. However,

H5(BSO(3)[4]×K(Z2, 5);Z2) = Z2 ⊕ Z2

(spanned by Sq2Sq1i2 ⊗ 1 and 1⊗ i5), while H5(BSO(3);Z2) = Z2 (spanned by w2w3).
Since d7Sq1i5 = y+ ε ·p∗(Sq1i2)i22, we conclude that there are only two possible classes

in H7(BSO(3)[5];Z2); namely the class p∗(Sq1i2)i22 (which might be cohomologous to y)
and Sq2i5. Now, Sq2i5 must survive to define a class, since otherwise the k–invariant k6
(which we saw must be non-zero) would have to be (cohomologous to) p∗(Sq1i2)i22. But
p∗(Sq1i2)i

2
2 must survive through all stages of the Postnikov tower of BSO(3), since it

will become (Sq1w2)w
2
2 = w3w

2
2, a non-zero class in H7(BSO(3);Z2).

Denote by z the class that Sq2i5 becomes in H7(BSO(3)[5];Z2). We conclude that
the k-invariant k6 is equal to z + ε · y, where ε ∈ Z2. If it is the case that d7Sq1i5 = y,
then k6 = z.
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