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0 The isomorphism between the Lubin-Tate tower and the Drinfeld
tower (Peter Scholze, 27 May)

We begin with something classical: the modular curve

SL2(Z)�
H = GL2(Z)�

H±
,

where H± denotes both the upper and lower half planes: that is, H± := P1
C \ P1(R). In fact,

these are the C-points of an algebraic curve M over Q. To see this, we identify it as the moduli
of elliptic curves:

Theorem 0.1 (Uniformisation Theorem; Riemann). There is a bijection between:
1. Elliptic curves over C,
2. Pairs (Λ,W ), where Λ is a free Z-module of rank 2 and W ⊂ Λ⊗ZC is sub-C-vector space

of rank 1 such that W ∩W = 0.
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Concretely, the equivalence is given as follows: given any elliptic curve E, there is an exponential

exp : LieE → E

which exhibits E as the quotient of LieE ∼= C by a lattice Λ ⊂ C. Recording this quotient is
equivalent to remembering the kernel W of Λ⊗ZC � C; conversely, any pair (Λ,W ) defines an
elliptic curve E := C/Λ, provided that W satisfies the condition W ∩W = 0 that ensures we
quotient by a nondegenerate lattice. Fixing the Z-module Λ, this recovers M(C) as the quotient
GL2(Z)\H±: the choice of W gives a point in P1

C, with the condition W ∩W cutting out the
complement of P1(R). In particular, this exhibits GL2(Z)\H± as an algebraic curve over Q (in
fact, Z). More generally, there is a similar classification for complex tori. Moreover, there is
a tower of coverings of M(C) where we instead take quotients of H by congruence subgroups
Γ ⊂ SL2(Z).

Question. Is there a similar ‘p-adic uniformization’

(M⊗ Cp)
ad ∼= Γ�

Hp,

as the quotient of a ‘p-adic symmetric space’ Hp by the action of some arithmetic group Γ?

Answer. In this generality, no. However, there are many related results:
• one variant will give rise to the Lubin-Tate tower for GL2 (or more generally, GLh),
• another variant will give rise for the Drinfeld tower.

0.1 The Lubin-Tate tower

Claim. There exists an open subset of (M⊗Cp)
ad that does admit such a p-adic uniformisation.

To see this, let’s look first at M⊗Z Fp. This has two strata: an open stratum Mord of ordinary
elliptic curves, and a closed stratum Mss of supersingular elliptic curves. Here an elliptic curve
E is called supersingular if its endomorphism algebra (over Fp) is of rank 4; equivalently, the
torsion subgroup E[p∞] is infinitesimal, or again equivalently, E[p] has no nonzero points over
a field.

Remark 0.2. The term ‘supersingular’ is something of a misnomer, as these are still nonsingular
curves. It originates from considering ‘singular’ values of the j-invariant.

When E is supersingular, its endomorphism algebra is given by OD, the maximal order in a
division algebra D/Q with

D ⊗Q Qv =

{
M2(Qv), v 6= p,∞;

nonsplit, v = p,∞.

We will give a uniformisation of the rigid-analytic open subset U ⊂ (M ⊗ Cp)
ad of all points

having supersingular reduction from Cp to Fp.

Remark 0.3. Being supersingular can be phrased as a vanishing condition over Fp; before
passing to the residue field this boils down to a certain function on Cp taking value < 1; in
particular an open condition, so U really is open.
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Theorem 0.4. As rigid-analytic spaces, we have

U ∼=
∐

O×
D
�D̊Cp ,

where D̊Cp denotes the open unit disc.

Remark 0.5. The coproduct accounts for the (finite) choice of supersingular elliptic curve over
Fp.

The open unit disc that shows up is the generic fibre of the Lubin-Tate space, and the quotient by
O×
D accounts for the automorphisms of a supersingular elliptic curve. As in the complex setting,

this moduli space is in fact the zero-th level in a tower of spaces encoding level structures.
To prove the theorem, we will discuss a more canonical definition of Lubin-Tate space. For this,
we start with a commutative, one-dimensional formal group G/Fp of height h; in fact, we will
pick G so that it is already defined over Fp.

Example 0.6. At height 2, we can take G = E[p∞] = Ê, where E is a supersingular elliptic
curve.

Warning 0.7. At height h > 2, it is no longer the case that we can form G as the completion
of an abelian variety.

Serre-Tate theory shows that deforming E (over some p-adic ring) is equivalent to deforming
E[p∞]; the latter is in general much more manageable.

Definition 0.8. The Lubin-Tate space MLT,0 is the deformation space of G. In other words,
MLT,0 assigns to any Artin local ring R with residue field Fp the set of ?-isomorphism classes
of deformations of G to R.

Since MLT,0 is smooth and its tangent space is understandable, we obtain the following identi-
fication:

Theorem 0.9 (Grothendieck, Illusie). MLT,0
∼= SpfW (Fp)Ju1, . . . , un−1K.

Remark 0.10. The coordinates u1, . . . , uh−1 are not canonical, but ui is well-defined up to
(p, u1, . . . , ui−1).

In particular, we obtain a universal deformation Guniv over W (Fp)Ju1, . . . , un−1K, satisfying

[p]Guniv(X) = Xph + uh−1X
ph−1

+ · · ·+ u1X
p + p.

The choice of coordinates presents the (geometric) rigid analytic generic fibre MLT,0,Cp
∼= D̊Cp

as the (h − 1)-dimensional open unit disc. Analogous to the congruence tower in the complex
case, we have a tower

MLT,m,Cp →MLT,0,Cp ,

where MLT,m,Cp parameterises deformations (G′, ε) together with a trivialisation τ : G′[pm]
∼−→

(Z/pmZ)h of the pm-torsion.

Remark 0.11. Number theorists care about this tower because its cohomology is supposed
to realise the local Langlands correspondence. A priori it’s not so clear how to make sense
of MLT,∞,Cp = “ lim ”MLT,m,Cp , since arbitrary limits don’t exist in adic spaces: the issue is
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that one would like to take a completed colimit of the algebras appearing at finite level, but
this completion does not exist canonically. One can nevertheless make sense of its cohomology,
as the colimit of the cohomologies at finite level. Weinstein was computing with this gadget
and realised that MLT,∞,Cp does exist as a perfectoid space. More specfically, write MLT,m =
Spf Am, and m ⊂ A0 for the maximal ideal. Weinstein showed that the formal spectrum of
A := (lim−→Am)∧m has the right universal property for maps out of perfectoid spaces [Wei16],
[SW13, Prop. 2.4.5]. As a result, these days people usually think of MLT,∞,Cp as a diamond
(more on that in later lectures!).
Returning to local Langlands: note that the group GLh(Zp) acts on MLT,∞,Cp , by the limit of
the actions of GLh(Z/pmZ) = Aut((Z/pmZ)h). In fact, one can extend this to an action of
the larger group GLn(Qp) ×det,Q×

p
Z×
p . There is also an action of Aut(G) = O×

D, where now
D = D1/h is the Qp-division algebra with inv(D) = 1/h; for example, at height two D is the
nonsplit quaternion algebra. Finally there is an action of the Weil group WQp ⊂ Gal(Qp/Qp),
coming from the fact that G was already defined over Fp. These actions commute, and one has
the following:

Theorem (Carayol’s Conjecture; Deligne (h = 2), Harris-Taylor (h > 2)). For ` 6= p, one has
an isomorphism

H∗
ét(MLT,∞,Cp ,Q`) ∼=

⊕
π

π ⊗ JL(π)⊗ LLC(π)

as GLn(Qp)×D× ×WQp-representations. (IM) I’m
not sure if
there is a
restriction
on which
π are al-
lowed in
the the-
orem, or
if I have
the right
adjectives
below.

Let us clarify some of the terms in the theorem:
1. JL denotes the Jacquet-Langlands correspondence

JL :

{
Irreducible discrete series

representations of GLn(Qp)

}
∼−→ {Irreducible representations of D×}.

2. LLC denotes the local Langlands correspondence

LLC :

{
Irreducible admissible

representations of GLn(Qp)

}
∼−→
{

Irreducible h-dimensional Frobenius
semi-simple representations of WQp

}
.

As such, the space MLT,∞,Cp exhibits simultaneously both the Jacquet-Langlands and the local
Langlands corresepondence. The case ` = p is the subject of active research.

0.2 A second variant of p-adic uniformisation

An alternative is to replace the modular curve M = GL2(Z)\H± by a more general ‘Shimura
curve’

M′ := O×
D
�H

±
,

where now D/Q is a quaternion algebra which is split at ∞ and nonsplit at some finite place,
say p. In particular, O×

D ↪→M2(R) gives an action of O×
D on H±.

Theorem (Čerednik). There is an isomorphism of rigid-analytic spaces

(M′ ⊗Q Cp)
ad ∼= Γ�

(P1
Cp
\ P1(Qp))

for a certain arithmetic group Γ described below.
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The space P1
Cp
\ P1(Qp) appearing in the theorem is Drinfeld’s p-adic upper half-plane. To

describe the group Γ, we denote by D′ the Q-division algebra with

D′ ⊗Q Qv =


M2(Qp), v = p;

nonsplit, v =∞;

D ⊗Q Qv, v 6= p,∞.

Then Γ := OD′ [1/p]× ↪→ GL2(Qp), and in particular acts on P1
Cp
\P1(Qp). Drinfeld’s insight was

that M′ also arises from a moduli problem, this time classifying Serre’s ‘fake elliptic curves’:
these consist of an abelian surface A, together with an action of OD on A.

Remark 0.12. The explanation for the existence of p-adic uniformisation in this case is that in
M′, all points have supersingular reduction at p. The moral is that in a general Shimura variety
one can only uniformise over the ‘basic locus’, i.e. supersingular points. Here deformation theory
of the abelian variety corresponds to deformation of its p-divisible group, again by Serre-Tate.

The theorem above was first proved by Čerednik using group-theoretic methods. The story is
that Manin told Drinfeld to give a talk on this, and he subsequently discovered the following
moduli-theoretic interpretation. One fixes G0/Fp a one-dimensional formal group of height h,
so that End(G0) = OD1/h

. Then OD1/h
also acts on G := Gh

0 , and the Drinfeld space at level
zero is defined to be the functor sending a p-power torsion W (Fp)-algebra to the set MDr,0(R)
of triples (H, ρ, ε), where

• H is a formal group of dimension h,
• ρ : OD1/h

→ End(H),
• ε : H ×R R/p ∼ G×Fp

R/p is a quasi-isogeny of height zero.

Remark 0.13. We would like to take for MDr,0 the deformation space of G (i.e., take ε to be
an isomorphism), but the resulting space is not big enough.

Theorem (Drinfeld). The moduli problem MDr,0 is representable by a p-adic formal scheme.

Warning 0.14. The formal scheme that appears in the theorem is quite complicated: for
example at height 2, each irreducible component of MDr,0,Fp

is a P1
Fp

, arranged according to
the Bruhat-Tits building of GL2(Qp). A given component P1

Fp
intersects the other components

along P1(Fp).

In spite of this, the generic fibre is simple: for general h one has

MDr,0,Cp
∼= Pn−1

Cp
\
⋃
H

P(H),

where the union is over all Qp-rational hyperplanes. In particular, for h = 2 this gives

MDr,0,Cp
∼= P1

Cp
\ P1(Qp).

Once again, this is the zero-th level in a tower of (OD1/h
/pm)×-torsors

MDr,m,Cp →MDr,0,Cp ,

where MDr,m,Cp parameterises deformations (H, ρ, ε) together with an isomorphism of OD1/h
/pm-

modules
H[pm] ∼= OD1/h

/pm.

As in the Lubin-Tate case, we get commuting actions of O×
D1/h

, (GLn(Qp)×det,Q×
p
Z×
p ) and WQp

on the cohomology H∗(MDr,∞,Cp ,Qp) of the limit. These are defined as follows:
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• the O×
D1/n

-action is the limit of the actions of (OD1/h
/pm)× on MDr,m,Cp ,

• the GLh(Qp)×Q×
p
Z×
p -action by coordinate changes on G ∼= Gh

0 ,

• the WQp-action from the fact that G0 was already defined over Qp.
This suggests the question of comparing the cohomologies of the two towers. Indeed we have:

Theorem (Faltings). There is an isomorphism

MLT,∞,Cp
∼= MDr,∞,Cp ,

equivariant for everything in sight.

Remark 0.15. 1. MLT and MDr arise from very different deformation problems, so such an
isomorphism should be seen as surprising.

2. When Faltings gave his proof of the theorem, the language did not yet exist to talk about
MLT,∞,Cp and MDr,∞,Cp as geometric objects, so even making good sense of the statement
of the theorem was hard work.

Example 0.16. At height 2, we get a diagram

MLT,∞,Cp
∼= MDr,∞,Cp

D̊Cp P1
Cp
\ P1(Qp)

GL2(Zp)×O×
D

GL2(Zp) O×
D

The bottom arrows are proétale torsors for the displayed group, and equivariant for the remain-
ing action on each side.

In the rest of the lecture, we’ll try to explain the proof of the isomorphism.

0.3 Comparing the two towers

In both cases we have constructed towers whose Cp-points classify data of the following form:
• a p-divisible group H/OCp , possibly with an action;
• an isomorphism H(Cp) ∼= (Qp/Zp)

h, possibly equivariant for some action;
• an isogeny HOCp/p

∼ G, again maybe equivariant.
The key problem is therefore to understand the classification of p-divisible groups over OCp

and over Fp. The crucial and beautiful fact about p-divisible groups is that they can always
be understood in terms of linear algebra, like the Riemann classification over C. This might
lead us to some fancy linear algebra, but at the end of the day it’s just linear algebra. In close
analogy to Riemann’s classification, we have the following theorem in the p-adic setting:

Theorem ([SW13], Theorem B). There is an equivalence between the following categories:
1. p-divisible groups over OCp,
2. Pairs (T,W ), where T is a finite free Zp-module and W ⊂ T ⊗Zp Cp is a sub-Cp-vector

space.
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The correspondence sends a p-divisible group G to the Hodge-Tate filtration on TpG.

On the other hand, the classification over the residue field is classical:

Theorem (Dieudonné). There is an equivalence between the following categories:
1. p-divisible groups over OCp/p,

2. Triples (M,F, V ), where M is a finite free W (Fp)-module, F : M →M is Frob-linear and
V : M →M is Frob−1-linear.

This begs the following question:

Question. Given a pair (T,W ) corresponding to a p-divisible group HT,W /OCp , what is the
Dieudonné module of HT,W ×OCp

OCp/p? In other words, we want a concrete description of the
arrow marked ‘?’ below:

{p-divisible groups/OCp} {(T,W )}

{p-divisible groups/Fp} {(M,F, V )}

∼

/p ?

∼

This requires a suitable formulation of p-adic Hodge theory: T is related to étale cohomology of
the generic fibre of H, and M to crystalline cohomology of the special fibre. Note however that
we need a form of p-adic Hodge theory over Cp: for example, the infinite level space MLT,∞ has
no points over discretely valued fields (since it’s perfectoid).
Constructing such a theory was one of the original motivations for the Fargues-Fontaine curve.
This is a particular scheme XCp , which is locally the spectrum of a PID. Its construction and
properties will occupy a large part of the first half of the seminar. There is a point

∞ = Spec(Cp) ↪→ XCp ,

and indeed the residue fields at all closed points are complete algebraically closed fields—i.e.,
big. Indeed in one incarnation, XCp classifies untilts of C[

p: that is, pairs (C,C[ ∼= C[
p). By

construction, vector bundles on XCp are closely related to isocrystals, i.e. rational Dieudonné
modules. The following gives us a way to attack the question above:

Theorem ([SW13], Theorems A and C). The Dieudonné module functor

{p-divisible groups over OCp/p up to isogeny} → VB(XCp),

is fully faithful, and its essential image consists of those vector bundles with slopes in [0, 1].

Given this, we arrive at a description of ‘?’. Suppose given a pair (T,W ), and form the following
cartesian diagram:

E(T,W ) (i∞)∗W

T ⊗Zp OXCp (i∞)∗(T ⊗Zp OXCp )

y (0.17)

Note that E(T,W ) is a submodule of T⊗ZpOXCp , and so torsion-free, and hence defines a vector
bundle on XCp .
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Theorem (Scholze-Weinstein). If G/OCp corresponds to the pair (T,W ), then G ⊗OCp
OCp/p

corresponds to E(T,W ).

In fact, one can further describe isogenies between p-divisible groups over OCp/p in terms of
vector bundles on XCp .

Corollary 0.18. 1. MLT,∞,Cp classifies the following equivalent data:
a) Tuples (T,W,α) , where α : T ∼= Zh

p and E(T,W ) ∼= OXCp (−1/h),

b) Inclusions OXCp (−1/h) ↪→ Oh
XCp

with cokernel supported at ∞.

2. MDr,∞,Cp classifies D-linear inclusions OXCp (−1/h)
h ↪→ D ⊗Qp OXCp with cokernel sup-

ported at ∞

Combining the above gives the following interpretation of Falting’s theorem:

Theorem 0.19 ([SW13], Theorem E). There is a natural equivariant equivalence of adic spaces

MLT,∞,Cp 'MDr,∞,Cp .

1 Power Operations on Lubin-Tate theory. (Nikolay Konovalov, 3
June)

1.1 The Morava Stabilizer group

Let us fix a prime p (once and for all) and a one-dimensional formal group Γh of height h over
Fp.

Remark 1.1. Note that we are working over an algebrically closed field so that the choice of
such a formal group of height h is unique up to isomorphism.

Definition 1.2. Define Gh to be the group Aut(Γh,Fp) consisting of pairs (f, g) where f : Γh
∼−→

Γh is an automorphism of Γh that covers an automorphism g : Fp
∼−→ Fp. This profinite group

is called the Morava stabilizer group.

Remark 1.3. Per construction, we have a short exact sequence

1→ AutFp
(Γh)→ Gh → Gal(Fp/Fp)→ 1 (1.4)

where the latter arrow sends a pair (f, g) to the automorphism g. It is easy to see that this
map admits a section g 7→ (id, g) so that this short exact sequence splits.

In fact, one can identify the outside terms in this split short exact sequence as follows.
• The Galois group is given by Gal(Fp/Fp) ∼= Ẑ, the profinite completion of the integers,
• The automorphism group is given by AutFp

(Γh) ∼= O×
D, the the units in the ring of integers

of a certain division algebra over Qp.
Note that central simple algebras over Qp are classified by the Brauer group Br(Qp) ∼= Q/Z,
and the division algebra D appearing above corresponds to the class 1/h in this Brauer group,
and is of dimension h2 over Qp. Taking the semidirect product of the factors above, we conclude
that

Gh
∼= D̂×,

i.e. the Morava stabiliser group is the profinite completion of the group of units in D.
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Lemma 1.5 (cf. Remark 2.2.5 in [Mor85]). If we let Gh act on the Witt vectors W (Fp) by the
Galois action, there is an identification of the rationalised continuous group cohomology as

H∗
cont(Gh;W (Fp))⊗Zp Qp

∼= H∗
cont(Gh;W (Fp)⊗Zp Qp) ∼= ΛQp(x1, . . . , xh).

The right hand side is an exterior algebra on h generators where xi is in degree 2i− 1.

Proof. The first identification is immediate, as Gh is compact. Indeed, its semidirect factors are
compact; this is immediate for Ẑ, and for O×

D we note that it morally should be like GLh(Zp)
as the group of units in the ring of integers in a division algebra of dimension h2. Therefore, we
can bring the filtered colimit computing rationalisation inside (continuous) group cohomology.
The second identification follows from the Lyndon–Hochschild–Serre spectral sequence associ-
ated to the short exact sequence (1.4). Since we are working with rational coefficients, this
collapses and takes the form of an isomorphism

H∗
cont(Gh;W (Fp)⊗Zp Qp) ∼= H∗

cont(AutFp
(Γh);Qp).

Now note that the automorphism group on the right hand side is isomorphic to O×
D hence is a

p-adic analytic Lie group. A theorem of Lazard then sates that its rational continuous group
cohomology can be computed as Lie algebra cohomology as follows.

H∗
cont(AutFp

(Γh);Qp) ∼= H∗
Lie(Lie(O

×
D);Qp).

Now the Lie algebra of the units in the ring of integers of D is just D itself with the commutator
bracket, we can further identify this as

H∗
Lie(Lie(O

×
D);Qp) ∼= H∗

Lie(D;Qp).

Finally, for K sufficiently large over Qp, Morita theory tells us that we can identify the Lie
algebra D⊗Qp K with glh(K). The Lie algebra cohomology of the latter is precisely the exterior
algebra in the statement of the Lemma.

Remark 1.6. From this computation, we see that Gh has finite virtual cohomological dimmen-
sion, in fact

vcdQp(Gh) = h2 + 1.

This is also the strict cohomological dimension if p− 1 does not divide h.

1.2 The Lubin–Tate ring

Definition 1.7. A deformation of a formal group Γ/k is the datum of
• a complete local ring with residue field k, i.e. (R,mR, R/mR

∼= k),
• a formal group ΓR over R, and
• an isomorphism ΓR ⊗R k ∼= Γ.

Theorem 1.8 (Lubin–Tate). Consider the functor

DefΓ : CRing
cpl,cts → Set

that sends a complete local ring with residue field k to the set of deformations of Γ to R. Then
this functor is corepresented by a complete local ring A(Γ, k) called the Lubin–Tate ring. In
fact, there is a (non-canonical) presentation

A(Γ, k) ∼= W (k)Ju1, . . . , uh−1K.
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In the case where (Γ, k) = (Γh,Fp) as above, we will simply write A for the associated Lubin–
Tate ring.

Remark 1.9. Several observations can be made immediately from the universal property.
• The group Gh acts continuously on A.
• This action is horrendous. In particular, the augmentation map A → W (Fp) is not Gh-

equivariant for h ≥ 2.
• However, the inclusion of constant terms W (Fp)→ A is Gh-equivariant.

We can now state the main theorem of the seminar.

Theorem 1.10. Let s ≥ 0. Then the inclusion map W (Fp) → A as above induces a split
injection

φ : Hs
cont(Gh;W (Fp))→ Hs

cont(Gh;A).

Furthermore, the complement of this split injection is killed by some power of p depending on h
and s. In particular, the induced map

Hs
cont(Gh;W (Fp))⊗Zp Qp → Hs

cont(Gh;A)⊗Zp Qp

is an isomorphism.

Conjecture 1.11. It is conjectured that the final isomorphism above already holds before
rationalisation.

Remark 1.12. The first part of the theorem, namely the fact that φ is a split injection,
requires nontrivial topological methods including higher ambidexterity to provide transfers along
surjective group homomorphisms.

1.3 Morava K-theories

This section largely follows Section 2 of [BB20b].

Definition 1.13. A unital associative ring spectrum A is said to be a division algebra if every
A-module M splits as a direct sum of copies of A:

M '
⊕
i

ΣniA.

Definition 1.14. Two division algebras A,B are of the same chromatic characteristic if and
only if A⊗S B 6= 0.

Remark 1.15. We can make the same definition in ModZ; in this case we see that two division
algebras A,B in ModZ are of the same (chromatic) characteristic if for any prime p we have
that p · 1A = 0 if and only if p · 1B = 0. This does not mean that we have classified all division
algebras in ModZ, but it is easy to find minimal representatives, i.e. the finite field Fp for any
prime p and the rational numbers Q.

Proposition 1.16 (Morava). Let k be a perfect field of characteristic p. Let Γ be a formal
group of dimension one and height h (possibly infinite) over k. Then there exists a multiplicative
cohomology theory K(Γ, k)∗ such that
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1. The coefficients are given by

K(Γ, k)∗(pt) ∼=


Q, h = 0

k[v±h ], 0 < h <∞
k, h =∞

where vh is in degree 2ph − 2.
2. K(Γ, k)∗ is complex orientable, and we can identify

Spf(K(Γ, k)0(CP∞)) ∼= Γ.

Note that the ring on the left hand side is given by kJxK with the Hopf algebra structure
arising from the Pontryagin comultiplication.

3. K(Γ, k)∗ satisfies a Künneth formula.

Remark 1.17. By Brown representability, we see that K(Γ, k)∗ is represented by a unital
associative ring spectrum K(Γ, k).

Some basic examples are as follows:
• K(Ĝa,Q) and K(Ĝa,Fp) are HQ and HFp respectively.

• K(Ĝm;Fp) is a summand of mod p complex K-theory.
• The standard Morava K-theories arise as K(h, p) := K(Γh,Fp).

Theorem 1.18 (Devinatz–Hopkins–Smith). The Morava K-theories form a complete and pair-
wise distinct set of representatives for the chromatic characteristics of division algebras in
spectra. Moreover, any division algebra is a module over some K(h, p).

Remark 1.19. For 0 < h < ∞, the Morava K-theories K(h, p) do not admit the structure of
E2-algebras in spectra.

Remark 1.20. The additional height variable in the minimal division algebras encodes spe-
cialisation: If X is a finite spectrum , then K(h, p)∗X = 0 implies K(h+1, p)∗X = 0. Therefore
K(h+ 1, p) can be thought of as a specialisation of K(h, p).

1.4 Chromatic fracture

Let Sp(p) ⊂ Sp denote the full subcategory of p-local spectra. Since we now fix a prime p, we
write K(h) := K(h, p). Recall that X is said to be K(h)-local if for all spectra Y such that
K(h)∗Y = 0, we have [Y,X] = 0. The K(h)-local spectra span a full subcategory SpK(h) ⊂
Sp(p).

Theorem 1.21 (Bousfield). The inclusion SpK(h) ⊂ Sp(p) admits a left adjoint denoted LK(h),
given by the Bousfield localisation with respect to K(h).

Similarly, define a functor
Lh : Sp(p) → Sp(p)

as the Bousfield localisation functor with respect to the spectrum K(0)⊕ · · · ⊕K(h).
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Theorem 1.22 (Chromatic convergence, Hopkins–Ravenel). If X ∈ Spfin(p) is a p-local finite
spectrum, then the map

X → lim←−(· · · → LhX → Lh−1X → · · · → L0X)

is an equivalence

Theorem 1.23 (Smash product theorem, Hopkins–Ravenel). The functor Lh : Sp(p) → Sp(p)
commutes with colimits, hence is given by Lh = LhS⊗− (everything p-local).

Remark 1.24. This is to be contrasted with the fact that LK(h) does not commute with
colimits.

The smash product theorem gives us a way to reconstruct LhX from Lh−1X and LK(h)X.

Corollary 1.25. For every p-local spectrum X, there exists a pullback square of the form

LhX LK(h)X

Lh−1X Lh−1LK(h)X.

y

Remark 1.26. This is to be compared with the fracture squares in quasicoherent sheaves
obtained from an open-closed decomposition: Lh−1 is restriction to the open part, while LK(h)

is formal completion along the closed part, and Lh−1LK(h) is the glueing datum.

Conjecture 1.27 (Weak chromatic splitting conjecture, Hopkins, Hovey). For X = S, or more
generally any finite spectrum, the bottom horizontal map

Lh−1X → Lh−1LK(h)X

splits.

Remark 1.28. There is a stronger splitting conjecture, which will be mentioned later. This
gives an explicition prediction of what Lh−1LK(h)S should look like, hence allows us to obtain
a better description of Lh.

1.5 Morava E-theories

Definition 1.29. Let FGh be the (1-)category of pairs (Γh, k) of a perfect field k of characteristic
p 6= 0 and a formal group Γh over k of height h. The morphisms are given by pairs

(α, β) : (Γh, k)→ (Γ′
h, k

′)

of a ring map β : k → k′ and an isomorphism α : Γ′
h

∼−→ Γh ⊗k k
′.

Theorem 1.30 (Goerss–Hopkins–Miller, Lurie). There exists a functor

E : FGh → CAlg(SpK(h))

such that the following hold.
1. The homotopy groups are given by π∗E(Γ, k) ∼= A(Γ, k)[β±], a Laurent series over the

Lubin–Tate ring of (Γ, k) in a variable β of degree two.
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2. Since this ring spectrum is even, it carries a formal group

Spf(E(Γ, k)0(CP∞))

over E(Γ, k)0 ∼= A(Γ, k), which can be identified with the universal deformation of Γ.

Remark 1.31. This should be thought of as a spectral version of the Lubin–Tate ring.
1. By functoriality, Gh acts on Eh := E(Γh,Fp) by E∞ ring maps.
2. Let I = (p, u1, . . . , uh−1) ⊂ A = A(Γh,Fp) be the augmentation ideal over W (Fp). Then

there is a decomposition
Eh/I '

⊕
0≤i≤ph−2

Σ2iK(h, p).

3. The Bousfield localisation functors LEh
and Lh = LK(0)⊕···⊕K(h) are equivalent.

4. This construction has further universal properties which we will not discuss.

Theorem 1.32 (Devinatz–Hopkins). Let us work in SpK(h) and let ⊗̂ denote the localised
tensor product on SpK(h), i.e. X⊗̂Y = LK(h)(X ⊗ Y ).

1. We can identify Eh⊗̂Eh ' Ccts(Gh, Eh), where the right hand side denotes continuous
cochains on Gh, i.e.

Ccts(Gh, Eh) = lim−→
α

C(Gh/Hα, Eh),

where Hα ranges over all finite index subgroups of Gh.

2. Let E⊗̂•+1
h denote the Amitsur complex of Eh, i.e. the cosimplicial object with coface and

codegeneracy maps given by multiplications and units. Then the map

LK(h)S→ Tot(E⊗̂•+1
h )

is an equivalence.

Corollary 1.33. The Bousfield–Kan spectral sequence of the Amitsur complex above therefore
takes the form

Es,t
2
∼= Hs

cont(Gh;πtEh) =⇒ πt−sLK(h)S.

When h = 1, this spectral sequence recovers Adams’ computations of the image of the J-
homomorphism. In general for any (finite) h, there is a horizontal vanishing line on some page.
In particular, let us note that A = π0Eh so that the cohomology groups from the main theorem
of the talk appear as E∗,0

2 . Consider the span

H∗
cont(Gh;W (Fp)) H∗

cont(Gh;π0Eh) = E∗,0
2 ,

x̃i φ(x̃i)

H∗
cont(Gh;W (Fp))⊗Zp Qp xi

φ

where xi denotes the i-th generator in H∗
cont(Gh;W (Fp)) ⊗Zp Qp

∼= ΛQp(x1, . . . , xh), and x̃i is
any lift of xi.

Conjecture 1.34 (Strong splitting conjecture). Let p be odd and fix an integer 1 ≤ i ≤ h.
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1. φ(x̃i) ∈ E∗,0
2 persists to a nontrivial class

ei ∈ π1−2iLK(h)S.

2. The composite
S1−2i ei−→ LK(h)S→ Lh−1LK(h)S

factors through S1−2i → Lh−iS1−2i. The resulting map is denoted

ei : Lh−iS1−2i → Lh−1LK(h)S.

3. The maps ei induce an equivalence
n∧

i=1

(Lh−iS1−2i)
∼−→ Lh−1LK(h)S.

The left hand side in the final statement is an exterior algebra indexed on the Zp-module
generators of ΛZp(e1, . . . , eh), defined as

n∧
i=1

(Lh−iS1−2i) =
⊕

0≤j≤h

⊕
1≤i1<···<ij≤h

j⊗
k=1

Lh−ikS
1−2ik .

Remark 1.35. The strong chromatic splitting conjecture is known to be true for h ≤ 2 and
p ≥ 3.

• If p = 2, the statement given above is not true, but slight modifications are to be made.
• If the strong conjecture is true, the map

Lh−1S→ Lh−1LK(h)S

from the chromatic fracture square is the unit of this exterior algebra hence splits (which
implies the weak chromatic splitting conjecture).

• Upon rationalisation, the strong chromatic splitting conjecture implies that

(π∗LK(h)S)⊗Q ∼= ΛQp(e1, . . . , eh),

where we recall that ei is of degree 1− 2i.

1.6 Power operations and splitting

Recall that we want to obtain a splitting in continuous cohomology of the map induced by the
inclusion W (Fp)→ A = π0Eh. We denote the latter by E0 for brevity, the height being implicit.

Definition 1.36. For m ≥ 0, we define a multiplicative (but not additive!) map

Pm : E → E0(BΣm)

by

E0 =[S, E],

→[(S)⊗m
hΣm

, E⊗m
hΣm

],

→[ShΣm , E]

∼=E0(BΣm),

where we used the multiplication map on E.
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Remark 1.37. One easily checks that P 0 is constant at 1, and that P 1 is the identity.
1. Pm is Gh-equivariant for all m ≥ 0,
2. E0(BΣm) is a free E0-module of finite rank.
3. E0(BΣm) can be equipped with a unique linear topology compatible with the structure

of an E0-module.

Lemma 1.38. For m ≥ 0, the map

Pm : E0 → E0(BΣm)

is continuous with respect to the topology generated by the ideal I = (p, u1, . . . , uh−1).

Proof. This is a surprisingly difficult lemma. Let Itr ⊂ E0(BΣm) denote the transfer ideal, i.e.
the ideal generated by the images of the transfers along inclusions of the form Σj × Σi ⊂ Σm.
Then the composite map

P
m
: E0 → E0(BΣm)→ E0(BΣm)/Itr

is a ring map (i.e. it is furthermore additive) and continuous, with target a finitely generated
free E0-module. We then use Hopkins–Kuhn–Ravenel character theory to embed

E0(BΣpk)→
k∏

i=0

E0(BΣpi)/Itr.

Remark 1.39. As we will see below, the paper uses a K(h)-local transfer along the surjective
group homomorphism Σm → e to obtain a map

TreΣm
: E0(BΣm)→ E0.

They don’t particularly elaborate on this, so Nikolay gave us a sketch of how to construct this:
Let f ′ : G→ H be any morphism of finite groups, inducing a map of anima

f : BG→ BH

such that the fibre of f can be identified with a coproduct of anima BKi for finite groups Ki.
Furthermore, f induces an adjunction

LocSys(BH; SpK(h)) LocSys(BG; SpK(h)).f∗

f!

f∗

Due to the higher semiadditivity of SpK(h) we see that there is an equivalence f! ' f∗, which
allows us to produce a transfer map

Trf : LK(h)Σ
∞
+ BH → LK(h)Σ

∞
+ BG.

If we hadn’t taken values in K(h)-local spectra, this transfer would only exist for injective group
homomorphisms.

Proposition 1.40. There exists a Gh-equivariant continuous map

E0 →W (Fp)

splitting the inclusion W (Fp)→ E0.
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Proof. Set

βm : E0 Pm

−−→ E0(BΣm)
TreΣm−−−→ E0.

For every m, these assemble into a map

β : E0 → E0JxK, β(a) =
∑
m

βm(a)xm.

Now remark that by the lemma above, β is continuous and Gh-equivariant. Further, since P 0

is constant at the unit (and the transfer map is multiplicative), we see that

β(a) ∈ 1 + xE0JxK.

Since the power operations define an additive map modulo the transfer ideal, we see that
β(a+ b) = β(a)β(b). This tells us that β defines an additive map

γ : E0 β−→ 1 + xE0JxK→ 1 + xFpJxK ∼= Wbig(Fp)→W (Fp).

The second map is the quotient by the maximal ideal I in E0. Note that the last map sits in a
further composite

1 + xFpJxK ∼= Wbig(Fp)→W (Fp)→ Fp

with the reduction mod p map from the Witt vectors. This map simply sends a power series to
its coefficient at x. Since P 1 acts by the identity, we see that the composite

Fp ↪→ E0 γ−→W (Fp)→ Fp

is just the identity. Let f denote the composite W (Fp) ↪→ E0 β−→W (Fp). Then our observation
that γ(x) reduces to x modulo p tells us that f is a homomorphism of p-adically complete
abelian groups which reduces to the identity modulo p hence must be an isomorphism. Then
define α := f−1 ◦ γ as a map E0 →W (Fp). Per construction this is a Gh-equivariant, additive,
continuous section of the inclusion.

2 Adic Spaces (Ningchuan Zhang, 17 June)

The main references for this talk are section 1 of J. Weinstein’s lectures at the 2017 AWS
([Wei17]) and sections 2 and 3 of Scholze–Weinstein ([SW13]).

2.1 Motivation

Last time, we proved that we have a split injection of the form

H∗
cont(Gh;W ) H∗

cont(Gh;A),

where W = W (Fp) and A = π0E(Γh,Fp) is the Lubin–Tate ring. The goal of introducing adic
spaces is to be able to describe why this is a rational isomorphism.

Remark 2.1. Recall that a stronger result is conjectured. Namely the Vanishing conjecture
(Conjecture 1.11) states that the split injection above is an isomorphism before rationalisation.
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Note that the right hand side of this split injection can be described conceptually as the sheaf
cohomology of the formal stack

Spf(A) � Gh.

However, the rational continuous cohomology of Gh does not admit such a description in terms
of sheaf cohomology over (a quotient of) a formal scheme. Indeed formal schemes are set up
such that the global sections of their structure sheaf is always complete for the topology on
the underlying ring, but it is clear that Qp is not p-complete. Adic spaces therefore give us a
way of simultaneously incorporating the generic fibre as geometric information. To describe the
right hand side, we will explicitly need to understand the geometry of the adic space LTad

W⊗ZpQp

obtained as the generic fibre of the Lubin–Tate space.

Remark 2.2. Adic spaces form a general framework that should encompass classical schemes,
formal schemes, and rigid analytic spaces. In particular, it should respect the inclusion of
schemes into formal schemes an the construction of a rigid analytic space from a formal scheme.

Let us begin with a philosophical question: what is a space? The answer we follow in the
construction of adic spaces is that it is a topological space (i.e. set of points with a topology)
with a structure sheaf of rings. In some cases, we will not actually have a topological space,
but rather a site.

Example 2.3.
• Smooth manifolds are such an example, which are locally isomorphic to an open subset

of U ⊂ Rn, with structure sheaf given by U 7→ C∞(U).
• Schemes are an example as well, being locally isomorphic to Spec(A) for a ring A and

with structure sheaf OA as usual.
• An adic space will be a topologically ringed space with valuations on the stalks, which is

locally of the form Spa(A,A+) for a Huber pair (A,A+).

2.2 Formal schemes

Remark 2.4. All ideals of definition in a topological ring will be assumed to be finitely gener-
ated throughout.

Definition 2.5. A (linearly) topological ring A is called adic if there exists an open ideal
I ⊂ A, called an ideal of definition, such that the open subsets {In}n≥0 form a basis of open
neighbourhoods of the point 0 ∈ A. Further, A is assumed to be complete and separated with
respect to this topology.

Example 2.6.
• We can let A be a discrete ring and I = (0).
• Let A = Zp be the p-adic integers with the usual p-adic topology, then we can choose

I = (pk) for any k ≥ 1.

Remark 2.7. Two ideals of definition I, J generate the same topology if and only if their
radicals agree, i.e.

√
I =
√
J .

Example 2.8. Let A = ZpJT K. Then A can be viewed as an adic ring in several distinct ways,
namely

I = (p), I = (T ), I = (p, T ).
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In either case, A will be complete for the I-adic topology, but it is clear that their radicals are
different.

Definition 2.9. Let A be an adic ring. Then define Spf(A) as the set of open prime ideals of
A with topology generated by the basic opens

D(f) = {p | f 6∈ p}

as f ranges over elements of A and structure sheaf defined by

Γ(D(f);OSpf(A)) = (A[f−1])∧I .

Remark 2.10. Note that in particular the global sections of a formal scheme are always I-
complete, which precludes obtaining a non p-complete Zp-module like Qp as global sections of
some p-adic formal scheme as mentioned in the motivation section.

Remark 2.11. The open condition on the prime ideals changes the underlying topological
space. In the case of Zp we have

Spec(Zp) = {(0), (p)}, Spf(Zp) = {(p)}.

In fact, Spf(A) is homeomorphic to Spec(A/I) but the structure sheaf accounts for the additional
“fuzz”.

Definition 2.12. A formal scheme is a locally ringed space which is locally isomorphic to
Spf(A) for an adic ring A.

2.3 Rigid spaces

Let K be a non-archimedean field, so that it is in particular complete with respect to some
valuation denoted | · |. Examples include Qp, where |p| = p−1.

Definition 2.13. The Tate algebra K〈T1, . . . , Tn〉 is the completion of the polynomial ring
K[T1, . . . , Tn] with respect to the Gauß norm. The latter is defined by∥∥∥∥∥∑

I

aIT
I

∥∥∥∥∥ = supI |aI |.

Elements of the Tate algebra are to be thought of as formal power series f =
∑

I aIT
I such

that the sequence |aI | converges to zero.

Definition 2.14. A K-affinoid algebra is a quotient of the Tate algebra over K by some closed
ideal1. For a K-affinoid algebra A, we define the associated affinoid space by the following.

• As a set, it is given by mSpec(A), the set of maximal ideals in A.
• The topology is generated by the rational opens. For x ∈ mSpec(A) a maximal idea, A/x

will be a finite extension of K, so that the valuation on K extends uniquely to a valuation
on this residue field. For an element f ∈ A, write |f(x)| for the norm of f in A/x. For
f1, . . . , fn, g ∈ A we then define the associated rational open by

D

(
f1, . . . , fn

g

)
= {x ∈ mSpec(A) | ∀i = 1, . . . , n, |fi(x)| ≤ |g(x)|}.

1Actually, all ideals of the Tate algebra are closed, ([Wei17, p. 3]).
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• The structure sheaf is defined on rational opens by

Γ

(
D

(
f1, . . . , fn

g

)
;O

)
= A〈T1, . . . , Tn〉/(fi − gTi | i = 1, . . . n).

Remark 2.15. This need not always form a topological space, but in general the rational opens
form a basis for a site.

Definition 2.16. A rigid analytic space over K is a locally topologically ringed space that is
locally isomorphic to the affinoid space associated to a K-affinoid algebra.

Example 2.17.
• The affinoid space associated to the Qp-affinoid algebra Qp〈T 〉 is called the rigid closed

disc. Indeed, if K/Qp is a finite extension, we see that its functor of points satisfies

mSpec(Qp〈T 〉)(K) = {x ∈ K | {xn}n is bounded}.

The latter is equivalently the set {x ∈ K | |x| ≤ 1} whence the name.
• Given a finite type formal scheme, we can construct an analytic space by taking its generic

fibre.

Let us now mention an application of the theory of rigid analytic spaces in chromatic homotopy
theory, given by the Gross–Hopkins period map.

Theorem 2.18 (Gross–Hopkins, [HG94]). There is a Gh-equivariant map

πGH : LTrig
K −→ Ph−1

K

of rigid analytic spaces which is étale surjective and such that the pullback π∗
GHO(1) is the Lie

algebra of the universal deformation Γh over LTrig
K .

This is used to study Brown–Comenetz duality in K(n)-local spectra by Strickland in [Str00].

2.4 Huber rings

Definition 2.19. A Huber ring is a topological ring A such that one can find an open subring
A0 ⊂ A carrying the I-adic topology for some finitely generated ideal I ⊂ A0. A Huber ring A
is said to be Tate if A contains a topologically nilpotent unit, called the pseudo-uniformiser.

Example 2.20.
1. We can let A = A0 be a discrete ring and I = (0).
2. We can let A = A0 be an I-adically complete ring for I ⊂ A a finitely generated ideal of

definition.
3. Let A = K be a non-archimedean field, then we can set A0 = OK = {x ∈ K | |x| ≤ 1}.

This admits a pseudo-uniformiser $ given by any element of OK such that 0 < |$| < 1.
4. Let A = K〈T1, . . . , Tn〉 be the Tate algebra over K, and set A0 = OK〈T1, . . . , Tn〉. This

has a pseudo-uniformiser given by the same $ as above.
5. Let K be a non-archimedean perfect field of characteristic p, and set A = A0 = W (OK)

where now I = (p, [$]) for [$] the multiplicative lift of $ ∈ OK .
6. For a non-example, note that A = QpJT K is not a Huber ring. One would like to set

A0 = ZpJT K, but this subring is not open. Indeed, the sequence {p−1Tn} is not contained
in A0 but it converge to 0 ∈ A0.

Remark 2.21. In the examples above, the first two are not Tate, while the next three are.
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2.5 The underlying topological space

For a Huber ring A, we want to set Spa(A) to be a subset of the set of continuous valuations on
A. We will see below that the actual definition is more involved, but let us first note why this is a
sensible definition. Recall that if K is a field with a subring A, we defined the Zariski–Riemann
space Zar(K,A) of the pair (K,A) to be the space of continuous valuations on K such that for
all a ∈ A, |a| ≤ 1. This defined a quasicompact ringed space, and it is actually a scheme in nice
cases. For example, if K/k is a field extension of transcendence degree one, then

Zar(K, k) ∼= smooth projective curve with function field K over k.

The easiest example is K = k(x), which corresponds to P1
k.

Remark 2.22. Note that we do not restrict the target of our valuations, they can land in any
ordered abelian group. Further, note that if Γ is an ordered abelian group, then Γ ∪ {0} is an
ordered monoid with minimum 0. Examples of such ordered abelian groups include R×n

>0 for
n ≥ 1 with multiplication and lexicographical order.

Definition 2.23. A continuous valuation on a topological ring A is a continuous map

| · | : A −→ Γ ∪ {0}

such that
• |ab| = |a||b|,
• |a+ b| ≤ max(|a|, |b|),
• |1| = 1,
• |0| = 0, and
• for all γ ∈ Γ, the set {a ∈ A | |a| < γ} ⊂ A is open.

As seems to be standard, we will usually denote valuations by x : A → Γ ∪ {0}, and write
|f(x)| := x(f) for f ∈ A.

Definition 2.24. Given a topological ring A, we define the set Cont(A) of equivalence classes
of continuous valuations on A: the value group of a valuation x : A → Γ ∪ {0} is the subgroup
of Γ generated by the image x(A), and often we implicitly replace Γ∪{0} with the value group
(though even in this case |−| need not be surjective unless A is a field). The equivalence relation
between valuations identifies x and x′ if there is a commutative diagram

Γ ∪ {0}

A

Γ′ ∪ {0}

∼=

x

x′

where Γ,Γ′ are the value groups and the vertical map is an order preserving isomorphism.

Let us now topologise Cont(A) with a basis given by the rational opens

D

(
f1, . . . , fn

g

)
= {x ∈ Cont(A) | |fi(x)| ≤ |g(x)| 6= 0 for i = 1, . . . , n}.

Remark 2.25. Note that in the definition above, setting fi = 1 recovers the Zariski opens,
while allowing g = 0 recovers the basis of opens in the affinoid rigid analytic space associated
to A.
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Definition 2.26. A Huber pair is a pair of a Huber ring A and a subring A+ of integral elements
such that every element of A+ is power bounded, and A+ ⊂ A is open and integrally closed.
Define the space

Spa(A,A+)

to be the subspace of Cont(A) on valuations x such that for all f ∈ A+, |f(x)| ≤ 1.

Remark 2.27. The subring of power-bounded elements of a Huber ring is denoted A◦. In fact,
we see that A◦ is the union of all possible choices of A0 ∈ A.

Example 2.28. If C is a non-archimedean algebraically closed field, such as Cp, then X =
Spa(C〈T 〉, C◦〈T 〉) has five types of points.

1. For any α ∈ C, such that |α| ≤ 1, so that in particular α ∈ C◦, we obtain a point

f 7−→ |f(α)|.

2. Let α be as above, and let D = D(α, r) be the disc centred at α with radius 0 < r < 1 in
the image of the valuation map on C. Then we obtain a point by

f 7−→ sup{|f(β)| | β ∈ D}.

3. The construction above also works when 0 < r < 1 is not in the image of the valuation
map on C.

4. If C is not spherically complete (e.g. when C = Cp), i.e. there exists a decreasing sequence
of discs with radius < 1 of the form

D1 ⊃ D1 ⊃ D3 ⊃ · · ·

such that
⋂

iDi 6= ∅, then we obtain a point by

f 7−→ inf
i≥1

sup
βi∈Di

|f(βi)|.

5. Let α be as above, and now 0 < r ≤ 1. Pick a sign ± (excluding + if r = 1) and let
Γ = R>0 × γZ, be the ordered abelian group generated by R>0 and an element γ which
is infinitesimally less than or greater than r (depending on the sign we chose). Then we
obtain a point by

f =
∞∑
n=0

an(T − α)n 7−→ sup
n
|an|γn.

Remark 2.29. Points of type 2 or 3 are called Gaußpoints, while the points of type 5 are said
to be of rank two.

2.6 The structure sheaf

Let U ⊂ X := Spa(A,A+) be a rational open subset, we want to specify the value Γ(U ;OX).
This is done perhaps rather indirectly using the following theorem of Huber.

Theorem 2.30 (Huber). Let U and (A,A+) be as above, then there is a complete Huber pair
with a map

(A,A+) −→ (OX(U),OX(U)+)
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such that the induced map on adic spectra factors through U ⊂ X and the induces map

Spa(OX(U),O+
X(U)) −→ U

is a homeomorphism, and terminal among all such factorisations. In particular, U is quasi-
compact.

Remark 2.31. The hard part is not defining OX(U), since this is defined in the same way
as before, i.e. for U = D(fg ), we see that OX(U) = A〈T 〉/(fT − g). However, O+

X(U) is the
integral closure of A+[fg ] in this ring, which is less evident. We will see below that O+

X(U) can
be recovered from OX(U).

Definition 2.32. Let X = Spa(A,A+) be the adic spectrum of a Huber pair as above. Define
a presheaf on X by sending an open W ⊂ X to

OX = lim←−
U⊂W

OX(U),

where the limit ranges over rational opens U contained in W . We say that a Huber pair (A,A+)
is sheafy if this presheaf is actually a sheaf on X.

Proposition 2.33. We can identify

O+
X(U) = {f ∈ OX(U) | ∀x ∈ U, |f(x)| ≤ 1}.

In particular, this is a sheaf if OX is. Furthermore, if (A,A+) is a complete Huber pair, then
on global sections we obtain

OX(X) = A, O+
X(X) = A+.

Definition 2.34. An adic space is a triple (X,OX , | · · · |x∈X) of a topologically ringed space
equipped with valuations on its stalks, such that it is locally of the form Spa(A,A+) for a sheafy
Huber pair.

Remark 2.35. We see that a Huber pair (A,A+) is sheafy if
• A = A+ is discrete,
• A = A+ is finitely generated over a Noetherian ring, or
• A is Tate and such that the Tate algebras A〈T1, . . . , Tn〉 are Noetherian for all n ≥ 0.

We conclude that an affine scheme Spec(A) can be viewed as an adic space Spa(A,A), a formal
scheme Spf(A) can be viewed as an adic space Spec(A,A), and a K-affinoid rigid analytic space
mSpec(A) can be viewed as an adic space Spa(A,A◦).

3 Examples of adic spaces (Itamar Mor, 24 June)

3.1 Complements

Recall that a Huber ring A is a topological ring admitting an open I-adic subring A0 for some
I E A0. A subset T ⊆ A is call bounded if for any open subset U ⊆ A, there is an open subset
V ⊆ A such that TV ⊆ U . This definition makes sense for any topological ring, and in the
Huber case happens if and only if for any ideal I of definition of A and n ≥ 0, ImT ⊆ In for
m� 0.
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Definition 3.1. We define the subsets of power bounded and topologically nilpotent elements
of a topological ring A as:

A◦ := {f ∈ A | fN is bounded},
A◦◦ := {f ∈ A | fn → 0}.

Also recall a Huber pair (A,A+) is a Huber ring A together with an integrally closed and open
subring A+.

Observation 3.2. Here are some facts about Huber rings and pairs:
1. Any ideal of definition I is contained in A◦◦ since In → 0.
2. Any ring of definition A0 is bounded and therefore contained in A◦.
3. The set A◦ itself does not need to be bounded. For example, take A = Qp[T ]/T

2. Then
A◦ = Zp ⊕Qp{T} is not bounded.

4. In fact, A◦ =
⋃
A0 is the union of all rings of definition in A. Essentially, for any power

bounded element f ∈ A, there is a ring of definition A0 containing f (in fact, this is a
filtered colimit).

5. For any Huber pair (A,A+), we have A◦◦ ⊆ A+. This is because for any topologically
nilpotent element f , we have fN ∈ A+ when N � 0 since fn → 0 and A+ is open. The
element f is then contained in A+, since A+ is integrally closed.

Definition 3.3. A Huber ring A is called Tate if there is an element $ ∈ A◦◦ ∩ A×. Such $
is called a pseudo-uniformizer. If we fix a ring of definition, we may assume without loss of
generality that $ ∈ A0 (replace $ by some power) and I = ($), in which case and A = A+[$−1].

3.2 Completeness and sheafiness

Next, we will talk a bit about sheafiness. To this end, we first explain the role of completeness
in Huber rings.
We’ve defined the space Spa(A,A+), and want to equip it with a structure sheaf O. In (usual)
algebraic geometry, we do so by localising, and one key point for doing so is Nullstellensatz: for
a discrete ring A there are one-to-one correspondences

{Radical ideals of A} {Closed subsets of SpecA} {Open subsets of SpecA}

the right-hand given by taking complements and the left by I 7→ V (I) and V 7→ I(V ). In turn,
this depends on the fact that SpecA = ∅ if and only if A = 0. For example, one consequence is
that we can recover the units from SpecA:

Corollary 3.4. If f ∈ A has ϕ(f) 6= 0 for any map ϕ : A→ k to a field, then f ∈ A×.

To define O, we want a similar picture with valuations replacing prime ideal. The starting point
is:

Theorem 3.5 ([Hub93], Proposition 3.6). Given a Huber pair (A,A+), recall Spa(A,A+) is the
set of equivalence classes of continuous valuations on A such that |f(x)| ≤ 1 for any f ∈ A+.
We have

• Spa(A,A+) = ∅ ⇐⇒ A/{0} = 0. In particular, A = 0 if it is Hausdorff.
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• A+ = {f ∈ A | |f(x)| ≤ 1, ∀x ∈ Spa(A,A+)}.

See also the notes by Morel.

Corollary 3.6 ([SW20], Proposition 2.3.10). Let (A,A+) be a Huber pair.
1. An element f ∈ A lives in A+ if and only if |f(x)| ≤ 1 for any x ∈ Spa(A,A+)

2. If (A,A+) is complete and Hausdorff, then

|f(x)| 6= 0, ∀x =⇒ f ∈ A×.

Proof. Suppose A 6= 0 and f /∈ A×. Then f must be contained in some (proper) maximal ideal
m. We claim m is closed. Then A/m 6= 0 is Hausdorff and nonzero. Picking any valuation
x ∈ Spa(A/m, A+/m) and extending to A, we have |f(x)| = 0.
To see m is closed, we notice that A◦◦ ⊆ A is open since it contains the ideal of definition I.
Then A× is also open as it contains an open subset 1+A◦◦ (since A is complete). We then have
m is contained in the closed subset A\A×. Therefore its closure m must be a proper subset of
A. One can further check that m is also an ideal. Hence, m = m since it is a maximal ideal.

Remark 3.7. 1. Henceforth, ‘complete’ will mean ‘Hausdorff and complete’.
2. We can weaken the completeness assumption, for example to allow Henselian A—see the

notes by Bhatt. However, we will see later that we have to make some restriction.

The following result tells us how to compute the topological completion from the adic comple-
tion:

Lemma 3.8 ([Hub93], Lemma 1.6). Let A0 be a ring of definition for A. Then Â ∼= Â0⊗A0 A.

Warning 3.9. In general, Huber rings/pairs do not have pushouts. The situation is better for
pushouts along adic maps, that is, maps of Huber rings ϕ : A → B for which there is an ideal
of definition I such that ϕ(I) generates the topology on B. Then Huber proves under finiteness
assumptions that the pushout exists [Hub96, Proposition 1.2.2].

Let (A,A+) be a Huber pair. Recall rational open subsets of Spa(A,A+) are defined to be:

U = U

(
f1, · · · , fn

g

)
= {x ∈ Spa(A,A+) | |f(x)| ≤ |g(x)| 6= 0}.

We want to define the sections O(U) functorially in U . One idea is that we should have
g ∈ O(U)× and fi

g ∈ O+(U). A natural guess is then to define

(B,B+) =
(
A [1/g] , A+[f1/g, · · · , fn/g]

)
, (3.10)

where A+[f1/g, · · · , fn/g] is the integral closure of A+[f1/g, · · · , fn/g] in A[1/g].

Warning 3.11. This is not obviously independent of fi and g. In fact, we will see this definition
is not independent of fi and g later in Example 3.25.

Given a map of Huber pairs ϕ : (A,A+)→ (C,C+), denote by ϕ# : Spa(C,C+)→ Spa(A,A+)
the induced map on adic spaces. When Im(ϕ#) ⊆ U , we want a factorization:

(A,A+) (C,C+)

(O(U),O+(U))

ϕ

∃! ϕ
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Theorem 3.12. If (C,C+) is a complete Huber pair, there exists a unique factorization ϕ.

Proof. To get a map ϕ : B → C we need to show that ϕ(g) ∈ C×; what we know is that for any
x ∈ Spa(C,C+),

|ϕ(g)(x)| = |g(ϕ#x)| 6= 0,

since ϕ# lands in U . Since C is complete, we deduce that ϕ(g) ∈ C×. To check that ϕ restricts
to B+ → C+ we need to check that |fi/g(x)| ≤ 1 for each i and x ∈ Spa(C,C+), which again
follows from Corollary 3.6

Lemma/Definition 3.13 ([Mor19] Lemma III.4.2.3). Let (B,B+) be a Huber pair. The
completion of B+ defines a ring of integral elements of B̂, and the pair (B̂, B̂+) is the completion
of (B,B+).

Corollary 3.14. The pair (B̂, B̂+) has the universal property that it is initial among complete
Huber pairs (C,C+) such that Spa(C,C+)→ Spa(A,A+) factors through U = U

(
f1,...,fn

g

)
.

Definition 3.15. Set (O(U),O+(U)) := (B̂, B̂+). This depends only on the rational subset U ,
and so defines a presheaf on Spa(A,A+). Recall that (A,A+) is called sheafy if O happens to
be a sheaf.

As a sanity check, we have:

Theorem 3.16 ([Hub93], Proposition 3.9). Completion induces a homeomorphism Spa(Â, Â+) ∼=
Spa(A,A+).

Therefore, we may for most purposes replace an arbitrary Huber pair by its completion. The
payoff for introducing completion in the definition of O is that in full generality it ruins any
chance of O remaining a sheaf. The following omnibus theorem (see [SW20, Theorem 3.1.8 and
Theorem 5.2.5] or [Mor19, Theorem IV.1.1.5]) nevertheless gives sheafiness in all cases we care
about:

Theorem/Definition 3.17 ([Hub94], [BV18], [KL15],…). Let (A,A+) be a complete Huber
pair. The assignment U 7→ O(U) is a sheaf in the following cases:

1. A is discrete.
2. A is finitely generated over a Noetherian ring of definition A0.
3. A is Tate and strongly Noetherian: that is, the Tate algebras A〈X1, · · · , Xn〉 are Noethe-

rian for all n ≥ 0 2.
4. A is stably uniform: that is, A◦ is bounded (such A is called uniform) and the same is

true for O(U)◦ for every rational subset U .

Example 3.18. Theorem 3.17 covers the following cases of interest:
• Qp satisfies item (2).
• Cp satisfies item (3).
• Perfectoids satisfy item (4).

2Caution: Unlike polynomial algebras, the Hilbert Basis Theorem fails for Tate algebras A〈−〉.
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Remark 3.19. If a Huber pair (A,A+) is sheafy, then for any x ∈ Spa(A,A+), we get a
valuation | · |x on the stalk

OX,x := colim
U3x

O(U)

Then for f ∈ O(U), we have

f ∈ O+(U) ⇐⇒ |f(x)|x ≤ 1 at OX,x for any x.

We are now ready to define the category of adic spaces.

Definition 3.20. Consider the category V with
• objects are triples (X,OX , (| · |x)x∈X).
• morphisms are maps of topologically ringed spaces that are compatible with the valuations

on stalks.

Exercise 3.21. Check that any such ringed space is locally ringed, and that any such morphism
is a map of locally ringed spaces.

Definition 3.22. An object X ∈ V is called an adic space if X is locally of the form Spa(A,A+)
for some sheafy Huber pair (A,A+). It is called pre-adic if (A,A+) is not necessarily sheafy.
Denote by CAff the category of sheafy complete Huber pairs, where C stands for “complete”.

Theorem 3.23 ([Hub94], Proposition 2.1). The adic space construction gives a fully faithful
embedding Spa: CAffop ↪→ V. This gives rise the functor of points for adic spaces:

AdicSp ↪→ Sh(CAffop)

X 7→ Hom(Spa(−), X),

where CAffop has a “Zariski” topology.

This perspective will be very useful in computing with adic spaces. Moreover, any pre-adic
space also has a functor of points, though now the assignment is not fully faithful; in some
cases, we will nevertheless use pre-adic spaces as auxiliary spaces when identifying adic spaces.

3.3 Examples

Now we switch gears and work out some examples.

3.3.1 The terminal object

The first example of adic spaces is the terminal object Spa(Z,Z). As a set, this adic space
contains the following points:

• For each prime p, there is a closed point xp : Z→ Fp → {0, 1}, where |n|xp = 0 iff p | n.

• For each prime p, there is another point ηp : Z → Qp → pZ ∪ {0}, where |n|ηp = p−vp(n).
The closure of ηp is {ηp, xp}.

• A generic point η : Z→ Q→ {0, 1}, where |n|η = 0 iff n = 0.
Below is a picture of Spa(Z,Z), where each squiggly arrow denotes a specialization and the blue
paths encircle closed subsets of Spa(Z,Z). Note that as a topological space, Spa(Z,Z) ∼= Spec Ẑ,
where Ẑ is the profinite completion of Z.
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η

η2 η3 · · · ηp · · ·

x2 x3 · · · xp · · ·

Figure 1: Spa(Z,Z)

3.3.2 Spa(Zp,Zp)

Consider a complete local non-archimedean local field K with ring of integers OK and a uni-
formizer $. Then we have:

Spa(K,OK) {η$} SpecK

Spa(OK ,OK) {η$ x$} SpecOK ,

= ∼=

= ∼=

where |$(η$)| = $−1 and |$(x$)| = 0 and the ∼=’s on the right hand side are isomoprhisms of
locally ringed spaces. In this sense, Spa(K,OK) ↪→ Spa(OK ,OK) is the inclusion of the generic
point. Restricting along this map (e.g. at the level of functors of points), we get the generic
fiber.

Remark 3.24. • A map of Huber pairs ϕ : (OK ,OK) → (A,A+) is the condition that
ϕ($) ∈ A is topologically nilpotent, and this factors through (K,OK) precisely when
ϕ($) is also invertible. In this case ϕ($) ∈ A◦◦ ∩A×, and hence A is Tate.

• The above examples indicate a general phenomenon: for any Huber pair (A,A+) we have
maps

Spa(A,A+) SpecA, x ker(x),

SpecA Spa(Aδ, Aδ), p (A→ Ap/p→ {0, 1}).

This exhibits SpecA as a retract of Spa(Aδ, Aδ) (as topological spaces).

3.3.3 Closed unit disc

Consider D := Spa(Z[T ],Z[T ]). Define

DK := D×Spa(Z,Z) Spa(K,OK)

∼= Spa(K〈T 〉,OK〈T 〉).

This is the rigid analytic closed disc 3, and is an affinoid space if either K is strictly noetherian
or OK is noetherian. To see the isomorphism claimed above we used the functor of points: for

3For example, its coordinate ring is analogous to the ring of overconvergent holomorphic functions on the closed
unit disc in C.
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any complete Huber pair (A,A+) we have D(A,A+) = A+, and if (K,OK) → (A,A+) then in
particular A is Tate and hence

DK(A,A+) = A+ = hom((K〈T 〉,OK〈T 〉), (A,A+)).

Here we used completeness of A in the factorization:

K[T ] A

K〈T 〉
∃!

Example 3.25 (Counterexample). Here is an example where (B,B+) in (3.10) depends on
f1, · · · , fn, g. Take (A,A+) = (Qp[T ],Zp[T ]) with the p-adic topology on Zp[T ] and consider
f = 1 + pT /∈ A×.

Exercise 3.26. Using the description of the points of DK given in the previous lecture, check
that |f(x)| 6= 0 for any x ∈ Spa(A,A+) ∼= Spa(Â, Â+) = DQp . For example, given a Type I
point α ∈ Zp in Example 2.28, we have |f(α)|p = |1 + pα|p = 1 6= 0.

In particular, this implies
X = Spa(A,A+) = U(1/f).

However, there is no map from A[1/f ] to A.

3.3.4 Adic affine line

Consider A1 := Spa(Z[T ],Z). If K,O) is a nonarchimedean field, then we have

A1
K(A,A+) = A ∼= A+[π−1] ∼= colim(A+ π−→ A+ π−→ · · · )

It follows that

A1
K
∼= colim

k
(DK

π#

−−→ DK
π#

−−→ · · · )

∼= colim
n

Spa(K〈πnT 〉,OK〈πn〉),

i.e. the affine line is the union of closed discs along inclusions of increasing radius.

3.3.5 Adic circle, punctured line, and projective line

We define:

∂D := Spa(Z[T±1],Z[T±1])

Gm := Spa(Z[T±1],Z)
P1 := D ∪∂D D

where the gluing for P1 is T 7→ T−1 4. The functors of points are respectively ∂D(A,A+) =
(A+)×, Gm(A,A+) = A× and P1(A,A+) = {[a0 : a1] | ai ∈ A+}. As an example, let’s compute
the coordinate ring of ∂DK : we know that

∂DK = U(1/f) = Spa

(
̂

K〈T 〉
[
1

T

]
,

̂
OK〈T 〉

[
1

T

])
,

4The notation Gm may be non-standard—we could not find a reference.

28



and so

̂
K〈T 〉

[
1

T

]
=

(
OK〈T 〉

[
1

T

])∧

(π)

[
1

π

]

=

{∑
n∈Z

anT
n

∣∣∣∣∣ an ∈ OK , lim
|n|→∞

|an| = 0

}[
1

π

]

=

{∑
n∈Z

anT
n

∣∣∣∣∣ an ∈ K, lim
|n|→∞

|an| = 0

}
.

Another name for this would be K〈T±1〉.

3.3.6 Open unit disc

Consider
D◦ := Spa(ZJT K,ZJT K).

Then D◦(A,A+) = A◦◦. We want to describe the points in D◦. Here are some obvious ones:
• xFp : ZpJT K→ Fp → {0, 1}, |p| = |T | = 0.
• xFp((T )) : ZpJT K→ Fp((T ))→ TZ ∪ {0}, |p| = 0, |T | = T−1.

• xQp : ZpJT K→ Qp → pZ ∪ {0}, |p| = p−1, |T | = 0.
What other points can we find?

Definition 3.27. A point x in Spa(A,A+) is called analytic if kerx is not open.

For example, xFp ∈ D◦
Zp

is not analytic, and is the unique non-analytic point. To go further, we
use the following lemma:

Lemma 3.28. Let Γ be a totally ordered abelian group with an element γ ∈ Γ such that
• 0 < γ < 1 in Γ ∪ {0};
• for any γ′ ∈ Γ, there is an n such that γn < γ′.

Then any continuous valuation x : (A,A+)→ Γ ∪ {0} has a maximal generalization

(A,A+) Γ ∪ {0}

R≥0.

x

x̃

in the sense that any other such x̃′ factors uniquely through x̃.

Proof. Pick any 0 < δ < 1 in Γ and a real number r ∈ (0, 1) set for any γ ∈ Γ

ϕn(γ) = rm(n)/n, where m(n) = max{i | δi ≥ γn}.

As the sequence is increasing and bounded, we can define

ϕ(γ) = lim
n→∞

ϕn(γ) ∈ R≥0.

For example, ϕn(δ
i) = ri for any n and i.
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Exercise 3.29. Show that this makes sense, and that x̃ = ϕ ◦ x does the job.

For example, if x : A � Γ∪{0} is analytic and A is a Huber ring, then there is a γ ∈ Γ as in the
Lemma. Now suppose x : ZpJT K→ Γ∪{0} is an analytic point in D◦. Then either |p(x)| 6= 0 or
|T (x)| 6= 0, and moreover both |p(x)| and |T (x)| < 1 (since p and T are topologically nilpotent).
Set

κ(x) :=
log |T (x̃)|
log |p(x̃)|

∈ [0,∞].

For example, we have κ(xQp) =∞ and κ(xFp((T ))) = 0. Observe that

κ(x) ≤ s

t
⇐⇒ |p(x)|s ≥ |T (x)|t.

Likewise, for any positive real number r, we have κ(x) ≤ r iff for any s
t > r, |p(x)|s ≥ |T (x)|t.

The implication still holds with the directions of all inequalities reversed. This property char-
acterizes κ. In this way, we have constructed a map κ : D◦\{xFp} → [0,∞]. As D◦\{xFp} ⊆ D◦

is spectral, hence compact, its image κ(D◦\{xFp}) is also compact (closed) in [0,∞].

Exercise 3.30. Prove that κ(D◦\{xFp}) is dense in [0,∞] by constructing an x such that
κ(x) = s

t .
Hint: Given a pair of coprime natural numbers s, t ∈ N, construct:

x : ZpJT K −→ ZpJT K/(T t − ps) −→ E −→ πZ ∪ {0}.

Then |T |t = |p|s and κ(x) = s
t .

xFp

xQp

xFp((T ))

xE,s/t

D◦\{xFp}

∞

0

s/t ∈ Q>0

κ

Figure 2: The map κ : D◦\{xFp} → [0,∞]

Proposition 3.31. D◦\{xFp} is an adic space.

Warning 3.32. κ−1((0,∞])◦ is not affinoid: else by the functor of points, we’d have κ−1((0,∞])◦ =
Spa(B,B+) with

(B,B+) = (ZpJT K,ZpJT K)⊗(Zp,Zp) (Qp,Zp). (3.33)

But in that case we’d have 1/p ∈ B and T ∈ B◦◦, so Tn/p → 0. In particular TN/p ∈ A+

for N � 0. On the other hand, by the universal property there should be a map (B,B+) →
(Q〈T, TN+1/p〉,Zp〈T, TN+1/p〉), and this is a contradiction. In particular, the pushout Eq. (3.33)
does not exist in the category of Huber pairs: the problem is that the map Zp → ZpJT K is not
adic.
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Proof (Proposition 3.31). We may cover D◦ \ {xFp} by rational subsets

U(p/T ) = κ−1([0, 1])◦

U(Tn/p) = κ−1([1/n,∞])◦

for n ≥ 1: indeed, if κ(x) 6= 0 then |p(x)| 6= 0, so |T (x)|N < |p(x)| for N � 0. We’ll prove that
these are affinoid: that is, we need to show their coordinate rings are sheafy.

1. (U(p/T )). We have U(p/T ) = Spa(B,B+), where

B = ZpJT K[p/T ]∧(p,T )[T
−1] = ZpJT K[p/T ]∧(T )[T

−1] = ZpJT K〈p/T 〉[T−1].

A ring of definition is ZJT K〈p/T 〉, which is the T -adic completion of Z[T, p/T ] and hence
noetherian; thus item (2) of Theorem 3.17 applies.

2. (U(Tn/p)). In this case,

O(U(Tn/p)) = ZpJT K[Tn/p]∧(p)[p
−1] = Qp〈T, Tn/p〉.

This is again Tate, and topologically finitely generated over Zp, which is noetherian.

Variant 3.34. (A preview of things to come). Suppose that R is a complete Tate ring of
characteristic p > 0, and moreover R+ is perfect. In particular, this implies (using the Banach
Open Mapping theorem) that R is uniform [SW20, Proposition 6.1.6]. Set S = Spa(R,R+).

Definition 3.35. The ring Ainf,S,Qp is the ring of p-typical Witt vectors,

Ainf,S,Qp
:= W (R+).

Note that we have elements p, [$] ∈ Ainf,S,Qp , where [−] denotes the multiplicative lift. We
equip Ainf,S,Qp with the (p, [$])-adic topology.

Definition 3.36. YS,Qp
:= SpaAinf,S,Qp \ {[$] = 0}.

Remark 3.37. Note that SpaAinf,S,Qp has a unique non-analytic point

xna : Ainf → R+/$ → {0, 1}.

The subspace Y looks like a “$-generic fibre” (over S), except that the map [−] : R+ → Ainf is
not additive and so SpaAinf does not really live over S.

The space SpaAinf looks very similar to D◦
Zp

: see Fig. 3. In particular, one can define a
continuous surjective function κ : SpaAinf \{xna} → [0,∞] just as we did above. The following,
which is for example [SW20, Proposition 11.2.1], is the analogue of Proposition 3.31:

Theorem 3.38. Y is an adic space.

The idea is again to cover Y by rational subsets U = U(p/[$1/pn ]), which cover since |p(x)| < 1
for any x. Then

O(U) = W (R+)

[
p

[$1/pn ]

]∧
([$])

[
1

[$]

]
.

To show that Y is adic we need to show these rings are sheafy, which is very non-obvious. The
strategy will be to construct split coverings of O(U) by perfectoids, and use this to deduce
sheafiness.

Remark 3.39. Scholze and Weinstein remark that it is probably the case that SpaAinf \ {xna}
is in fact adic too. In any case, note that Y is not affinoid, since no finite subcover of the
U(p/[$1/pn ]) covers.
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xna

xp

x[$]

xE′,ps/t

xE,s/t

SpaAinf \ {xna}

∞

0

s/t

ps/t

Frob

κ

Figure 3: The map SpaAinf \ {xna} → [0,∞]. Here |p(xp)| = p−1 and |[$](xp)| = 0, while
|p(x[$])| = 0 and |[$](x[$])| = 0. In this case the Frobenius on R+ induces one on
SpaAinf , and κ(Frobx) = pκ(x).

4 The proétale site of an adic space (Emma Brink, 1 July)

4.1 The proétale site

Ultimately our goal in this seminar is to understand the E2-page of the rationalized K(h)-local
Eh-Adams spectral sequence,

H∗
cont(Gh, π∗Eh),

by viewing it as the cohomology of [LTη/Gh], the stack quotient of the adic generic fibre of
Lubin-Tate space by the Morava stabiliser action. Since Gh is a profinite group, to make sense
of this stack we will view it as a sheaf on the proétale site of LTη, which is what we discuss
today. To begin with, we define the relevant sites.

Definition 4.1. A map X → Y of adic spaces is
1. analytic if |X| → |Y | is an open embedding and OX = OY |X .
2. finite étale if for any open affinoid Spa(A,A+) ⊂ Y , X ×Y Spa(X,X+) ∼= Spa(B,B+) is

affinoid and
• the map A→ B exhibits B as a finitely generated A-module with induced topology,
• B+ is the integral closure of A+ in B,
• The A-algebra B has a presentation as A[X1, . . . , Xn]/(f1, . . . , fn) with det(∂fi/∂Xj)ij 6=

0.
3. étale if there is an open covering X =

⋃
i Ui and affinoid opens f(Ui) ⊂ Vi ⊂o Y such that

each f |Ui : Ui → Vi is finite étale.
4. proétale if there exists a covering X =

⋃
i Ui and f(Ui) ⊂ Vi ⊂o Y such that

• Ui = lim←−Ji
Spa(Aij , A

+
ij) is the cofiltered limit of affinoids and

• f |Ui : Ui → Vi is the limit of étale maps fij : Spa(Aij , A
+
ij)→ Vi.

Definition 4.2. A family of morphisms of adic spaces {fi : Xi → Y }I is an qc cover if for all
quasicompact opens U ⊂ Y , there exists a quasicompact open U ⊂

∐
i∈I Xi such that U ⊂ f(C).
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Definition 4.3. For an adic space X, we define the following sites:
1. XZar = Xan is the category of adic spaces equipped with an analytic map to X, with the

topology given by analytic qc covers.
2. Xét is the category of adic spaces equipped with an étale map to X, with the topology

given by étale qc covers.
3. Xproét is the category of adic spaces equipped with a proétale map to X, with the topology

given by proétale qc covers.

In particular there are obvious inclusions XZar
ι−→ Xét

ν−→ Xproét, which give rise to geometric
morphisms

Sh(XZar) Sh(Xét) Sh(Xproét)
ι∗

ι∗

ν∗

ν∗

on the associated 1- or ∞-topoi.

Remark 4.4. If X is affinoid then it is essentially by definition that Xét is generated under
colimits by the subcategory Xaff

ét of affinoids étale over X; likewise, Xproét is generated under
colimits by the subcategory Xaff

proét, and there is an equivalence

lim←− : Pro(Xaff
ét )

∼−→ Xaff
proét.

As a warning, this is no longer true when we take X to be a general adic space, since we might
not be able to glue pro-affinoid presentations.

4.2 The case of a point

We will consider in detail the case that X = Spa(K,K◦) is the adic spectrum of a nonar-
chimedean field, in which case

X ' Cont(K) ' Spv(K◦/K◦◦),

which is a point when K◦/K◦◦ is finite (e.g. when K = Qp). See [Mor19] for the details of
these equivalences. Write G = GK := Gal(Ks/K) for the Galois group of the separable closure
Ks of K.

1. XZar = {∅, ∗}, hence a sheaf on XZar is just an abelian group.

2. If K ⊆ L is a finite separable field extension, denote by L+ := K
L the integral clo-

sure of K in L and equip L ∼= Kn with the topology induced from K. Then the map
SpaK(L) := Spa(L,L+) → Spa(K,K+) induced by L ↪→ K is étale. Every affinoid adic
space étale over Spa(K,K+)-scheme is a coproduct ti∈I SpaK(Li, L

+
i ) for finite separable

field extensions K ⊆ Li. Denote by SetG the category of discrete G-sets with a continuous
G-action and G-equivariant maps.
Sending an orbit G/H for a finite-index subgroup H ⊆ G to SpaK((Ks)H) defines an
equivalence

SetG
∼−→ Xaff

ét .

Thus,

Sh(Xét) ' Sh(Xaff
ét )

' Sh(SetG).

The topology on SetG is generated by jointly surjective families of maps. Via restriction,
the right hand side is further equivalent to sheaves on the site of finite G-sets with jointly
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surjective covers, which are automatically refined by a finite subfamily.5 In particular,
this implies that cohomology of étale sheaves agrees with continuous group cohomology
of discrete G-modules.

3. By the same reasoning,

Sh(Xproét) ' Sh(Xaff
proét)

' Sh(Pro(FinG))

' Sh(ProfinG)

' ModG(Cond(Set))

where ProfinG denotes the category of profinite sets with continuous G-action, and the
topology in the second and third lines is given in both cases by families refined by some
finite surjective subfamily.
The equivalence Sh(Pro(FinG)) ' Sh(ProfinG) holds since

lim←− : Pro(FinG)→ ProfinG

is fully faithful and its image generates ProfinG under colimits.

Remark 4.5. The final equivalence follows from the following general fact: if G is a group
object in a site C (i.e. a group object in the underlying category), then Sh(BCG) ' BSh(C)G.

We want to relate sheaf cohomology on Xproét to continuous group cohomology. Suppose that
M is a continuous locally profinite G-module, or more generally any T1 topological G-module
for which the associated condensed abelian group M is solid. We will show that

H∗(Xproét,M) ∼= H∗
cont(G,M).

The cover {G→ ∗} ∈ BCond(Set)G yields a Čech-to-cohomology spectral sequence

Ep,q
1 = ExtqAb(BCond(Set)G)(Z[G

p+1],−)⇒ Extp+q
Ab(BCond(Set))G

(Z,−) = H∗(Xproét,−).

Denote by SG
∗ the simplicial complex associated with the Čech nerve of {G → ∗}. If M is a

condensed Z[G]-module with

ExtjCond(Z[G](Z[G
i],M) = 0 for i, j ∈ N1,

then the Čech-to-cohomology spectral sequence collapses and yields

H∗(HomZ[G](Z[G∗],M)) = Ext∗BG(Cond(Set))(Z,M) = H∗(Xproét,M).

As Gi is compactly generated for all i ∈ N0, for a T1 continuous G-module M ,

HomZ[G](S
G
∗ ,M) ∼= Cont(G×∗,M)

is the complex of continuous cochains, which by definition computes the continuous group
cohomology.
For a condensed Z[G]-module M and i ∈ N1,

ExtjCond(Z[G](Z[G
i],M) ∼= ExtjCond(Ab))(Z[G

i−1],M).

5Here the following fact is used: if D is a site and C a full subcategory closed under pullbacks, equipped with a
topology τC ⊂ τD and generating in the sense that any covering in D is refined by one in C, then restriction
induces an equivalence Sh(D)

∼−→ Sh(C).

34



If G is not discrete, then Z[G2] is not projective, so Ext1Cond(Z[G](Z[G
i],−) 6= 0.

But for solid abelian groups M , ExtjCond(Ab))(Z[G
i−1],M) = ExtjSolid(Ab)(Z[G

i−1]L�,M) and we
have:

Proposition 4.6 ([Sch19], Theorem 5.8). For any profinite space X, we have that

Z[X]L� ' Z[X]�

is concentrated in degree zero, and this is a projective object of Solid(Ab).

In particular, for a T1 continuous G-module M with M solid, (e.g. M locally profinite),

ExtjCond(Z[G](Z[G
i],M) = 0 for i, j ∈ N1,

whence
H∗(Xproét,M) ∼= H∗

cont(G,M).

The idea of proof for the proposition is to use the fact, due to Nöbeling and Specker, that C(X,Z)
is a free abelian group for any profinite set X, and that Z[X]� = HomCond(Ab)(C(X,Z),Z).
All in all, we obtain for any locally profinite G-module M , maps

H∗(XZar,M)→ H∗(Xét,M)→ H∗(Xproét,M),

where moreover

H∗(XZar,M) ∼=
{

MG ∗ = 0
0 ∗ 6= 0

H∗(Xét,M) ∼= H∗
cont(G,M δ) := lim−→H∗(G/U,MU )

H∗(Xproét,M) ∼= H∗
cont(G,M)

where the colimit in the second line runs over all open normal subgroups of G.

Remark 4.7. In general, for a condensed group G and a condensed G-module M ∈ Ab(BCond(Set)G),
one has a Čech-to-cohomology spectral sequence

Ep,q
1 = ExtqAb(BCond(Set)G)

(Z[Gp+1],−) = ExtqCond(Ab)(Z[G
p],−)⇒ Extp+q

Ab(BCond(Set)G)
(Z,−)

which converges to the condensed group cohomology of G. Condensed group cohomology is
therefore in general a finer invariant than continuous group cohomology which ignores all terms
Ep,q

2 for p, q > 1 in the above spectral sequence. For example, one can show that for a T1
topological abelian group G and a locally profinite abelian group M with trivial G-action,

Ext∗Ab(BCond(Set)G)
(Z,M) = Extp+q

Cond(Ab)(Z[BG],−)

is the condensed cohomology of the classifying space BG of G, whereas

H∗
cont(G,M) = H∗

cont(π0G,M) = Extp+q
Cond(Ab)(Z[Bπ0G],M)

is the condensed cohomology of the classifying space Bπ0G. However, Proposition 4.6 implies
that continuous group cohomology with solid coefficients can (for large classes of groups) be
realised as Ext-groups in the condensed world.
Denote by Solid(Z[G]) ⊆ Cond(Z[G]) the full subcategory on condensed Z[G]-modules whose
underlying condensed abelian group is solid. This is an abelian subcategory closed under limits.
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The inclusion Solid(Z[G]) ⊆ Cond(Z[G]) has a left adjoint (−)�G which sends a Z[G]-module to
its solidification with the induced Z[G]-module structure. Solidification is not an exact functor,
but one can show that for a T1 topological group, the degreewise solidificaion (S

G
∗ )

�G of the
simplicial resolution is a resolution of Z ∈ Solid(Z[G]). If this is a projective resolution and Gi

is compactly generated for all i ∈ N0), we obtain that

Ext∗Solid(Z[G])(Z,−) ∼= H∗
cont(G,−)

on continuous G-modules whose associated condensed abelian group is solid, like locally profinite
continuous G-modules.
Since solid tensor products of projectives in Solid(Ab) are projective, (S

G
∗ )

�G is a projective
resolution of Z in Solid(Z[G]) if and only if Z[G]� is a projective solid abelian group. This holds
in many cases, for example if G is locally connected or if G is a coproduct of compact spaces
or a product of two such groups. It works in slightly larger generality, and we currently do not
know an example where it fails. It might fail for groups which are totally disconnected but not
locally compact like the rationals with euclidean topology.

4.3 Cohomology of ÔX

We now return to the case of a general affinoid X. There is a functor

Xaff
ét → TopRing

(A,A+) 7→ A+

and this satisfies étale descent. We obtain a sheaf of topological rings O+
Xét

on Xét, and hence
a sheaf of topological rings

O+ := ν∗O+
Xét
∈ Sh(Xproét; Top(Ring)).

Denote by Ô+ := lim←−n
O+/pn ∈ Sh(Xproét; Top(Ring)) the p-completion of O+, i.e. the sheafifi-

cation of T 7→ lim←−n
O+(T )/pn.

By pointwise passing to condensed sets, we obtain sheaves of condensed rings O+ and Ô+. Since
− : Top→ Cond(Set) is a right adjoint, no further sheafification is necessary, i.e.

O+ = − ◦ O+ and Ô+ = − ◦ Ô+.

Example 4.8. If Y = Spa(R,R+) = [lim←−i∈I Spa(Yi, Y
+
i )]∧p is perfectoid affinoid,

Ô+(Y ) = R+ = [lim−→
i∈I

Y +
i ]∧p = [lim−→

i∈I
Ô+(Yi)]

∧
p (4.9)

is the p-completion of the topological ring lim−→i∈I Y
+
i .

In the rest of the talk, we discuss:

Proposition 4.10 ([Bar+24], Lemma 3.7.1). RΓ(Xproét, Ô
+
) '

[
RΓ(Xproét,O

+
δ )
]∧
p

for X affi-

noid perfectoid, where O+
δ ) denotes the sheaf of discrete rings underlying O+.

Remark 4.11. The functor

j : ∗proét → Xproét

lim←−Si 7→ lim←−(Si ×X)
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induces an adjunction
j∗ : Cond(Set) � Sh(Xproét) : j∗.

For every sheaf of abelian groups F ∈ Sh(Xproét,Ab), Rj∗F ∈ D(Cond(Ab)) has RΓ(Xproét, F )
as underlying complex of abelian groups.

But as we will see below, this yields no ambiguity in the condensed structure:

Lemma 4.12. For any affinoid X there is a natural equivalence

Rj∗Ôδ
+ ' RΓ(Xproét, Ô

+
).

The proof of this lemma requires some preparation, see below.

Definition 4.13. An adic space X is strictly totally disconnected (abbreviated to std) if for
any étale cover {Xi → X} there is a finite subset F ⊂ I such that∐

i∈F
Xi → X

admtits a section. In particular, this implies that Γ: Sh(Xét;A) → A is exact for any abelian
A.

Lemma 4.14. For any std perfectoid affinoid Y , RΓ(Yproét, Ô
+) = Ô+(Y ) and Rj∗Ô

+ = j∗Ô
+

are concentrated in degree zero.

Proof. Let Γcond : Cond(Ab)→ Ab denote the global section/evaluation at ∗. This is an exact
functor and in particular induces a functor RΓcond : D(Cond(Ab)) → D(Ab), given by compo-
nentwise application. It suffices to show that RΓcondRΓ(Yproét, Ô

+) and RΓcond(Rj∗Ô
+) are

concentrated in degree 0.
Now

RΓcond ◦Rj∗ = R(Γcond ◦ j∗) = RΓ(Yproét,−)

and
RΓcond ◦RΓ(Yproét,−) = R(Γcond ◦ Γ(Yproét,−)) = RΓ(Yproét,−)

as functors Sh(Yproét; Ab)→ D(Ab). So it suffices to show that RΓ(Yproét, Ô
+) is concentrated

in degree 0.
By [BS15, Corollary 5.16], the sheafification

ν∗ : Sh(Yét; Ab)→ Sh(Yproét; Ab)

is fully faithful and for any étale sheaf F ,

RΓ(Yproét, ν
∗F ) = RΓ(Yét, F ) = F (Y )

is concentrated in degree 0 as Y is strictly totally disconnected.
For all m ∈ N0 we have an exact sequence

0→ lim1Hm−1(Yproét, Ô
+/pn)→ Hm(Yproét, R lim Ô+/pn)→ lim←−

n

Hm(Yproét, Ô
+/pn)→ 0.

By definition of perfectoid rings, for all affinoid perfectoid Y , Ô+(Y ) = R lim Ô+/pn(Y ) is
derived p-complete. As we will see next week, perfectoid affinoids generate the topology on
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Xproét, hence R lim Ô+/pn = Ô+ as sheaves on Xproét. Since X is affinoid perfectoid, for all
n ∈ N1, Ô+/pn = ν∗O+/pn. Hence, for m ∈ N1:

lim←−
n

Hm(Yproét, Ô
+/pn) = lim←−

n

Hm(Yét, O
+/pn) = 0

and for m ∈ N2,

lim1Hm−1(Yproét, Ô
+/pn) = lim1Hm−1(Yét, O

+/pn) = 0.

This implies that Hm(Yproét, Ô
+) = Hm−1(Yproét, R lim Ô+/pn) = 0 for m ≥ 2 and

H1(Yproét, Ô
+) = lim1H0(Yproét, Ô

+/pn) = lim1R+(Y )/pn = 0

since Ô+(Y ) = R+(Y ) is derived p-complete. This shows that RΓ(Yproét, Ô
+) is concentrated

in degree 0.

We will see next week that any X admits a proétale covering by strongly totally disconnected
perfectoid affinoids. We may therefore compute proétale cohomology of perfectoid affinoid
spaces using any hypercovers by std perfectoid affinoids. This now implies Lemma 4.12:

Proof (Lemma 4.12). Since every rigid analytic space X admits a proétale covering by strongly
totally disconnected perfectoid affinoids, we can compute RΓ(Xproét, Ô

+) and Rj∗Ô
+ using a

hypercover by strongly totally disconnected perfectoid affinoids. Whence it suffices to show that
for totally disconnected affinoid perfectoid Y , RΓ(Yproét, Ô

+) ∼= Rj∗Ô
+ naturally with respect

to pro-étale morphisms.
By Lemma 4.14, for Y totally disconnected affinoid perfectoid, RΓ(Yproét, Ô

+) ∼= Ô+(Y ) and
Rj∗Ô

+ = j∗Ô
+ are concentrated in degree 0, so we are reduced to showing that for Y strongly

totally disconnected affinoid perfectoid, j∗Ô
+(Y ) ∼= Γ(Yproét, Ô

+
), naturally with respect to

pro-étale morphisms. We will show that this holds for all affinoid perfectoid spaces Y .
For S = limi∈I Si ∈ Pro(Fin) and X = Spa(R,R+) perfectoid affinoid,

X × S := [lim←−
i∈I

Si × Y ]∧p = [lim←−
i∈I

Spa(RSi , (R+)Si)]∧p

is perfectoid affinoid and X × S ∈ Xproét.
Hence, by definition of j∗,

j∗Ô
+(lim←−

i∈I
Si) = HomXproét

(lim←−
i∈I

X × Si, Ô
+)

= Ô+(lim←−
i∈I

X × Si)

4.8
= [lim−→

i∈I
Ô+(X × Si)]

∧
p

= [lim−→
i∈I

(Ô+(X))Si)]∧p

= [lim−→
i∈I

C(Si, Ô
+(X))]∧p

= [lim−→
i∈I

C(Si, R
+(X))]∧p .
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Since Ô+(X) = R+ = lim←−n
R+/pn is profinite and R+/pn is finite discrete for all n ∈ N1 by

definition of perfectoid rings,

R+(lim←−
i∈I

Si) = C(lim←−
i∈I

Si, R
+) = C(lim←−

i∈I
Si, lim←−

n

R+/pn) = lim←−
n

lim−→
i

C(Si, R
+/pn).

As for all finite sets F and n ∈ N, C(F,R+/pn) = C(F,R+)/pn,

lim←−
n

lim−→
i

C(Si, R
+/pn) = lim←−

n

lim−→
i

(C(Si, R
+)/pn) = lim←−

n

(lim−→
i

C(Si, R))/pn = [lim−→
i∈I

(C(Si, R
+)]∧p .

This shows that
R+(lim←−

i∈I
Si) ∼= [lim−→

i∈I
(C(Si, R

+)]∧p
∼= j∗Ô

+(lim←−
i∈I

Si)

for all S = lim←−i∈I Si ∈ Pro(Fin). These identifications obviously define isomorphism of con-
densed sets/abelian groups/rings and are natural in the perfectoid affinoid space X with respect
to pro-étale morphisms.

In fact, we do not need complicated hypercovers but can even work with Čech nerves of covers
to compute RΓ(Y, Ô

+
):

Lemma 4.15 ([Bar+24], Lemmas 3.7.3-4). Let Y be perfectoid affinoid. There exists a proétale
cover X → Y with X std perfectoid affinoid. All terms X(i+1) := X×Y i in the Čech nerve are
also std perfectoid affinoid.

Proof (Proposition 4.10). Given this, we obtain the desired identification

RΓ(Y, Ô
+
) ' Tot Ô

+
(X(•))

' Tot lim←−
n

(O+(X(•))/pn)

' Tot lim←−
n

(O+
δ (X

(•))/pn)

' lim←−
n

Tot(O+
δ (X

(•)))/pn

'
[
(TotO+

δ (X
(•)))

]∧
p

'
[
RΓ(Yproét,O

+
δ )
]∧
p

'
[
RΓ(Yproét,O

+
δ )
]∧
p
.

where O+
δ denotes the sheaf of discrete rings underlying Ô+.

Here we used that for X perfectoid affinoid, Ô+(X) = [O+(X)]∧p = limn O
+(X)/pn and O+(X)/pn

is discrete for all n ∈ N0, whence

Ô+(X) = lim
n

O+
δ (X)/pn.
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5 Perfectoid spaces (Christian Kremer, 8 July)

5.1 History

Let us recall a classical theorem that admits a generalisation in the language of perfectoid
spaces.

Theorem 5.1 (Fontaine–Wintenberger). There is an isomorphism of absolute Galois groups

Gal(Qp[p
1/p∞ ]) ∼= Gal(Fp((t))[t

1/p∞ ]).

While these two fields are radically different, we can write any element of Qp as a Laurent
series in the variable p with coefficients in {0, . . . , p− 1}. The same thing is true for Fp((t)) per
construction, replacing p by the variable t, and we will see that the adjunction of sufficiently
many p-th roots of this variable allows us to obtain an isomorphism on absolute Galois groups.

5.2 Perfectoid rings

Let us fix a prime p throughout the rest of this talk, and Let R be a Tate ring, i.e. a Huber
ring such that one can choose a topologically nilpotent unit, called the pseudo-uniformiser $.
As usual, let R◦ ⊂ R denote the subring of power-bounded elements.

Definition 5.2. A Tate ring A is perfectoid if it is complete, uniform (i.e. A◦ ⊂ A is a bounded
subset), and one can choose a pseudouniformiser $ such that

1. $p | p
2. The Frobenius map Frob: A◦/$ → A◦/$p is an isomorphism.

Remark 5.3. The first condition $p | p implies that A◦/$ is of characteristic p so the Frobenius
map is a ring map.

Remark 5.4. If A is of characteristic p, the conditions $p | p does not make sense prima facie,
but we simply set it to be true.

Lemma 5.5. Let A be a Tate ring with a pseudo-uniformiser $ such that $p | p. Then
1. The Frobenius map Frob: A◦/$ → A◦/$p is injective.
2. If A is complete and uniform, then

Frob: A◦ → A◦/$p

is surjective if and only if
Frob: A◦ → A◦/p

is surjective.

An upshot of the second part of this lemma is that if a Tate ring is complete and uniform and
we already have a pseudo-uniformiser $ such that $p | p, then the final condition in asking for a
certain Frobenius map to be an isomorphism does not depend on the choice of $. Furthermore,
the map that we want to be an isomorphism is always injective so it suffices to check it is
surjective.

Proof.
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1. Suppose a ∈ A◦ is (such that its reduction modulo $ is) in the kernel of the Frobenius
map A◦/$ → A◦/$p, i.e. there exists a y in A◦ such that ap = y$p. Then we have

ap

$p
= y ∈ A◦.

By the definition of power-bounded elements, we see that a/$ is also contained in A◦,
whence a = 0 in A◦/$.

2. Since $p | p by assumption, there is a commutative diagram

A◦ A◦/p

A◦/$p,

φ1

φ2

where the vertical map is reduction, hence clearly surjective. It is therefore clear that φ1

being surjective implies that φ2 is surjective, which proves one direction of the statement.
For the converse, assume that φ2 is surjective. Let a ∈ A◦ be an element of which we
want to find a lift along the Frobenius. Since φ2 is surjective, we can write

a = ap0 + b0$
p.

Let us iterate this process for b0 obtain a power series expansion for a in the variable $p.
Since A is assumed to be Tate, complete, and uniform, A◦ will be $-adically complete so
that the power series expansion above converges, and we write

a =
∑
n≥0

apn$
np.

If we now define
c =

∑
n≥0

an$
n ∈ A◦,

then it is clear by the binomial formula and the fact that $p | p that

cp = a+ p(· · · )

whence c is a lift of the class of a along φ1.

Let us now relate the notion of perfectoid rings in characteristic p to the notion of perfect
Fp-algebras (we will see that they are quite related, but still quite different).

Proposition 5.6. Let A be Tate of characteristic p, then the following are equivalent.
1. A is perfectoid.
2. A is complete and perfect.

Remark 5.7. Note that this proposition applies to Tate algebras, in particular while Fp is a
perfect Fp-algebra, it is not perfectoid at all since it is not Tate.

Proof. To see that 2 implies 1, note that A is a complete Tate ring by assumption, and that it
is uniform6. The condition $p | p is set to be vacuously true in characteristic p, so it suffices to
check that

Frob: A◦ → A◦/$p

6More generally, and Tate ring in characteristic p which is complete is automatically uniform
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is an isomorphism. By Lemma 5.5 we see that this is equivalent to requiring that Frobenius

Frob: A◦ → A◦/p

to be an isomorphism, which is true by the assumption that A was perfect. to prove the converse,
just apply Lemma 5.5 again.

A special class of perfectoid rings are those that happen to be fields, called perfectoid fields7.
These admit a more concrete description, as in the theorem below.

Theorem 5.8 (Kedlaya). Let K be a complete topological field, then the followings are equiva-
lent.

1. K is a perfectoid Tate ring.
2. The topology on K is induced by a rank one valuation

| · | : K → R≥0

such that
• The image of the valuation is non-discrete, i.e. im(|·|) ∩ R>0 is not discrete8.
• |p| < 1.
• If K≤1 denotes the subring of elements with valuation ≤ 1, then K≤1/p is semiperfect,

i.e. has surjective Frobenius.

Example 5.9.
• Qp is not perfectoid, indeed its topology is induced by the usual p-adic valuation which

has image {0} ∪ pZ (with the convention that |p| = p−1). This is discrete as a subset of
R>0. Note that Q≤1

p
∼= Zp is however semiperfect after reduction modulo p. Alternatively,

note that one can not choose a pseudo-uniformiser $ of Qp such that $p | p, since there
are not enough p-th roots of unity.

• Define the Tate ring
Qp[p

1/p∞ ] = (
⋃
n

Qp[p
1/pn ])∧,

where each of the rings in the union is equipped with the valuation inherited from Qp, and
the completion on the outside is taken with respect to this valuation. Note that |p| = p−1

in any of these valuations. However, we see that the image of the valuation is not discrete,
since the sequence

|p1/pk | = p−p−k k→∞−−−→ 1

converges to the accumulation point 1 in the image. It suffices to check that Qp[p
1/p∞ ]≤1/p ∼=

Fp, which is clearly (semi-)perfect.
• Define the Tate ring

Qcycl
p = (

⋃
n

Qp[µpn ])
∧

with the valuation once again inherited from Qp under finite extensions and filtered col-
imits. This is once again perfectoid.

7This terminology is not entirely universal
8We want to exclude zero, since this will often be a trivial accumulation point of the image in cases that are

not perfectoid.
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5.3 Tilting and Witt vectors

To distnguish between the notion of tilting for p-adically complete rings and perfectoid rings,
we will introduce some nonstandard terminology.

Definition 5.10. Let R be a p-adically complete ring, then define the (integral) tilt of R to be
the ring

R[ = lim←−
φ

R/p,

with the limit being taken along Frobenius maps.

It is clear that R[, also known as the inverse limit perfection, is a perfect Fp-algebra. Indeed,
per construction the map

R[ → R[, (a0, a1, . . .) 7→ (a1, a2, . . .)

is inverse to the Frobenius map on R[.

Remark 5.11. The integral tilting construction above in fact induces an adjunction

{perfect Fp-algebras} {p-complete Zp-algebras},
W (−)

(−)[

where W (−) denotes the p-typical Witt vectors. Furthermore, this adjunction is such that the
unit

S →W (S)[

is always an equivalence. Given a p-complete Zp-algebra R, the counit map

θ : W (R[)→ R

is Fontaine’s map.

Example 5.12. We have the canonical example

W (Fp) = Zp,

and Can’t find
a ref-
erence
for this
statement
about Ainf

On the other hand, we can also define a notion of tilting for perfectoid rings.

Definition 5.13. Let A be a perfectoid ring, then define the (perfectoid) tilt of A to be the
ring whose multiplicative monoid is given by

A[ = lim←−
φ

A,

the limit along the Frobenius, and addition defined by

(a(n))n + (b(n))n = ( lim
k→∞

(a(n+k) + b(n+k))p
k
)n.

Lemma 5.14. If A is perfectoid, then A[ is perfectoid of characteristic p. If A itself was already
of characteristic p, then A ∼= A[ is isomorphic to its tilt.
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Example 5.15. There is a chain of isomorphisms

(Qcycl
p )[ ∼= (Fp((t))[t

1/p∞ ])∧ ∼= (Qp[p
1/p∞ ])[,

even though the two outside rings are not isomorphic before tilting.

Let us now extend the tilting construction to affinoid objects in perfectoid geometry.

Definition 5.16. A perfectoid Huber pair is a Huber pair (A,A+) such that
1. A is perfectoid (and in particular Tate),
2. A+ ⊂ A◦ is integral and open.

Define the tilt of a perfectoid Huber pair above as the perfectoid Huber pair (A[, A[+ = lim←−
φ

A+).

Remark 5.17. In fact, we see that A[+ is isomorphic to the integral tilt of A+/$.

Remark 5.18. If (A,A+) is a perfectoid Huber pair, Fontaine’s map

θ : W (A[+)→ A+

is surjective, with kernel primitive of degree one, i.e. generated by an element of the form

p+ [$]α

for [$] the multiplicative lift of $ to the Witt vectors, and α some element in W (A[+). In fact,
this assembles to an equivalence of categories

{perfectoid Huber pairs} ∼= {perfect prisms over Fp}
(A,A+) 7→ (A[, A[+, ker(θ)),

where the right hand side is the category of triples consisting of a perfectoid Huber pair (R,R+)
in characteristic p and a primitive ideal I ⊂W (R+) of degree one.

Let us remark that if (R,R+, I) is a perfect prism over Fp and (S, S+) is a perfectoid Huber
pair with a map f : (R,R+) → (S, S+), then the image f(I) is still primitive of degree one
in W (S[+). Let us now extract the main immediate consequence of this equivalence between
perfectoid Huber pairs and perfect prisms.

Corollary 5.19 (Tilting equivalence). Let (A,A+) be a perfectoid Huber pairs, then there are
equivalences of categories (pHp = perfectoid Huber pair)

pHp over (A,A+) ' perfect prisms over (A[, A[+, ker(θ)) ' pHp over (A[, A[+).

Proof. Tilting a perfectoid Huber pair that is already in characteristic p gives back the same
result, so we just apply the tilting equivalence between perfectoid Huber pairs and perfect prisms
twice.

5.4 Perfectoid spaces

Now that we have discussed perfectoid Huber pairs, our affinoid perfectoids, let us globalise the
theory to perfectoid spaces. First, note that if (A,A+) is a perfectoid Huber pair, then it is
automatically sheafy so that Spa(A,A+) forms an affinoid adic space.
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Definition 5.20. A perfectoid space is an adic space locally of the form Spa(A,A+) for (A,A+)
a perfectoid Huber pair.

By applying the tilting equivalence on every perfectoid Huber pair and gluing this back together,
we see that the tilting equivalence globalises to an equivalence

Pfd/X ' Pfd/X[

of perfectoid spaces over a base perfectoid space X and its tilt X[. In fact, we can strengthen
this to the almost purity result of Faltings.

Theorem 5.21 (Almost purity). Let X be a perfectoid space, then there is an equivalence of
sites

Xét ' X[
ét.

Remark 5.22. Taking fundamental groups then recovers the Fontaine–Wintenberger theorem
5.1.

5.5 Pro-étale cohomology

Theorem 5.23. Let (R,R+) be a perfectoid Huber pair, and denote by X = Spa(R,R+) the
associated affinoid perfectoid adic space. Then

• Hi(X;OX) = 0 for i > 0,
• Hi(X;O+

X) is almost zero for i > 0, and

• Hi
proét(X; Ô+

X) is almost zero for i > 0.

Recall that an R+-module M is almost zero, if for any pseudo-uniformiser9 $ ∈ R+, $M = 0.
We can use this to prove a surprising theorem about the interplay between the cohomology of
adic spaces and affinoid perfectoids.

Theorem 5.24. Let X be a locally Noetherian adic space over Spa(Qp,Zp). Then the class of
U ∈ Xproét such that U is affinoid perfectoid forms a basis for the proétale topology on Xproét.

Remark 5.25. A slightly stronger version of this, combined with Lemma 4.14 gives rise to the
comparison between condensed and proétale cohomology in the previous talk.

5.6 How many untilts?

As we saw before, in the case of the Fontaine–Wintenberger isomorphism, nonisomorphic fields
can have isomorphic tilts. It is therefore reasonable to ask for a moduli problem of untilts of a
given perfectoid field of characteristic p.

Theorem 5.26 (Fargues–Fontaine). Let L be a perfectoid field of characteristic p. Then there
exists a curve over Qp (i.e. a regular Noetherian scheme of Krull dimension one) whose closed
points are in bijection with (Frobenius orbits of isomorphism classes of) untilts of L, i.e. pair
(K, ι) of a perfectoid field K of characteristic zero and a finite extension ι : L→ K[. The degree
of a closed points is the degree of this extension.

9Note the word any, this helps us e.g. recover the more classical notions of being almost zero over a local ring
in terms of all powers of the maximal ideal.
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Note that we are taking Frobenius orbits, indeed there is a natural Z-action on an untilt (K, ι),
by sending ι to ι ◦ Frobn.

Proposition 5.27. Given a perfectoid field L of characteristic p as above, there are infinitely
many points of degree one on the Fargues–Fontaine curve over L.
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