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This talk is about what looking at categorical structures in formal (and particularly univa-
lent) mathematics can teach us about categories. The new parts are joint work with Benedikt
Ahrens, Page North and Niels van der Weide [WRAN23].

1 What is formalization of mathematics?

Formalization of mathematics puts mathematical definitions, lemmas, theorems, ... in a lan-
guage a computer can understand and then check. This roughly proceeds along the following
lines.

Mathematical
statements

Type theory (syntax) &
Category theory (semantics)

Programming code
e.g. Lean, Coq, ...

Formally verified
mathematics

translated to entered into

computers

via proof

assistants

The key facts about type theory is that we have types X, terms x : X and a variety of type
constructors following some rules. Instead of going through all the rules explicitly let’s do an
example.

Words Math Type Theory
An associative magma
is a set with an asso-
ciative multiplication.

(X,m : X × X → X,∀x, y, z ∈
X, m(m(x, y), z) = m(x,m(y, z)))

AssocMag :=
∑

(X : U)(m : X ×
X → X),

∏
(xyz : X),m(mxy)z =

mx(myz)

An associative magma
has an identity.

(M ∈ AssocMag,∃e ∈ M, ∀x ∈
M(m(e, x) = x) ∧ (m(x, e) = x))

AssocMagId :=
∑

(M :
AssocMag)(e : M),

∏
(x :

M), (mex = x)× (mxe = x)
Identities in asso-
ciative magmas are
unique.

∀M ∈ Assocmag,∀e, e′ ∈
AssocMagId M(e = e′)

∏
(M : AssocMag) (e e′ :

AssocMagId M), (e = e′)

Now, as we mentioned type theories have various constructor rules, which tell us how to
construct “terms” and give us a “proof”, which can be verified by a computer. So, formalization
can help check advanced mathematical proofs. Important examples includes the Liquid Tensor
Experiment in the proof assistant Lean [BCc21] or the computation of homotopy groups of
spheres in cubical Agda [LM23].

2 Identity Types

The goal of this talk is to focus on how pursuing type theory and formalization can actually
help our mathematical understanding. The key fact here are identity types. Commonly type
theories fall into two directions:
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Identity Types

Extensional: Identities are unique Intensional: Identities are structure
(Lean, ... ) (Coq UniMath, ... )

In an extensional setting, the identity types in a type like AssocMag do not carry additional
information. But in the intensional setting, things can get very interesting. In particular if we
have some control over the identities of the universe.

Let’s look at examples that contrasts these two perspectives.

Example 2.1. The category of sets is a model for extensional types, whereas groupoids are
intensional.

Type Theory Set Theory Groupoid Theory

Types Sets Groupoids
Terms Elements Objects
x = y {∗ |x = y} Hom(x,y)
U Set of all sets Groupoid of all groupoids

Remark 2.2. There is a subtlety here. We really want to use the 2-groupoid of groupoids here
instead of the 1-groupoid, as we want that the identities of groupoids correspond to the groupoid
of equivalences. This property is known as univalence, which we need to get the desired results.

Here is a question: How does working in intensional (and even univalent) type theories effect
the structure of a category?

3 Categories in Type Theories

A category is defined as usual in a type theoretical setting.
Cat :=

∑
(O : U)
(M : O ×O → U)
(m :

∏
(x y z : O), (M x y → M y z → M x z))

(e :
∏
(x : O), (M x x)),

×(rid :
∏
(x y : O)(f : M x y),m f (e x) = f)

×(lid :
∏
(x y : O)(g : M x y),m (e y) g = g)

×(assoc :
∏
(x y z w : O)(f : M x y)(g : M y z)(h : M z w), (m (m f g)h = m f (m g h)))

×(homsets :
∏
(x y : O), (isaset M x y)).

Here I used implicit notation for m.
Let C,D : Cat. What can we say about the type C = D? First of all unwinding it from the

definition of identity types, the data of such a term i : C = D is given by

• iO : OC = OD

• iM x y : M x y = M (eOx) (eOy)

• with compatibilities which unwind to functoriality.

So, the key is to check what it means for objects and for morphisms to be identified. Let us
look how this manifests in groupoids to get a better intuition.

Example 3.1. Let C,D be a category in a classical sense. Then we can construct a category
in groupoids, where all groupoids are discrete denoted NC, ND. Then what is NC = ND?
It unwinds precisely to an isomorphism of categories, as our identities of sets are precisely
bijections.
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Example 3.2. Let C,D again be categories in a classical sense. Then let NRezkC be the
category in groupoids given by:

• Objects are given by the underlying groupoid C≃.

• Morphisms are given by the underlying groupoid of the category of arrows (ArrC)≃.

• The remaining structure follows from the categorical structure in C.

Then what would it mean to have NRezkC = NRezkD? Following the argument above, it is
saying:

• The underlying groupoids are equivalent.

• The underlying groupoids of arrow categories are equivalent.

This information precisely corresponds to being an equivalence of categories. Notice there is
some mathematics here that was kind of known, but first explicated by Rezk [Rez01].

So, we can get two completely diverging mathematical behaviors from categories. What
should we do? The solution is to distill the properties that resulted in this diverging behavior and
add it to the definition. This was first recognized by Rezk [Rez01] under the title “completeness”
and then adopted to the type theoretical setting under the name “univalence” by [AKS15].

Proposition 3.3. Let CatSet =
∑

(C : Cat), (isaset OC). Then identities in CatSet correspond
to isomorphisms.

Proposition 3.4 ([AKS15]). Let CatUniv =
∑

(C : Cat), (isuniv C). Then identities in CatUniv
correspond to equivalences.

Here are some upshots:

1. Using intensional type theories creates an opening for incorporating much more diverse
notions of equality. We can in one foundation both talk about isomorphisms of categories
and equivalences of categories.

2. More precisely, we can choose our “universe of categories” based on what we want the
category to be invariant under. Hence, if we want prove a sentence of the form “For
every category ...” we choose the universe based on the invariance of the mathematical
statement.

3. Achieving this relies on what I call the category theory/univalent foundations feedback
loop:

Formalizing categories

Choosing right categorical definition Picking right invariance

4 Digression: 2-Categories

There is a similar story about 2-categories. A 2-category is a 1-category along with a set of
2-morphisms that compose associatively and unitaly.

2-categorical equivalences corresponding 2-category

isomorphism strict 2-category
essentially surjective local isomorphism 2-category with underlying univalent 1-category

equivalence univalent bicategory[AFMvdW19]
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Remark 4.1. Notice in the last item to get a proper notion it was not enough to make a univalence
assumption on a strict 2-category. In fact, we needed to relax the 2-category structure to a
bicategory, which relaxes unitality and associativity.

This is an excellent example of the above mentioned feedback loop. However, note here
we could benefit from the fact that weak 2-category theory aka bicategory theory, has been
developed quite extensively, going back decades (for example [Bén67]). As we shall see in
double category theory the situation is far more tricky.

5 Why Double Categories?

We now want to use this insight for the study of double categories. Let us do a quick stop and
recall why we care about double categories in the first place.

• Have been used to define limits of 2-categories [Gra20, cM22].

• Relevant in applied category theory (Lenses, ...) [Cla23].

• Various applications in computer science [BCV22, DM13].

So, what we want is a formalization of double categories with the following aims.

1. Formalizing result involving double categories.

2. Using the category theory/univalent foundations feedback loop to develop appropriate
double categorical structures for a given double categorical equality.

6 Defining Double Categories

Definition 6.1. A double category is a category object in categories.

More explicitly we have

• Objects

• Horizontal morphisms depending on objects

• Vertical morphisms depending on objects

• Squares depending on horizontal/vertical morphisms

• Identities for objects, horizontal and vertical morphisms

• Compositions of horizontal, vertical morphisms, squares

Pictorially we can depict this information as follows:

O Hor CompHor

V er Sq CompHorSq

CompV er CompV erSq

where the compositions are subject to appropriate notions of associativity and unitality.
For categories we witnessed two relevant notions of equality (isomorphism and equivalence).

We hence need to determine relevant notions of equivalences for double categories.
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1. Isomorphism: Bijection on objects, hor/ver morphisms, squares.

2. Horizontal Equivalence: Equivalence of objects & horizontal morphisms, vertical mor-
phisms & squares.

3. Vertical Equivalence: Flip of the previous one.

4. Gregarious Equivalence: A double functor that is surjective on objects (up to a technical
notion of equivalence), surjective on morphisms (up to isomorphism), fully faithful on
squares.

The case for isomorphisms is clear. We similarly can assume all levels are sets to get the
desired behavior. Let us focus on the case of horizontal equivalences. Here we use the previous
section to deduce that the categories induced by (O, Hor) and (V er, Sq) must be univalent. This
implies that the category (O, V er) must be defined in a weaker manner, meaning associativity
and unitality must be defined weakly. This results in an asymmetrical notion of double category
where the horizontal direction is strict, but the vertical direction is weak. This notion has already
been studied in the literature and is known as a pseudo double category [Gra20, JY21].

This suggests a connection between identities of pseudo double categories and horizontal
equivalences that we confirm in our work [WRAN23].

Theorem 6.2 (van der Weide–R.–Ahrens–North). Identities in the universe of univalent hor-
izontal (vertical) pseudo double categories corresponds to horizontal (vertical) equivalences.

This leaves us with the last case, which is in fact not settled and is work in progress. Here is
a reasonable conjecture, building on work of Verity, who defines a very general notion of double
categories, called double bicategories [Ver11], and ideas of Campbell [Cam20].

Conjecture 6.3. For a version of Verity double bicategories, identities coincide with gregarious
equivalences.

One challenge that impedes any progress is the lack of existing results, meaning we need to
develop a lot of just pure category theory to be able to get to the desired result.

7 Implications for double ∞-category theory

Let us end this talk with analysis of double ∞-category theory. Let ∆ be the simplex category
(the category of non-empty finite linear orders). A (non-complete) double ∞-category can be
defined as a functor

X : ∆op × ∆op → sSet

that satisfies some technical conditions (namely Reedy fibrancy and the Segal condition), that
make it look as follows.
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In the homotopical literature, one relevant question is what a good notion of “complete
double ∞-category” is (i.e. univalent double ∞-category). Various notions have been proposed,
but in particular a symmetric notion of univalence has been missing from the literature, as can
be seen from the following sample of results:

1. Bidirectional completeness [JFS17].

2. One directional completeness [Hau16].

3. One directional completeness + local completeness.

4. Completeness based on gregarious equivalences [Cam20].

Our work would not just provide interesting results regarding double categories. Rather
it could also be directly applied to double ∞-category theory, by appropriately adopting the
conditions.

8 Summary

1. Formalization translates mathematical statements into ones that can be checked by a
computer via proof assistants.

2. Formalization (in particular in the univalent setting) can actually contribute to concrete
theoretical developments.

3. An relevant example are double categories. Equivalences of double categories and their
corresponding appropriately chosen weak notions are not studied extensively, and a uni-
valent perspective can be a powerful guide towards appropriate definitions.

4. Beyond applications to double category theory, the results also have valuable implications
for double ∞-category theory.
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