In preparation
-
An explicit Galois descent for multiple \(t\) values of maximal height
M. E. Hoffman and N. Sato
Preprints
-
A review of Dan's reduction method for multiple polylogarithms
(Historical)
Mathematica worksheets to verify the results
1703.03961 [math.NT]
-
Explicit formulas for Grassmannian polylogarithms
(Split into two papers during submission)
H. Gangl and D. Radchenko
1909.13869 [math.NT]
-
Appendix A in Complete families of embedded high genus CMC surfaces in the 3-sphere
(Superseded by 2411.15071 [math.DG])
L. Heller, S. Heller and M. Traizet
2108.10214 [math.DG]
-
Differential operators and a depth reduction for the alternating multiple zeta values \(\zeta(1, \ldots, 1, \overline{2m})\)
K. C. Au and M. E. Hoffman
2312.17148 [math.NT]
-
Creative telescoping and generating functions of (variants of) multiple zeta values
K. C. Au
2404.16199 [math.NT]
-
Symmetries of weight 6 multiple polylogarithms and Goncharov's Depth Conjecture
2405.13853 [math.NT]
-
Minimal surfaces and alternating multiple zetas
L. Heller, S. Heller and M. Traizet
2411.15071 [math.DG]
-
The Hopf algebra of multiple polylogarithms
A. Matveiakin, D. Radchenko and D. Rudenko
2411.15071 [math.NT]
-
Euler-Kronecker constants of modular forms: beyond Dirichlet \(L\)-series
A. Medvedovsky and P. Moree
2412.01803 [math.NT]
-
Multiple polylogarithms and the Steinberg module
D. Radchenko and D. Rudenko
2505.02202 [math.NT]
Publications
-
\( \zeta(\{ \, \{2\}^m, 1, \{2\}^m, 3 \}^n, \{2\}^m) / \pi^{4n + 2m(2n+1)} \) is rational
Journal of Number Theory 148 (2015), pp. 463-477
1306.6775 [math.NT]
10.1016/j.jnt.2014.09.028
-
Generalized Jacobi-Trudi determinants and evaluations of Schur multiple zeta values
H. Bachmann
European Journal of Combinatorics 87 (2020), pp. 103-133
1908.05061 [math.NT]
10.1016/j.ejc.2020.103133
-
An analogue of cyclic insertion for mutiple zeta star values
Kyushu Journal of Mathematics 74 (2020), pp. 337-352
1806.10053 [math.NT]
10.2206/kyushujm.74.337
-
The alternating block decomposition of iterated integrals, and cyclic insertion on multiple zeta values
The Quarterly Journal of Mathematics, Volume 72, Issue 3, September 2021, Pages 975–1028
1703.03784 [math.NT]
10.1093/qmath/haaa056
-
On functional equations for Nielsen polylogarithms
H. Gangl and D. Radchenko
Communications in Number Theory and Physics, Vol. 15, No. 2 (2021), pp. 363-454
1908.04770 [math.NT]
10.4310/CNTP.2021.v15.n2.a4
-
Clean single-valued polylogarithms
C. Duhr and H. Gangl
SIGMA 17 (2021), 107, 34 pages, Special Issue on Algebraic Structures in Perturbative Quantum Field Theory in honor of Dirk Kreimer for his 60th birthday.
2104.04344 [math.NT]
10.3842/SIGMA.2021.107
-
On two conjectures of Sun concerning Apéry-like series
H. Gangl, L. Lai, C. Xu, and J. Zhao
Forum Mathematicum, Volume 35 Issue 6 (2023), pp. 1533-1547
2210.14704 [math.NT]
10.1515/forum-2022-0325
-
Functional equations of polygonal type for multiple polylogarithms in weights 5, 6 and 7
H. Gangl and D. Radchenko
Pure and Applied Mathematics Quarterly, Vol. 19, No. 1 (2023), pp. 85-93 (Special issue in honor of Don Zagier.)
2012.09840 [math.NT]
10.4310/PAMQ.2023.v19.n1.a5
-
On the evaluation of the alternating multiple \( t \) value \( t(\overline{1},\ldots,\overline{1}, 1, \overline{1},\ldots,\overline{1}) \)
The Ramanujan Journal, Volume 64, pages 1–17, (2024)
2112.15349 [math.NT]
10.1007/s11139-023-00788-0
-
On the Goncharov depth conjecture and polylogarithms of depth two
H. Gangl, D. Radchenko, and D. Rudenko
Selecta Mathematica New Series, Vol. 30, #27 (2024)
2210.11938 [math.NT]
10.1007/s00029-024-00918-6
-
Evaluation of the multiple zeta values \(\zeta(2,\ldots,2,4,2,\ldots,2) \) and period polynomial relations
A. Keilthy
Forum of Mathematics, Sigma, Vol 12. #e46 (2024)
2210.03616 [math.NT]
10.1017/fms.2024.16
-
Explicit linear dependence congruence relations for the partition function modulo 4
Research in Number Theory 11, 39 (2025)
2412.17459 [math.NT]
10.1007/s40993-025-00618-w
-
Symmetry results for multiple \(t\)-values
M. E. Hoffman
Math. Z. 309 (2025), no. 4, Paper No. 75.
2204.14183 [math.NT]
10.1007/s00209-024-03544-2
-
On the evaluations of multiple \(S\) and \(T\) values of the form \(S(\overset{\smash{{}_{(-)}}}{2}, 1, \ldots, 1, \overset{\smash{{}_{(-)}}}{1})\) and \(T(\overset{\smash{{}_{(-)}}}{2}, 1, \ldots, 1, \overset{\smash{{}_{(-)}}}{1})\): Answers to questions of Xu, Yan, and Zhao
Indagationes Mathematicae (2025)
2403.04727 [math.NT]
10.1016/j.indag.2024.12.001
-
On motivic multiple \(t\) values, Saha's basis conjecture, and generators of alternating MZV's
Math. Ann. 392, 1995–2079 (2025).
2112.14613 [math.NT]
10.1007/s00208-024-02928-3
-
On the parity of coefficients of eta powers
L. Mauth, and A. Medvedovsky
To appear in Research in the Mathematical Sciences
2411.17638 [math.NT]
10.1007/s40687-025-00507-9
Thesis
The final version of my thesis is available in the Durham e-Theses repository. Alternatively a version of my thesis is hosted here (this version has the correct page numbering, and PDF bookmarks).
You can also view mathematica worksheets containing various supporting calculations.