Primes of the Form $x^2 + ny^2$ Steven Charlton	
	Primes of the Form $x^2 + ny^2$
	Class Field Theory
	Steven Charlton

29th February 2012

Introduction

Primes of the Form $x^2 + ny^2$ Steven Charlton Motivation

- Binary Quadrati Forms
- Sum of Two Squares
- The Hilbert Clas Field

 $p = x^2 + 23y$

- Motivating examples
- Definition of a binary quadratic form
- Fermat and the sum of two squares
- The Hilbert class field
- \blacksquare Primes of the form x^2+23y^2

Motivating Examples

Steven Charlton

Motivation

- Binary Quadra Forms
- Sum of Two Squares
- The Hilbert Clas Field

 $p = x^2 + 23y^2$

Conclusion

■ $p = x^2 + y^2 \Leftrightarrow p = 2$, or $p \equiv 1 \pmod{4}$ ■ $p = x^2 + 2y^2 \Leftrightarrow p = 2$, or $p \equiv 1, 3 \pmod{8}$

•
$$p = x^2 + 5y^2 \Leftrightarrow p = 5$$
, or $p \equiv 1,9 \pmod{20}$

Motivating Examples

Primes of the Form $x^2 + ny^2$

Steven Charlton

Motivation

- Binary Quadra Forms
- Sum of Two Squares
- The Hilbert Class Field
- p = x + 23
- Conclusion

- For $p \neq 2, 17$:

$$p = x^2 + 17y^2 \Leftrightarrow \begin{cases} \left(\frac{-17}{p}\right) = 1, \text{ and} \\ (2x^2 - 1)^2 \equiv 17 \pmod{p} \text{ has a solution} \end{cases}$$

Binary Quadratic Forms

$\begin{array}{l} {\rm Primes \ of \ the} \\ {\rm Form \ } x^2 \ + \ ny^2 \end{array}$

Steven Charlton

Motivation

Binary Quadratic Forms

Sum of Tw Squares

The Hilbert Clas Field

 $p = x^2 + 23$

- Binary quadratic form: $ax^2 + bxy + cy^2$
- Discriminant: $D = b^2 4ac$
- Notion of equivalence
- Ideals in a quadratic field correspond to quadratic forms

Binary Quadratic Forms

Primes of the Form $x^2 + ny^2$

Steven Charlton

Motivation

Binary Quadratic Forms

Sum of Tw Squares

The Hilbert Clas Field

 $p = x^2 + 23$

Conclusion

- Binary quadratic form: $ax^2 + bxy + cy^2$
- Discriminant: $D = b^2 4ac$
- Notion of equivalence
- Ideals in a quadratic field correspond to quadratic forms

Theorem

If $p \nmid n$ is an odd prime, then $\left(\frac{-n}{p}\right) = 1$ if and only if p is represented by some binary quadratic form of discriminant D = -4n.

Fermat and the Sum of Two Squares

Primes of the Form $x^2 + ny^2$

Steven Cham

Motivation

Binary Quadrati Forms

Sum of Two Squares

The Hilbert Class Field

 $p = x^2 + 23y$

When is
$$p = x^2 + y^2$$
?

Fermat and the Sum of Two Squares

Primes of the Form $x^2 + ny^2$

Binary Quadrat Forms

Sum of Two Squares

The Hilbert Class Field $v = x^2 + 23u^2$

Conclusion

When is
$$p = x^2 + y^2$$
?

For $p \nmid 1$ an odd prime:

- p is represented by a form with D = -4 if and only if $\left(\frac{-1}{n}\right) = 1$
- There is only one quadratic form with D = -4
- p is represented by $x^2 + y^2$ if and only if $\left(\frac{-1}{p}\right) = 1$

Fermat and the Sum of Two Squares

Form
$$x^2 + ny^2$$

Binary Quadrat Forms

Sum of Two Squares

The Hilbert Class Field $p = x^2 + 23y^2$ When is $p = x^2 + y^2$?

For $p \nmid 1$ an odd prime:

- p is represented by a form with D = -4 if and only if $\left(\frac{-1}{p}\right) = 1$
- $\hfill There is only one quadratic form with <math display="inline">D=-4$
- p is represented by $x^2 + y^2$ if and only if $\left(\frac{-1}{p}\right) = 1$

Finding the condition:

• $\left(\frac{-1}{p}\right) = 1$ if and only if $p \equiv 1 \pmod{4}$ by quadratic reciprocity • $2 = 1^2 + 1^2$

So
$$p = x^2 + y^2 \Leftrightarrow p = 2$$
, or $p \equiv 1 \pmod{4}$.

The Hilbert Class Field

The Hilbert Class Field

A prime ideal \mathfrak{p} of K is principal if and only if \mathfrak{p} splits completely in L.

Setting Up

$\begin{array}{l} {\rm Primes \ of \ the} \\ {\rm Form \ } x^2 \ + \ ny^2 \end{array}$

Steven Charlton

Motivation

Binary Quadrati Forms

Sum of Two Squares

The Hilbert Class Field

 $p = x^2 + 23y^2$

Conclusion

Which primes are of the form $p = x^2 + 23y^2$?

- First look at $K = \mathbb{Q}(\sqrt{-23})$
- $Q_0 = x^2 + xy + 6y^2$ corresponds to principal ideals in K
- Q_0 represents p if and only if p splits into principal ideals in K

Hilbert Class Field of $K = \mathbb{Q}(\sqrt{-23})$

Steven Charlton

Motivation

Binary Quadrati Forms

Sum of Two Squares

The Hilbert Class Field

$$p = x^2 + 23y^2$$

Conclusion

• The Hilbert class field of K is $L = K(\alpha)$, where $\alpha^3 - \alpha - 1 = 0$

Hilbert Class Field of $K = \mathbb{Q}(\sqrt{-23})$

Primes of the Form $x^2 + ny^2$

Steven Charlton

Motivation

Binary Quadra Forms

Sum of Tw Squares

The Hilbert Clas Field

 $p = x^2 + 23y^2$

Conclusion

• The Hilbert class field of K is $L = K(\alpha)$, where $\alpha^3 - \alpha - 1 = 0$

Hilbert Class Field of $K = \mathbb{Q}(\sqrt{-23})$

Primes of the Form $x^2 + ny^2$

Steven Charlton

Motivation

Binary Quadra Forms

Sum of Two Squares

The Hilbert Clas Field

 $p = x^2 + 23y^2$

Conclusion

• The Hilbert class field of K is $L = K(\alpha)$, where $\alpha^3 - \alpha - 1 = 0$

• $p = x^2 + xy + 6y^2$ if and only if p splits in F and in K

Hilbert Class Field of
$$K = \mathbb{Q}(\sqrt{-23})$$

Primes of the Form $x^2 + ny^2$

Steven Charlton

Motivation

Binary Quadra Forms

Sum of Two Squares

The Hilbert Clas Field

 $p = x^2 + 23y^2$

Conclusion

• The Hilbert class field of K is $L = K(\alpha)$, where $\alpha^3 - \alpha - 1 = 0$

p = x² + xy + 6y² if and only if p splits in F and in K
For p ≠ 23:

$$p = x^2 + xy + 6y^2 \Leftrightarrow \begin{cases} \left(\frac{-23}{p}\right) = 1, \text{ and} \\ x^3 - x - 1 \equiv 0 \pmod{p} \text{ has a solution} \end{cases}$$

Primes of the Form $x^2 + 23y^2$

Primes of the Form $x^2 + ny^2$

Steven Charlton

Motivation

Binary Quadrat Forms

Sum of Two Squares

The Hilbert Clas Field

$$p = x^2 + 23y^2$$

Identity:
$$x^2 + xy + 6y^2 = (x + \frac{y}{2})^2 + 23(\frac{y}{2})^2$$
If $p \neq 2$, then $p = x^2 + xy + 6y^2$ means y is even:
 $1 \equiv x^2 + xy \equiv x(x + y) \pmod{2}$

Primes of the Form $x^2 + 23y^2$

$\begin{array}{l} {\rm Primes \ of \ the} \\ {\rm Form \ } x^2 \ + \ ny^2 \end{array}$

Steven Charlton

Motivation

Binary Quadrat Forms

Sum of Two Squares

The Hilbert Class Field

 $p = x^2 + 23y$

Identity:
$$x^2 + xy + 6y^2 = \left(x + \frac{y}{2}\right)^2 + 23\left(\frac{y}{2}\right)^2$$
If $p \neq 2$, then $p = x^2 + xy + 6y^2$ means y is even
 $1 \equiv x^2 + xy \equiv x(x+y) \pmod{2}$

•
$$p = x^2 + xy + 6y^2$$
 if and only if $p = x^2 + 23y^2$

For
$$p \neq 23$$
:
 $p = x^2 + 23y^2 \Leftrightarrow \begin{cases} \left(\frac{-23}{p}\right) = 1, \text{ and} \\ x^3 - x - 1 \equiv 0 \pmod{p} \end{cases}$ has a solution

Conclusion

Primes of the Form $x^2 + ny^2$

Steven Charlton

Motivation

Binary Quadrat Forms

Sum of Two Squares

The Hilbert Clas Field

 $p = x^2 + 23y$

Conclusion

In summary:

- Defined binary quadratic forms
- Proved Fermat's two-squares theorem
- Used the Hilbert class field to find when $p = x^2 + 23y^2$

Conclusion

Primes of the Form $x^2 + ny^2$

Steven Charlton

Motivation

Binary Quadrat Forms

Sum of Two Squares

The Hilbert Clas Field

 $p = x^2 + 23y$

Conclusion

In summary:

- Defined binary quadratic forms
- Proved Fermat's two-squares theorem
- Used the Hilbert class field to find when $p = x^2 + 23y^2$

What else could we look at?

- Ring class fields to deal with all $x^2 + ny^2, n > 0$
- Narrow class fields to study indefinite forms