

29th February 2012

Introduction

[Primes of the](#page-0-0)
Form $x^2 + ny^2$

-
-
-
-

- **Motivating examples**
- Definition of a binary quadratic form
- Fermat and the sum of two squares
- The Hilbert class field
- Primes of the form $x^2 + 23y^2$

Motivating Examples

[Motivation](#page-2-0)

-
-
-

 $p = x^2 + y^2 \Leftrightarrow p = 2$, or $p \equiv 1 \pmod{4}$ $p = x^2 + 2y^2 \Leftrightarrow p = 2$, or $p \equiv 1, 3 \pmod{8}$ *p* = $x^2 + 5y^2$ ⇔ *p* = 5, or *p* ≡ 1, 9 (mod 20)

Motivating Examples

[Primes of the](#page-0-0)
Form $x^2 + ny^2$

[Motivation](#page-2-0)

-
-
-

 $p = x^2 + y^2 \Leftrightarrow p = 2$, or $p \equiv 1 \pmod{4}$ $p = x^2 + 2y^2 \Leftrightarrow p = 2$, or $p \equiv 1, 3 \pmod{8}$ *p* = $x^2 + 5y^2$ ⇔ *p* = 5, or *p* ≡ 1, 9 (mod 20)

For
$$
p \neq 2, 17
$$
:

$$
p = x^2 + 17y^2 \Leftrightarrow \begin{cases} \left(\frac{-17}{p}\right) = 1, \text{ and} \\ (2x^2 - 1)^2 = 17 \pmod{p} \text{ has a solution} \end{cases}
$$

Binary Quadratic Forms

[Primes of the](#page-0-0)
Form $x^2 + ny^2$

[Binary Quadratic](#page-4-0) Forms

- Binary quadratic form: $ax^2 + bxy + cy^2$
- Discriminant: $D = b^2 4ac$
- Notion of equivalence
- I Ideals in a quadratic field correspond to quadratic forms

Binary Quadratic Forms

[Primes of the](#page-0-0)
Form $x^2 + ny^2$

[Binary Quadratic](#page-4-0) Forms

- Binary quadratic form: $ax^2 + bxy + cy^2$
- Discriminant: $D = b^2 4ac$
- **Notion of equivalence**
- I Ideals in a quadratic field correspond to quadratic forms

Theorem

If $p \nmid n$ is an odd prime, then $\left(\frac{-n}{p}\right) = 1$ if and only if p is represented by some binary quadratic form of discriminant $D = -4n$.

Fermat and the Sum of Two Squares

[Sum of Two](#page-6-0) Squares

When is
$$
p = x^2 + y^2
$$
?

Fermat and the Sum of Two Squares

[Binary Quadratic](#page-4-0)

[Sum of Two](#page-6-0) Squares

When is
$$
p = x^2 + y^2
$$
?

For $p \nmid 1$ an odd prime:

- p is represented by a form with $D=-4$ if and only if $\left(\frac{-1}{p}\right) =1$
- There is only one quadratic form with $D = -4$
- p is represented by $x^2 + y^2$ if and only if $\left(\frac{-1}{p}\right) = 1$

Fermat and the Sum of Two Squares

Primes of the
\n**Form**
$$
x^2 + ny^2
$$

\n**Steven Charilton**

[Sum of Two](#page-6-0) Squares

When is
$$
p = x^2 + y^2
$$
?

For $p \nmid 1$ an odd prime:

- p is represented by a form with $D=-4$ if and only if $\left(\frac{-1}{p}\right) =1$
- There is only one quadratic form with $D = -4$
- p is represented by $x^2 + y^2$ if and only if $\left(\frac{-1}{p}\right) = 1$

Finding the condition:

 $\left(\frac{-1}{p}\right) = 1$ if and only if $p \equiv 1 \pmod{4}$ by quadratic reciprocity $2 = 1^2 + 1^2$

So
$$
p = x^2 + y^2 \Leftrightarrow p = 2
$$
, or $p \equiv 1 \pmod{4}$.

The Hilbert Class Field

The Hilbert Class Field

A prime ideal p of K is principal if and only if p splits completely in *L*.

Setting Up

[Primes of the](#page-0-0)
Form $x^2 + ny^2$

 $p = x^2 + 23y^2$

Which primes are of the form $p = x^2 + 23y^2$?

First look at
$$
K = \mathbb{Q}(\sqrt{-23})
$$

 $Q_0 = x^2 + xy + 6y^2$ corresponds to principal ideals in *K*

 Q_0 represents *p* if and only if *p* splits into principal ideals in *K*

$$
p = x^2 + 23y^2
$$

The Hilbert class field of K is $L=K(\alpha)$, where $\alpha^3-\alpha-1=0$

$$
p = x^2 + 23y^2
$$

[Primes of the](#page-0-0)
Form $x^2 + ny^2$

Field

 $p = x^2 + 23y^2$

The Hilbert class field of K is $L=K(\alpha)$, where $\alpha^3-\alpha-1=0$

 $p = x^2 + xy + 6y^2$ if and only if p splits in F and in K

[Primes of the](#page-0-0)
Form $x^2 + ny^2$

Field

 $p = x^2 + 23y^2$

The Hilbert class field of K is $L=K(\alpha)$, where $\alpha^3-\alpha-1=0$

 $p = x^2 + xy + 6y^2$ if and only if p splits in F and in K For $p \neq 23$:

$$
p = x^2 + xy + 6y^2 \Leftrightarrow \begin{cases} \left(\frac{-23}{p}\right) = 1, \text{ and} \\ x^3 - x - 1 \equiv 0 \pmod{p} \text{ has a solution} \end{cases}
$$

Primes of the Form $x^2 + 23y^2$

[Primes of the](#page-0-0)
Form $x^2 + ny^2$

$$
p = x^2 + 23y^2
$$

■ Identify:
$$
x^2 + xy + 6y^2 = (x + \frac{y}{2})^2 + 23(\frac{y}{2})^2
$$

■ If $p \neq 2$, then $p = x^2 + xy + 6y^2$ means *y* is even:
 $1 \equiv x^2 + xy \equiv x(x + y) \pmod{2}$

Primes of the Form $x^2 + 23y^2$

[Primes of the](#page-0-0)
Form $x^2 + ny^2$

 $p = x^2 + 23y^2$

■ Identify:
$$
x^2 + xy + 6y^2 = (x + \frac{y}{2})^2 + 23(\frac{y}{2})^2
$$

\n■ If $p \neq 2$, then $p = x^2 + xy + 6y^2$ means *y* is even:
\n $1 \equiv x^2 + xy \equiv x(x + y) \pmod{2}$

$$
p = x^2 + xy + 6y^2
$$
 if and only if $p = x^2 + 23y^2$

For
$$
p \neq 23
$$
:
\n
$$
p = x^2 + 23y^2 \Leftrightarrow \begin{cases} \left(\frac{-23}{p}\right) = 1, \text{ and} \\ x^3 - x - 1 \equiv 0 \pmod{p} \text{ has a solution} \end{cases}
$$

Conclusion

[Primes of the](#page-0-0)
Form $x^2 + ny^2$

[Conclusion](#page-18-0)

In summary:

- **Defined binary quadratic forms**
- Proved Fermat's two-squares theorem
- Used the Hilbert class field to find when $p = x^2 + 23y^2$

Conclusion

[Primes of the](#page-0-0)
Form $x^2 + ny^2$

[Binary Quadratic](#page-4-0)

[Conclusion](#page-18-0)

In summary:

- Defined binary quadratic forms
- **Proved Fermat's two-squares theorem**
- Used the Hilbert class field to find when $p = x^2 + 23y^2$

What else could we look at?

- Ring class fields to deal with all $x^2 + ny^2, n > 0$
- Narrow class fields to study indefinite forms