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Abstract

In this report we investigate the theory necessary to determine which primes a binary quadratic
form represents. We explore the theory of binary quadratic forms, and how questions about which
integers they represent can be studied using quadratic fields and algebraic number theory. Using
class field theory we find increasingly general abstract criteria that can determine whether or not
a certain prime is represented by a given binary quadratic form. Applying Dedekind’s Theorem
we make these abstract criteria very concrete in a variety of examples.
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Chapter 0

Introduction

In a letter to Marin Mersenne, dated December 25, 1640, Pierre de Fermat announced his theorem
on when a prime is expressible as the sum of two squares. He claimed that for a prime p:

p = x2 + y2 ⇔ p = 2, or p ≡ 1 (mod 4)

Fourteen years later, in a letter to Blaise Pascal, he added two similar results:

p = x2 + 2y2 ⇔ p = 2, or p ≡ 1, 3 (mod 8)
p = x2 + 3y2 ⇔ p = 3, or p ≡ 1 (mod 3)

Obtaining complete proofs for Fermat’s claims required a full forty years of work and effort
on Leonhard Euler’s part, and led him to conjectures about the behaviour in other cases. These
results naturally raise the question of what happens for x2 +ny2, or more generally for an arbitrary
binary quadratic form.

We introduce the notion of a binary quadratic form ax2 + bxy + cy2, and its discriminant
D = b2 − 4ac. This leads to an easy condition which determines whether a prime p is represented
by some binary quadratic form of discriminant D:

Theorem 0.1. An odd prime p - D is represented by some binary quadratic form of discriminant
D if and only if

(
D
p

)
= 1.

We define an equivalence relation on the set of all binary quadratic forms, such that equivalent
forms represent the same integers and have the same discriminant. This causes the set of binary
quadratic forms of discriminant D to break up into a finite number of equivalence classes. This
class number and a representative of each equivalence class can be determined algorithmically using
the theory of reduced forms.

When the class number is exactly 1, every form of discriminant D is equivalent, and so they all
representative the same integers. The condition above is therefore sufficient to determine which
primes a form of discriminant D represents. This leads immediately to proofs of Fermat’s claims,
and further extensions to other discriminants with class number 1.

When there is more than one class of forms of discriminant D, we need some way to separate
them. The key idea here, due to Lagrange, is to look at the values each form represents in (Z/DZ)∗.
By grouping the forms which represent the same values together we are lead to the notion of a
genus of quadratic forms.

The primes that a genus of forms represents can be described explicitly in terms of congruence
conditions modulo D. This gives a condition for p to be represented by some form in a given genus:
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Theorem 0.2. Suppose a genus of quadratic forms of discriminant D represents the values H in
(Z/DZ)∗. Then an odd prime p - D is represented by a form of this genus if and only if [p] ∈ H.

If there is exactly one form in a genus, then this condition describes precisely what primes it
represents. From this we can generate further criteria in a variety of cases. If two forms are in the
same genus, then they also represent the same values in (Z/mZ)∗, for any m, and so cannot be
separated by congruence conditions. Then there is more than one form in a genus, more advanced
techniques are needed to generate criteria.

For this we approach the study of binary quadratic forms from an algebraic number theory
point of view. For fundamental discriminants we establish the correspondence between quadratic
forms and narrow ideal classes in a quadratic field. The correspondence extends to a relationship
between the representations of an integer m by a binary quadratic form and the existence of ideals
with norm m in the corresponding class of the class group:

Proposition 0.3. A positive integer m is represented by the quadratic form f(x, y) corresponding
to the narrow ideal class of a if and only if there is an integral ideal of norm m in the same narrow
ideal class as a.

The splitting of the prime (p) in Q(
√
d) easily tells us whether or not there is an ideal of norm

p in the quadratic field. The problem now is to determine which ideal class this ideal lies in, and
so determine which form represents p. From class field theory we begin to answer this question in
certain cases.

We introduce the Hilbert class field L of a number field K, which is defined as the maximal
unramified abelian extension ofK. The Artin map of the extension L/K gives a map from the group
of fractional ideals I(K) of K to the Galois group Gal(L/K) of the extension L/K. The kernel of
this map is the group of principal fractional ideals P(K), and so establishes an isomorphism from
the class group C(K) of K to the Galois group Gal(L/K) of the extension L/K.

Properties of the Artin symbol used to define the Artin map then give a condition for a prime
ideal p of K to be principal:

Proposition 0.4. A prime ideal p of K is principal if and only if it splits completely in L, the
Hilbert class field of K.

When the narrow class group and the class group of a quadratic fieldK = Q(
√
d) are isomorphic,

we have a correspondence between quadratic forms and ideal classes in the class group C(K). This
holds for all imaginary quadratic fields, and some real quadratic fields. As we have a way to tell
when a prime ideal is principal, we use this to give an abstract condition for the quadratic form
corresponding to the principal ideal class (either x2 − dy2 or x2 + xy + 1−d

4 y2 depending on the
field) to represent a prime:

Theorem 0.5. Suppose the narrow class group and the class group are isomorphic in the quadratic
field K = Q(

√
d), and let q(x, y) be the quadratic form corresponding to the principal ideal class.

Let L be the Hilbert class field of K. For a prime p not dividing the discriminant ∆K , we have:

p is represented by q(x, y)⇔ (p) splits completely in L

By determining the polynomial which generates the Hilbert class field we can use Dedekind’s
Theorem on the factorisation of a prime ideal in an extension to make this into an explicit criterion:

Theorem 0.6. Suppose the narrow class group and the class group of the quadratic field K =
Q(
√
d) are isomorphic. Let q(x, y) be the quadratic form corresponding to the principal ideal class
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in K. Then there is a polynomial f(x) of degree h(K) = h(∆K) such that for p an odd prime not
dividing ∆K or the discriminant of f(x), we have:

p is represented by q(x, y)⇔
{(

d
p

)
= 1 and

f(x) has a root modulo p

This polynomial can be taken to be the minimal polynomial of the algebraic integer α for which
L = K(α) is the Hilbert class field of K.

To generalise this to the remaining real quadratic fields we define the narrow class field. The
narrow class field L of a number field K is the maximal abelian extension of K unramified at the
finite primes. The Artin map of this extension gives an isomorphism from the narrow class group
C+(K) of K to the Galois group Gal(L/K) of the extension L/K.

Properties of the Artin symbol imply that a prime ideal p of K is a totally positive principal
fractional ideal if and only if it splits completely in the narrow class field L. With this we find a
condition for a prime p to be represented by the form corresponding to the totally positive principal
fractional ideal class:

Theorem 0.7. Let q(x, y) be the quadratic form corresponding to the totally positive principal
ideal class in K. Then there is a polynomial f(x) of degree h+(K) = h+(∆K) such that for p an
odd prime not dividing ∆K or the discriminant of f(x), we have:

p is represented by q(x, y)⇔
{(

d
p

)
= 1 and

f(x) has a root modulo p

This polynomial can be taken to be the minimal polynomial of the algebraic integer α for which
L = K(α) is the narrow class field of K.

By looking at class fields corresponding to subgroups of the class group or the narrow class
group we generalise these results even further. For every subgroup H of the narrow class group
there is a class field L which detects when the class of a prime ideal p lies in this subgroup. This
leads to criteria which determine when certain subsets of quadratic forms represent a given prime
p:

Theorem 0.8. Let the subset of forms {qi(x, y)} correspond to the subgroup H of the narrow class
group of the quadratic field K = Q(

√
d). Then there is a polynomial f(x) of degree h+(K)/ |H| =

h+(∆K)/ |H| such that for p an odd prime not dividing ∆K or the discriminant of f(x), we have:

p is represented by some qi(x, y)⇔
{(

d
p

)
= 1 and

f(x) has a root modulo p

This polynomial can be taken to be the minimal polynomial of the algebraic integer α for which
M = K(α) is the fixed field LH of the narrow class field, that is the class field corresponding to
the subgroup H.

Using an inclusion-exclusion style principle we can sometimes extract from this result further
criteria which determine when certain non-principal quadratic forms represent a given prime.
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Chapter 1

Number Fields and Galois Theory

In this chapter we review some of the essential concepts from number theory that will be used
throughout this report. We also study the interaction between number theory and Galois theory,
the effect this has on prime decomposition in an extension. Finally we introduce the narrow class
group of a number field which will be used to link quadratic forms and quadratic fields.

The results on fields and Galois theory mainly come from Stewart [24]. For number fields and
prime decomposition we will use Marcus [18] with interludes from Stewart and Tall [25]. The results
we need on the narrow class group come from Cox [7].

1.1 Fields and Galois Theory
We will make frequent use of field extensions in the form of number fields and residue field exten-
sions. The goal of Class Field theory is to classify all abelian extensions of a number field, and
class fields will aid us when investigating which primes a binary quadratic form represents.

Definition 1.1. A field F is said to be an extension of the field E is E is a subfield of F . We
speak of the extension F over E, and write this as F/E. We call E the base field.

We can view a field extension F of E as a vector space over E, as in Theorem 6.1 of Stewart
[24, p. 67], and its later generalisation. This means that F has an E-basis, and a dimension as an
E-vector space.

Definition 1.2. The degree of the extension F/E is the dimension dimE F of F as an E-vector
space, and is denoted by [F : E]. We call the extension F/E a finite degree field extension, or just
a finite extension, if [F : E] is finite.

We usually construct field extensions F/E by adjoining a root of an irreducible polynomial f(t)
to the base field E. Formally this is carried out by modding the polynomial ring E[t] out by the
maximal ideal (f), as in Theorem 5.12 of Stewart [24, p. 62].

Example 1.3. Adjoining a root α of the polynomial x3 − x− 1 to Q gives an extension Q(α)/Q.
Since the polynomial is irreducible over Q, a Q-basis for Q(α) is given by {1, α, α2}. This means
the extension is finite of degree 3.

Since we will be working with number fields and suchlike the extensions we will deal with will
usually be finite.

A useful result is how the degrees of two consecutive field extensions relate to the degree of
the overall extension. A sequence of consecutive field extensions is usually referred to as a tower
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of fields, and so we have the aptly named Tower Theorem which is Theorem 6.4 in Stewart [24,
p. 68].

Theorem 1.4 (Tower Theorem). Let K ⊂ L ⊂ M is a tower of fields, then the degrees of the
extensions are related by:

[M : K] = [M : L][L : K]

Example 1.5. A tower of fields is given by Q ⊂ Q(
√

5) ⊂ Q( 3
√

2,
√

5). We can see that
[Q( 3
√

2,
√

5) : Q(
√

5)] = 3, and [Q(
√

5) : Q] = 2. Using the Tower Theorem we calculate:

[Q( 3
√

2,
√

5) : Q] = [Q( 3
√

2,
√

5) : Q(
√

5)][Q(
√

5) : Q] = 3 · 2 = 6

Another useful construct is the composite of two fields:

Definition 1.6. Let E and F be two subfields of C. The composite EF is the smallest subfield
of C containing E and F .

Now we review some concepts from Galois Theory. In order to define a Galois extension
abstractly we need the notion of a normal and a separable extension. Since we will be working
over C, separability comes automatically, see Section 9.3 of Stewart [24, pp. 112-114] so we make
the following definitions:

Definition 1.7. An extension L/K is called normal if every irreducible polynomial f ∈ K[x]
which has at least one root in L splits in L. Equivalently every embedding σ of L in C which fixes
K pointwise satisfies σ(L) = L.

Definition 1.8. Working over C, a normal extension L/K is Galois and we define the Galois
group Gal(L/K) of L/K to be set of automorphisms of L fixing K pointwise. It follows that
|Gal(L/K)| = [L : K].

We may say an extension is cyclic if it is Galois with cyclic Galois group, and similarly an
extension is abelian if it is Galois with abelian Galois group.

As shown in Proposition 3.20 of Milne [22, p. 39], if L and M are two abelian extensions of K,
then the composite LM is also an abelian extension of K.

Definition 1.9. If L/K is a Galois extension with Galois group G = Gal(L/K), and H is a
subgroup of G, we define the fixed field of H to be:

LH = {α ∈ L | σ(α) = σ for all σ ∈ H}

The Fundamental Theorem of Galois Theory establishes the existence of a Galois connection
between the subgroups of Gal(L/K) and the intermediate fields of L/K. Specifically we have

Theorem 1.10 (Fundamental Theorem of Galois Theory). If L/K is a Galois extension with
Galois group G = Gal(L/K), then mappings:

{ Fields K ⊂ F ⊂ L } ←→ { Groups H < G }

defined by sending a field F 7→ Gal(L/F ) and a group H 7→ LH are mutual inverses, and set
up an order-reversing one-to-one correspondence, called the Galois correspondence, between the
intermediate fields of L/K and the subgroups of Gal(L/K).

Proof. See Chapter 12 and Theorem 12.1 in Stewart [24, pp. 133-136].
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Example 1.11. The extension Q(
√

3,
√

5)/Q is Galois, with Gal(L/K) = {e, σ, τ, στ} ∼= Z2 ×Z2,
where σ :

√
3 7→ −

√
3, and τ :

√
5 7→ −

√
5. The Galois correspondence set up the following

correspondence between subgroups and subfields:

Q(
√

3,
√

5) {e}

Q(
√

3) Q(
√

5) Q(
√

15) {e, τ} {e, σ} {e, στ}

Q {e, σ, τ, στ}

We also need a few results about finite fields and their Galois theory. A treatment of finite
fields is given in Chapter 20 of Stewart [24, pp. 227–232], the main result of which is:

Theorem 1.12. If F is a finite field, then F contains a unique subfield Zp, for some prime p
(called the characteristic), and |F | = pn, where n = [F : Zp]. For each q = pn, with p prime, there
exists up to isomorphism precisely one field with q elements, called the Galois Field Fq.

The main result on the Galois Theory of finite fields is the following from Hasse [12, p. 41]:

Theorem 1.13. If Fr/Fq is an extension of finite fields, then it is Galois with cyclic Galois group
canonically generated by the Frobenius automorphism Frob : x 7→ xq.

1.2 Number Fields
Definition 1.14. A number field K is a finite extension of Q.

Definition 1.15. An element α ∈ C is called an algebraic integer if α is the root of some monic
polynomial f ∈ Z[x].

A combination of Theorem 1 and Theorem 2 in Marcus [18, pp.14–16] give various equivalent
criterion for α to be an algebraic integer, some of which may easier to apply:

Theorem 1.16. The following are equivalent for α ∈ C:
i) α is an algebraic integer,
ii) The monic minimal polynomial of α over Q has integer coefficients,
iii) The additive group of the ring Z[α] is finite generated,
iv) α is a member of some subring of C having a finitely generated additive group.

An important corollary of this Theorem is that the sum and product of two algebraic integers
are again algebraic integers, and so the algebraic integers in C form a ring. The method of the proof
in fact gives a procedure to compute the polynomials they satisfy. We will denote the algebraic
integers by A. We can then make the following definition:

Definition 1.17. The ring of integers OK of a number field K is the set of all algebraic integers
in K. Being the intersection of two rings OK = A ∩K, the ring of integers is indeed a ring. We
call the elements of OK the integers of K.

9



Example 1.18. i) Consider the number field K = Q(
√

2). Both 1 and
√

2 are algebraic integers,
since they are roots of the monic polynomials x−1, and x2−2 respectively. Therefore any element
of the form a + b

√
2, with a, b ∈ Z, is an algebraic integer. By analysing the minimal polynomial

of r + s
√

2 ∈ K, as in Section 3.7 of Cohn [6, pp. 45-47], it follows that these are all the algebraic
integers in Q(

√
2). Hence OK = Z[

√
2].

ii) Now take K = Q(
√
−3). In this case 1+

√
−3

2 is an algebraic integer as it is a root of the
monic polynomal x2 − x− 1. As above, analysing the minimal polynomial of r + s

√
2 ∈ K shows

that OK = Z[ 1+
√
−3

2 ].
iii) A more complicated example with a number field higher degree is given in Example 2.23

of Stewart and Tall [25, pp. 55–56], where the ring of integers of K = Q( 3
√

175) is shown to be
Z〈1, 3

√
175, 3

√
245〉. The example goes on to prove that integers cannot be written as Z[θ], for any

θ ∈ K.

Quadratic fields, those with degree 2 over Q, will be at the forefront of our attention. We will
use their connection with quadratic forms to study what integers a quadratic form represents.

Definition 1.19. A quadratic field is a number field K with [K : Q] = 2. As stated in Fröhlich
and Taylor [10, p. 175], the quadratic fields correspond bijectively to the square-free integers d 6= 1,
via d 7→ Q(

√
d).

The more general analysis in Section 3.7 of Cohn [6, pp. 45-47] establishes the following de-
scription of the ring of integers in any quadratic field:

Proposition 1.20. The integers in the quadratic field K = Q(
√
d) are given by:

OK =
{
Z[ 1+

√
d

2 ] if d ≡ 1 (mod 4)
Z[
√
d] otherwise

The analysis presented there is specific to the case of a quadratic number field, and relies on
ad-hod methods of analysing the minimal polynomial. A more general and systematic method
arises once the discriminant of a system has been defined, as explained in Section 2.6 of Stewart
and Tall [25, pp. 51–57]

1.3 The Norm and The Discriminant
A number field K can be embedded in C in many ways. The Simple Extension Theorem, Theorem
2.2 in Stewart and Tall [25, pp. 36–37] guarantees that we can write any number field K as
K = Q(θ), where θ if the root of some polynomial f ∈ Z[x]. Using this, Theorem 2.4 in Stewart
and Tall [25, pp. 38-39] gives the following explicit description of the embeddings:

Theorem 1.21. Let K = Q(θ) be a number field of degree n, then there are exactly n distinct
embeddings σi : K ↪→ C, where σi(θ) = θi are the (necessarily distinct) zeros of the minimal
polynomial of θ.

The first links between quadratic forms and number fields comes when we define the norm of
an element.

Definition 1.22. Let K = Q(θ) be a number of degree n with embeddings σi : K ↪→ C, and let
α ∈ K. We define the norm of α to be:

N(α) =
∏
i

σi(α)

10



Corollaries 1 and 2 to Theorem 4 in Marcus [18, pp. 21–22], and a remark in Stewart and Tall
[25, p. 49] establish the following properties of the norm:

Proposition 1.23. Let K be a number field, and α, β ∈ K, then:
i) The norm N(α) is always rational.
ii) Furthermore, if α ∈ OK , then N(α) is in fact a rational integer.
iii) The norm satisfies N(αβ) = N(α)N(β).

Example 1.24. i) If K = Q(
√

7) is a quadratic field, then we can embedK ↪→ C via σ1 :
√

7 7→
√

7
or σ2 :

√
7 7→ −

√
7. If x+ y

√
7 ∈ K, its norm is given by:

N(x+ y
√

7) = (x+ y
√

7)(x− y
√

7) = x2 − 7y2

If we restrict to the ring of integers OK = Z[
√

7], then x and y are integers. The question of
what values the quadratic form x2 − 7y2 represents corresponds to the question of what possible
norms an integer in K = Q(

√
7) has.

ii) Similarly if we look at the cubic fieldK = Q( 3
√

2), we can embedK ↪→ C via σi : 3
√

2 7→ 3
√

2ρi,
where ρ3 = 1 is a primitive cube root of 1. The norm of an element a+ b 3

√
2 + c 3

√
4 is given by:

N(a+ b
3
√

2 + c
3
√

4) = (a+ b
3
√

2 + c
3
√

4)(a+ b
3
√

2ρ+ c
3
√

4ρ2)(a+ b
3
√

2ρ2 + c
3
√

4ρ)
= a3 + 2b3 + 4c3 − 6abc

We will occasionally need to use the discriminant of a number field, particular its property
regarding ramification of primes, and as a criterion to determine when we can apply Dedekind’s
Theorem. Given this we can define the discriminant of a basis of K as follows:

Definition 1.25. Let K be a number field of degree n with embeddings σi : C ↪→ K, and let
{α1, . . . , αn} be a basis of K. We define its discriminant to be:

∆K(α1, . . . , αn) = det([σi(αj)])2

Section 2.2 and 2.4 of Stewart and Tall [25, pp. 38–41, 45–49] establish some properties of the
discriminant:

Proposition 1.26. If {β1, . . . , βn} is another basis of K, related to the basis {α1, . . . , αn} by the
change of basis matrix M = [cij ], so βj =

∑n
i=1 cijαi, then:

∆K(β1, . . . , βn) = (det(M))2∆K(α1, . . . , αn)

Proposition 1.27. If {α1, . . . , αn} is a basis of K, then ∆K(α1, . . . , αn) is rational and non-zero.
Furthermore if the αi are integers, then ∆K(α1, . . . , αn) is a rational integer.

Using these results they establish in Theorem 2.16 [25, pp. 46–47] that the ring of integers in
any number field has a Z-basis. A Z-basis for OK is necessarily a basis for K, and such a basis
is called a integral basis for K. The discriminant of any integral basis of K takes the same value,
and so this leads to the following definition:

Definition 1.28. The discriminant ∆K of K is defined to be the discriminant of any integral basis
{α1, . . . , αn} of K.

11



Example 1.29. i) If d ≡ 1 (mod 4), the ring of integers of K = Q(
√
d) is given by Z[ 1+

√
d

2 ], so
{1, 1+

√
d

2 } is an integral basis. Hence the discriminant of K is given by:

∆K = ∆K

(
1, 1 +

√
d

2

)

=

∣∣∣∣∣1 1+
√
d

2
1 1−

√
d

2

∣∣∣∣∣
2

=
(

1−
√
d

2 − 1+
√
d

2

)2

= d

ii) If d 6≡ 1 (mod 4), the ring of integers of K = Q(
√
d) is given by Z[

√
d], so {1,

√
d} is an

integral basis. Hence the discriminant of K is given by:

∆K = ∆K(1,
√
d)

=
∣∣∣∣1 √

d

1 −
√
d

∣∣∣∣2
= (−

√
d−
√
d)2

= 4d

A useful observation is that if K = Q(θ) is a number field of discriminant ∆K , and θ is an
algebraic integer, then ∆K | ∆K(1, θ, . . . , θn−1). By finding an integral basis {α1, . . . , αn}, we can
write θi as an Z-linear combination of the αi, so the change of basis matrix M has rational integer
entries and rational integer determinant. Hence ∆K(1, θ, . . . , θn−1) = (det(M))2∆K(α1, . . . , αi) =
(det(M))2∆K , which gives precisely the result.

Theorem 8 in Marcus [18, pp. 26–27] gives the following formula for calculating this:

Proposition 1.30. If K = Q(θ) is a number field, and with θ a root of the monic minimal
polynomial f ∈ Z[x], then ∆K(1, θ, . . . , θn−1) is given by:

∆K(1, θ, . . . , θn−1) = ±N(f ′(θ)) =
∏
i<j

(θi − θj)2

where θi are the roots of f(x).

In the proposition above polynomial is monic, hence the expression on the right hand side can
be recognised as the discriminant of the polynomial. The discriminant of a polynomial can be
computed effectively.

1.4 Primes Ideals and Extensions of Number Field
We now turn our attention to prime ideals in the ring of integers of a number field, and their
properties. Recall the definitions of a prime ideal and a maximal ideal.

Definition 1.31. In a commutative ring R, an ideal I 6= R is called prime if has the property:
ab ∈ I implies a ∈ I or b ∈ I. An ideal M 6= R is called maximal if there are no proper ideals
between M and R.

12



Theorem 14 in Marcus [18, pp. 56–57] establishes that the ring of integer OK of a number field
K is a so-called Dedekind domain, where the definition of a Dedekind domain is as follows:

Definition 1.32. A Dedekind domain is a integral domain R such that:
i) Every ideal is finitely generated,
ii) Every non-zero prime ideal is a maximal ideal,
iii) R is integrally closed in its field of fractions.

Theorem 16 in Marcus [18, pp. 59–60] then establishes that the ideals in any Dedekind domain
factor uniquely into a product of prime ideals. A Corollary obtained during this proof is that if A
and B are ideals in a Dedekind domain, then A | B if and only if A ⊃ B. Combining these two
results, as in the Corollary of Theorem 16, gives the following:

Proposition 1.33. The ideals in the ring of integers OK of a number field K factor uniquely into
prime ideals.

We usually refer to the non-zero prime ideals of OK as simply the primes of K. Associated
with each prime ideal p of OK we have a quotient ring OK/p.

Proposition 1.34. For any prime p of K, the quotient ring OK/p is a finite field, this is called
the residue field.

Proof. Since p is a maximal ideal, the quotient ring is OK/p is a field. The proof that more
generally OK/I, where I is a non-zero ideal, is provided by Exercise 5.1 in Cox [7, p. 115]. Let I
be a non-zero ideal, we find a non-zero rational integer m ∈ I as follows. Since I 6= (0), there is
some α 6= 0 ∈ I. The minimal polynomial of α is given by xn +an−1x

n−1 + · · ·+a0, where a0 6= 0.
Then a0 = −αn − an−1α

n−1 − · · · − a1α ∈ I since I is an ideal.
Now OK/(m) is finite: find a Z-basis for OK , after quotienting by (m), there are only m

possibilities for each coefficient, so finitely many possible elements. Since (m) ⊂ I, quotienting by
I identifies more elements of OK , hence OK/I is finite.

Definition 1.35. In a number field K, the quantity |OK/I| is the norm of the ideal I, written
N(I).

The ideal norm satisfies various properties:
i) The ideal norm is multiplicative: N(ab) = N(a)N(b).
ii) If (α) is a principal ideal, then N((α)) = |N(α)|.

This is part of Theorem 22 in Marcus [18, p. 65–69]
We can now consider how a prime ideal behaves in an extension of number fields. If L/K is an

extension of number fields, and p is a prime of K, then OK ⊂ OL so we can lift p to the ideal pOL
of L. We know the ideals in OL factorise uniquely we must be able to write:

pOL =
g∏
i=1

Pei
i

where P1, . . . ,Pg are primes of L. We make the following definitions:

Definition 1.36. In the situation above, the primes Pi are said to be the primes of L above p, in
the extension L/K.

Equivalent criteria for the prime P to lie above p are given by Theorem 19 in Marcus [18, p. 63],
in particular we get the following result:
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Proposition 1.37. Let P be a prime of L, and p be a prime of K. Then P lies above p if and
only if P ∩ OK = p.

Proof. If P∩OK = p, then p ⊂ P, so pOL ⊂ P, and hence P | pOL. Conversely if P | pOL, then
p ⊂ pOL ⊂ P, so P ∩ OK is an ideal of OK which contains p. Since p is maximal and 1 /∈ P, we
must have P ∩ OK = p.

Theorem 20 in Marcus [18, p. 63] then gives:

Proposition 1.38. In the extension L/K, every prime P of L lies over a unique prime of K.

Proof. By the previous proposition this is equivalent to showing p = P ∩ OK is a prime of K.
Firstly P ∩ OK is non-empty since P contains some non-zero rational integer. Now 1 /∈ P, hence
1 /∈ p, so p 6= OK . Lastly, we prove p is prime. Let ab ∈ p, then ab ∈ P, so since P is prime, a ∈ P
or by ∈ P. Hence a ∈ p or b ∈ p.

Definition 1.39. In the decomposition above, the exponent ei is called the ramification index of
Pi over p, and we denote it by e(Pi | p) = ei.

From Marcus we have the following observation. IfP is a prime of L above the prime p ofK, the
inclusion OK ↪→ OL composed with the quotient map OL � OL/P induces a ring homomorphism:

OK OL OL/P

with kernel OK ∩P = p. By the First Isomorphism Theorem, OK/p is isomorphic to the image of
the map in OL/P, hence we get an embedding OK/p ↪→ OL/P. This means we have an extension
of residue fields. We know the residue fields are finite fields, and so this extension has finite degree.

Definition 1.40. Let P be a prime of L above the prime p of K. The degree of the residue field
extension OL/P over OK/p is called the inertial degree of P over p. We denote it by f(P | p).

We now state some results on the ramification indices and inertial degrees. From Exercise 10
in Chapter 3 Marcus [18, p. 83] we have the following:

Proposition 1.41. The ramification indices and inertial degrees are multiplicative in towers, in
particular if K ⊂ L ⊂ M is a tower of fields, and p ⊂ P ⊂ R are primes above each other in the
extensions then:

e(R | p) = e(R | P)e(P | p)
f(R | p) = f(R | P)f(P | p)

Proof. We get a tower of residue fields OK/p ⊂ OL/P ⊂ OM/R, and the multiplicativity of the
inertial degree follows directly from the Tower Theorem.

For the ramification indices we use that each prime of an extension contains a unique prime
below it. Factorise the prime p as a product of primes in L. The prime P above p has ramification
index e(P | p). The prime P is the unique prime of L lying below R, so if we factorise this as
a product of primes of M , we get ramification index e(R | P). Hence overall the exponent of R
in the factorisation of p is e(R | P)e(P | p), but by definition this is just the ramification index
e(R | p). Hence we get the result.

Theorem 21 in Marcus [18, p. 65–69] gives the following result which relates the ramification
indices and inertial degrees in the factorisation of any prime p:
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Proposition 1.42. Let P1, . . . ,Pg be the primes above p in the extension L/K. Let ei, and fi be
respectively the ramification indices and inertial degrees of Pi above p. We have:

g∑
i=1

eifi = [L : K]

Now I will describe some different types of splitting that can occur when decomposing a prime:

Definition 1.43. Let P1, . . . ,Pg be the primes above p in the extension L/K. Let ei, and fi
respectively the ramification indices and inertial degrees of Pi above p. The prime p is said to:

i) ramify if any ei > 1.
ii) totally ramify if g = 1, f1 = 1, and e1 = [L : K].
iii) be unramified if every ei = 1
iv) split completely if g = [L : K], every ei = 1 and every fi = 1.
v) remain inert if pOL is prime in L.

A combination of Theorems 24 and 34 in Marcus [18, pp. 72–73, 112–114] gives us the following:

Theorem 1.44. A prime p of Z is ramified the number field K if and only if p | ∆K .

Theorem 31 in Marcus [18, p. 107] tells when a prime remains unramified in a composite:

Theorem 1.45. Let K be a number field, and let L and M be two extensions of K. If the prime
p of K is unramified in both L and in M , then p is unramified in the composite LM .

We can use these results from number theory to study situations what arise from Galois theory.
Following Exercise 2.1 in Washington [28, p. 17] we can find the quadratic subfields of the cyclotomic
fields.

Example 1.46. From the Galois theory of the cyclotomic fields L = Q(ζp), where ζp is a primitive
p-th root of 1, with p an odd prime, we know L must contain a unique quadratic subfield. This is
because Gal(L/Q) ∼= Z∗p ∼= Zp−1 has a unique index 2 subgroup. The Lagrange resolvent method
works to find this subfield in simple cases, but does not give a general result.

By studying which primes ramify in L we can determine what the quadratic subfield must be.
Marcus [18, p. 27] calculates the discriminant of the polynomial f(x) = xp−1 + xp−2 + · · ·+ x+ 1
generating L/Q to be disc f = pp−2. The discriminant ∆L of L divides this, and so only the prime
p can ramify in L.

LetK = Q(
√
d), with d 6= 0, 1 and d square-free, be the quadratic subfield of L. Its discriminant

is given by:

∆K =
{
d if d ≡ 1 (mod 4)
4d otherwise

By the multiplicativity of e in towers, any prime q ramifying in K also ramifies in L. These primes
q are exactly the primes dividing ∆K . From this we see firstly 2 - ∆K , hence d ≡ 1 (mod 4), and
∆K = d. Secondly, only p can divide ∆K , hence d = ±pn, for some n. But d 6= 1 is square-free
and d ≡ 1 (mod 4) so the only possibility is d = ±p, with the sign chosen so d ≡ 1 (mod 4), that
is d = (−1)(p−1)/2p.

The field L has a quadratic subfield, but the only possibility is K = Q(
√

(−1)(p−1)/2p), hence
this must be the unique quadratic subfield of L.

In order to do any explicit calculations we need some method to determine how a prime ideal
p factors in an extension L/K. For this we turn to Dedekind’s Theorem, Theorem 27 in Marcus
[18, pp. 79-82]
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Theorem 1.47 (Dedekind). Let L/K be an extension so that L = K(α) for some α ∈ OL. Let
h ∈ OK [x] be the monic minimal polynomial for α over K. Let p be a prime of K such that
the p - |OL/OK [α]|, where p is the prime of Z below p. Then h(x) factors uniquely into monic
irreducible factors modulo p:

h = h1
e1 · · ·hg

eg

and prime decomposition of pOL is given by:

pOL = Pei
i · · ·P

eg
g

where Pi = pOL + hi(α)OL. Furthermore, the inertial degree is given by f(Pi | p) = deg(hi).

As noted by Marcus the condition on p is satisfied whenever L = Q(α), and p2 - disc fα, where
fα(x) is the minimal polynomial for α over Q. We will make use of this theorem later.

As stated in Proposition 5.11 in Cox [7, p. 102], if the polynomial f(x) is separable modulo p,
then the above theorem works and gives the decomposition of p in the extension L/K.

1.5 Quadratic Fields and the Legendre Symbol
Here we will review the Legendre symbol and what it tells us about the decomposition of a prime
in a quadratic field.

Definition 1.48. Let p be an odd prime. An integer a is said to be a quadratic residue modulo
p if it is a perfect square modulo p. The Legendre symbol records this, and is defined to be:

(
a

p

)
=


0 if p | a
1 if a is square modulo p
−1 if a is non-square modulo p

It is completely multiplicative in the top argument:(
ab

p

)
=
(
a

p

)(
b

p

)
and is periodic with period p in its top argument. If a ≡ b (mod p), then:(

a

p

)
=
(
b

p

)
An extremely important property the Legendre symbol satisfies is the law of quadratic reci-

procity:

Theorem 1.49 (Quadratic Reciprocity). Let p and q be distinct odd primes. Then:(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4

Proof. See Theorem A.20 in Stewart and Tall [25, pp. 286–288]. Later on we will indicate how
class field theory can be used to prove and generalise quadratic reciprocity.

Two supplements to this law tell us the values of
(−1
p

)
and

(2
p

)
:
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Proposition 1.50 (Supplements to Quadratic Reciprocity). Let p be an odd prime. Then:(
−1
p

)
= (−1)(p−1)/2 =

{
1 if p ≡ 1 (mod 4)
−1 if p ≡ 3 (mod 4)

and (
2
p

)
= (−1)(p2−1)/8 =

{
1 if p ≡ 1, 7 (mod 8)
−1 if p ≡ 3, 5 (mod 8)

Proof. See Proposition A.19 in Stewart and Tall [25, p. 286].

Using these we can determine the values of any Legendre symbol, and as we will need to do
later, determine modulo which primes a given integer is square.

Example 1.51. i) To compute
(98765

127
)
we can proceed as follows:(

98765
127

)
=
(

86
127

)
=
(

2
127

)(
43
127

)
= (−1)(1272−1)/8

(
43
127

)
=
(

43
127

)
=
(

127
43

)
(−1)(127−1)(43−1)/4

= −
(

127
43

)
= −

(
−2
43

)
= −

(
2
43

)(
−1
43

)
= −(−1)(432−1)/8)(−1)(43−1)/2

= −(−1) · (−1)
= −1

And so we conclude 98765 is not a square modulo 127.
ii) Something we will need to do later is calculate which primes an integer is square modulo.

Modulo which primes is 6 a square? Equivalently we are asking when is
(6
p

)
= 1. We can proceed

as follows: (
6
p

)
= 1 if and only if

(
2
p

)
=
(

3
p

)
= 1 or

(
2
p

)
=
(

3
p

)
= −1

To begin with we compute
(3
p

)(
p
3
)

= (−1)(p−1)(3−1)/4 = (−1)(p−1)/2 =
(−1
p

)
. This tells us(3

p

)
=
(
p
3
)(−1

p

)
. Now let us determine when this takes values 1 or −1. For

(3
p

)
= 1 we need(

p
3
)

=
(−1
p

)
= 1 or

(
p
3
)

=
(−1
p

)
= −1. By the definition of the Legendre symbol we have

(
p
3
)

= 1
means p is a non-zero square modulo 3. The squares modulo 3 are 0 and 1, so we must have
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p ≡ 1 (mod 3). We also have
(−1
p

)
= 1 means p ≡ 1 (mod 4). So overall we have p ≡ 1 (mod 4).

On the other hand
(
p
3
)

= −1 means p ≡ 2, and
(−1
p

)
= −1 means p ≡ 3 (mod 4). Overall this

is p ≡ 11 (mod 12). Hence
(3
p

)
= 1 is equivalent to p ≡ 1, 11 (mod 12). Similarly

(3
p

)
= −1 is

equivalent to p ≡ 5, 7 (mod 12).
Now we can determine when

(6
p

)
= 1. We have

(3
p

)
=
(2
p

)
= 1, so p ≡ 1, 11 (mod 12) and

p ≡ 1, 7 (mod 8). By the Chinese Remainder Theorem these congruences are equivalent to p ≡
1, 23 (mod 24). On the other hand

(3
p

)
=
(2
p

)
= −1 means p ≡ 5, 7 (mod 12) and p ≡ 3, 5 (mod 8),

which is equivalent to p ≡ 5, 19 (mod 24).
Hence

(6
p

)
= 1 if and only if p ≡ 1, 5, 19, 23 (mod 24).

The value of the Legendre symbol can be used to determine how the prime p decomposes in a
quadratic field K = Q(

√
d).

As Marcus [18, p. 74] notes, the formula
∑g
i=1 eifi = [K : Q] = 2 shows that there are only

three possible ways in which the prime p can decompose:

pOK is prime, that is g = 1, e1 = 1, and f1 = 2, or
pOK = p2, so g = 1, e1 = 2, and f1 = 1, or
pOK = p1p2, so g = 2, and ei = fi = 1

The explicit decomposition of a prime p is in the quadratic field K well known and proven in
Theorem 25 of Marcus [18, pp. 74–75]. What we need to draw from that Theorem is the following
result:

Proposition 1.52. The decomposition of an odd prime p in the quadratic field Q(
√
d) is deter-

mined by the value of the Legendre symbol:
i) If

(
d
p

)
= 0, then pOK = p2 and so p ramifies.

ii) If
(
d
p

)
= −1, then pOK is prime and so p is inert.

iii) If
(
d
p

)
= 1, then pOL = pp̃ with p 6= p̃ and so p splits (completely).

Here ·̃ is the non-trivial automorphism of Q(
√
d).

1.6 Primes in Galois Extensions
Now let us suppose that we are dealing with an arbitrary Galois extension. What effect does this
have on the decomposition of primes and how does the arithmetic the number field interact with
Galois theory?

We begin with a proposition on how prime ideals behave under the action of the Galois group:

Proposition 1.53. Let L/K be a Galois, then the Galois group Gal(L/K) acts on the primes of
L above a prime p of K.

Proof. As the Galois group acts on elements of L, it extends to an action on subsets of L. We
first show that the Galois group takes an ideal of OL to an ideal of OL, then establish it takes
prime ideals to prime ideals, and finally that they both lie above p.

Let σ ∈ Gal(L/K). First observe that σ(OL) = σ(A ∩ L) = σ(A) ∩ σ(L) = A ∩ L = OL, since
for any algebraic integer α ∈ A, σ(α) satisfies the same minimal polynomial hence is an algebraic
integer. So a subset of OL goes to a subset of OL.

Let I be an ideal of OL, then we show σ(I) is an ideal of OL. Let a, b ∈ σ(I), and take
r ∈ OL. Then σ−1(a), σ−1(b) ∈ I, and σ−1(r) ∈ OL. As I is an ideal we have: σ−1(a − b) =
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σ−1(a)− σ−1(b) ∈ I, and σ−1(ar) = σ−1(a)σ−1(r) ∈ I. This implies a− b ∈ σ(I) and ar ∈ σ(I),
hence σ(I) is an ideal.

By a similar argument σ(P) is prime. Let ab ∈ σ(P), then σ−1(ab) = σ−1(a)σ−1(b) ∈ P. Since
P is prime, we have σ−1(a) ∈ P or σ−1(b) ∈ P. This implies a ∈ σ(P) or b ∈ σ(P), hence σ(P)
is prime.

Lastly we find σ(P) ∩ OK = σ(P ∩ OK) = σ(p) = p, since σ fixes K pointwise. Hence σ(P) is
a prime above p.

An important feature of this action is that it is transitive, a fixed prime P can be sent to any
other prime above p. This tells us what the orbit of each prime P, and so allows us to use the
Orbit-Stabilizer Theorem to gain insight into how the prime ideals behave in extensions.

Theorem 1.54. The action of the Galois group on the primes of L above a prime p of K is
transitive. That is give primes P and P′ of L above p, then there is some σ ∈ Gal(L/K) such that
σ(P) = P′.

Proof. A proof of this is given as Theorem 24 in Marcus [18, pp. 70-71], but uses the relative
norm of an element. Since I have not introduced this, and won’t use it elsewhere I will rephrase
the proof to avoid it.

Suppose that the action isn’t transitive, that is σ(P) 6= P′ for any σ ∈ Gal(L/K).
By the previous proposition, we know the Galois group acts on the primes above p, so σ(P) is

always a prime above p. Since primes are all coprime, the Chinese Remainder Theorem tells us we
can pick an element x ∈ OL such that:{

x ≡ 0 (mod P′)
x ≡ 1 (mod σ(P)) for σ ∈ Gal(L/K)

Now consider the following product:

y :=
∏

σ∈Gal(L/K)

σ(x)

If we act by any τ ∈ Gal(L/K), the order of the factors in the product is just permuted hence
τ(y) = y. But this means y is fixed under all elements of Gal(L/K), hence y ∈ LGal(L/K) = K.
Each factor is also an algebraic integer, so furthermore y ∈ A. Hence y ∈ K ∩ A = OK .

We also have that y ∈ P′, since one of the factors is in P′, specifically when σ is the identity
automorphism σ(x) = x ∈ P′. So overall we have that y ∈ OK ∩P′ = p. But now since P | p, we
have P ⊃ p, and hence y ∈ P.

By permuting the factors of the product, we may write y as a product over σ−1. So on one
hand we have x /∈ σ(P), for any σ ∈ Gal(L/K), hence σ−1(x) /∈ P. And on the other hand we
have y ∈ P, hence some σ−1(x) ∈ P. This is a contradiction.

Hence the assumption that the action isn’t transitive is wrong, and so the Galois group acts
transitively on the primes of L above a prime p of K as required.

From this theorem we get the following corollaries which place very strong restrictions on how
a prime can decompose in a Galois extension:

Corollary 1.55. In a Galois extension L/K the ramification indices and inertial degrees of any
two primes P1, P2 of L above a prime p of K are the same. That is e(P1 | p) = e(P2 | p), and
f(P1 | p) = f(P2 | p). We may then denote these quantities simply by e = e(p), and f = f(p)
respectively.
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Proof. Since the Galois group acts transitively on the primes above p we can find σ ∈ Gal(L/K)
such that σ(P1) = P2.

Decompose pOL as a product of prime of L:

pOL =
g∏
i=1

Pei
i

Now act by σ on both sides. On the left hand side we have σ(pOL) = pOL. On the right hand
side σ permutes the primes, and so we get:

pOL =
g∏
i=1

σ(Pi)ei

Since σ(P1) = P2, comparing the two factorisations gives, by uniqueness of prime factorisation,
that e2 = e1. Since the primes were chosen arbitrarily, the ramification index of every prime Pi

above p must be the same.
To prove the inertial degrees are equal we need to establish an isomorphism between OL/P1

and OL/P2. The isomorphism comes from considering the homomorphism obtained by applying
the isomorphism σ−1 to OL and modding by P1:

OL OL OL/P1
σ−1

The kernel of this composition is σ(P1) = P2, and by the First Isomorphism Theorem we obtain
OL/P2 ∼= OL/P1. Then the result follows since:

f(P1 | p) = [OL/P1 : OK/p] = [OL/P2 : OK/p] = f(P2 | p)

Corollary 1.56. If p is a prime of K, and the g primes of L above p in the Galois extension L/K
have ramification index e and inertial degree f , the formula from Proposition 1.42 becomes simply:

efg = [L : K]

Proof. In the previous formula we have ei = e, and fi = f , hence:

[L : K] =
g∑
i=1

eifi =
g∑
i=1

ef = efg

In a Galois extension L/K the conditions for the various types of splitting simplify. If p is a
prime of K, and the ramification index and inertial degree of any prime P above p is given by e
and f respectively, then p is said to:

i) ramify if e > 1.
ii) be unramified if e = 1.
iii) split completely if e = 1 and f = 1.

The link between number fields and Galois theory, coupled with Dedekind’s Theorem force very
strict behaviour on the polynomials generating Galois extensions.

Example 1.57. i) The splitting field of the polynomial x3 − 2 is K = Q( 3
√

2, ρ), where ρ3 = 1.
This means K/Q is Galois, and it is generated by the polynomial f(x) = x6 + 108.

Since K/Q is Galois, the results above say that the inertia degree and ramification index of
any prime p above a prime p of Q is the same. Dedekind’s Theorem gives the decomposition of
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p in terms of the factorisation of f(x) modulo p, at least for primes p - disc(f) = −216 · 321, the
ramification indices given by the degrees of the factors. Hence when reducing modulo p each factor
must have the same degree.

Looking modulo various primes demonstrates this:

p Factorisation of f(x) (mod p)
5 (x2 + 4x+ 2)(x2 + x+ 2)(x2 + 2)
7 (x3 + 5)(x3 + 2)
11 (x2 + 10x+ 4)(x2 + x+ 4)(x2 + 4)
13 (x3 + 3)(x3 + 10)
31 (x+ 28)(x+ 15)(x+ 18)(x+ 13)(x+ 3)(x+ 16)
47 (x2 + 7)(x2 + 16x+ 7)(x2 + 31x+ 7)

ii) Conversely if a polynomial factors modulo p into factors of different degrees, than the
extension cannot be Galois. The irreducible polynomial f(x) = x3 + x+ 1 has discriminant −31,
and modulo p = 2 it has irreducible factorisation:

f(x) ≡ (x+ 2)(x2 + x+ 2) (mod 2)

Since it has irreducible factors of different degrees, the extension Q(α), where α is a root of f(x)
is not a Galois extension.

Later on, after we have developed some more theory we can explore more elaborate examples
relating number fields and the factorisation of polynomials modulo p.

Finally introduce the decomposition and inertia group of a prime ideal, which will make an
appearance later when we study class field theory. Let L/K be a Galois extension with Galois
group G = Gal(L/K), and let P be a prime above p.

Definition 1.58. i) The decomposition group of P is DP = {σ ∈ G | σ(P) = P}.
ii) The inertia group of P is IP = {σ ∈ G | σ(x) ≡ x (mod P) for all x ∈ OL }.

Both of these are subgroups of the Galois group. In fact the decomposition group DP is just
the stabiliser of P under the action of the Galois group. Since we know the action is transitive we
know the orbit, and we can use the Orbit-Stabilizer Theorem to give:

Proposition 1.59. The size of the decomposition group is |DP| = ef , where e and f is the
ramification index and inertia degree of the prime P.

Proof. There are g primes P1, . . . ,Pg above p, hence the orbit of P has size g. The quantities
are related by efg = [L : K] = |G|, where G = Gal(L/K) is the Galois group of L/K. Hence by
the Orbit-Stabilizer Theorem:

efg = |G| = |DP| |G(P)| = |DP| g

Cancelling g from both sides gives |DP| = ef .

Following Marcus [18, p. 99], we can show the elements of DP naturally induce automorphisms
of the residue field. Let σ ∈ DP, σ restricts to an isomorphism from OL to itself, and so consider
the composite homomorphism:

OL OL OL/P
σ
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The kernel of this map is given by σ−1(P) which is just P, by definition of the decomposition
group. Hence the map factors through the quotient OL/P, giving a commutative diagram:

OL OL

OL/P OL/P

σ

σ

The induced map σ fixes OK/p pointwise since σ fixes K pointwise, and hence σ is in the Galois
group G̃ of the extension OL/P over OK/p. Placing a copy of the diagram for the map τ , next to
the diagram for σ shows that the composition in DP gives composition of the induced maps, and
hence we get a group homomorphism DP → G̃.

If the induced map σ is the identity, then we must have [σ(α)] = [α] in the quotient OL/P.
But this says precisely σ(α) ≡ α (mod P). Hence the kernel of the map Dp → G̃ is precisely the
inertial group IP.

As proven in Corollary 1 to Theorem 28 in Marcus [18, p. 101], this map is actually surjective,
and so using the First Isomorphism Theorem we get an isomorphism:

DP/IP ∼= G̃

From this we obtain the following results:

Corollary 1.60. The inertia group IP has order f .

Proof. The Galois group G̃ of the residue field extension has order f , and hence

|DP| / |IP| = |G̃| = f

Since DP has order ef , the inertia group IP must have order e.

Corollary 1.61. The quotient DP/IP is cyclic.

Proof. We know the Galois group of an extension of finite fields is cyclic.

Using this we can explore another example of how the number theory and Galois theory force
a particular structure on the factorisation of a polynomial modulo p. The motivation for this
example comes from Exercise 6 in Chapter 5 of Janusz [14, p. 139]

Example 1.62. There exists a polynomial f(x), such that f(x) is irreducible over Q, but is
reducible modulo every prime p. In other words f(x) is irreducible, but the reduction modulo p
test would never show this.

Proof. Consider the polynomial f(x) = x4 − 10x2 + 1, which is the generating polynomial of the
degree 4 Galois extension K = Q(

√
2,
√

3) over Q. Since it generates the extension it must be
irreducible. We see the discriminant of f(x) is 21432, and so primes p 6= 2, 3 are unramified in the
extension. Modulo 2 and 3 the polynomial f(x) is reducible:

x4 + 10x2 + 1 ≡ x4 + 1 = (x+ 1)4 (mod 2), and
x4 + 10x2 + 1 ≡ x4 − x2 + 1 = (x2 + 1)2 (mod 3).

This is more generally true: a polynomial is reducible modulo any prime p which divide its
discriminant: modulo p the discriminant is 0, so the polynomial has multiple roots. This means
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gcd(f, f ′) is non-trivial, and as always can be written as a linear combination of f, f ′. So f has a
non-trivial factor.

Now if p is any other prime, Dedekind’s theorem tell us how (p) factors in K, and this corre-
sponds to how the polynomial f(x) factors modulo p. For any prime P above p, we know DP

∼= G̃,
and so is cyclic. But the Galois group Gal(K/Q) ∼= Z2 × Z2, so the largest cyclic subgroup has
order 2. Thus we have |DP| = ef ≤ 2, and so g = [K:Q]

ef ≥ 2. This means the prime p cannot
remain inert, and so must split. But this means the polynomial f(x) must split modulo p, and so
is reducible.

This shows two things: firstly that f(x) = x4 − 10x2 + 1 is reducible modulo every prime p
as claimed, and secondly (after we check that (2) and (3) ramify, and in particular split) that no
prime (p) remains inert in the extension K/Q.

There was nothing particularly special about the extension K/Q above, other than it wasn’t
cyclic. The above argument would give exactly the same conclusion for the generating polynomial
of any non-cyclic Galois extension, and so we can generate wealth of such examples. For a more
detailed look this, see the article by Guralnick, Schacher, and Sonn [11].

We can also extract from it the following general proposition:

Proposition 1.63. If L/K is a non-cyclic Galois extension of number fields, then no prime p of
K can remain inert in L.

Proof. If p remains inert in the extension, then we know e = g = 1, and so we calculate f = [L : K].
This means DP = Gal(L/K). But since e = 1 and so IP is trivial, we have the isomorphism
DP
∼= DP/IP ∼= G̃, where G̃ is the Galois group of the residue field extension. We know G̃ is

cyclic, so this tells us that DP is cyclic, and hence Gal(L/K) is cyclic, but we assumed it isn’t. So
we have a contradiction. Hence no prime p of K can remain inert in L.

1.7 Class Groups
In this section we will review the class group of a number field, and introduce the narrow class
group.

Definition 1.64. A fractional ideal of a number field K is a finitely generated OK-submodule of
K. Every fractional ideal can be written as λI, for some λ ∈ K∗, and some ideal I of OK .

By Theorem 2 in Section 1.6 of Lang [16, p. 18], the non-zero fractional ideals of a number field
form a group under multiplication. Moreover a fractional ideal a factors uniquely as a product of
prime of K:

a =
g∏
i=1

pri
i

We denote the group of non-zero fractional ideals by I(K). We define two important subgroups
of the fractional ideals as follows:

Definition 1.65. A fractional ideal of the form (α), for α ∈ K∗, is called a principal fractional
ideal. The subgroup of principal fractional ideals is denoted by P(K).

Definition 1.66. An element α ∈ K is called totally positive if σ(α) > 0, for every real embedding
σ : K ↪→ R. By extension a principal fractional ideal (α) is called totally positive if it is generated
by some totally positive α. The subgroup of totally positive principal fractional ideals is denoted
by P+(K).
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If the number field K has no real embeddings, then σ(α) > 0 is vacuously true. This holds in
particular if K is an imaginary field, and so every principal fractional ideal is totally positive. In
real quadratic fields this is not always the case.
Example 1.67. Consider the real quadratic field K = Q(

√
2). In this case we can show every

principal fractional ideal is totally positive. We can embedK ↪→ R in two way, either via σ1 :
√

2 7→√
2, or via σ2 :

√
2 7→ −

√
2.

Let (α) be a principal fractional ideal. The fundamental unit of K is u = 1 +
√

2, which as
norm N(u) = −1. Equivalently this means σ1(u)σ2(u) = −1, so σ1(u) and σ2(u) have opposite
signs. If σ1(α) and σ2(α) have different signs, then σ1(uα) and σ2(uα) have the same sign. If the
signs are negative than σ1(−uα) and σ2(−uα) have positive sign. Multiplying the generator of an
ideal by units does not change the ideal, so (α) = (±uα), and in this latter representation we see
the ideal is totally positive.

The same analysis works whenever the fundamental unit of the real quadratic field Q(
√
d) has

negative norm. In this case the group of totally positive principal fractional agrees with the group
of principal fractional ideals. Things are more interesting when the fundamental unit has positive
norm.
Example 1.68. The fundamental unit of the real quadratic field K = Q(

√
6) is u = 5 + 2

√
6, of

norm −1. The same trick as above does not work, and in fact not all principal ideals are totally
positive. Consider, say, the ideal a = (2 +

√
6) generated α = 2 +

√
6. The norm of the generator

is N(α) = 4 − 6 = −2, and so α has different signs under the embeddings σ1 :
√

6 7→
√

6, and
σ2 :
√

6 7→ −
√

6. Any other generator of the ideal a is associate to α, so is of the form ±unα, but
this too has norm N(±unα) = −1. So a is not totally positive.

We then define following class groups of a number field:
Definition 1.69. The class group of a number field K is the quotient group I(K)/P(K), and it
is denoted by C(K). The size of C(K) is the class number of K, denoted by h(K).
Definition 1.70. The narrow class group of a number field K is the quotient group I(K)/P+(K),
and it is denoted by C+(K). The size of C+(K) is the narrow class number ofK, denoted by h+(K).

Both of these groups are finite, so the class numbers are always finite. This is proven more
generally using class field theory. For an imaginary quadratic field the class group and the narrow
class group agree. In a real quadratic number field we can give a simpler description of the totally
positive principal ideals:
Proposition 1.71. Let K be a real quadratic number field. An ideal I = (α) is totally positive if
and only if it has a generator of positive norm.

Proof. If I is generated by an element α of positive norm, then σ1(α)σ2(α) > 0, where σ1, σ2 are
the real embeddings of K. In this case σ1(α) and σ2(α) have the same sign, and so one of α or
−α is totally positive. They generate the same ideal, hence the ideal I is totally positive.

If I is totally positive, then it is generated by an element α with σ1(α) > 0 and σ2(α) > 0. The
norm of α is N(α) = σ1(α)σ2(α) > 0, so α is of positive norm.

For a real quadratic field K, we can relate the sizes of the class group and the narrow class
group. Following Exercise 7.23 in Cox [7, pp. 155–156] we obtain the result:
Proposition 1.72. Let K = Q(

√
d) be a real quadratic field with fundamental unit u. Then:

h+(K)
h(K) =

{
1 if N(u) = −1
2 if N(u) = 1
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Proof. The composition of the identity map on I(K) followed by the projection to C(K) induces
a group homomorphism with kernel P(K). Since P+(K) ⊂ P(K), this map factors through
the quotient I(K)/P+(K), and hence induces a surjective map C+(K) � C(K) fitting into the
commutative diagram:

I(K) I(K)

C+(K) = I(K)/P+(K) C(K) = I(K)/P(K)

The kernel of the induced map is P(K)/P+(K).
Next we show that P(K) = P+(K) ∪

√
dP+(K). Since the principal fractional ideals form a

group each factor on the right hand side is a principal fractional ideal, hence we get the inclusion
P(K) ⊃ P+(K) ∪

√
dP+(K). On the other hand, given a principal fractional ideal (α), one of

α or α/
√
d has positive norm since N(

√
d) = −d < 0. This means one of (α) or (α/

√
d) is

totally positive, hence we get the other inclusion. Taking the quotient shows that P(K)/P+(K) =
{[(1)], [(

√
d)]}, so the kernel has size 1 or 2.

If the kernel of the induced map has size 1, then [(1)] = [(
√
d)] and so I = (

√
d) is totally

positive. Hence we can find a generator α of I with positive norm. Any other generator is associate
to
√
d, and so α = ±un

√
d. Taking norms shows that N(un) = −1, hence N(u) = −1, and the

fundamental unit has negative norm. Conversely if the fundamental unit has negative norm, we
can find a generator of (

√
d) which is totally positive, hence [(1)] = [(

√
d)], and the kernel of the

induced map has size 1.
We concluded:

|C+(K)|
|C(K)| =

∣∣P(K)/P+(K)
∣∣ =

{
1 if N(u) = −1
2 if N(u) = 1

We can now compute the narrow class numbers of some real quadratic fields once we know the
class numbers.

Example 1.73. i) The real quadratic field K = Q(
√

6) has class number h(K) = 1. Its funda-
mental unit is u = 5 + 2

√
6, which has norm N(u) = 1. So h+(K) = 2h(K) = 1.

ii) The real quadratic field K = Q(
√

10) has class number h(K) = 2. Its fundamental unit is
u = 3 +

√
10, which has norm N(u) = −1. So h+(K) = h(K) = 2.
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Chapter 2

Binary Quadratic Forms

The primary focus of this report is to find criteria for when a prime is represented by the quadratic
form x2 + ny2. To this end we will spend some time studying quadratic forms and the theory
surrounding them. The basic results in this chapter will allow us to give a proof of Fermat’s claims
and take some small steps beyond them.

The basic definitions and results on binary quadratic forms are from Cox [7]. For equivalence
of forms we work from Flath [8]. Finiteness of the class number comes from Cohen [4], and the
correspondence between forms and ideals comes from Fröhlich and Taylor [10]. After this we return
to Cox [7] to study the primes a form represents.

2.1 Definition of a Quadratic Form
We already have something of an idea what a quadratic form is, but we should give a formal
definition, and explain some related terminology.

Definition 2.1. A quadratic form is a degree 2 homogeneous polynomial in some number of
variables. The prefix n-ary tell us that it is in n variables, so a binary quadratic form is a quadratic
form in two variables.

Example 2.2. i) The polynomial x2 + y2 is a binary quadratic form. Any binary quadratic form
has the form ax2+bxy+cy2, where a, b, c are some coefficients. Taking a = 1, b = 0, and c = n ∈ Z,
gives us the quadratic form x2 +ny2 which is the focus of this report. The coefficients do not have
to be integers, so (e +

√
2)x2 + ixy + πy2 is a perfectly fine binary quadratic form

ii) An example of a ternary quadratic form is x2 + 2y2 + 3z2 + 5xy+ 2xz, and an example of a
quaternary quadratic form is x2 + 2y2 + 5z2 + 5w2.

Remark 2.3. It will sometimes be useful to write and think of the binary quadatic form ax2 +
bxy + cy2 as a matrix product:

ax2 + bxy + cy2 =
(
x y

)( a b/2
b/2 c

)(
x
y

)
where the matrix

(
a b/2
b/2 c

)
is called the matrix of the form, or sometimes the Gram matrix.

Whilst in general there are no restrictions on what the coefficients can be, the most interesting
and useful case for us and number theory is when they are integers. Whether or not the coefficients
are coprime strongly affects the behaviour of the form, and what values it can represent.
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Definition 2.4. A quadratic form is called integral if all the coefficients are integers. An integral
quadratic form is called primitive if the coefficients are coprime.

Remark 2.5. The definition of what constitutes an integral quadratic form is the source of some
confusion and controversy. Historically the convention adopted by Gauss was that a form is integral
if its matrix is integral, and so the off-diagonal coefficients are even. Nowadays the convention is
that the coefficients of the form are integers, and so the matrix can have half-integer off-diagonal
entries.

Definition 2.6. We say that an integral binary quadratic form f(x, y) represents the integer m if
m = f(x, y) has a solution with x, y ∈ Z.

Example 2.7. i) The quadratic form f(x, y) = x2 + 5y2 represents m = 0, 1, 4, 5, 6, . . ., since each
of :

0 = f(0, 0) = 02 + 5 · 02

1 = f(1, 0) = 12 + 5 · 02

4 = f(2, 0) = 22 + 5 · 02

5 = f(0, 1) = 02 + 5 · 12

6 = f(1, 1) = 12 + 5 · 12

is a solution in integers to m = f(x, y).
However f(x, y) does not represent 2, or 3. If we try to solve 2 = x2 + 5y2, with x, y ∈ Z,

we need firstly y = 0 otherwise the result will already be too large. Then this gives 2 = x2, but
since

√
2 is irrational there is no solution with x ∈ Z. Similarly 3 = x2 + 5y2 cannot be solved in

integers.
ii) It is more difficult to determine whether or not an integer is represented by a quadratic form

like g(x, y) = x2− 2y2, since there aren’t any obvious bounds on the size x and y beyond which no
solution is possible. We can make some headway with small values using a combination of luck,
good guesses and experimentation, but this does not work generally. Being able to find a criterion
which will give a definitive answer in a finite time is much more useful in this case.

We see that g(x, y) = x2 − 2y2 represents m = 0, 1, 2, 4, 7, . . ., since each of:

0 = f(0, 0) = 02 − 2 · 02

1 = f(1, 0) = 12 − 2 · 02

2 = f(3, 2) = 32 − 2 · 22

4 = f(2, 0) = 22 − 2 · 02

7 = f(3, 1) = 32 − 2 · 12

is a solution in integers to m = g(x, y). Try as we might, the form doesn’t seem to represent 3, 5,
or 6. Unlike above, checking all possibilities is not possible, and so a proof does not come as easily.

In light of this we can restate the first goal of this report as finding which primes the binary
quadratic form x2 + ny2 represents.

If the integral binary quadratic form we are studying is not primitive, then every integer
represented by the form is divisible by the greatest common divisor d of the coefficients. In
particular, if the form represents the prime p, then d | p, and so d = p. From this we see that if d
is not prime, the form does not represent any primes. However if d is prime, the only prime which
the form might represent is d = p itself.
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Primes Represented by Non-Primitive Forms

i) What primes does q(x, y) = 3x2 + 18y2 represent? Since the form is not primitive, and the gcd
of the coefficients is d = 3, the only prime the form can represent is p = 3. We see easily that
3 = q(1, 0) is represented by q(x, y).

ii) What primes does r(x, y) = 4x2 + 4xy + 6y2 represent? The gcd of the coefficients is d = 2,
so the only prime which r(x, y) can represent is p = 2. By completing the square we can write
r(x, y) as r(x, y) = 4(x + y

2 )2 + 5y2. From this we see that r(x, y) cannot represent 2: we need
y = 0 firstly, and then x = 0 to prevent the result being too large, but r(0, 0) = 0 6= 2.

iii) What primes does s(x, y) = 9x2 − 3y2 represent? The gcd of the coefficients is d = 3, so
the only prime which s(x, y) can represent is p = 3. On dividing through, the question becomes
whether 3x2 − y2 represents m = 1, or equivalently whether x2 − 3y2 represents m = −1? As it
turns out it doesn’t: by recognising x2 − 3y2 as the norm form on Q(

√
3) this says x + y

√
3 is a

unit of norm −1. The fundamental unit u = 2 +
√

3 has norm N(u) = 1, so there are no units of
negative norm. We begin to see connections between quadratic forms and quadratic fields!

Later on we will see that the criterion we generate work for all but a finite set of excluded
primes. The above result have precisely this form for non-primitive forms: for p 6= d, the quadratic
form does not represent p. So we have answered the question to the same level as we will in the
primitive case. For this reason we will make the assumption that all quadratic forms are primitive
from now on.

2.2 The Discriminant of a Quadratic Form
We will now introduce the discriminant of a quadratic form. The discriminant gives us a rough
measure of what types of integers a form can represent. By looking at the forms of a fixed
discriminant D, we can begin to introduce more sophisticated techniques to determine which
primes a form can represent.

Definition 2.8. The discriminant of the binary quadratic form ax2 + bxy + cy2 is defined to be
D = b2 − 4ac. We may write D(f) to represent the discriminant of the form f .

Remark 2.9. If the form f(x, y) = ax2 + bxy+ cy2 has matrix M =
(

a b/2
b/2 c

)
, then the discrim-

inant of the form is related to the matrix by D = −4 detM . The discriminant of the form is also
just the discriminant of the quadratic polynomial ax2 + bx+ c obtained by setting y = 1.

Proposition 2.10. The discriminant satisfies D ≡ 0, 1 (mod 4), and any integer N ≡ 0, 1 (mod 4)
occurs as a discriminant.

Proof. Looking at the definition of the discriminant D = b2−4ac modulo 4 gives D ≡ b2 (mod 4).
We know the squares modulo 4 are 0, 1, so D ≡ 0, 1 (mod 4).

Now given N ≡ 0, 1 (mod 4), we will write down a quadratic form with discriminant N . If
N ≡ 0 (mod 4), let b = 0, otherwise N ≡ 1 (mod 4), so take b = 1. Then N − b2 ≡ 0 (mod 4), so
write N = b2− 4d. Take a = d, and c = 1. Then by construction ax2 + bxy+ cy2 = dx2 + bxy+ y2

is a primitive (since gcd(a, b, c) = gcd(d, 1) = 1) integral binary quadratic form with discriminant
D = b2 − 4ac = b2 − 4d = N .

We will often refer to the discriminants D ≡ 0 (mod 4) as the even discriminants, and the
discriminants D ≡ 1 (mod 4) as the odd discriminants, as would be expected.
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The discriminant is a perfect square if and only if the binary quadratic form is reducible, that
is it factors as the product of linear polynomials. Dividing the quadratic form f(x, y) through by
y2 gives us a quadratic polynomial in x

y with the same discriminant D. If this discriminant is a
perfect square, the polynomial has rational roots, and so factors over Z by the Gauss Lemma. We
can then multiple through by a y in each factor to get a factorisation of the original quadratic
form.

If the form is reducible, the question of what primes the form represents can be dealt with
much more easily than in general; to represent a prime p one of the factors must be 1 and the
other must be p itself.

Primes Represented by Reducible Forms

i) What primes does the quadratic form q(x, y) = x2−4y2 represent? Since q(x, y) has discriminant
D = 02 − 4 · (−4) · 1 = 16, a perfect square, the form is reducible. We factor q(x, y) as q(x, y) =
(x− 2y)(x+ 2y). So if q(x, y) represent the prime p, we must have (after flipping the sign of x or
y as necessary), that: {

1 = x+ 2y
p = x− 2y

Solving these equations for x and y gives that:
x = 1

2(1 + p)

y = 1
4(1− p)

There is an integer solution if and only if 1 + p ≡ 0 (mod 2) and 1 − p ≡ 0 (mod 4). We
can rewrite this as just p ≡ 1 (mod 4). So a prime p is represented by x2 − 4y2 if and only if
p ≡ 1 (mod 4).

ii) What primes does the quadratic form r(x, y) = 2x2 − xy − 3y2 represent? Since r(x, y) has
discriminant D = (−1)2 − 4 · 2 · (−3) = 25, a perfect square, the form is reducible. We can factor
r(x, y) as r(x, y) = (x + y)(2x − 3y). So if r(x, y) represents the prime p, we must have (after
flipping the sign of x and y if necessary), that:{

1 = x+ y

p = 2x− 3y
or
{

1 = 2x− 3y
p = x+ y

Solving for x and y gives that:
x = 1

5(3 + p)

y = 1
5(2− p)

or


x = 1

5(1 + 3p)

y = 1
5(2p− 1)

There is an integer solution if and only if 3 + p ≡ 0 (mod 5) and 2− p ≡ 0 (mod 5), or 1 + 3p ≡
0 (mod 5) and 2p − 1 ≡ 0 (mod 5). These conditions are simply if and only if p ≡ 2 (mod 5), or
p ≡ 3 (mod 5). So a prime p is represented by r(x, y) = 2x2−xy−3y2 if and only if p ≡ 2, 3 (mod 5).

We can completely answer the question of which primes a reducible binary quadratic form
represents, and so we may assume without loss of generality that the discriminant of a quadratic
form is not a perfect square so the form is irreducible.
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The sign of the discriminant identifies what types of integers the quadratic form can represent,
and splits quadratic forms into two sets which behave very differently.

Definition 2.11. A quadratic form is called positive-definite if, other than 0, it only represents
positive values; is called negative-definite if it only represents negative values; and is called indefinite
if it represents both positive, and negative values.

Proposition 2.12. The binary quadratic form f(x, y) = ax2 + bxy+ cy2 of discriminant D, with
D non-square, is:

i) positive-definite if D < 0, and a > 0;
ii) negative-definite if D < 0, and a < 0;
iii) indefinite if D > 0.

Proof. Since D is not a square, we know a 6= 0. Now we make use of the identity found in Flath
[8, p. 56], which says:

f(x, y) = a

(
x+ b

2ay
)2
− D

4ay
2

If D > 0, the right hand side takes positive and negative values hence f(x, y) is indefinite: at
x = 1, y = 0 we get f(1, 0) = a, and at x = −b, y = 2a, we get f(−b, 2a) = −Da. If D < 0 then for
any (x, y) sign of the right hand side corresponds to the sign of a, and hence f(x, y) is positive- or
negative-definite according to whether a is positive or negative.

Since the primes of Z are by definition positive, no negative-definite form can represent a prime
number, so we may exclude them from our investigation. Furthermore by negating a negative-
definite form we obtain a corresponding positive-definite form which represents the corresponding
positive integers, so we only need study positive-definite forms, rather than both positive- and
negative-definite forms.

Often we will have to analyse the situation for positive-definite forms and indefinite forms
separately since they have very disparate behaviour. We will see later that binary quadratic forms
link to quadratic fields and their ideals, with the indefinite forms linking to the real quadratic fields.
The presence of infinitely many units in real quadratic fields leads to them being less ‘well-behaved’
than imaginary quadratic fields, and this transfers to the binary quadratic forms.

2.3 Equivalence of Quadratic Forms
As with all mathematical objects, we want to define a notion of equivalence between binary
quadratic forms. We want some way to identify that certain forms are for all intents and purposes
the same. In particular we would intuitively like equivalent forms to have the same discriminant,
and to represent the same integers.

Following Flath [8, pp. 56–58] we will define a group action of SL(2,Z) on the set of all binary
quadratic forms, and use to this define the equivalence classes of forms as orbits under SL(2,Z).

Definition 2.13. For a form f(x, y) = ax2 + bxy + cy2, and a matrix A = ( p qr s ) ∈ SL(2,Z), we
define the operation:

(A · f)(x, y) = f(px+ ry, qx+ sy)

So in matrix notation, if the matrix of f(x, y) is M , we have:

(A · f)(x, y) =
(
x y

)
AMA>

(
x
y

)
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Lemma 2.14. The operation A · f above defines an action of SL(2,Z) on the set of all binary
quadratic forms.

Proof. We have I · f = f , since IMI> = M . We also have B · (A · f) = (BA) · f since
B(AMA>)B> = (BA)M(BA)>.

From this and properties of a group action we can make the following definition of equivalence
which is then automatically an equivalence relation:

Definition 2.15. Two forms f(x, y) and g(x, y) are said to be equivalent if there is A ∈ SL(2,Z)
such that A · f = g. The orbits under SL(2,Z) give the equivalence classes of forms, the classes of
forms which are all equivalent.

Remark 2.16. On the set of binary quadratic forms there are at least three notions of equivalence,
one defined by the above action of SL(2,Z), which is usually called proper equivalence; and another
define by the obvious action of GL(2,Z) which is just called equivalence. As Zagier [29, p. 62] warns
there is also a signed equivalence, where ( p qr s ) ∈ GL(2,Z) acts by (( p qr s )·f)(x, y) = det ( p qr s ) f(px+
ry, qx+ sy).

Signed equivalence is no good for our purposes since signed-equivalent forms don’t represent
the same integers. For example the forms x2 − 3y2 and −x2 + 3y2 are signed-equivalent via( 1 0

0 −1
)
∈ GL(2,Z). Since the fundamental unit of Q(

√
3) is u = 2 +

√
3, of norm 1, the form

x2 − 3y2 cannot represent −1, and yet clearly −x2 + 3y2 does. An even more blatant example
occurs if we look at the forms x2 + y2 and −x2 − y2. They, too, are signed-equivalent via

( 1 0
0 −1

)
,

yet one is positive definite and the other is negative definite! We do not want this.
Since SL(2,Z)-equivalence has stronger links to quadratic number fields, it is the one we will

make most use of and so when we speak of equivalence we will mean SL(2,Z)-equivalence.

Let’s look at some examples of equivalent forms, and see how the properties of a form behaves
under equivalent.

Example 2.17. i) Consider the quadratic form r(x, y) = x2 + 2y2. As ( 2 1
1 1 ) , ( 5 3

3 2 ) ,
( 7 −3

5 −2
)
∈

SL(2,Z), we can act by each of them to get a form equivalent to r(x, y).

(( 2 1
1 1 ) · r) (x, y) = r(2x+ y, x+ y) = (2x+ y)2 + 2(x+ y)2 = 6x2 + 8xy + 3y2

(( 5 3
3 2 ) · r) (x, y) = r(5x+ 3y, 3x+ 2y) = (5x+ 3y)2 + 2(3x+ 2y)2 = 43x2 + 54xy + 17y2(( 7 −3

5 −2
)
· r
)

(x, y) = r(7x+ 5y,−3x− 2y) = (7x+ 5y)2 + 2(−3x− 2y)2 = 67x2 + 94xy + 33y2

In each case the form seems to be getting more complicated, but it still retains some of the
features of r(x, y) = x2 + 2y2. All of the equivalent forms are integral and primitive. Just before
the final equality the forms are written in a way which shows they are positive definite, as is
r(x, y) = x2 + 2y2. If we calculate the discriminants we get D = 82 − 4 · 6 · 3 = 02 − 4 · 1 · 2 = −8
in each case, which is the discriminant of r(x, y) = x2 + 2y2, the form that we started with.

ii) Now start with the form s(x, y) = 2x2 − 4y2, and act by the same matrices. We find the
following forms are equivalent to s(x, y):

(( 2 1
1 1 ) · s) (x, y) = s(2x+ y, x+ y) = 2(2x+ y)2 − 4(x+ y)2 = 4x2 − 2y2

(( 5 3
3 2 ) · s) (x, y) = s(5x+ 3y, 3x+ 2y) = 2(5x+ 3y)2 − 4(3x+ 2y)2 = 14x2 + 12xy + 2y2(( 7 −3

5 −2
)
· s
)

(x, y) = s(7x+ 5y,−3x− 2y) = 2(7x+ 5y)2 − 4(−3x− 2y)2 = 62x2 + 92xy + 34y2

With the exception of the first result, the forms still seem to be getting increasingly more
complicated. We can see that all of the forms are integral, and none are primitive. Just before
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the final equality we see that each is indefinite, although it might not look it from the final result.
Each form has discriminant D = 02 − 4 · 2 · (−4) = 32.

iii) If we start with a somewhat complicated form like t(x, y) = 13x2 − 42xy + 34y2, and
act by a cleverly chosen matrix we can sometimes find a very simple equivalent form. Act by
( 5 3

3 2 ) ∈ SL(2,Z), and after some calculation we find:

(( 5 3
3 2 ) · t) (x, y) = t(5x+ 3y, 3x+ 2y)

= 13(5x+ 3y)2 − 42(5x+ 3y)(3x+ 2y) + 34(3x+ 2y)2

= x2 + y2

So the form t(x, y) = 13x2 − 42xy + 34y2 is equivalent to simply the sum of two squares x2 + y2.

As we might notice in the example above, this equivalence behaves as we would like with respect
to being primitive, being integral, the discriminant, and representing integers. We may then group
the equivalent forms together and just study a representation of each equivalence class. Specifically
we have the following easy results:

Proposition 2.18. If f(x, y) is integral, then so is any equivalent form.

Proof. Expanding out the result of the definition (A · f)(x, y), for A ∈ SL(2,Z), involves only
multiplication and addition of integers, this means integer coefficients remain integers.

Proposition 2.19. Equivalent forms have the same discriminant.

Proof. From the matrix point of view, if the form f(x, y) has matrixM , and we act byA ∈ SL(2,Z)
to get an equivalent form, then the discriminant of (A · f)(x, y) is given by:

D(A · f) = −4 det(AMA>) = −4 det(A)2 det(M) = −4 det(M) = D(f)

since A ∈ SL(2,Z) has det(A) = 1.

Proposition 2.20. Equivalent integral forms represent the same integers.

Proof. We only need to show that if f(x, y) represents an integer, then so does (A·f)(x, y), for any
A ∈ SL(2,Z). If the form f(x, y), with matrix M , represents the integer m, write m = f(x0, y0).
Now consider (A · f)(x1, y1), where: (

x1 y1
)

=
(
x0 y0

)
A−1

Since A ∈ SL(2,Z), we know A−1 ∈ SL(2,Z), hence A−1 has integer entries, and x1, y1 ∈ Z. Then
we have by straight-forward calculation:

(A · f)(x1, y1) =
(
x1 y1

)
AMA>

(
x1 y1

)>
=
(
x0 y0

)
A−1AMA>

((
x0 y0

)
A−1)>

=
(
x0 y0

)
A−1AMA>(A>)−1 (x0 y0

)>
=
(
x0 y0

)
M
(
x0 y0

)>
= f(x0, y0)
= m

So (A · f)(x, y) also represents m.
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Corollary 2.21. Equivalent forms are both either positive-definite, negative-definite, or indefinite.

Proof. They represent the same integers.

Proposition 2.22. If f(x, y) is primitive, then so is any equivalent form.

Proof. The statement here is f(x, y) is primitive implies (A · f)(x, y) is primitive. An equivalent
statement is given by the contrapositive: (A·f)(x, y) is not primitive implies f(x, y) is not primitive.
We prove the contrapositive.

Let f(x, y) = ax2 + bxy + cy2. Suppose the gcd of the coefficients of (A · f)(x, y) is d > 1,
then any integer which (A · f)(x, y) represents is divisible by d. Since f(x, y) and (A · f)(x, y)
are equivalent they represent the same integers, in particular they both represent f(1, 0) = a,
f(0, 1) = c, and f(1, 1) = a + b + c. This tell us that d | a, c, a + b + c, and so d | a, b, c, which
precisely means f(x, y) is not primitive.

With these results we can make some headway in identifying which forms are equivalent, and
which aren’t.

Example 2.23. Which of the forms r(x, y) = x2 + 5y2, s(x, y) = 2x2 + 2xy + 3y2, t(x, y) =
2x2 − 2xy + 3y2, u(x, y) = x2 − 5y2, v(x, y) = 2x2 + 4y2 are equivalent?

We see straight away that v(x, y) is the only non-primitive form, and so can’t be equivalent
to any others. Now we calculate the discriminant of each form D(r) = D(s) = D(t) = −20, and
D(u) = 20. We then get that u(x, y) is not equivalent to any other form in the list.

Now let us look at what integers the remaining forms represent. By changing the sign of x we
see that both s(x, y) and t(x, y) represent the same integers, so we can’t distinguish them this way,
and so this suggests they might be equivalent. However we know r(x, y) doesn’t represent 2 or 3,
whereas s(x, y) and t(x, y) do. So r(x, y) is not equivalent to any other forms.

We are left with possibly s(x, y) and t(x, y) being equivalent. A pair of forms like this is of
course equivalent under GL(2,Z), by

(−1 0
0 1
)
, which changes the sign of x, but we want to know

whether they are equivalent under SL(2,Z). It turns out that
(−1 0
−1 −1

)
transforms t(x, y) into

s(x, y) so they are equivalent, although where this matrix comes from is not clear.

The question of whether two arbitrary quadratic forms are equivalent can be answered in a
purely algorithmic manner, and is tied closely to the theory of reduced forms, and the finiteness
of the number of equivalence classes of forms. It is to that we now turn.

2.4 Finiteness of the Class Number
Definition 2.24. The class number of a discriminant D is the number of equivalence classes of
primitive integral binary quadratic forms of discriminant D. In the positive-definite case we may
denote this by h(D), and in general by h+(D) in order to match up with the corresponding notions
in quadratic fields.

The goal of this section is to establish h(D) and h+(D) are finite, and show how to effectively
calculate it and list a representative of each equivalence class. We must treat the positive-definite
and indefinite forms separately. We will work from Cohen [4].
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2.4.1 Positive-Definite Forms

Section 5.4.1 of Cohen [4, pp. 231–234] deals with the positive definite case. Following Gauss and
Cohen [4] we will define a reduced form, and establish that every equivalence class of forms of
discriminant D < 0 contains a unique reduced form.

Definition 2.25. A primitive positive-definite integral quadratic form ax2 + bxy+ cy2 of discrim-
inant D < 0 is said to be reduced if |b| ≤ a ≤ c, and if when one of the two inequalities is an
equality, either |b| = a or a = c, then b ≥ 0.

Proposition 5.3.3 in Cohen [4, pp. 231–232] gives us:

Proposition 2.26. In every class of positive definite quadratic forms of discriminant D < 0 there
is a unique reduced form.

Proof. We follow the proof given in Cohen [4, p. 232].

We show each class contains a reduced form. Since the form is positive-definite we know a > 0,
hence by the well-ordering principal, in any equivalence class there is a form with minimal a. If
ax2 + bxy + cy2 is such a form, then a ≤ c, since otherwise

( 0 1
−1 0

)
sending x 7→ −y and y 7→ x

changes ax2 + bxy + cy2 into cx2 − bxy + ay2 and would produce a smaller ‘a’.
By acting with ( 1 0

k 1 ) sending x 7→ x + ky and y 7→ y we transform the form ax2 + bxy + cy2

into ax2 + (2ak + b)xy + (ak2 + bk + c)y2. Hence we can put ‘b’ into the range (−a, a]. Since a
is minimal we still have a ≤ c, and we now have −a < b ≤ a, so |b| ≤ a. Now we need to check
whether the edge cases are are satisfied: by construction if |b| = a then b = a > 0, and if a = c
with b < 0 then transforming by

( 0 1
−1 0

)
sending x 7→ −y and y 7→ x changes ax2 + bxy + cy2 into

cx2 − bxy + ay2 with ‘a’ ≤ ‘c’ and ‘b’ > 0.
Cohen then goes on to prove this reduced form is unique. We do not need uniqueness in order

to establish the class number is finite.

Essentially the same proof appears in Flath [8, p. 58, Prop. 8.3], but Flath applies the two
transformations S :=

( 0 1
−1 0

)
, and T k := ( 1 0

k 1 ) alternately to an arbitrary (primitive) integral
positive definite binary quadratic form. This forms a reduction operator leading to a sequence of
equivalent forms which eventually terminates in a (nearly) reduced form. The procedure terminates
in a reduced form or stops one step away, needing the final transformation

( 0 1
−1 0

)
to make the

form reduced.
This leads to an algorithm for determining whether two primitive positive-definite binary

quadratic forms are equivalent. Apply the reduction procedure and produce a reduced form equiv-
alent to each form. If the reduced forms are the same the forms are equivalent, otherwise the
reduced forms are different and the forms are not equivalent.

Example 2.27. Are the forms s(x, y) = 242x2 + 300xy+ 93y2 and r(x, y) = 605x2 + 184xy+ 14y2

equivalent? We can see that these forms are both primitive and positive-definite. We apply the
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reduction:

s(x, y) = 242x2 + 300xy + 93y2; as c < a apply S
(S · s)(x, y) = 93x2 − 300xy + 242y2; apply T 2 to put b in (−93, 93]

(T 2S · s)(x, y) = 93x2 + 72xy + 14y2; as c < a apply S
(ST 2S · s)(x, y) = 14x2 − 72xy + 93y2; apply T 3 to put b in (−14, 14]

(T 3ST 2S · s)(x, y) = 14x2 + 12xy + 3y2; as c < a apply S
(ST 3ST 2S · s)(x, y) = 3x2 + 12xy + 14y2; apply T 2 to put b in (−3, 3]

(T 2ST 3ST 2S · s)(x, y) = 3x2 + 2y2; as c < a apply S
(ST 2ST 3ST 2S · s)(x, y) = 2x2 + 3y2; this is a reduced form so terminate

Keeping track of the transformations we applied we see that A := ST 2ST 3ST 2S =
(−5 8

3 −5
)

transforms s(x, y) into the reduced form 2x2 + 3y2.
A similar computation shows that B := ST 2ST 7S =

(−2 13
1 −7

)
transforms t(x, y) into the

reduced form 2x2 + 3y2.
Since they are both equivalent to the same reduced form we know the forms s(x, y) and t(x, y)

are equivalent themselves. Moreover we have found a matrix which transforms one into the other:
B−1A =

(−4 9
−1 2

)
first transforms s(x, y) into 2x2 + 3y2, and then transforms this into r(x, y), so

overall transforms s(x, y) into r(x, y).

Remark 2.28. As Cohen [4, p. 232] remarks before the proof of Proposition 5.3.3, the proposition
and reduction procedure is equivalent to proving that F =

{
τ ∈ H | − 1

2 ≤ Re τ ≤ 1
2 and |τ | ≥ 1

}
is a fundamental domain for the standard action of SL(2,Z) on the upper half plane H, and to
finding a representative in F for the number τ = −b+

√
D

2a .

Returning to our goal of proving the class number is finite, we equivalently have to prove there
are only finitely many reduced forms of a given discriminant. Lemma 5.3.4 from Cohen [4] gives
us the following bounds:

Proposition 2.29. Let f(x, y) = ax2 + bxy + cy2 be a reduced primitive positive-definite binary
quadratic form of discriminant D < 0. Then:

a ≤
√
−D

3

Proof. As f(x, y) is reduced, we know c ≥ a ≥ |b|, so a2 ≥ b2 or −b2 ≥ −a2 and we find:

−D = 4ac− b2 ≥ 4a2 − a2 = 3a2

This implies a ≤
√
−D
3 as required.

We have thus established an upper bound on a in a reduced form of discriminant D < 0, and
this gives a bound on b using |b| ≤ a. In particular there are only finitely many possible a and b.
We can then calculate c via c = b2−D

4a in order to list the reduced forms. An immediate corollary
of this is:

Corollary 2.30. For a given discriminant D < 0, the class number h(D) is finite.

Proof. Since there is a unique reduced form in each equivalence class, the class number equals
the number of reduced forms, and we have shown this is finite.
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We also get an algorithm to list a representative of each equivalence class, it is simply to
compute the list of reduced forms.

Example 2.31. What are the binary quadratic forms of discriminant D = −20?
We start finding the bounds on each of a and b. Since D = −20, we know from the result above

that:

0 < a ≤
√

20
3 = 2.5818 . . .

Since a is an integer, we must have a = 1 or a = 2. We also have |b| ≤ a and can determine
c = b2−D

4a . So we can check through all possibilities:

a b c Reduced?
1 −1 21

4
1 0 5 Yes
1 1 21

4
2 −2 3
2 −1 21

8
2 0 20

8
2 1 21

8
2 2 3 Yes

Notice: 2x2 − 2xy + 3y2 is not reduced since |b| = a, but b < 0. From this table we read
off that there are two classes of quadratic forms of discriminant D = −20, namely x2 + 5y2, and
2x2 + 2xy + 3y2. This means that class number of D = −20 is h(−20) = 2.

The algorithm used here can easily be implemented on a computer, and as Cohen [4, p. 233]
states has a runtime of only a few seconds even for discriminants up to D = −106. Since we now
have a method to compute the class number of discriminant D < 0, and list a representative of
each class, we won’t bother manually calculating these in future, but simply state the final results.

2.4.2 Indefinite Forms
In the indefinite case there is a corresponding notion of a reduced form, and every binary quadratic
form is equivalent to some non-unique reduced form. It is possible for reduced forms here to be
equivalent among themselves.

Heeding Exercise 7i) from Section 2.8 in Flath [8, p. 61], we can imitate the proof of Proposi-
tion 2.26 to get the following proposition:

Proposition 2.32. Every primitive integral indefinite form of discriminant D > 0, D non-square
is equivalent to one of the form ax2 + bxy + cy2 such that |b| ≤ |a| ≤ |c|. Such a form has ac < 0,
and |a| ≤ 1

2
√
D.

Proof. By the well-ordering principal, in any equivalence class there is a form with minimal |a|. If
ax2 +bxy+cy2 is such a form, then |a| ≤ |c|, otherwise transforming by

( 0 1
−1 0

)
gives the equivalent

form cx2 − bxy + ay2, with a smaller ‘ |a| ’.
Now transforming by ( 1 0

k 1 ), which changes the coefficient b to 2ak + b, we can put ‘b’ in the
range (− |a| , |a|]. Since |a| is minimal, we still have |a| ≤ |c|, and we now have |b| ≤ |a|, which is
the required result.
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Given a form satisfying these conditions, we have b2 = |b|2 ≤ |a| |c| = |ac|, and by definition
D = b2 − 4ac > 0, so 4ac < b2. Putting these together gives:

4ac < b2 ≤ |ac|

This shows we must have ac < 0, as otherwise |ac| = ac, and we get the contradiction 4ac < ac.
Knowing ac < 0, we have |ac| = −ac, so D = b2 − 4ac = b2 + 4 |ac| > 0. This implies 4 |ac| =
D − b2 ≤ D. Since we have |a| ≤ |c| we get |a|2 ≤ |ac|, so:

|a|2 ≤ |ac| ≤ 1
4D

2

which implies |a| ≤ 1
2
√
D.

This in itself is sufficient to prove that the class number is finite in the indefinite case, and so
we get the corollary:

Corollary 2.33. For a given discriminant D > 0, D non-square, the class number h+(D) is finite.

Proof. Every equivalence class contains a form ax2 + bxy + cy2, with |b| ≤ |a| ≤ |c|. We have
shown such a form has |a| ≤ 1

2
√
D, so |b| ≤ |a| ≤ 1

2
√
D and there are finitely many possibilities

for a and b. This means there are finitely many such forms, and hence finitely many equivalence
classes.

We do not necessarily have that each class contains exactly one such form, so this does not
allow us to calculate the class number. In order to calculate the class number we need to study the
situation more carefully. Cohen has done so, and so we state the relevant results for this section
and refer the reader to Section 5.6.1 in Cohen [4, pp. 262–266] for the details.

Definition 2.34. A primtive integral indefinite binary quadratic form f(x, y) = ax2 + bxy + cy2

of discriminant D > 0 is called reduced if we have:∣∣∣√D − 2 |a|
∣∣∣ < b ≤

√
D

Proposition 2.35. A reduced indefinite form f(x, y) = ax2 + bxy + cy2 of discriminant D > 0
has |a| , b, |c| <

√
D, and ac < 0.

Definition 2.36. Let f(x, y) = ax2 + bxy + cy2 be an indefinite quadratic form of discriminant
D > 0. We define the reduction operator ρ on the form f(x, y) to be the form:

(ρf)(x, y) = cx2 + r(−b, c)xy + r(−b, c)2 −D
4c y2

where r(b, a) is the unique integer r ≡ b (mod 2a) such that:{
− |a| < r ≤ |a| if |a| >

√
D√

D − 2 |a| < r <
√
D if |a| <

√
D

The main result here is give in Proposition 5.6.6 of Cohen [4, p. 264] which states roughly that:

Proposition 2.37. i) Iterating ρ on an indefinite form of discriminant D > 0 eventually pro-
duces a reduced form;

ii) If f(x, y) is a reduced form, then (ρf)(x, y) is again a reduced form;
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iii) The reduced forms equivalent to f(x, y) are exactly the reduced forms given by iterating ρ on
f(x, y).

Using this we can determine the class number by listing the finite number of reduced forms
and counting the number of cycles they break up into under ρ. Again this can be implemented as
a computer algorithm, and so we need not manually calculate class numbers or representatives for
the equivalence classes in future.

Example 2.38. What are the quadratic forms of discriminant D = 105?
Let ax2 + bxy+ cy2 be a reduced form of discriminant D = 105. We have the following bounds

on a and b:

|a| <
√
D =

√
105 = 10.24695 . . .∣∣∣√D − 2 |a|
∣∣∣ < b <

√
D

So −10 ≤ a ≤ 10. We then calculate c by c = b2−D
4a .

We simply go through listing all possibilities, and check whether we get an integer c, and
coprime coefficients. Only those a and b which give integer c are listed below to save space.

a b c a b c
−7 7 2 1 9 −6
−6 3 4 2 9 −3
−6 9 1 2 7 −7
−5 5 4 3 9 −2
−4 3 6 4 5 −5
−4 5 5 4 3 −6
−3 9 2 5 5 −4
−2 7 7 6 9 −1
−2 9 3 6 3 −4
−1 9 6 7 7 −2

Now we need to see which forms are in the same orbit under the reduction operator ρ.
Let’s start with −7x2+7xy+2y2. We calculate r(−b, c) = r(−7, 2) = 9. This is because we need

r ≡ −7 (mod 2 ·2), so r ≡ 1 (mod 4). And we need to choose r such that
√

105−2 |2| < r <
√

105,
since |2| ≤

√
D. This means 7 ≤ r ≤ 10, and so we take r = 9.

Applying the reduction operator gives us the form:

ρ(−7x2 + 7xy + 2y2) = 2x2 + 9xy + 92 − 105
4 · 2 y2

= 2x2 + 9xy − 3y2

Iterating this operation gives us the cycle of forms:

−7x2 + 7xy + 2y2 7→ 2x2 + 9xy − 3y2 7→ −3y2 + 9xy + 2y2 7→
2x2 + 7xy − 7y2 7→ −7x2 + 7xy + 2y2

The next form still on the list is −6x2 + 3xy+ 4y2. We calculate r(−b, c) = r(−3, 4) = 5. This
is because we need r ≡ −3 (mod 2 · 4), so r ≡ 5 (mod 8). And we need to choose r such that√

105− 2 |4| < r <
√

105, since |4| ≤
√
D. This means 3 ≤ r ≤ 10, and so we take r = 5.
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Applying the reduction operator gives us the form:

ρ(−6x2 + 3xy + 4y2) = 4x2 + 5xy + 52 − 105
4 · 4 y2

= 4x2 + 5xy − 5y2

Iterating this operation gives us the cycle of forms:

−6x2 + 3xy + 4y2 7→ 4x2 + 5xy − 5y2 7→ −5x2 + 5xy + 4y2 7→ 4x2 + 3xy − 6y2 7→
−6x2 + 9xy + y2 7→ y2 + 9xy − 6y2 7→ −6x2 + 3xy + 4y2

Similarly we get the cycles:

−4x2 + 3xy + 6y2 7→ 6x2 + 9xy − y2 7→ −x2 + 9xy + 6y2 7→ 6x2 + 3xy − 4y2 7→
−4x2 + 5xy + y2 7→ 5x2 + 5xy − 4y2 7→ −4x2 + 3xy + 6y2

and

−2x2 + 7xy + 7y2 7→ 7x2 + 7xy − 2y2 7→ −2x2 + 9xy + 3y2 7→
3x2 + 9xy − 2y2 7→ −2x2 + 7xy + 7y2

This tells us that there are 4 equivalence classes of binary quadratic forms of discriminant
D = 105, so the class number is h+(105) = 4. By taking one form from each cycle we find that
a representative of each class is: −7x2 + 7xy + 2y2, −6x2 + 3xy + 4y2, −4x2 + 3xy + 6y2, and
−2x2 + 7xy + 7y2.

Implementations of the algorithms above to calculate the number of equivalence classes of
quadratic forms and to produce a representative of each class are available online courtesy of
Matthews [19].

2.5 The Correspondence Between Forms and Ideals
We now explore the link between quadratic forms and quadratic fields. We will use class field
theory to investigate ideals in quadratic fields and properties of the class number, this link will
then allow us to deduce results on the quadratic forms side. We have already seen that the norm
on the integers of K = Q(

√
d) gives rise to a quadratic form, the norm form, given by:

N(x+ y 1+
√
d

2 ) = x2 + xy + 1−d
4 y2 if d ≡ 1 (mod 4)

N(x+ y
√
d) = x2 − dy2 if d 6≡ 1 (mod 4)

The discriminant of both of these forms matches up with the discriminant of the number field K.

Definition 2.39. A discriminant D which occurs as the discriminant of a quadratic number field
K is called a fundamental discriminant

An positive integer m is represented by the norm form if and only if there is some element
α ∈ OK with norm N(α) = m. The ideal (α) is then a totally positive principal ideal of norm
|m| = m. Conversely if there is a totally positive principal ideal of norm m, then it is generated by
some α with N(α) = m > 0. So m is represented by the norm form if and only if there is a totally
positive principal ideal of norm m. Since the norm forms correspond to totally positive principal
ideals they are also called the principal forms.
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Following Section 7.2 of Fröhlich and Taylor [10, pp. 254–269], we will generalise the construc-
tion of the norm form above to construct other quadratic forms of discriminant ∆K , and relate the
representations of an integer to the existence of a particular ideal with the corresponding norm.
We can treat the positive-definite and the indefinite case simultaneously since the narrow class
group of an imaginary quadratic field is just the usual class group.

Let a be a non-zero ideal in OK . Theorem 5.9 in Stewart and Tall [25, pp. 115–116] tells us
that a has a Z-basis of the form {α1, α2}, and gives the norm of the ideal as:

N(a) =
∣∣∣∣∆K(α1, α2)

∆K

∣∣∣∣1/2
Everything extends multiplicatively to a fractional ideal λa, which has Z-basis {λα1, λα2}, with
the same result. So take a to be a fractional OK-ideal, with Z-basis {α1, α2}.

By definition ∆K(α1, α2) = det
(
α1 α2

α̃1 α̃2

)2
, where ∼ is the non-trivial automorphism of K. The

above result tell us that:

det
(
α1 α2
α̃1 α̃2

)2
= N(a)2∆K

Call the ordered basis {α1, α2} normalised when:

det
(
α1 α2
α̃1 α̃2

)
= N(a)

√
∆K

where
√

∆K is the principal branch of the square root,
√

∆K > 0 when ∆K > 0, and Im
√

∆K > 0
when ∆K < 0. Since the determinant changes sign when interchanging columns, exactly one of
the ordered bases {α1, α2} or {α2, α1} is normalised.

Given a normalised basis {α1, α2} of a, define the quadratic form:

Qα1,α2(x, y) = N(α1x+ α2y)
N(a)

Proposition 2.40. The quadratic form Qα1,α2(x, y) is a primitive integral quadratic form of
discriminant ∆K , positive definite if ∆K < 0.

Proof. To see Qα1,α2(x, y) is integral we check the coefficients are in Z. By multiplying up by
λ ∈ K∗ we can assume α1, α2 ∈ OK , and a is an integral ideal. Then for any x, y ∈ Z, the linear
combination xα1 + yα2 is in a. If b ∈ a, then (b) ⊂ a, and so a | (b). Taking norms shows that
N(a) | N((b)), so N(a) | N(b).

The coefficient of x2 in the form is given by a = Qα1,α2(1, 0), which is an integer by the
above. Similarly the coefficient of y2 is given by c = Qα1,α2(0, 1), and so is also an integer. The
sum of the coefficients is given by the integer Qα1,α2(1, 1), hence the coefficient of xy is given by
b = Qα1,α2(1, 1)− a− c, and is also an integer.

Writing out the quadratic form Qα1,α2(x, y) in full as Fröhlich and Taylor [10, p. 260–261] do
we find:

Qα1,α2(x, y) = N(α1x+ α2y)
N(a)

= 1
N(a) (α1x+ α2y)(α̃1x+ α̃2y)

= 1
N(a) (α1α̃1x

2 + (α1α̃2 + α2α̃1)xy + α2α̃2y
2)
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So the discriminant of Qα1,α2(x, y) is given by:

D = 1
N(a)2 [(α1α̃2 + α2α̃1)2 − 4α1α̃1α2α̃2]

= 1
N(a)2 (α1α̃2 − α2α̃1)2

= 1
N(a)2 det

(
α1 α2
α̃1 α̃2

)2

= ∆K

If ∆K < 0, then the coefficient of x2 is a = Qα1,α2(1, 0) = N(α1)/N(a) > 0, so the form is
positive-definite.

Lastly we check the form is primitive. Proceeding as in Result 2.12 of Fröhlich and Taylor
[10, pp. 256–259], we show any form of discriminant ∆K is primitive. As d is square-free, if
d ≡ 1 (mod 4), then ∆K = d, no square can divide ∆K , and so the coefficients have no common
factor. If d 6≡ 1 (mod 4), then ∆K = 4d, and so the only square dividing ∆K is 2. If the form is
not primitive then the only possibility is gcd(a, b, c) = 2. However, then we have:

d = ∆K

4 =
(
b

2

)2
− 4a2

c

2 ≡
(
b

2

)2

This means d ≡ 0, 1 (mod 4), but we took d 6≡ 1 (mod 4), and d is square-free, so d 6≡ 0 (mod 4).
Hence gcd(a, b, c) = 1, and the form is primitive.

Example 2.41. i) Consider the field K = Q(
√
−5), and the ideals OK = [1,−

√
−5], p3 =

[3, 1 +
√
−5], of norm 1 and 3 respectively. We check that the indicated bases are normalised:

det
∣∣∣∣1 −

√
−5

1
√
−5

∣∣∣∣2 = 2
√
−5 = N(OK)

√
−4 · 5

det
∣∣∣∣3 1−

√
−5

3 1 +
√
−5

∣∣∣∣2 = 6
√
−5 = N(p3)

√
−4 · 53

The corresponding forms are:

Q1,−
√
−5 = 1

N(OK)N(1x−
√
−5y) = x2 + 5y2

and
Q3,1−

√
−5 = 1

N(p3)N(3x+ (1−
√
−5)y)

= 1
3N((3x+ y)−

√
−5y)

= 1
3((3x+ y)2 + 5y2)

= 1
3(9x2 + 6xy + 6y2)

= 3x2 + 2xy + 2y2

ii) Now look at K = Q(
√

10), and the ideals OK = [1,−
√

10], p2 = [2,−
√

10] of norm 1 and 2
respectively. The indicated bases are normalised and so we compute the corresponding forms:

Q1,−
√

10 = 1
N(OK)N(x−

√
10y) = x2 − 10y2
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and
Q2,
√

10 = 1
N(p2)N(2x−

√
10y)

= 1
2(4x2 − 10y2)

= 2x2 − 5y2

How do the forms change when we use a different normalised basis?

Proposition 2.42. If {β1, β2} is another normalised basis of the ideal a, then the forms Qα1,α2

and Qβ1,β2 are equivalent.

Proof. As Fröhlich and Taylor [10, p. 261] observe, since both of these are Z-bases for a, we can
write: (

β1
β2

)
=
(
p q
r s

)(
α1
α2

)
where the change of basis matrix is invertible, and has integer entries. The inverse of the matrix
is the change of basis matrix going in the other direction, so it too has integer entries. Hence
( p qr s ) ∈ GL(2,Z).

Taking the conjugate of this change of basis relation and combining with the above gives the
relation: (

β1 β̃1

β2 β̃2

)
=
(
p q
r s

)(
α1 α̃1
α2 α̃2

)
Since both bases are normalised, and the determinant is invariant under transposition, taking the
determinant of both sides gives:

N(a)
√

∆K = det
(
p q
r s

)
N(a)

√
∆K

so in fact ( p qr s ) ∈ SL(2,Z).
Now we have:

Qβ1,β2(x, y) = 1
N(a)N(β1x+ β2y)

= 1
N(a)N((pα1 + qα2)x+ (rα1 + sα2)y)

= 1
N(a)N((px+ ry)α1 + (qx+ sy)α2)

= Qα1,α2(px+ ry, qx+ sy)
= (( p qr s ) ·Qα1,α2) (x, y)

So the two forms are equivalent.

How do the forms relate when we look at equivalent ideals?

Proposition 2.43. If a and b are equivalent ideals in the narrow class group, then the forms
arising from any normalised bases of a and b are equivalent.

Proof. If a and b are equivalent in the narrow class group, then ab−1 = (λ), for some totally
positive principal ideal (λ), so equivalently a = (λ)b. Let {β1, β2} be a normalised basis for b, then
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a basis for a is given by {λβ1, λβ2}. Fröhlich and Taylor [10, p. 261] note that since (λ) is totally
positive, N(λ) > 0, so the latter basis is also normalised:∣∣∣∣λβ1 λβ2

λ̃β̃1 λ̃β̃2

∣∣∣∣ = λλ̃(β1β̃2 − β2β̃1)

= N(λ)
√

∆KN(b)

=
√

∆KN((λ)b)

=
√

∆KN(a)

Then we compute:

Qλβ1,λβ2(x, y) = 1
λb
N(λβ1x+ λβ2y)

= 1
N(λ)N(b)N(λ)N(β1x+ β2y)

= 1
N(b)N(β1x+ β2y)

= Qβ1,β2(x, y)

So the forms arising are equal, and in particular they are equivalent. Choosing any other basis for
a gives an equivalent form, so the forms arising from equivalent ideals in the narrow class group
are always equivalent.

Overall the above results say that we have a well-defined map from the narrow class group
C+(K) of the quadratic field of discriminant ∆K to the set of equivalence classes of primitive
integral binary quadratic forms of discriminant ∆K . Theorem 58 in Fröhlich and Taylor [10,
pp. 252–264] tells us:

Theorem 2.44. The map between ideal classes in the narrow class group and equivalence classes
of quadratic forms defined above is a bijection

Proof. For surjectivity, let f(x, y) = ax2 + bxy+ cy2 be a quadratic form of discriminant ∆K . Set
a = Z〈a, b−

√
∆K

2 〉, this is a fractional OK-ideal, with Z-basis {a, b−
√

∆K

2 }.
If a > 0, then set λ = 1, otherwise set λ =

√
∆K . Then the fractional ideal λa has basis

{α1 = λa, α2 = λ b−
√

∆K

2 }. This basis is normalised since:∣∣∣∣α1 α2
α̃1 α̃2

∣∣∣∣ = N(λ)

∣∣∣∣∣a b−
√

∆K

2
a b+

√
∆K

2

∣∣∣∣∣ = N(λ)a
√

∆K

and we have N(λ)a > 0. We also read off that N(λa) = aN(λ). Now the quadratic form arising
from this normalised basis is:

Qα1,α2(x, y) = 1
N(λa)N

(
λax+ λ

b−
√

∆K

2 y

)
= 1
aN(λ)N(λ)N

((
ax+ b

2y
)
−
√

∆K

2 y

)
= 1
a

(
a2x2 + abxy + b2 −∆K

4 y2
)

= ax2 + bxy + b2 −∆K

4a y2
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Since given form had discriminant ∆K , we have ∆K = b2− 4ac, so the coefficient of y2 here is just
b2−∆K

4a = c. Hence the form arising from the ideal λa is equal to the original form, and the map is
surjective.

For injectivity, suppose the ideals a and b map to the same class of quadratic forms. Let
{α1, α2} be a normalised basis for a, and {β1, β2} be a normalised basis for b. By changing basis
we can assume the forms arising are actually equal: Qα1,α2(x, y) = Qβ1,β2(x, y). We need to show
that a = λb, for some λ with N(λ) > 0.

Going back to the definition of Qα1,α2(x, y), we can see that N(α1 +α2y) = 0, when y = −α1
α2

,
so the roots of the quadratic equation Qα1,α2(1, y) are given by:

y = −α1

α2
and y = − α̃1

α̃2

Comparing the roots of the two quadratic equations Qα1,α2(1, y) and Qβ1,β2(1, y), we must
have:

α1

α2
= β1

β2
or α1

α2
= β̃1

β̃2

If the latter holds then set λ = α1

β̃1
= α2

β̃2
, then we have:∣∣∣∣α1 α2

α̃1 α̃2

∣∣∣∣ = −N(λ)
∣∣∣∣β1 β2

β̃1 β̃2

∣∣∣∣
Since the bases are normalised, this says that N(λ) < 0. But this contradicts the equality:

1
N(b)N(β1x+ β2y) = Qβ1,β2(x, y)

= Qα1,α2(x, y)

= 1
N(a)N(α1x+ α2y)

= 1
N(a)N(λβ̃1x+ λβ̃2y)

= N(λ)
N(a)N(β̃1x+ λβ̃2y)

= N(λ)
N(a)N(β1x+ λβ2y)

which says N(λ)N(b) = N(a), and so N(λ) > 0.
Therefore we have:

α1

α2
= β1

β2

Now set λ = α1
β1

= α2
β2
, so α1 = λβ1 and α2 = λβ2, so a = λb. This time we have:∣∣∣∣α1 α2

α̃1 α̃2

∣∣∣∣ = N(λ)
∣∣∣∣β1 β2

β̃1 β̃2

∣∣∣∣
so N(λ) > 0, since the bases are normalised. Hence we have shown the ideals a and b are equivalent
in the narrow class group. So the map is injective.

From this bijection we derive the following corollaries:
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Corollary 2.45. The narrow class number h+(K) of the quadratic field K = Q(
√
d) of discrimi-

nant ∆K is equal to the class number h+(∆K) of quadratic forms of discriminant ∆K .

Proof. The sets have the same size using the bijection above.

Corollary 2.46. There is a group structure on the set of quadratic forms of discriminant ∆K .

Proof. The group structure on the narrow class group pulls back to the set of binary quadratic
forms under the above bijection.

There is a more general correspondence between quadratic forms of discriminant D, and the
proper ideals in an order of discriminant D. This more general correspondence shows there is a
natural group structure on the set of binary quadratic forms of any fixed discriminant. This group
structure was first given by Gauss using his composition of quadratic forms, although Dirichlet
gives a more tractable method. For details of this see Chapter 14 of Cassels [3, pp. 331–361].

Using the correspondence between quadratic forms and ideals in a quadratic field, and our
notion of reduced forms from earlier we have an algorithmic way of computing the class number
of any quadratic field by finding the corresponding class number of the quadratic forms.

Example 2.47. i) We determined earlier that the reduced quadratic forms of discriminant D =
−20 were x2 + 5y2 and 2x2 + 2xy + 3y2. So the class number is h(−20) = 2. But D = −20
is a fundamental discriminant, it is the discriminant of the quadratic field K = Q(

√
−5). Our

correspondence implies that the class number of the field is h(K) = 2.
ii) We also determined that there are four classes of reduced forms of discriminant D = 105,

given by −7x2 + 7xy + 2y2, −6x2 + 3xy + 4y2, −4x2 + 3xy + 6y2, and −2x2 + 7xy + 7y2. So the
class number is h+(105) = 4. But D = 105 is a fundamental discriminant, it is the discriminant
of the quadratic field K = Q(

√
105). Our correspondence implies that the narrow class number

of the field is h+(K) = 4. A remark made in Cohen [4, p. 265] says we can determine the class
number of the field by identifying the reduced forms ax2 + bxy+ cy2 and −ax2 + bxy− cy2. Doing
this reduced the number of orbits down to 2, and so tells us h(K) = 2. A consequence of this is
the fundamental unit u must have positive norm; explicitly computing it gives u = 41 + 4

√
105,

and this indeed has norm N(u) = 1.

Arising from this correspondence is a criterion for when a quadratic form represents an integer.
Result 2.17 in Fröhlich and Taylor [10, p. 260] tells us:

Proposition 2.48. A positive integer m is represented by the quadratic form f(x, y) corresponding
to the narrow ideal class of a if and only if there is an integral ideal of norm m in the same narrow
ideal class as a.

Proof. Write f(x, y) = Qα1,α2(x, y) for some normalised basis {α1, α2} of a. Firstly note that c−1

and c̃ are in the same narrow ideal class and N(c) = N (̃c) for any fractional OK-ideal c.
Now suppose b is an integral ideal with norm m in the same narrow ideal class as a. We can

then write b̃ = αa−1 for some totally positive α. We compute m = N(b) = N(b̃) = N(α)N(a)−1

and we have (α) = ab̃ ⊂ a, since b is integral, so α ∈ a. Write α = xα1 + yα2, then Qα1,α2(x, y) =
N(α)N(a)−1 = m, so the form represents m.

Conversely, suppose m = Qα1,α2(x, y), then m = N(α)N(a)−1, where α = xα1 + yα2. Since
N(α) > 0, one of α or −α is totally positive, say α. Then set b = α̃a−1. Certainly N(b) =
N(αa−1) = N(α)N(a)−1 = m, and we see b̃a = (α) ⊂ a. Multiplying by a−1 shows b̃ ⊂ OK , so b̃
is integral, and hence b is an integral ideal in the same narrow ideal class as a.
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This correspondence between ideals of norm m and representations of m by the quadratic form
shows that the primes represented by two quadratic forms of fundamental discriminant ∆K are
disjoint or agree. Furthermore if two forms represent the same prime then the forms are either
equivalent or are inverses (in the sense of corresponding to inverse ideal classes).

Suppose that two forms f(x, y) and g(x, y) represent the prime p. Then the prime (p) of Q
decomposes as pOK = pp̃. We therefore have f(x, y) and g(x, y) either correspond to the same
ideal class [p] or [p̃]. Otherwise they correspond to different ideal classes, one to [p] and one to [p̃],
but these ideal classes are inverses.

Then necessarily the forms f(x, y) and g(x, y) represent the same primes. Either they are
equivalent or if a is an ideal of norm q in the class corresponding to f(x, y), then ã is an ideal of
norm q in the inverse class, corresponding to g(x, y).

The disjointedness of the primes that two forms represents holds in general for any discriminant.

2.6 Representing Primes by Quadratic Forms
We will now more generally answer the question of when a prime is represented by a given binary
quadratic form. Following Cox [7] we will establish some results on which discriminants can
represent which primes.

A special case of Lemma 2.3 in Cox [7, p. 25] gives us the following proposition:

Proposition 2.49. A prime p is represented by the form f(x, y) if and only if f(x, y) is equivalent
to a form px2 + qxy + ry2, for some integers q and r.

Proof. Firstly if f(x, y) is equivalent to px2 + qxy + ry2, then f(x, y) represents p, since px2 +
qxy + ry2 represents p at x = 1, y = 0.

Now let p = f(a, b) be a representation of p by f(x, y). Since p is prime, a and b are coprime;
otherwise the non-trivial gcd divides p and hence equals p. But this means p2 | f(a, b) = p.
Apply the extended Euclidean algorithm to find c and d such that ad− bc = 1, and then consider((

a b
c d

)
· f
)

(x, y) = f(ax + cy, bx + dy). This is an equivalent binary quadratic form and so will
have integer coefficients. Notice that the coefficient of x2 in the form can be extracted by setting
x = 1, and y = 0. In this case we get the coefficient as f(a · 1 + c · 0, b · 1 + d · 0) = f(a, b) = p.
Hence f(x, y) is equivalent to

((
a b
c d

)
· f
)

(x, y) = px2 + qxy + ry2 for some integers q and r.

Lemma 2.5 in Cox [7, p. 25] then tell us when a prime p is represented by some quadratic form
of discriminant D:

Proposition 2.50. An odd prime p - D is represented by some primitive form of discriminant D
if and only if D is a quadratic residue modulo p.

Proof. If the form f(x, y) of discriminant D represents p, then f(x, y) is equivalent to some form
px2 + qxy + ry2. Then D + q2 − 4pr, and looking modulo p we find that D ≡ q2 (mod p), hence
D is a quadratic residue modulo p.

Now suppose D is a quadratic residue modulo p, so D ≡ q2 (mod p). As p is odd, we can choose
q and D to have the same parity, replacing q with q+p if necessary. As D is a discriminant we know
D ≡ 0, 1 (mod 4), and since we chose q and D to have the same parity this means D ≡ q2 (mod 4p).
So we can write D = q2 − 4pr, for some r.

Then take the form f(x, y) = px2 + qxy + ry2. This is an integral binary quadratic form
of discriminant D which represents p. Furthermore it is primitive: p and D are coprime, and
D = q2 − 4pr, so p and q are coprime, hence the form has coprime coefficients.
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The Legendre symbol tells us precisely when an integer is square modulo an odd prime. This
leads us to our first simple but important criterion:

Theorem 2.51. An odd prime p - D is represented by some binary quadratic form of discriminant
D if and only if

(
D
p

)
= 1.

Proof. The Legendre symbol
(
D
p

)
= 1 if and only if D is a quadratic residue modulo p.

The case we are primarily interested in is representing primes by the quadratic form x2−ny2 of
even discriminant D = 4n, using properties of the Legendre symbol we can simplify the criterion:

Corollary 2.52. An odd prime p - n is represented by some binary quadratic form of discriminant
D = 4n if and only if

(
n
p

)
= 1.

Proof. Since p is odd, p - D, and so p is represented by a form of discriminant D if and only if(
D
p

)
= 1. But

(
D
p

)
=
(4n
p

)
=
(4
p

)(
n
p

)
using the multiplicativity of the Legendre symbol. We always

have
(4
p

)
= 1 since 4 = 22 is always square modulo the odd prime p. So

(
D
p

)
= 1 if and only if(

n
p

)
= 1.

Remark 2.53. We can see a special case of these corollaries by relating the quadratic forms side
to the quadratic fields side, specifically when D is a fundamental discriminant. An odd prime p - D
is represented by some binary quadratic form of discriminant D if and only if there is an ideal of
norm p in the quadratic field Q(

√
d). This happens if and only if (p) splits, which happens if and

only if
(
d
p

)
= 1.

If d ≡ 1 (mod 4), then D = d, and to represent a prime p - D by some form of discriminant D
the corollary says we need

(
D
p

)
=
(
d
p

)
= 1. Otherwise d 6≡ 1 (mod 4), so then D = 4d, and we get(

D
p

)
=
(4d
p

)
=
(
d
p

)
= 1.

2.7 Class Number One
We have a criterion to determine when a prime is represented by some binary quadratic form of
discriminant D. If there is exactly one quadratic form f(x, y) of discriminant D, then any number
represented some quadratic form of discriminant D must be represented by f(x, y). An immediate
corollary to this is if there is exactly one quadratic form of discriminant D, the Legendre symbol
tells us exactly which primes it represents. Thus we seek discriminants D such that h(D) = 1 in
order to apply our criterion in the first case.

Using this result we can now easily give proofs of Fermat’s claims, and start to take some
tentative steps beyond Fermat.

2.7.1 Fermat’s Claims
Primes of the Form x2 + y2

By listing reduced forms we see that x2 + y2 is the only quadratic form of discriminant D = −4.
Our observation says that an odd prime p - D is represented by x2 + y2 if and only if

(−1
p

)
= 1.

The first supplement to quadratic reciprocity tells us this happens if and only if p ≡ 1 (mod 4).
For completeness we should go back and check the primes we excluded: they are p = 2, and

p | −1, so just p = 2. We see that 2 = 12 + 12, so 2 is represented by x2 + y2.
This finishes the proof of Fermat’s first claim, and we have:

p = x2 + y2 ⇔ p = 2, or p ≡ 1 (mod 4)
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Primes of the Form x2 + 2y2

Again x2 + 2y2 is the only quadratic form of discriminant D = −8, so an odd prime p - −2 is
represented by x2 + 2y2 if and only if

(−2
p

)
= 1.

Using the multiplicativity of the Legendre symbol:
(−2
p

)
=
(−1
p

)(2
p

)
, so we want either

(−1
p

)
= 1

and
(−2
p

)
= 1 or we want

(−1
p

)
= −1 and

(2
p

)
= −1. The first and second supplements to quadratic

reciprocity tell us the form happens when:

p ≡ 1 (mod 4) and p ≡ 1, 7 (mod 8), so when p ≡ 1 (mod 8)

and the latter happens when:

p ≡ 3 (mod 4) and p ≡ 3, 5 (mod 8), so when p ≡ 3 (mod 8)

This mean
(−2
p

)
= 1 if and only if p ≡ 1, 3 (mod 8). We also check that 2 = 02 + 2 · 12, so 2 is

represented by x2 + 2y2.
This proves Fermat’s second claim, and we have:

p = x2 + 2y2 ⇔ p = 2, or p ≡ 1, 3 (mod 8)

Primes of the Form x2 + 3y2

In exactly the same way x2 + 3y2 is the only quadratic form of discriminant D = −12,a nd so an
odd prime p - −3 is of the form x2 + 3y2 if and only if

(−3
p

)
= 1. Since 3 ≡ 3 (mod 4) quadratic

reciprocity tell us that
(−3
p

)
=
(
p
3
)
, so we see

(
p
3
)

= 1, but this means p is non-zero square modulo
3. The squares modulo 3 are 02, 12, 22 ≡ 0, 1, (mod 3), so

(
p
3
)

= 1 if and only if p ≡ 1 (mod 3).
Lastly we see that x2 + 3y2 represents p = 3, and does not represent p = 2

This proves Fermat’s third claim, and we have:

p = x2 + 3y2 ⇔ p = 3, or p ≡ 1 (mod 3)

2.7.2 Beyond Fermat
Fermat’s claims could be dealt with easily since the class number of the discriminant D was
h(D) = 1 in each case. The question naturally arises: for what other discriminants do we have
class number h(D) = 1.

In the positive-definite case a corollary to the Baker-Heegner-Stark Theorem completely clas-
sifies the possible discriminants D < 0 for which we have h(D) = 1:

Theorem 2.54 (Baker-Heegner-Stark). If D < 0 is a discriminant, then h(D) = 1 precisely when
D = −3,−4,−7− 8,−11,−12,−16,−19,−27,−28,−43,−67,−163.

Proof. The proof is far from trivial. For the case of even discriminant D ≡ 0 (mod 4) an ele-
mentary proof was given by Landau, see [15]. When then discriminant is odd the proof is more
difficult, see [23].

This theorem tell us that there are exactly two further times when we can solve the question
of p = x2 + ny2, in the positive-definite case.
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Primes of the Form x2 + 4y2

The only form of discriminant D = −16 is x2 +4y2. An odd prime p - −4 is represented by x2 +4y2

if and only if
(−4
p

)
= 1. But

(−4
p

)
=
(−1
p

)
= 1 if and only if p ≡ 1 (mod 4). Since p = 2 is not

represented by x2 + 4y2 we get:

p = x2 + 4y2 ⇔ p ≡ 1 (mod 4)

This result actually follows easily once primes of the form x2 +y2 have been classified. If p 6= 2,
then p is odd and so looking modulo 2 we see that one of x or y is even. Hence we can write p as
p = x2 + 4y2. Conversely any prime of the form p = x2 + 4y2 = x2 + (2y)2 is already the sum of
two squares.

Primes of the Form x2 + 7y2

Now we truly do take a step beyond Fermat. We have an odd prime p - −7 is of the form
p = x2 + 7y2 if and only if

(−7
p

)
= 1. By quadratic reciprocity this is when

(
p
7
)

= 1, so p is a
non-zero square modulo 7, hence p ≡ 1, 2, 4 (mod 7).

If we go back and check the excluded primes in this case we find that p = 2 is not of the form
x2 + 7y2, however p = 2 does satisfy p ≡ 1, 2, 4 (mod 7). To take this into account we would have
to tweak the congruence to exclude the case p = 2. When we use class field theory to study the
problem of representing primes by binary quadratic forms we will get excluded primes that cannot
be handled so easily. For this reason we stop checking the excluded primes, and simply remove
them from consideration.

So we have for a prime p 6= 2, 7, that:

p = x2 + 7y2 ⇔ p ≡ 1, 2, 4 (mod 7)

The list of discriminants with class number one in the Baker-Heegner-Stark Theorem includes
several odd discriminants. Our condition Legendre symbol condition can handle these just as
easily and we can find similar criterion for other forms. Odd discriminant arises from forms like
f(x, y) = x2 + xy − ny2, which has discriminant D = 1 + 4n. The list tells us that we can find
conditions for p = x2 + xy + ny2 exactly when n = 1, 2, 3, 5, 7, 11, 17, 41. We will give just one
example.

Primes of the Form x2 + xy + 3y2

This is the only form of discriminant D = −11. An odd prime p - 11 is of the form x2 + xy + 3y2

if and only if
(−11
p

)
= 1. By quadratic reciprocity this is

(
p
11
)

= 1, and the non-zero squares here
are p ≡ 1, 3, 4, 5, 9 (mod 11).

For p 6= 2, 11:
p = x2 + xy + 3y2 ⇔ p ≡ 1, 3, 4, 5, 9, (mod 11)

2.7.3 Indefinite Forms
For indefinite forms no such classification for when h(D) = 1 is known. It is not even known
whether than are infinitely many fundamental discriminants with class number h(D) = 1. As we
will show later there are infinitely many times when we get class number h(D) = 1

Once we have studied some class field theory, we will be able to prove that for a quadratic field
K = Q(

√
m), narrow class number h+(K) = 1 can only occur for m ≡ 1 (mod 4), a prime (except
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m = 2). Using the links to quadratic fields that will show that for a fundamental discriminant
class number one can only occur when D = p where p ≡ 1 (mod 4) is a prime, as we might oberve
below.

The list of discriminants with class number h(D) = 1 begins: D = 5, 8, 13, 17, 20, 29, 37, 41,
52, 53, 61, 68, 73, 89, 97, 101, 109, 113, 116, 125, 137, 149, 157, 164, 173, 181, 193, 197, . . .. This corre-
sponds to forms:

x2 − ny2 for n = 2, 5, 13, 17, 29, 41, . . . and
x2 + xy − ny2 for n = 1, 3, 4, 7, 9, 10, . . .

Primes of the Form x2 − 2y2

This is the only quadratic form of discriminant D = 8. An odd prime p - 2 is represented by
x2 − 2y2 if and only if

(2
p

)
= 1. The second supplement to quadratic reciprocity tell us that this is

exactly when p ≡ 1, 7 (mod 8).
For p 6= 2:

p = x2 − 2y2 ⇔ p ≡ 1, 7 (mod 8)

Using these results we can start answering questions about whether certain Diophantine equa-
tions have solutions, that we could not otherwise answer easily. For a fixed prime it was easy enough
to test every possibility in the positive-definite case, but this does not work in the indefinite case.
Now we can say with certainty that the Diophantine equations:

3 = x2 − 2y2 has no solutions in integers, and
5 = x2 − 2y2 has no solutions in integers

Primes of the Form x2 − 5y2

This is the only quadratic form of discriminant D = 20. An odd prime p - 5 is represented by
x2 − 5y2 if an only if

(5
p

)
= 1. Quadratic reciprocity says that this is the same as

(
p
5
)

= 1, so p is a
non-zero square modulo 5. The squares are p ≡ 1, 4 (mod 5).

For p 6= 2, 5:
p = x2 − 5y2 ⇔ p ≡ 1, 4 (mod 5)

Primes of the Form x2 − 13y2

This is the only quadratic form of discriminant D = 52. An odd prime p - 13 is represented by
x2 − 13y2 if and only if

(13
p

)
= 1, or by quadratic reciprocity

(
p
13
)

= 1. The non-zero squares here
are p ≡ 1, 3, 4, 9, 10, 12.

For p 6= 2, 13:
p = x2 − 13y2 ⇔ p ≡ 1, 3, 4, 9, 10, 12 (mod 13)

We get similar results for the other forms x2+ny2, with increasingly long congruence conditions
on the primes represented, and can easily generate these results using the same technique. We also
get similar results for the odd discriminants
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Primes of the Form x2 + xy − 3y2

This is the only quadratic form of discriminant D = 11. An odd prime p - 11 is represented by
x2 + xy − 3y2 if and only if

(11
p

)
= 1. Using quadratic reciprocity this is equivalent to p ≡ 1, 5, 7,

9, 19, 25, 35, 37, 39, 43 (mod 44).
For p 6= 2, 11:

p = x2 + xy − 3y2 ⇔ p ≡ 1, 5, 7, 9, 19, 25, 35, 37, 39, 43 (mod 44)

Primes of the Form x2 + xy − 9y2

This is the only quadratic form of discriminant D = 37. An odd prime p - 37 is represented by
x2 + xy − 9y2 if and only if

(37
p

)
= 1. Using quadratic reciprocity this is equivalent to p ≡ 1, 3, 4,

7, 9, 10, 11, 12, 16, 21, 25, 26, 27, 28, 30, 33, 34, 36.
For p 6= 2, 37:

p = x2 + xy − 9y2 ⇔ p ≡ 1, 3, 4, 7, 9, 10, 11, 12, 16, 21,
25, 26, 27, 28, 30, 33, 34, 36

Something interesting happens in the indefinite case that does not happen in the positive-
definite case. There are in fact infinitely many discriminants which have class number one. The-
orem 2 in Section 13.2 of Cohn [6, p. 217] gives a formula relating the class number of the order
Of of discriminant D = f2d to the class number of the maximal order OK of discriminant d. This
then gives a relation between the ‘non-narrow’ class numbers of quadratic forms, from which we
can derive the class number of the discriminant D = f2d. It states:

Theorem 2.55. For d > 0, the class number of the order Of is given by:

h(f2d) = f

u
h(d)

∏
q|f

(
1− 1

q

(
d

q

))

where the product is taken over primes, and u = log ηf

log η1
is the ‘unit index’, η1 being the fundamental

unit of OK and ηf the fundamental unit of Of . We have ηf = ηu1 for some integer u since ηf is
also a unit of OK .

Using this I will give a sketch proof that h+(4 · 13 · 169m) = 1, for any m.

Proposition 2.56. For any m, the class number h+(4 · 13 · 169m) = 1.

Proof. Firstly the fundamental discriminant d = 13, and so f = 2 · 13m. This means we are
considering the order Of = Z[13m

√
13] in OK = Z[ 1+

√
13

2 ], the ring of integers of K = Q(
√

13).
The fundamental unit in OK is η1 = 3+

√
13

2 , and it has norm N(η1) = −1, and so we know
h(13) = h+(13) = 1.

The primes dividing f = 2 · 13m are q = 2, 13, so we calculate:∏
q|f

(
1− 1

q

(
d

q

))
=
(

1− 1
2

(
13
2

))(
1− 1

13

(
13
13

))

=
(

1− 1
2 · (−1)

)(
1− 1

13 · 0
)

= 3
2
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So we have:
h(f2d) = 2 · 13m

u
· 1 · 3

2 = 3 · 13m

u

We have to calculate u, and we can do this inductively by viewing Z[13m+1√13] ⊂ Z[13m
√

13].
The start is m = 0, when Z[

√
13] ⊂ Z[ 1+

√
13

2 ], in this case we directly see that η2 := η3
1 = 18+5

√
13

is the fundamental unit of Z[
√

13].
To find the fundamental unit η2·13 of Z[13

√
13] we need to take a sufficiently high power of

η2 = 18 + 5
√

13 so that 13 divides the coefficient of
√

13. Expanding (a + b
√

13)n and looking
modulo 13 we see:

(a+ b
√

13)n = an +
(
n

1

)
an−1b

√
13 + terms divisible by 13

= an + nan−1b
√

13 + terms divisible by 13

Since the coefficients of η2, a = 18 and b = 5, are not divisible by 13, we need to take n = 13
to get another factor of 13, so the fundamental unit η2·13 = η2

13. The above then shows that the
coefficient of 1 in η2·13 is not divisible by 13, and the coefficient of

√
13 has exactly one factor of

13.
Now suppose the coefficient of 1 in η2·13m is not divisible by 13, and the coefficient of

√
13 is

divisible by exactly m factors of 13. To find η2·13m+1 we need a sufficiently high power of η2·13m

that 13m+1 divides the coefficient of
√

13. Just as above, we need to take η2·13m
13, this gives

exactly one extra factor of 13 in the coefficient of
√

13, and the coefficient of 1 is still not divisible
by 13.

By induction this shows that η2·13m = η2·13
13m = η13

3·13m , and we read off u = 3 · 13m. Note
that u is odd, so N(η2·13m) = N(η13) = −1, so the fundamental unit of the order has negative
norm. This means h+(4 · 13 · 169m) = h(4 · 13 · 169m).

The final step is to plug u = 3 · 13m into the result above, and see that:

h(f2d) = 3 · 13m

u
= 3 · 13m

3 · 13m = 1

This then shows that h+(4 · 13 · 169m) = h(4 · 13 · 169m) = 1 as claimed.

This result allows us to give a criterion which applies to an entire infinite family of quadratic
forms.

Primes of the Form x2 − 13 · 169my2

Since the class number is 1, this is the only quadratic form of discriminant D = 4 ·13 ·169m. Hence
an odd prime p - 13 · 169m is of the form x2 − 13 · 169my2 if and only if

(13·169m

p

)
= 1. Using the

multiplicativity of the Legendre symbol:(
13 · 169m

p

)
=
(

13
p

)(
169m

p

)
=
(

13
p

)(
132m

p

)
=
(

13
p

)
since 169m = 132m is always a square modulo the odd prime p. This means an odd prime p -
13 · 169m is represented by x2 − 13 · 169my2 if and only if

(13
p

)
= 1. We determined above that is

when p ≡ 1, 3, 4, 9, 1012 (mod 13).
For p 6= 2, 13, and any m:

p = x2 − 13 · 169my2 ⇔ p ≡ 1, 3, 4, 9, 10, 12 (mod 13)
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We now know with certainty that the equation:

3 = x2 − 13 · 169my2 has a solution in integers for any m

but even with for very small m, say m = 1, the smallest solution is rather large:

3 = 7266624752932962 − 13 · 169 · 155030699090272

Using the brute force method of checking every possibility, even on a computer, you would give it
up as a lost cause well before reaching this.
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Chapter 3

Genus Theory

Genus theory provides an intermediate stepping stone between the relatively simple but highly
specific case of class number one, and the more complicated but very general situation where class
field theory is used to find criterion. In this chapter we will give a brief overview of the ideas of
genus theory, and use this to derive criterion in more cases. Genus theory explains why the primes
represented by certain quadratic forms can be characterised purely in terms of congruences, and
when this fails. Most of the results on genus theory will come from Cox [7].

3.1 Genera of Quadratic Forms
When the class number is not one we need some way to separate the quadratic forms of this
discriminant in order to find a criterion on which primes they can represent. The key idea of genus
theory, due to Lagrange, is to look at what values each form represents modulo D, and to group
forms representing the same values together.

The idea will become apparent if we look at an example.

Primes of the Form x2 + 6y2 and Other Forms of Discriminant D = −24

Consider D = −24, there are two quadratic forms of this discriminant: x2+6y2, and 2x2+3y2. Our
result tells us that an odd prime p - −24 is represented by some quadratic form of discriminant −24,
if and only if

(−6
p

)
= 1, and this by quadratic reciprocity is if and only if p ≡ 1, 5, 7, 11 (mod 24).

Let’s look at what values the two quadratic forms represent modulo 24. Our result gives
a criterion for primes p - 24, so p is invertible modulo 24, and we should look at (Z/24Z)∗.
Substituting in all possible x and y modulo 24, we see that:

x2 + 6y2 represents 1, 7 in (Z/24Z)∗

2x2 + 3y2 represents 5, 11 in (Z/24Z)∗

Now we can say p ≡ 1, 7 (mod 24) implies p is represented by some quadratic form of discrim-
inant −24, and so p is represented by one of x2 + 6y2, and 2x2 + 3y2. It can’t be represented by
2x2 + 3y2 since reducing modulo 24 would give p ≡ 5, 11 (mod 24). Hence p must be represented
by x2 + 6y2. Conversely if p is represented by x2 + 6y2, looking modulo 24 gives p ≡ 1, 7 (mod 24).
This tell us an odd prime p - −24, is represented by x2 + 6y2 if and only if p ≡ 1, 7 (mod 24).

Similarly we get p = 2x2 + 3y2 if and only if p ≡ 5, 11 (mod 24). These results just drop out
from almost nothing.
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Overall, for p 6= 2, 3:

p = x2 + 6y2 ⇔ p ≡ 1, 7 (mod 24)
p = 2x2 + 3y2 ⇔ p ≡ 5, 11 (mod 24)

From this we can start to develop and explain some general theory. In order to full develop and
appreciate the genus theory of binary quadratic forms we would need to use the group structure on
the set of classes of binary quadratic forms. Since we haven’t defined this group structure fully, the
theoretic details here will remain sketchy. However any criteria we find can be checked explicitly
as in the example above, and so are valid.

We begin with the definition of when two quadratic forms are in the same genus.
Definition 3.1. Two quadratic forms f(x, y) and g(x, y) of discriminant D are said to be in the
same genus if they represent the same values in (Z/DZ)∗.

Since equivalent forms represent the same numbers, equivalent forms certainly represent the
same values in (Z/DZ)∗, and so the notion of being in the same genus is well defined on equivalence
classes of binary quadratic forms. Each genus consists of a finite number of equivalence classes
since the total number of classes is finite, and the number of genera is finite.

Extending the Legendre symbol multiplicatively to any positive bottom argument, leads to
the Jacobi Symbol

(
D
·
)
. As shown in Lemma 1.14 of Cox [7, p. 16–18], for D ≡ 0, 1, the map

χ : (Z/DZ)∗ → {1,−1} defined by χ([m]) =
(
D
m

)
is a well-defined homomorphism.

For a discriminant D ≡ 0, 1 (mod 4), the forms:

x2 + xy + 1−D
4 y2 if D ≡ 1 (mod 4)

x2 − D
4 y

2 if D ≡ 0 (mod 4)
are more generally called the principal forms, reducing to the previous when D is a fundamental
discriminant.

In Lemma 2.24, Cox [7, p. 34–35] then establishes the following result for negative discriminants,
which holds in general:
Proposition 3.2. Let D ≡ 0, 1 (mod 4) be a discriminant, and χ be the map above. Then:

i) The values in (Z/DZ)∗ represented by the principal form of discriminant D are a subgroup
H ⊂ kerχ.

ii) The values in (Z/DZ)∗ represented by a form f(x, y) of discriminant D are a coset of H in
kerχ.

In particular whilst proving this he establishes that if, for some prime odd prime p - D, the
class [p] ∈ (Z/DZ)∗ is represented by some quadratic form, then

(
D
p

)
= 1, so p itself is represented

by some quadratic form of discriminant D.
As a corollary of this Proposition, since cosets are disjoint or agree, the values in (Z/DZ)∗

represented by different forms are disjoint or agree. Consequently different genera represent disjoint
values.

Taken together these results show that the argument in the example above works in general to
find the primes which a given genus of quadratic forms represents. We get Theorem 2.26 in Cox
[7, p. 35] which states:
Theorem 3.3. Suppose a genus of quadratic forms of discriminant D represents the values H in
(Z/DZ)∗. Then an odd prime p - D is represented by a form of this genus if and only if [p] ∈ H.

If a genus consist of only one form, then the above Theorem tells us exactly which primes it
represents, in terms of a congruence condition modulo D.
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3.2 One Form per Genus
The natural question now is: for which discriminantsD do we have a genus with only one form? The
answer to this requires studying the group of equivalence classes of quadratic forms. Let C+(D)
denotes the set of binary quadratic forms of discriminant D endowed with the group structure
Gauss defined. Cox then defines a map:

Φ: C+(D)→ kerχ/H

which sends a class to the values it represents in (Z/DZ)∗, with the notation as before.
In Lemma 3.13 Cox [7, p. 54] establishes that this map is a group homomorphism. This leads

to Corollary 3.14 which states:

Corollary 3.4. i) All genera of forms of discriminant D consist of the same number of values.
ii) The number of genera of forms of discriminant D is a power of two.

Theorem 3.15 in Cox [7, p. 54-56] explicitly describes the genus containing the principal form,
and provides a way to count the number of genera.

Theorem 3.5. i) The genus containing the principal form consists of the classes in C+(D)2,
the subgroup of squares in C+(D).

ii) There are 2µ−1 genera of forms of discriminant D, where µ is defined as follows. Let r be
the number of odd primes dividing D. If D ≡ 1 (mod 4), then set µ = r. Otherwise write
D = 4n, then µ is determined by:

n µ
n ≡ 1 (mod 4) r
n ≡ 2, 3 (mod 4) r + 1
n ≡ 4 (mod 8) r + 1
n ≡ 0 (mod 8) r + 2

If we want each genus to contain a single form, then the number of genera needs to equal the
number of classes. This leads to Theorem 3.22 in Cox [7, pp. 59–60], which gives various equivalent
criteria for there to be one form per genus. It also gives us a way to effectively tell when there is
one form per genus by only knowing the class number:

Theorem 3.6. The following are equivalent:
i) Every genus of forms of discriminant D consist of a single class.
ii) The class group C+(D) is isomorphic to (Z/2Z)m for some m.
iii) The class number h+(D) equals 2µ−1, where µ is defined above.

In particular there is definitely one form per genus whenever the class number is 1 or 2. More
generally we can check for any given discriminant whether there is one form per genus, and if there
is we can give a criterion for a prime to be represented by any of the forms of that discriminant.

According to Cassels [3, p. 357], in the positive definite case there are 101 known values for
which there is one form per genus, and this is conjectured to be all. This list is known to be finite,
and so genus theory does not get us much further in the positive-definite case. Since we know class
number one occurs infinitely often in the indefinite case, genus theory works infinitely often, but
obvious doesn’t always work; not every class number is a power of two.

We give some examples of the criterion which arise in a variety of cases:
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Primes of the Form x2 + 8y2 and Other Forms of Discriminant D = −32

There are two quadratic forms of discriminant D = −32, the forms x2 + 8y2, and 3x2 + 2xy+ 3y2.
Since the class number is two we know that each genus contains one form. Explicitly these forms
are in different genera since they represent different values in (Z/32Z)∗.

x2 + 8y2 represents 1, 9, 17, 25 in (Z/32Z)∗

3x2 + 2xy + 3y2 represents 3, 11, 19, 27 in (Z/32Z)∗

We immediately conclude for p 6= 2 that:

p = x2 + 8y2 ⇔ p ≡ 1, 9, 17, 25 (mod 32)
p = 3x2 + 2xy + 3y2 ⇔ p ≡ 3, 11, 19, 27 (mod 32)

Primes of the Form x2 − 3y2 and Other Forms of Discriminant D = 12

There are two quadratic forms of discriminant D = 12, they are x2 − 3y2 and −x2 + 3y2. Since
the class number is 2 we know that each genus contains one form. Explicitly these forms are in
different genera:

x2 − 3y2 represents 1 in (Z/12Z)∗

−x2 + 3y2 represents 11 in (Z/12Z)∗

So for p 6= 2, 3, we have:

p = x2 − 3y2 ⇔ p ≡ 1 (mod 12)
p = −x2 + 3y2 ⇔ p ≡ 11 (mod 12)

Primes of the Form x2 − 15y2 and Other Forms of Discriminant D = 60

There are four quadratic forms of discriminant D = 60, they are x2 − 15y2, −x2 + 15y2, 2x2 +
6xy − 3y2, and −2x2 + 6xy + 3y2. We compute µ and check whether there is one form per genus.
As D = 60 = 22 · 3 · 5 there are r = 2 odd prime divisors. We calculate n = 15 ≡ 3 (mod 4), so
µ = r+ 1 = 3. Then 2µ−1 = 22 = 4 = h+(60), and so by the Theorem there is one form per genus.
Explicitly we find:

x2 − 15y2 represents 1, 49 in (Z/60Z)∗

−x2 + 15y2 represents 11, 59 in (Z/60Z)∗

2x2 + 6xy − 3y2 represents 17, 53 in (Z/60Z)∗

−2x2 + 6xy + 3y2 represents 7, 43 in (Z/60Z)∗

So for p 6= 2, 3, 5, we have:

p = x2 − 15y2 ⇔ p ≡ 1, 49 (mod 60)
p = −x2 + 15y2 ⇔ p ≡ 11, 59 (mod 60)

p = 2x2 + 6xy − 3y2 ⇔ p ≡ 17, 53 (mod 60)
p = −2x2 + 6xy + 3y2 ⇔ p ≡ 7, 43 (mod 60)
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Primes of the Form x2 + xy + 4y2 and Other Forms of Discriminant D = −15

There are two quadratic forms of discriminant D = −15, namely x2 +xy+4y2, and 2x2 +xy+2y2.
As the class number is 2 we know there is one form per genus. Explicitly:

x2 + xy + 4y2 represents 1, 4 in (Z/15Z)∗

2x2 + xy + 2y2 represents 2, 8 in (Z/15Z)∗

This gives for p 6= 2, 3, 5, that:

p = x2 + xy + 4y2 ⇔ p ≡ 1, 4 (mod 15)
p = 2x2 + xy + 2y2 ⇔ p ≡ 2, 8 (mod 15)

When there is one form per genus we can find a congruence condition on which primes the
form represents. Theorem 3.21 in Cox [7, p. 58–59] tells us that two forms f(x, y) and g(x, y) of
discriminant D are in the same genus if and only if f(x, y) and g(x, y) represent the same values in
(Z/mZ)∗ for all non-zero integers m. So conversely forms in the same genus cannot be separated
using congruences. To find criteria in these cases we need more advanced ideas.

3.3 Euler’s Convenient Numbers
The positive m for which the discriminant D = −4m has one genus per class were known to Euler
in a different context and under a different definition. Euler called a positive integer m convenient
if p = x2 +my2 has exactly one solution in positive integers implies that p is prime. Gauss observed
that these definitions are equivalent, a proof is given in Proposition 3.24 of Cox [7, p. 61–62].

Using convenient numbers Euler was able to prove that certain large integers are prime. He
conjectured that m = 1848 is a convenient number and used this to prove 18 518 809 is prime.

Using the equivalence of these two definitions we can prove m = 1848 is convenient. The class
number of discriminant D = −4 · 1848 is h(D) = 16. We have that D = 25 · 3 · 7 · 11, so r = 3.
Since n = −1848, and n ≡ 0 (mod 8), we set µ = r + 2 = 5. Then 2µ−1 = 24 = 16 = h(D). By a
Theorem above there is one form per genus, and so m = 1848 is convenient.

Following Euler we can establish:

Proposition 3.7. The number p = 18 518 809 is prime.

Proof. Firstly we have that m = 1848 is convenient. Now we count the number of solutions to:

18 518 809 = x2 + 1848y2

in positive integers.
We have a bound on y as follows:

1848y2 = 18 518 809− x2 ≤ 18 518 809

But this implies

|y| ≤
√

18 518 809
1848 = 100.1049 . . .

Since y is an integer, we get |y| ≤ 100. Now it is a relatively simple, if tedious, task to check
up to y = 100 whether 18 518 809 − 1848y2 is a square, and so whether we get a solution to the
equation.
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On doing this it turns out that the only solution in positive integers is x = 197, y = 100. But
since 1848 is convenient, Euler’s definition of convenient immediately implies that p = 18 518 809
must be prime.

This method involves significantly fewer calculations that the naive method of checking for
divisors of p = 18 518 809. The naive method would require checking that p = 18 518 809 is not
divisible by any prime to up q =

√
18 518 809 = 4303.3485 . . ..

More details on Euler’s convenient numbers can be found in the article by Frei [9].
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Part II

Class Fields
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Chapter 4

Class Field Theory

Class field theory studies the abelian extensions of number fields. It seeks to classify and construct
all abelian extensions of a number field, and to predict their arithmetic properties in terms of the
base number field itself. After an introduction to infinite primes from Milne [20], we will work
from Janusz [14] to give an introduction to class field theory.

4.1 Infinite Primes
Before delving into class field theory and being able to state the main theorems we need to introduce
the notion of a modulus, and to do this we need to understand so-called infinite primes.

As some motivation to introduce the concept of an infinite prime, we first look at a Theorem
of Alexander Ostrowski, which deals with the possible non-trivial absolute values on Q, up to
equivalence. For this we will work from Milne [20, pp. 101-108], using the first half of Chapter 7.

Definition 4.1. An absolute value on an integral domain D is a function |·| : D → R satisfying:
i) |x| ≥ 0, and |x| = 0 if and only if x = 0,
ii) |xy| = |x| |y|,
iii) |x+ y| ≤ |x|+ |y|,

for all x, y ∈ D.

Example 4.2. Every integral domain admits the following absolute value:

|x|0 =
{

0 if x = 0
1 otherwise

This absolute value is called the trivial absolute value.

Give an absolute value on an integral domain, we may define a distance function d : D → R
by d(x, y) = |x− y|. Equipping D with this metric makes the pair (D, d) into a metric space, and
hence induces a topology on the set D making it a topological space.

Example 4.3. On Q we have, amongst others, the ordinary absolute value restricted from R:

|x| =
{
x if x ≥ 0
−x if x < 0
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We also have the p-adic absolute values, one for each prime p of Q. They are defined as follows:
for a fixed prime p, every non-zero rational x can be written uniquely as x = pn ab , with a, b, and
p coprime, and n ∈ Z. The absolute value defined by:

|x|p =
{

0 if x = 0
p−n otherwise

is called the p-adic absolute value.
Completing Q with respect to the p-adic metric induced by the p-adic absolute value gives us

the field of p-adic numbers Qp.

As with all mathematical objects, we want a notion of equivalence between absolute values;
some way to recognise certain absolute values are essentially the same, and to treat them as such.

Proposition 4.4. Let |·|a and |·|b be two absolute values on a field K, with |·|a non-trivial. Then
the following conditions are equivalent:

i) |·|a and |·|b define the same topology on K,
ii) |α|a < 1 implies |α|b < 1,
iii) |·|b = |·|a

c for some real number c > 0.

Proof. See Proposition 7.8 in Milne [20, p. 104].

Definition 4.5. Two absolute values |·|a and |·|b are called equivalent if they satisfy any (and so
all) of the conditions given in the proposition.

A natural question then arises: what are all the possible absolute values up to equivalence?
Ostrowski answered this question for Q with the following theorem:

Theorem 4.6 (Ostrowski). Up to equivalence, the possible non-trivial absolute values on Q are:
the ordinary absolute value and the p-adic absolute values, one for each prime p.

Proof. See Theorem 7.12 in Milne [20, p. 105].

After identifying the a prime p with its corresponding p-adic absolute value, this theorem
strongly suggests that the ordinary absolute value on Q should be considered as another prime.
And so it is, this is an example of a so-called infinite prime. More generally we make the following
definition:

Definition 4.7. A prime of a number fieldK, also called a place, is an equivalence class of absolute
values on K.

Example 4.8. Ostrowski’s Theorem shows that the primes of Q are {2, 3, 5, 7, . . . ,∞}, that is:
the ordinary primes in Z, and the infinite prime we saw above. Here a prime integer p refers to
the corresponding p-adic absolute value |·|p, and∞ refers to the ordinary absolute value |·| = |·|∞.

How do these primes relate to the prime ideals we already know about? In the case K = Q,
the p-adic absolute values |·|p correspond to the prime integers p in Z, and these correspond to the
prime ideals (p) of Q. This holds more generally, specifically we have the theorem:

Theorem 4.9. The primes of a number field K fall into three classes:
i) The p-adic absolute values |·|p, one for each prime ideal p of OK . These are called the finite

primes.
ii) The absolute values obtained from the real embeddings K ↪→ R by an composing with the

ordinary absolute value |·| : R→ R. These are the real infinite primes.
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iii) The absolute values obtained from the complex conjugate pairs of non-real embeddings K ↪→ C
by an composing with the ordinary absolute value |·| : C→ R. These are the complex infinite
primes.

Proof. See Theorem 7.14 in Milne [20, p. 107].

The infinite primes of a number field correspond to embeddings of the number field, so we will
identify the infinite primes with their embeddings.

We need to understand what it means for an infinite prime to ramify in order to be able to
state the results of class field theory and work with class fields.

Definition 4.10. An infinite prime σ of a number field K is said to ramify the extension L/K if
σ is a real infinite prime of K, and has an extension to a complex infinite prime of L.

Remark 4.11. This definition is comparable to the ramification of finite primes. If an infinite
prime σ ramifies in the extension L/K, then the same prime lies twice over σ as σ may be extended
to a complex embedding τ or to its conjugate τ , both of which correspond to the same infinite
prime of L.

We can now take a look at some examples of infinite primes in number fields an their ramifica-
tion.

Example 4.12. i) Consider the number field K = Q(
√

2). This field has two real embeddings
σ1 :
√

2 7→
√

2, and σ2 :
√

2 7→ −
√

2, and no complex embeddings. So K has two real infinite
primes, and no complex infinite primes.

Let L = Q(
√

2,
√

3) be an extension of K. Do the infinite primes σ1 and σ2 of K ramify in
L/K? All the infinite primes of L are real, the embeddings are τi :

√
2 7→ ±

√
2,
√

3 7→ ±
√

3. So no
real infinite prime of K has a complex extension, and all infinite primes are unramified in L/K.

Now letM = Q(
√

2, i) be another extension of K. Here the infinite primes are all complex, any
embedding must have τi : i 7→ ±i. This means real infinite primes of K necessarily have complex
extensions, and so all infinite primes are ramified in M/K.

ii) Let K = Q(
√
d) be an imaginary quadratic field. This field has one pair of complex embed-

dings and so one complex infinite prime. Since there are no real infinite primes there cannot be
any ramified infinite primes and so the infinite prime is unramified in any extension L/K.

More generally if the only infinite primes of a number field are complex, then by definition they
are unramified in any extension.

iii) Consider the number field K = Q( 3
√

7). This field has one real embedding σ1 : 3
√

7 7→ 3
√

7,
and one pair of complex embeddings σ2, σ2 : 3

√
7 7→ 3

√
7ρ, 3
√

7ρ, where ρ3 = 1 is a primitive cube
root of 1.

Let L = Q( 3
√

7,
√

5). If we extend the real embedding σ1 of K to an embedding of L we must
have τ :

√
5 7→ ±

√
5. Both of these possibilities are real embeddings, hence σ1 does not extend to

a complex embedding and hence is unramified in L/K.
Now let M = Q( 3

√
7, 3
√

3). The real embedding σ1 of K can extend to the following complex
embedding τ : 3

√
3 7→ 3

√
3ρ of M , and so σ1 ramifies in M/K.

4.2 Moduli and Generalised Ideal Class Groups
The central theme of class field theory is the connection between generalised ideal class groups and
abelian extensions of a number field. To define a generalised ideal class group we first introduce a
modulus.
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Definition 4.13. A modulus in a number field K is a formal product of primes of K:

m =
∏
p

pnp

where the product is taken over all primes p of K, finite or infinite, and the exponents np satisfy:
i) np ≥ 0, with all but finitely many being zero,
ii) np = 0 whenever p is a complex infinite prime, and
iii) nP ≤ 1 whenever p is a real infinite prime.
If all the exponents np = 0, then the modulus is simply m = 1.

We may write a modulus m as m = m0m∞, where m0 is an ideal of OK , and m∞ is a product
of distinct real infinite primes of K. If K is an imaginary quadratic field, then the only infinite
primes are complex, and so a modulus m can be regarded as an ideal of OK .

Definition 4.14. Given a modulus m of a number field K, let IK(m) be the group of all fractional
ideals of K which are relatively prime to m, that is relatively prime to m0 in the decomposition
above. Let PK,1(m) be the subgroup generated by the principal ideals αOK , where α ∈ OK
satisfies:

α ≡ 1 (mod m0), and
σ(α) > 0 for every real infinite prime σ dividing m

Definition 4.15. A subgroup H ⊂ IK(m) is called a congruence subgroup for m if it satisfies:

PK,1(m) ⊂ H ⊂ IK(m)

and then the quotient IK(m)/H is called a generalised ideal class group for m.

In Corollary 1.3 of Section 4.1 of Janusz [14, p. 111], he establishes that the subgroup P1,K(m)
has finite index in IK(m). Hence the quotient IK(m)/PK,1(m) is finite, and so is any generalised
ideal class group.

We already know two generalised ideal class groups.

Example 4.16. For any number field K:
i) The ideal class group C(K) is a generalised ideal class group for the modulus m = 1. If m = 1,

then IK(m) = IK(1) = I(K) is the group of all fractional ideals of K, since there are no primes
dividing m to check. And P1,K(m) = P1,K(1) = P(K), since there is also nothing to check. Now
H = P(K) is a congruence subgroup for m = 1, and the quotient is I(K)/H = I(K)/P(K) = C(K)
the ideal class group of K.

ii) The narrow class group C+(K) is also a generalised ideal class group for the modulus m
consisting of the product of all real infinite primes of K. Here IK(m) = I(K) since there are no
finite primes to check. Then the subgroup P1,K(K) = P+(K), since it is generated by α ∈ OK
satisfying σ(α) > 0, for all real embeddings σ. Then H = P+(K) is a congruence subgroup, and
the quotient is I(K)/P+(K) = C+(K), the narrow class group.

Any subgroup of a generalised class group is also a generalised class group. The pre-image of
a subgroup under the quotient map defines a subgroup sitting between PK,1(m), and IK(m), so is
a congruence subgroup for m.

Using the observation above this establishes that the class group and the narrow class group
of any number field is finite.
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4.3 The Artin Symbol and the Artin Map
The basic ideal of class field theory is that generalised ideal class groups of a number field K are
exactly the Galois groups of abelian extensions of K. A link is provided by the Artin symbol.

Let L/K be a Galois extension of number fields, and let p be a prime of K which is unramified
in L. Take a prime P above p in L. Since the prime p is unramified the inertia group IP is trivial:
it has order |IP| = e = 1. As before this means we have a canonical isomorphism:

DP
∼= DP/IP → G̃

where G̃ is the Galois group of the residue field extension (OL/P)/(OK/p). Since this is an finite
extension of finite fields, the Galois group is known to be cyclic, with a distinguished generator
given by the Frobenius Frob: x 7→ xq, where q = |OK/p| = N(p).

Working backwards through these isomorphisms, the Frobenius picks out a distinguished gen-
erator of DP, which we will also call the Frobenius.

Definition 4.17. In the situation above, the Artin symbol of the prime P of L is defined to be the
Frobenius generator of DP. The Artin symbol of P is an element of Gal(L/K), and we denoted it
by: (

L/K

P

)
The notation for the Artin symbol is reminiscent of the Legendre symbol, this is no coincidence.

The Artin symbol generalises the Legendre symbol, and as we will show later class field theory
subsumes and generalises quadratic reciprocity. In simple cases we can already easily determine
exactly what the Artin symbol is for each prime.

Example 4.18. Consider the number field K = Q(
√

3), which is an Galois extension of Q. The
Galois group Gal(K/Q) = Z2 = {1,−1}, where we identify 1 with the identity automorphism√

3 7→
√

3, and −1 with conjugation
√

3 7→ −
√

3.
The only ramified prime of K/Q is 3. If p 6= 3, and p is a prime of K above p we can define

the Artin symbol of p. We will calculate it in some cases.
Let p = 5, then

(3
5
)

= −1, so the prime p = 5 is inert in K. The only prime above 5 is p = 5
itself. We have f = 2 for this prime, and so comparing orders gives Dp = Gal(L/K). Only −1
generates Dp, so we must have

(K/Q
p

)
= −1. The same result holds true for any inert prime.

Now look at p = 11, where
( 3

11
)

= 1, so the prime p = 11 splits in K. There are two primes p,
and p̃ above 11. We have f = 1 for these primes, so we must have Dp = {1}. Hence the generator
is 1, and we have

(K/Q
p

)
=
(K/Q

p̃

)
= 1. The same results holds for any split prime.

Under the identification of the Galois group Gal(K/Q) with {−1, 1}, the value of the Artin
symbol of a prime p corresponds exactly with the value of the Legendre symbol of the prime p
below p, so we can write: (

K/Q
p

)
=
(

3
p

)
Now we will prove some properties of the Artin symbol.

Proposition 4.19. The Artin symbol
(L/K

P

)
is the unique element σ ∈ DP satisfying:

σ(x) ≡ xq (mod P), for all x ∈ OL

where q = N(p) is the norm of the prime p of K below P.
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Proof. This is essentially the definition of the Artin symbol. The Artin symbol σ corresponds
canonically to the Frobenius generator of (OL/P)/(OK/p), which sends x 7→ xq, and so σ(x) ≡
xq (mod P ).

Property 2.2 in Janusz [14, p. 98] gives us the following:

Proposition 4.20. Let L/K be an abelian extension, and P be a prime of L above the unramified
prime p of K. Then for σ ∈ Gal(L/K):(

L/K

σ(P)

)
= σ

(
L/K

P

)
σ−1

Proof. Following the proof given by Janusz, we can write any element of OL as σ−1(x) for x ∈ OL.
The definition of the Artin symbol tell us that:(

L/K

P

)
σ−1(x) ≡ σ−1(x)q (mod P)

Applying σ gives:

σ

(
L/K

P

)
σ−1(x) ≡ xq (mod σ(P))

Since σ
(L/K

P

)
σ−1 ∈ Dσ(P)f , this precisely shows that σ

(L/K
P

)
σ−1 satisfies the property needed to

be the Artin symbol of σ(P). Hence by the uniqueness of the Artin symbol(
L/K

σ(P)

)
= σ

(
L/K

P

)
σ−1

This has the following useful corollary as noted later in Janusz [14, pp. 102–103]:

Corollary 4.21. If L/K is an abelian extension, then the Artin symbol
(L/K

P

)
depends only on

the prime p of K below P, hence we may write it as
(L/K

p

)
.

Proof. Let P, and P′ be two primes above p, then as the Galois group acts transitively, we can
write P′ = σ(P) for some σ ∈ Gal(L/K). Then(

L/K

P′

)
=
(
L/K

σ(P)

)
= σ

(
L/K

P

)
σ−1 =

(
L/K

P

)
since the Galois group is abelian.

From Janusz [14, pp. 100–101] we have the following simple results:

Proposition 4.22. The order of the Artin symbol
(L/K

P

)
the inertial degree f(P | p).

Proof. The Artin symbol generates the decomposition group DP which has order f = f(P | p),
hence it has order f(P | p).

Corollary 4.23. A prime p splits completely if and only if
(L/K

P

)
= 1.

Proof. If the Artin symbol of a prime above p is trivial, it has order 1, hence f = 1. We already
have e = 1, and so this means p splits completely.
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We are now in a position to define the Artin map for an abelian extension L/K. In an extension
L/K only a finite number of primes can ramify, any prime which ramifies in L/K sits above a
prime p which ramifies in L/Q. These primes divide the discriminant ∆L, so there are only finitely
many, and there are a finite number of primes in K above these.

Let m be a modulus divisible by all primes of K which ramify in L. The fractional ideals of
IK(m) are relatively prime to m, and so when we decompose a ∈ IK(m) as a product of primes:

a =
g∏
i=1

pri
i

every prime pi is unramified in the extension, and hence its Artin symbol
(L/K

pi

)
is defined. Extend

the Artin symbol multiplicatively to all ideals a ∈ IK(m) via:(
L/K

a

)
=

g∏
i=1

(
L/K

pi

)ri

This gives the following definition:

Definition 4.24. Extending the Artin symbol multiplicatively to all of IK(m), defines a homo-
morphism:

ΦL/K,m : IK(m)→ Gal(L/K)
called the Artin map of the extension L/K and the modulus m.

Example 4.25. Let us find the Artin map of the extension K = Q(
√
d) of Q. The extension

is Galois with Galois group Gal(K/Q) ∼= Z2 ∼= {1,−1}. The discriminant of K is ∆K = d or
∆K = 4d, so primes p - 4d are unramified in the extension. Take the modulus m = 4d, then any
the fractional ideals IK(m) consist of ideals (ab ), where gcd(a, 4d) = gcd(b, 4d) = 1.

First let’s work out the Artin symbol of the unramified primes. If p is an unramified prime
of Q, then the Legendre symbol

(
d
p

)
tell us how the prime factors in the extension. If

(
d
p

)
= 1,

then p splits, so f = 1 and the decomposition group is trivial, hence
(K/Q

(p)
)

= 1 =
(
d
p

)
. Otherwise(

d
p

)
= −1, then p is inert so f = 2 and the decomposition group is {1,−1}, hence

(L/Q
(p)
)

= −1 =
(
d
p

)
.

Extending this multiplicatively to all ideals in IK(m) gives the map:

Φm : IK(m)→ {1,−1}

a

b
7→
(
d

a

)(
d

b

)−1

using the multiplicativity of the bottom argument of the Jacobi symbol, an extension of the Leg-
endre symbol to all odd integers for the bottom argument. So the Artin map of a quadratic field
is just the Jacobi symbol.

4.4 The Theorems of Class Field Theory
The Artin Reciprocity Theorem, Theorem 5.7 in Section 5.5 of Janusz [14] shows that the Galois
group of any abelian extension is a generalised ideal class group for some modulus:

Theorem 4.26 (Artin Reciprocity Theorem). Let L/K be an abelian extension, and m a modulus
divisible by all primes, finite of infinite, or K which ramify in L. If the exponents of the primes
dividing m are sufficiently large then
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i) The Artin map Φm is surjective
ii) The kernel ker Φm is a congruence subgroup for m

The isomorphism IK(m)/ ker Φm
∼= Gal(L/K) shows that Gal(L/K) is a generalised ideal class

group for the modulus m

Section 5.6 and Theorem 12.7 in Section 5.12 of Janusz [14, pp. 166–169 and p. 189] establish
that there is one modulus which is better than others:

Theorem 4.27 (Conductor Theorem). Let L/K be an Abelian extension. Then there is a modulus
f = f(L/K), called the conductor, such that

i) A prime of K finite or infinite ramifies in L if and only if it divides f
ii) Let m be a modulus divisible by all primes of K which ramify in L. Then the kernel ker(Φ)

of the Artin map Φ is a congruence subgroup for m if and only if f | m.

The Existence Theorem, Theorem 9.16 in Section 5.9 of Janusz [14] establishes that every
generalised ideal class group is the Galois group of some abelian extension:

Theorem 4.28 (Existence Theorem). Let m be a modulus of K, and let H be a congruence
subgroup for m. Then there is a unique abelian extension L of K, all of whose ramified primes,
finite or infinite, divide m such that H is the kernel of the Artin map of L/K.

A corollary to the uniqueness in the Existence theorem is given by Corollary 8.7 in Cox [7,
p. 163]:

Corollary 4.29. Let L and M be abelian extensions of K. Then L ⊂M if and only if there is a
modulus m, divisible by all primes of K ramified in either L or M such that:

PK,1(m) ⊂ ker(ΦM/K,m) ⊂ ker(ΦL/K,m)

4.5 Class Field Theory and Reciprocity Laws
Class Field Theory generalises the law of quadratic reciprocity and is the source of most other
reciprocity laws.

We will prove Euler’s statement of quadratic reciprocity, which is equivalent to the usual state-
ment as given in Theorem 1.49. Euler’s statement, as given in Lemmermeyer [17, p. 4–5], is the
following:

Theorem 4.30 (Euler’s Quadratic Reciprocity). Let p and q be odd primes, not dividing a > 0.

If p ≡ q (mod 4a) or p ≡ −q (mod 4a) then
(
a

p

)
=
(
a

q

)
Proof. We can assume a is square-free and positive so let K = Q(

√
a). From Example 3.11 in

Milne [21], we have that the conductor of the extension K/Q is given by f = ∆K since K is real.
Let the modulus m be given by m = 4a. Then certainly f | m, so if Φm is the Artin map of the

extension K/Q, its kernel ker Φm is a congruence subgroup for this modulus.
From the example above, we know the Artin map of this extension can be described in terms

of the Jacobi symbol: (
K/Q
(p)

)
=
(
a

p

)
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Since ker Φ is a congruence subgroup we have PK,1(m) ⊂ ker Φ. But p ≡ ±q (mod 4a) means
±pq−1 ≡ 1 (mod m0). So the ideal (pq−1) is in PK,1(m), and in particular in ker Φ. From this we
have: (

a

p

)
=
(
K/Q
(p)

)
=
(
K/Q
(q)

)
=
(
a

q

)

Using properties of the Artin symbol we can also give a direct proof of the more usual formu-
lation of quadratic reciprocity. A special case of Propsition 3.11 in Lemmermeyer [17] gives us the
following result:

Theorem 4.31 (Quadratic Reciprocity). Let p and q be distinct odd primes, then:(
(−1)(q−1)/2q

p

)
=
(
p

q

)
Proof. Let L = Q(ζq) be the q-th cyclotomic field. The unique quadratic subfield of L is given
by K = Q(

√
(−1)(q−1)/2q), corresponding to the unique index 2 subgroup H of Gal(L/Q) ∼= Z∗q .

The subgroup H is the subgroup of squares since the map x 7→ x2 has kernel exactly ±1.
From this and what we know of the Artin map of K/Q, we have:(

(−1)(q−1)/2

p

)
= 1⇔

(
K/Q
(p)

)
= 1

As in Corollary 3.10 of Lemmermeyer [17, p. 87–88], the restriction of
(L/Q

(p)
)
to K coincides

with
(K/Q

(p)
)
, therefore: (

K/Q
(p)

)
= 1⇔

(
L/Q
(p)

)∣∣∣∣
K

= 1

Since K is the fixed field of the subgroup H, the Galois group is K/Q is Gal(K/Q) = Z∗q/H,
and so this means: (

L/Q
(p)

)∣∣∣∣
K

= 1⇔
(
L/Q
(p)

)
∈ H

One last fact that we need is the Artin map of L/Q can be described as:
(L/Q

(p)
)

= p. This is
remarked on just before Proposition 3.11 in Lemmermeyer [17, p. 88]. This tells us:(

L/Q
(p)

)
∈ H ⇔ p ∈ H

⇔ p ≡ x2 (mod q)

⇔
(
p

q

)
= 1

and so establishes the required result.
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Chapter 5

The Hilbert Class Field

Our first application of the results of class field theory to the study of quadratic forms will use
the Hilbert class field. Using the Hilbert class field we can determine whether or not a prime ideal
is principal, and so study which primes the principal form represents in the positive-definite case.
We will follow Cox [7] when studying binary quadratic forms with the Hilbert class field. Using
the Hilbert class field we can also explore the class number of number fields as in Marcus [18] and
Artin and Tate [1].

5.1 Definition and Properties
To define the Hilbert class field we appeal to the Existence Theorem:

Definition 5.1. The Hilbert class field of a number field K is the unique abelian extension of K
arising from applying the existence theorem to the modulus m = 1, and the congruence subgroup
P(K) = PK,1(1).

We call an extension L/K in unramified if all primes of K, both the finite and the infinite
primes, are unramified in L. An alternative characterisation of the Hilbert class field is provided
by Theorem 8.10 in Cox [7, p. 164]:

Theorem 5.2. The Hilbert class field is the maximal unramified abelian extension of a number
field.

Proof. By construction the Hilbert class field is unramified and abelian: the ramified primes
divide the modulus, but this is m = 1.

LetM be another unramified abelian extension of K. By the Conductor Theorem f(M/K) = 1
since a prime ramifies if and only if it divides the conductor. Then since f | 1, the kernel of the
Artin map ker Φ is a congruence subgroup for m = 1. So

PK,1(K) ⊂ ker(ΦM/K,1)

By the definition of the Hilbert class field we have:

PK,1(K) = ker(ΦL/K,1) ⊂ ker(ΦM/K,1)

and hence M ⊂ L follows from the Corollary to uniqueness.
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The Artin map induces an isomorphism between the class group of K and the Galois group of
L/K, where L is the Hilbert class field of K. Using this we can link the ideal structure of K with
the field structure of the extension and use this to study ideals of the number field. A special case
of the results in the previous chapter tell us:

Proposition 5.3. If L is the Hilbert class field of K, then the Artin map
(L/K
·
)

: IK(1) = I(K)→
Gal(L/K) is surjective, and its kernel is the subgroup PK,1(1) = P(K) of principal ideals.

From this we have the following corollaries:

Corollary 5.4. If L is the Hilbert class field of K, then Gal(L/K) ∼= C(K), and hence [L : K] =
h(K).

Proof. The First Isomorphism Theorem applied to the above says: Gal(L/K) ∼= I(K)/P(K) =
C(K). The order of C(K) is by definition the class number h(K).

Corollary 5.5. A prime ideal p of K is principal if and only if it splits completely in L, the Hilbert
class field of K.

Proof. A prime ideal of K is principal if and only if
(L/K

p

)
= 1. We know that the order of the

Artin symbol is the inertial degree, hence
(L/K

p

)
= 1 if and only if f = 1. Since the extension L/K

is unramified we necessarily have e = 1. So p is principal if and only if e = f = 1 in the extension
L/K, and this is precisely the condition that p splits completely.

Using this corollary we have a method to determine if a prime ideal is principal. Using the
connection between quadratic forms and ideals in quadratic field we will answer the question of
which primes a form represents by deriving a condition for (p) to split into principal ideals.

A useful result for later is given by Lemma 10 of Baker [2, p. 7]:

Proposition 5.6. If K/Q is a Galois extension and L is the Hilbert class field of K, then L/Q is
Galois.

Proof. Let σ : L → C be an embedding of L in C which fixes Q pointwise. Then σ(L) is an un-
ramified abelian extension of σ(K), but since K is Galois σ(K) = K. Hence σ(L) is an unramified
abelian extension of K, and σ(L) ⊂ L. They have the same degree over K and so σ(L) = L.

5.2 Class Number of Quadratic Fields
Class field theory shows there is an intimate relationship between the ideal class group of a number
field K and the unramified abelian extension of k. We know the degree of the Hilbert class
field L over a number field K is the class number h(K) of K. If we can construct another
unramified abelian extension M of K, then necessarily M ⊂ L, and by the tower theorem we have
[M : L] | [L : K] = h(K).

Using this insight we can prove some results on the divisibility of the class number for quadratic
fields, and determine when the class number can possibly be 1.

We first begin with a Lemma. The statement of the Lemma comes from part of Exercise 15 in
Chapter 8 of Marcus [18, p. 246], tweaked to match up with our definitions.

Lemma 5.7. Let m be a square-free integer, and let d be a non-trivial divisor of m. Assume that
d ≡ 1 (mod 4) or m

d ≡ 1 (mod 4). Then M = Q(
√
m,
√
d) is an abelian extension of K = Q(

√
m)

unramified at all finite primes.
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Proof. Firstly, the extension M/K is clearly Galois with abelian Galois group. One way to see
this is by observing that M/Q is Galois with Galois group Z2 × Z2. The field K is the fixed field
of a (necessarily) abelian subgroup, this subgroup is the Galois group of M/K.

Now we need to study the ramification of primes in the extension M/K. Without loss of
generality, swapping d and m

d , we may assume that it is d which satisfies d ≡ 1 (mod 4).
Now consider the following diagram of fields:

M = Q(
√
m,
√
d)

E = Q(
√
d) F = Q(

√
m
d ) K = Q(

√
m)

Q

We can view M as the composite of the two quadratic subfields E and K. By calculating the
discriminant we know exactly what primes ramify in a quadratic extension. We see that any prime
p - 2m is unramified in K and in E since ∆K | 4m and ∆E | 4d where d | m. Since these primes
are unramified in E and in K they are also unramified in the composite EK = M . Using the
multiplicativity of the ramification index, any prime above p in K is unramified in M/K.

Now we need to look at the primes p | 2m. Firstly suppose that P is odd, and p | m, then let
pK be a prime above p in K, ane P a prime above pK in M . We need to show e(P | pK) = 1.
Since p divides m, and m is square-free it divides exactly one of d and m

d , say d (otherwise repeat
the argument with d and m

d interchanged). Let pF = P ∩ OF , this is a prime of F below P and
above p. By the multiplicativity of e in towers we have:

e(P | p) = e(P | pF )e(pF | p)
= e(P | pK)e(pK | p)

Since p - md , and p is odd we know p is unramified in F , so e(pF | p) = 1. As always we have:
e(P | pF ) ≤ [M : F ] = 2. Hence e(P | p) ≤ 1 · 2 = 2. On the other hand we have e(PK | p) = 2
since p ramifies in K, and e(P | pK) ≥ 1 as always. Hence e(P | p) ≥ 2 · 1 = 2. From this we must
have e(P | p) = 2, and so all the inequalities are in fact equalities. Hence e(P | pK) = 1, and all
the primes above p are unramified in M/K.

Lastly we need to look at p = 2. Since d ≡ 1 (mod 4), 2 is unramified in E. If it is also
unramified in K, it’s unramified in the composite M/Q, so the primes above 2 are unramified in
L/K. Otherwise 2 ramifies in K, and the argument above using ramification indices again gives
the primes above 2 are unramified in M/K.

Hence the extension is unramified at all finite primes as claimed.

Now we are in a position to make some conclusions about the class number of certain quadratic
fields. Firstly if we look at the imaginary quadratic fields Q(

√
m), with m < 0, then the infinite

primes are (trivially) unramified in any extension. So if we can apply the above Lemma to such a
quadratic field, we will produce an unramified abelian extension which will sit as an intermediate
field between the number field K and the Hilbert class field L. From this we conclude 2 | h(K),
and in particular the class number isn’t 1.

Example 5.8. Consider the number field K = Q(
√
−35). We have m = −35, and we can take the

non-trivial divisor d = 5. Then d ≡ 1 (mod 4), and so the Lemma tells us that M = Q(
√
−35,

√
5)
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is an abelian extension, unramified at all primes; it’s unramified at the finite primes by the Lemma,
and at the infinite primes since K is imaginary quadratic. We immediately conclude that 2 | h(K),
and so K can’t have class number h(K) = 1.

We can explicitly calculate the class number, if we do we find h(K) = 2. This confirms that
2 | h(K), but we can extract more from this. We know the Hilbert class field L has degree
[L : K] = h(K) = 2, but we have a field M sitting between K and L, with degree [M : K] = 2.
By the Tower theorem, we find [L : M ] = 1, and so M is the Hilbert class field of K.

We can now go on to give a more general theorem which narrows down the possible window
of odd class number, and in particular class number 1, for an imaginary quadratic field. The
statement comes from a special case of part of Exercise 16 in Chapter 8 of Marcus [18]:
Theorem 5.9. Let K = Q(

√
−m) be an imaginary quadratic field (hence m square-free), and

suppose m ≥ 3. Then h(K) is even except possibly when m ≡ 3 (mod 4), and m is prime.

Proof. Suppose that m is not prime, then we want to show that h(K) is even. Since m is not
prime, we can find a divisor d | m of m. If d ≡ 2 (mod 4), then m

d can’t be even, otherwise
4 | m, but m was square-free. So by swapping d and m

d we can assume d ≡ 1, 3 (mod 4). Now if
d ≡ 3 (mod 4), we have −d ≡ 1 (mod 4), so by negating we can assume d ≡ 1 (mod 4). Now we’re
in a position to use the Lemma above: with this choice of d we know that M = Q(

√
−m,

√
d) is

an abelian extension unramified at all primes (including the infinite primes since K is imaginary
quadratic). As before M sits between the Hilbert class field and K, and proves that 2 | h(K).

Now suppose that m is prime, but m 6≡ 3 (mod 4). As we’re taking m ≥ 3, this leaves the only
possibility that m ≡ 1 (mod 4), in particular 2 - m. We again want to construct an unramified
abelian extension with degree 2 over K. Consider M = Q(

√
−m, i), clearly an abelian extension

of K. As before, primes above p - m are unramified in M since p doesn’t ramify in Q(
√
−m) or

Q(i) and so can’t ramify in the composite field. Finally primes above p | m are unramified in M
by considering ramification indices in the subfields E = Q(i), and K = Q(

√
−m). The infinite

primes are automatically unramified sinceK is imaginary quadratic. SoM is an unramified abelian
extension with degree 2 over K. As beforeM sits between the Hilbert class field and K, and proves
that 2 | h(K).

5.3 Class Number of Subfields
It is not always the case that the class number of a subfield divides the class number of a field, for
example consider:

K = Q(
√
−5) ⊂ L = Q(

√
−5, i)

It can be shown that L has class number h(L) = 1, but K has class number h(K) = 2.
Using class field theory we can determine a sufficient condition for the class number of K to

divide the class number of an extension L.
Theorem 9 in Artin and Tate [1, p. 75] gives us the following result:

Theorem 5.10. Let L be the Hilbert class field of K, and E be a finite dimension extension of K
such that E ∩ L = K. Then h(K) | h(E).

Proof. As in Proposition 3.18 of Milne [22, p. 38], there is an isomorphism Gal(LE/E) ∼=
Gal(L/E ∩ L). By assumption E ∩ L = K so Gal(LE/E) ∼= Gal(L/K), and hence the exten-
sion LE/E is abelian since L/K is abelian. It can be shown that the extension LE/E is also
unramified.

Therefore LE is contained in the Hilbert class field F of E. We have [LE : E] = [L : K] = h(K),
so we conclude h(K) | [F : E] = h(E).
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And using this we can prove the following theorem

Theorem 5.11. Suppose some prime is totally ramified in the extension E/K. Then h(K) | h(E).

Proof. If p is totally ramified in E/K, then we have e = [E : L], f = 1 for the single prime P above
p. In any intermediate field K ⊂ M ⊂ E, the prime p must also ramify by the multiplicativity of
the ramification index.

If L is the Hilbert class field of K, then we have K ⊂ E ∩ L ⊂ L and E. Any non-trivial
extension of K contained in E is ramified, hence cannot be a subfield of the Hilbert class field.
So the extension E ∩ L of K must be trivial. Therefore E ∩ L = K. Then the previous Theorem
immediate gives h(K) | h(E).

Example 5.12. It is show in Corollary 2 to Theorem 12 of Marcus [18, pp. 35–36] that the ring
of integers of the m-th cyclotomic field Q(ζm) is always Z[ζm], hence Dedekind’s Theorem works
to find the decomposition of all primes. Using this we can show that p is totally ramified in the
p-th cyclotomic field E = Q(ζp). The prime factorisation of p is given by the decomposition of the
polynomial x

p−1
x−1 modulo p. Looking modulo p we find:

xp − 1
x− 1 ≡

(x− 1)p

x− 1 ≡ (x− 1)p−1 (mod p)

so the prime p is totally ramified.
The previous theorem now tells us that the class number h(K) of any subfield K ⊂ E divides

the class number h(E) of E. In particular if p is an odd prime, the class number of the quadratic
subfield K = Q(

√
(−1)(p−1)/2p) is a divisor of h(E).

For p = 23, the quadratic subfield is K = Q(
√
−23), which has class number 3. This means

the class number of E = Q(ζ23) is divisible by 3.
Similarly for p = 47, the quadratic subfield is K = Q(

√
−47), which has class number 5. This

means the class number of E = Q(ζ47) is divisible by 5.
More details and results on the class numbers of the cyclotomic fields can be found in Chapter

11 of Washington [28].

Example 5.13. i) We can easily show the number of ideal classes in E = Q(
√
−5,
√
−23) is

divisible by 6 as follows. The subfield K = Q(
√
−5) has class number h(K) = 2, and the subfield

M = Q(
√
−23) has class number h(M) = 3.

The prime p = 23 ramifies in M with e(pM | 23) = 2, where pM is the prime above 23.
Therefore in E/Q we have e(P | 23) ≥ 2, where P is a prime above 23. But p = 23 does not ramify
in K, so e(pK | 23) = 1 for any prime pK above 23. Hence we also have e(P | 23) ≤ 2. From this
we get e(P | 23) = 2, so for a prime pK above 23 in K we have e(P | pK) = 2 = [E : K], hence pK
is totally ramified in E/K. With precisely the same argument a prime above p = 5 in M totally
ramified in E/M .

From this the Theorem tells us h(K) | h(E), and h(M) | h(E). Therefore 2 and 3 divide h(E),
and so as claimed 6 | h(E).

ii) Extending this further, we can show the class number of E = Q(
√
−5,
√
−23,

√
−47) is

divisible by 30.
From above the subfield K = Q(

√
−5,
√
−23) has class number divisible by 6. By the same

argument the subfieldM = Q(
√
−5,
√
−47) has class number divisible by 10 since the class number

of Q(
√
−47) is 5.

The prime p = 47 is unramified in K, and ramifies in Q(
√
−47) with e = 2. The same argument

as above using the multiplicativity of e shows a prime pK above 47 in K is totally ramified in E/K.
Hence h(K) | h(E).
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Similarly p = 23 is unramified in M , and ramifies in Q(
√
−23) with e = 2. Therefore a prime

pM above 23 in M is totally ramified in M/K. Hence h(M) | h(E).
From this we get 10 | h(E), and 6 | h(E). Overall this means 30 | h(E), as claimed.

5.4 Representing Primes by Quadratic Forms

We will now put the Hilbert class field to use in determining which primes a binary quadratic form
represents. We must restrict our attention to fundamental discriminants for our correspondence
between forms and ideals works. Furthermore we will assume that the class group and the narrow
class group are isomorphic and we have a correspondence between quadratic forms and ideal classes
in the class group.

Using this correspondence we know that a prime p is represented b the binary quadratic form
q(x, y) if and only if there is an ideal of norm p in the ideal class corresponding to q(x, y). In
particular p is represented by the principal form if and only if there is a principal ideal of norm p.

We will work through a specific example from which we can then extract some general result.
We will begin by re-deriving a result we achieved using genus theory.

Primes of the Form x2 + 6y2 Again

The form x2 +6y2 corresponds to the principal ideal class in K = Q(
√
−6), so we are really asking:

is there a principal ideal of norm p in K = Q(
√
−6). The question of determining whether an ideal

is principal or not demands to look at the Hilbert class field.
We compute that the class number of K is h(K) = 2. From the results above we know that

L = Q(
√
−6,
√
−3) = Q(

√
−6,
√

2) is an unramified abelian extension of K. By comparing degrees
we see that it must be the Hilbert class field of K. The polynomial generating this extension is
f(x) = x4 + 8x2 + 64 of discriminant 22232.

Excluding the primes p = 2, 3 which ramify in K, there is a principal ideal of norm p in K if
and only if (p) splits completely in K, and one (hence both) of these ideals is principal. If (p) splits
into principal ideals in K, then since L is the Hilbert class field of K, these ideals split completely
in L. The multiplicativity of e and f means that (p) splits completely in L/Q.

Conversely if (p) splits completely in L/Q, then (p) splits completely in K into ideals which
split completely in L/K. But by properties of the Hilbert class field, this means that (p) splits
into principal ideals in K.

Since K/Q is a Galois extension L/Q is also Galois, so complete splitting of (p) is equivalent to
there being a prime P above p with e(P | p) = f(P | p) = 1. Applying Dedekind’s Theorem to the
extension L/Q says that for p 6= 2, 3, the decomposition of (p) corresponds to the factorisation of
f(x) modulo p. Hence (p) splits completely in L/Q if and only if f(x) has a linear factor modulo
p, and this is simply if and only if f(x) has a root modulo p.

So our first criterion in this case is that for p 6= 2, 3:

p = x2 + 6y2 ⇔ x4 + 8x2 + 64 has a root modulo p

Can we derive from this our previous criterion? Yes. Consider the field diagram:
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L = Q(
√
−6,
√

2)

F = Q(
√

2) K = Q(
√
−6)

Q

The field F is the fixed field of L under complex conjugation, and the composite FK is the
Hilbert class field L. The polynomial g(x) = x2 − 2, of discriminant 23, which generates the
extension F/Q also generates the extension L/K, and so we can relate the decomposition in each
of these extensions using Dedekind’s Theorem.

From our analysis above we know that p 6= 2, 3 is represented by x2 + 6y2 if and only if (p)
splits completely in K as pOK = pp̃, and p splits completely in L. Modulo p the polynomial g(x)
is separable, and since f(p | p) = 1 so OK/p ∼= Z/pZ, it is also separable modulo p. Applying
Dedekind’s Theorem and using that L/K is Galois we get that p splits completely in L/K if and
only if g(x) has a root modulo p which is equivalent to g(x) has a root modulo p.

Our criterion then becomes for p 6= 2, 3:

p = x2 + 6y2 ⇔

{(−6
p

)
= 1 and

x2 − 2 has a root modulo p

From this version we can extract our previous criterion; we need
(−6
p

)
= 1 and

(2
p

)
= 1.

Quadratic reciprocity says this is equivalent to p ≡ 1, 7 (mod 24).
We also have another example of how the interaction between number fields and Galois theory

forces a strict behaviour on a polynomial. As in a previous example, the polynomial f(x) =
x4 + 8x2 + 64 is reducible modulo every prime. Now we can say that if p ≡ 1, 7 (mod 24), the
polynomial has a root, and since it generates a Galois extension, it splits into 4 linear factors.
Otherwise the polynomial doesn’t have a root, and so can only split into 2 quadratic factors.

From this we can now state the abstract criterion which determines when a prime is represented
by the form corresponding to the principal ideal class. The statement is a generalisation of Theorem
5.26 in Cox [7, p. 100].

Theorem 5.14. Suppose the narrow class group and the class group are isomorphic in the quadratic
field K = Q(

√
d), and let q(x, y) be the quadratic form corresponding to the principal ideal class.

Let L be the Hilbert class field of K. For a prime p not dividing the discriminant ∆K , we have:

p is represented by q(x, y)⇔ (p) splits completely in L

Proof. The proof goes through pretty much as in the example above.
The correspondence between forms and ideals tells us that q(x, y) represents the prime p if and

only if there is a principal ideal of norm p in K. Primes which don’t divide the discriminant are
unramified, hence for these primes there is a an ideal of norm p if and only if the prime (p) of Q
splits completely in K.

If one (and hence both) of the ideals above (p) is principal, then it splits completely in L/K.
By the multiplicativity of e and f this shows that (p) splits completely in L/Q. Conversely if (p)
splits completely in L/Q, then it splits completely in K/Q into ideals which split completely in
L/K. Since L is the Hilbert class field of K this means (p) splits into principal ideals.
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A quadratic field K is always Galois over Q, and so by a previous proposition the Hilbert class
field of K is also Galois over Q. In the situation above we can describe complete splitting easily,
and we get the following criterion:

Proposition 5.15. Let everything be as in the previous Theorem, and suppose the Hilbert class
field L/Q is generated by the polynomial f(x). Then a prime p not dividing ∆K and not dividing
the discriminant of f is represented by the form q(x, y) if and only if the polynomial f(x) has a
root modulo p.

Proof. By the previous Theorem we have that such p is represented by q(x, y) if and only if (p)
splits completely in L/Q. Since the extension L/Q is Galois this is equivalent to there being a
prime P above (p) with e(P | p) = f(P | p) = 1. As the prime doesn’t divide the discriminant of
f we can apply Dedekind’s Theorem. It says that there is such a prime P above (p) if and only if
the polynomial f(x) has a linear factor modulo p. This means f(x) has a root modulo p.

By looking at the fixed field of L under the conjugation automorphism of K we can find a
simpler criterion. An adaption of Proposition 5.29 in Cox [7, p. 111] gives us the following results:

Proposition 5.16. Let L be an extension of a quadratic field K = Q(
√
d), such that L/Q is

Galois. Then:
i) L can be written as K(α), where α is the root of some monic polynomial f(x) ∈ Z[x]. That

is L is the composite of K and some Q(α).
ii) If p is an odd prime not dividing ∆K and not dividing discriminant of f(x), then:

p splits completely in L⇔
{(

d
p

)
= 1 and

f(x) has a root modulo p

Proof. For i) the conjugation automorphism ofK extends to an automorphism of L. Let F = Q(α)
be the fixed field of L under conjugation, then [L : F ] = 2, and [F : Q] = [L : K]. Certainly
KF ⊂ L, however since K 6⊂ F we have KF 6= F , hence [L : KF ] = 1, and so they are equal. We
can choose α to be an algebraic integer, hence it is the root of a monic polynomial. We read off
the the degree of the minimal polynomial of α over Q has degree [F : Q] = [L : K].

For ii) we know (p) splits completely in L is equivalent to (p) splits in K as pOK = pp̃, and one
(hence both) of the primes of K above (p) splits completely in L. Splitting in K is equivalent to(
d
p

)
= 1. Since f(p | p) = 1, we have OK/p ∼= Z/pZ. As p doesn’t divide the discriminant of f(x),

the polynomial is separable modulo p, and so separable modulo p. Therefore p splits completely in
L/K if and only if f(x) has a root modulo p, which is if and only if f(x) has a root modulo p.

In particular these results apply to the Hilbert class field, and will allow us to write down a
criterion with a standard form. This leads immediately to the main theorem, Theorem 5.1, of
Section 5 of Cox [7], a generalisation of which is:

Theorem 5.17. Suppose the narrow class group and the class group of the quadratic field K =
Q(
√
d) are isomorphic. Let q(x, y) be the quadratic form corresponding to the principal ideal class

in K. Then there is a polynomial f(x) of degree h(K) = h(∆K) such that for p an odd prime not
dividing ∆K or the discriminant of f(x), we have:

p is represented by q(x, y)⇔
{(

d
p

)
= 1 and

f(x) has a root modulo p

This polynomial can be taken to be the minimal polynomial of the algebraic integer α for which
L = K(α) is the Hilbert class field of K.
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The main problem now is actually computing the Hilbert class field of the quadratic field we
are interested in. This is not a simple matter, but various methods and algorithms have been
developed to compute class fields in general. For the purposes of this report we won’t spend time
looking at them. The computer algebra system Magma [26] implements algorithms to compute
class fields, and so if need be we can simply take the output as given.

Several sections of Cohen [5] are devoted to developing algorithms to compute the Hilbert class
field of a number field. With these Cohen draws up tables giving the Hilbert class field for a range
of real and imaginary quadratic fields. These tables are found in Section 12.1, Appendix C, of
Cohen [5, pp. 533–542].

Using these we can give some further examples in the positive-definite and indefinite cases,
for odd and even fundamental discriminants. In some cases we can even obtain results for non-
fundamental discriminants without needing any further theory.

Primes of the Form x2 + xy + 6y2 and x2 + 23y2

The form x2 + xy + 6y2 of discriminant D = −23 corresponds to the principal ideal class in the
quadratic field K = Q(

√
−23). Cohen says the Hilbert class field of K is given by L = K(α),

where α is a root of the polynomial f(x) = x3 − x2 + 1, of discriminant −23.
In this case it is not too difficult to prove L is the Hilbert class field of K. Firstly calculate that

the class number of K is h(K) = 3. We need to show that L/K is an unramified abelian extension
of degree 3.

Since the discriminant of x3 − x2 + 1 is −23, we know from Galois theory that the splitting
field of f(x) = x3− x2 + 1 is given by Q(α,

√
−23). In particular the extension L/Q is Galois with

Galois group S3. This shows the extension L/K is Galois, and since it is of degree [L : K] = 3, its
Galois group must be Z3. Therefore L/K is an Abelian extension. Its degree is equal to the class
number of K, so all we need to show it that it is unramified.

SinceK is imaginary quadratic, the infinite primes are automatically unramified. Since disc f =
−23 is square-free, the discriminant of F must be −23, and its ring of integers is Z[α]. The
discriminant of F = Q(α) and of K is −23, so a prime p - 23 is unramified in both of these, and
hence is unramified in the composite L. Therefore any prime above p - 23 is unramified in L/K.
Now we look at the primes above 23. Since the ring of integers of F is given by Z[α], Dedekind’s
Theorem works to give the decomposition of all primes. In particular for p = 23 we have:

x3 − x2 + 1 ≡ (x+ 7)2(x+ 8) (mod 23)

And so the decomposition of 23OF is given by:

23OF = (23, α+ 7)2(23, α+ 8)

Let pK be a prime of K above p = 23, and let P be a prime of L above pK . Then pF = P∩OF
is a prime of F above 23 and below P. We need to show that e(P | pK) = 1, so the prime pK of
K is unramified in L. By the multiplicativity of e we have:

e(P | 23) = e(P | pF )e(pF | 23)
= e(P | pK)e(pK | 23)

We know L/K is Galois, so e(P | pK) is a divisor of 3. We know that e(pK | 23) = 2, since 23
ramifies in K, and [K : Q] = 2. We also have that e(pF | 23) = 1 or 2, from the decomposition
above. Overall this tells us that e(P | 23) = e(P | pF )e(pF | 23) ≤ 2 · 2 = 4. Therefore
e(P | pK) = 3 is not possible, and we must have e(P | pK) = 1.
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Hence L is an unramified abelian extension of K with degree [L : K] = h(K) = 3. So L is a
subfield of the Hilbert class field, and by the Tower Theorem the Hilbert class field has degree 1
over L. Therefore L is the Hilbert class field of K as claimed.

Now we can use this to find a criterion on which primes the principal form represents. Theo-
rem 5.17 says for p 6= 2, 23:

p = x2 + xy + 6y2 ⇔

{(−23
p

)
= 1 and

x3 − x2 + 1 has a root modulo p

Using the identity:
(x+ y

2 )2 + 23(y2 )2 = x2 + xy + 6y2

we see that if we can write p as x2 + xy + 6y2 with y even, then we can also write it in the form
x2 + 23y2. Conversely if we can write p as x2 + 23y2, then we can always go back the other way
and write it as x2 + xy + 6y2.

If we exclude p = 2, then the prime p is odd. Reducing the equation p = x2 + xy+ 6y2 modulo
2, we obtain:

1 ≡ x2 + xy ≡ x(x+ y) (mod 2)

Hence x is odd, and y is even. So any prime p 6= 2 which can be written as x2 + xy + 6y2 has y
even, and so can be written as x2 + 23y2 as well.

Combining with the previous this gives for p 6= 2, 23:

p = x2 + 23y2 ⇔

{(−23
p

)
= 1 and

x3 − x2 + 1 has a root modulo p

Primes of the Form x2 + 29y2

The form x2 + 29y2 of discriminant D = −116 corresponds to the principal ideal class in K =
Q(
√
−29). Cohen says the Hilbert class field of K is given by L = K(α), where α is a root of the

polynomial f(x) = x6 − 2x3 + x2 + 2x+ 2, of discriminant −210292.
So we get that for p 6= 2, 29:

p = x2 + 29y2 ⇔

{(−29
p

)
= 1 and

x6 − 2x3 + x2 + 2x+ 2 has a root modulo p

Primes of the Form x2 + xy − 64y2 and x2 − 257y2

The quadratic field K = Q(
√

257) has fundamental unit u = 16 +
√

257 of norm −1. This means
the class group and the narrow class group are isomorphic. The form x2 +xy−64y2 of discriminant
D = 257 corresponds to the principal ideal class in K. Cohen says the Hilbert class field of K is
given by K(α) where α is a root of the polynomial x3 − x2 − 4x+ 3 of discriminant 257.

Thus we have for p 6= 2, 257:

p = x2 + xy − 64y2 ⇔

{(257
p

)
= 1 and

x3 − x2 − 4x+ 3 has a root modulo p

As before we can make use of the identity:

x2 + xy − 64y2 = (x+ y
2 )2 − 257(y2 )2
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to write a prime of the form x2 +xy−64y2 as x2−257y2 if y is even. Excluding p = 2 and reducing
modulo 2 shows any odd prime written x2 + xy − 64y2 necessarily has y even so is of the form
x2 − 257y2.

This gives for p 6= 2, 257:

p = x2 − 257y2 ⇔

{(257
p

)
= 1 and

x3 − x2 − 4x+ 3 has a root modulo p

Now we can easily produce a list of primes these forms represent, and so definitively answer
the question of whether or not certain primes are represented. Excluding p = 2, 257, both forms
represent the same primes, and this list begins:

61, 67, 113, 157, 193, 197, 227, 241, 419, 499, 587, 631, 643,
653, 739, 821, 823, 859, 863, 907, 929, 947, 971, 997, . . .

5.5 Representing Primes by Higher Forms
We can apply these results and ideas more widely. By relating norms and principal ideals in a
higher degree field we can analyse the situation using the Hilbert class field and extract from this
conditions on when there are elements of a given norm. Here I will generalise the results to study
some cubic forms.

Primes of the Form a3 + 11b3 + 121c3 − 33abc

I will find a condition for a prime p to be represented by the ternary cubic form:

a3 + 11b3 + 121c3 − 33abc

The first thing to do it to recognise this cubic form as the norm form on Z[ 3
√

11], the ring of
integers of K = Q( 3

√
11), and so to translate the question to: is there an element of norm p in OK .

Since the unit −1 has negative norm we can choose the generator of a principal ideal of norm p to
have positive norm, and so the existence of an element of norm p is equivalent to the existence of
a principal ideal of norm p.

As a note, this field K = Q( 3
√

11) has class number h(K) = 2, and so the existence of an ideal
of norm p is not sufficient to guarantee it is principal.

Since the extension K/Q is not Galois, the decomposition of the prime p in K is more erratic.
Ignoring concerns about ramification which will be captured as a repeated factor, the possible
decompositions in K are given by:

pOK is inert
pOK = p1q1

pOK = p1p2p3

where the primes pi have inertial degree 1, so norm p, and the prime q1 has inertial degree 2, so
norm p2, and in the inert case pOK has inertial degree 3, so norm p3. From this we see there is an
ideal of norm p if and only if the prime p of Q splits in K. But when is this ideal principal?

Magma tells us the Hilbert class field of K is L = Q(α) where α is a root of the polynomial
f(x) = x6 − 15x4 + 9x2 − 4 of discriminant 28310114. We shall show that, for p 6= 2, 3, 11, there is
a principal ideal of norm p in K if and only if f(x) has a root modulo p.
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Suppose there is a principal ideal p of norm p. Then in the extension L/K, the ideal p splits
completely, so there is an ideal R, with e(R | p) = f(R | p) = 1. For p 6= 2, 3, 11 we are unramified
in L/Q and hence in K/Q, so we have e(p | p) = f(p | p) = 1, and by the multiplicativity:

e(R | p) = 1
f(R | p) = 1

We can apply Dedekind’s Theorem to the extension L/Q to obtain the decomposition of p in
L, doing so tells us the polynomial f(x) must have a linear factor modulo p, in order to give rise
to the ideal R above. Hence f(x) has a root modulo p.

Now suppose f(x) has a root modulo p. Then for p 6= 2, 3, 11, this tells us there is a prime R
in L above p with:

e(R | p) = 1
f(R | p) = 1

This prime R sits above a prime p of K, and so by the multiplicativity of e and f we must
have:

e(R | p) = 1
f(R | p) = 1

and since L/K is Galois, this tells us p splits completely in L/K, hence is principal. By the
multiplicativity of f in a tower of fields, we also have f(p | p) = 1, and hence p has norm p. So p
is a principal ideal of norm p.

Therefore there is a principal ideal of norm p in K if and only if the polynomial f(x) has a root
modulo p. Combined with our earlier observation we get the following: for p 6= 2, 3, 11:

p = a3 + 11b3 + 121c3 − 33abc⇔ t6 − 15t4 + 9t2 − 4 has a root modulo p

This gives an easy condition which is checkable in finite time so we can produce a complete list
of primes, except possibly for p = 2, 3, 11, that this form represents. The list begins:

19, 29, 37, 43, 53, 61, 71, 83, 89, 107, 113, 131, 167, 173, 179, 193, 199, 211,
227, 229, 233, 239, 281, 293, 311, 337, 349, 353, 389, 409, 431, 457, 461, 467, . . .

From this we can see that even though the prime 5 splits in K, using Dedekind and that x3−11
has a root x = 1 modulo 5, and hence there is an ideal of norm 5, there is no principal ideal of
norm 5. Consequently the Diophantine equation:

5 = a3 + 11b3 + 121c3 − 33abc

has no solutions in integers.

Precisely the same analysis works for any number field to determine when there is a principal
ideal of norm p. As long as we can relate the existence of ideals of norm p and the existence of
elements of norm p we can then tell when there is an element of norm p. This will then tell us
what primes p the norm form on OK represents.

Primes of the Form a3 + 7b3 + 49c3 − 21abc

The cubic form a3+7b3+49c3−21abc is the norm form on the ring of integers Z[ 3
√

7] ofK = Q( 3
√

7).
Again multiplying by −1 allows us to take the generator of a principal ideal of norm p to have
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positive norm. So this form represents the prime p if and only if there is a principal ideal of norm
p in K.

The field K = Q( 3
√

7) has class number h(K) = 3, so we actually do need to determine when
there is a principal ideal of norm p. Magma tells us the Hilbert class field of K is Q(α), where α is
a root of f(x) = x9 − 9x7 − 69x6 + 27x5 + 414x4 + 1560x3 − 621x2 − 4761x− 1583 of discriminant
−218339714712.

The same analysis as before then tells us that for p 6= 2, 3, 7, 71 there is a principal ideal of norm
p if and only if the polynomial f(x) has a root modulo p. This gives the condition for p 6= 2, 3, 7, 71
that:

p = a3 + 7b3 + 49c3 − 21abc⇔
{
x9 − 9x7 − 69x6 + 27x5 + 414x4 + 1560x3

− 621x2 − 4761x− 1583 has a root modulo p

Using this condition we can produce a list of primes, except possibly p = 2, 3, 7, 71, that the
form represents. The list begins:

29, 41, 83, 113, 167, 181, 197, 223, 239, 251, 281, 293, 337, 419, 421, 449, 461, 463, 491,
503, 587, 617, 659, 673, 701, 743, 769, 797, 811, 827, 839, 853, 881, 883, 911, 953, . . .
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Chapter 6

Other Class Fields

The Hilbert class field is very useful for analysing when a prime is represented by the principal
for an imaginary quadratic field, and certain real quadratic fields. Once we move to a general real
quadratic field the Hilbert class field is no longer able to distinguish whether the form represents
p or −p. For this reason we introduce the narrow class field.

To answer the question of which primes a non-principal form represents we look at class fields
arising from subgroups of the class group or narrow class group. These class fields can detect when
an ideal lies in the given subgroup, hence when a prime p is represented by a certain subset of
quadratic forms. Using an inclusion-exclusion style procedure we can pin down criteria for a prime
to be represented by some non-principal forms.

These results are some generalisations of the results in Cox [7], spurred on by the introduction
of the narrow class field in Section 6.3 of Janusz [14, p. 203] and the mention of class fields for
subgroups of the class group in Theorem 0.1 of Milne [21, p. 2].

6.1 The Narrow Class Field
To define the narrow class field (also called the narrow Hilbert class field, or the extended Hilbert
class field in some texts) we again appeal to the Existence Theorem and make the following
definition:

Definition 6.1. The narrow class field of a number field K is the unique abelian extension of K
arising from applying the existence theorem to the modulus m consisting of all real infinite primes
of K, and the congruence subgroup P+(K) = PK(m).

Since an imaginary quadratic field has no real infinite primes, this definition just reduces to
that of the Hilbert class field in the imaginary quadratic case. This section is a generalisation of
the results of the previous chapter to the case of all real quadratic fields and the corresponding
indefinite quadratic forms.

An alternative characterisation of the narrow class field is provided by the following theorem:

Theorem 6.2. The narrow class field is the maximal abelian extension of a number field unramified
at all finite primes.

Proof. The proof is analogous to the corresponding result for the Hilbert class field.
The narrow class field is unramified at all the finite primes and is abelian since the ramified

primes divide the defining modulus m above. Let M be another abelian extension unramified at
all the finite primes.
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By the Conductor Theorem f(M/K) must divide m, and hence ker(ΦM/K,m) is a congruence
subgroup for m. By the definition of the narrow class field we have:

PK,1(m) = ker(ΦL/K,m) ⊂ ker(ΦM/K,m)

from this and the Corollary to uniqueness it follows that M ⊂ L.

The Artin map for this class field gives the following:

Proposition 6.3. If L is the narrow class field of K, then the Artin map
(L/K
·
)

: IK(m) = I(K)→
Gal(L/K) is surjective and its kernel is the subgroup PK,1(m) = P+(K).

Corollary 6.4. If L is the narrow class field of K, then Gal(L/K) ∼= C+(K), in particular
[L : K] = h+(K).

Proof. The First Isomorphism Theorem applied to the above says: Gal(L/K) ∼= I(K)/P+(K) =
C+(K). The order of C+(K) is by definition the class number h+(K).

And as before, from the properties of the Artin symbol we get the following result:

Corollary 6.5. A prime ideal p of K is a totally positive principal ideal if and only if it splits
completely in L, the narrow class field.

Proof. A prime ideal p of K is a totally positive principal ideal if and only if
(L/K

p

)
= 1. We

know that the order of the Artin symbol is the inertial degree, hence
(L/K

p

)
= 1 if and only if

f = 1. Since the extension L/K is unramified we necessarily have e = 1. So p is a totally positive
principal ideal if and only if e = f = 1 in the extension L/K, and this is precisely the condition
that p splits completely.

Using this result we have a method to determine if a prime ideal is a totally positive principal
ideal, and so by the connection to quadratic forms, we can tell which primes an indefinite form
represents by determining when (p) splits into totally positive principal ideals.

Like before we have the following useful result:

Proposition 6.6. If K/Q is a Galois extension and L is the narrow class field of K, then L/Q
is Galois.

Proof. If σ is any embedding of L into C which fixes Q pointwise, then σ(L) is an abelian extension
of σ(K) unramified at all finite primes. Since K/Q is Galois σ(K) = K, so σ(L) is contained in
the narrow class field of K. Comparing degrees shows σ(L) = L. Therefore L/Q is Galois.

We can use the narrow class field to prove results on the narrow class number of a number field.
We have the following result on the narrow class number of a real quadratic field:

Theorem 6.7. Let K = Q(
√
m) be a real quadratic field (hence m square-free), and suppose

m ≥ 3. Then h+(K) is even except possibly when m ≡ 1 (mod 4) and m is prime.

Proof. The proof is identical to Theorem 5.9. We don’t need to worry about the infinite primes
ramifying as they may ramify in the narrow class field.

We will re-derive some earlier results on primes represented by quadratic forms to get a feel for
how the narrow class field works. Then we can use it to go even further.
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Primes of the Form x2 − 3y2 Again

The form x2 − 3y2 corresponds to the totally positive principal ideal class in K = Q(
√

3), so we
need to look at the narrow class field of K. The narrow class number of K is h+(K) = 2, since
the field K has class number h(K) = 1, and the fundamental unit of K is u = 2 +

√
3, which has

norm N(u) = 1. Therefore the narrow class field has degree 2 over K.
From earlier results we know that L = Q(

√
3, i) is an abelian extension of K which is unramified

at all finite primes. Thus it is contained in the narrow class field of K. Moreover they have the
same degree over K. Therefore L is the narrow class field of K.

A prime p is represented by x2 − 3y2 if and only if there is a totally positive principal ideal of
norm p in K. There is a totally positive principal ideal of norm p if and only if the prime (p) of Q
splits into totally positive principal ideals in K, and by the properties of the Artin symbol these
split completely in L/K, hence (p) splits completely in L/Q. Vice versa if (p) splits completely
in L/Q it splits into two ideals in K which split completely in L/K, hence the ideals are totally
positive principal ideals.

The polynomial generating the narrow class field over Q is f(x) = x4−4x2 +16 of discriminant
21632. As before, complete splitting of (p) in L/Q is equivalent to f(x) having a root modulo p,
for primes not dividing the discriminant.

For p 6= 2, 3:
p = x2 − 3y2 ⇔ x4 − 4x2 + 16 has a root modulo p

Viewing L as K(i), so as the composite of K and F = Q(i), the condition for complete splitting
becomes splitting in K and in F , just as before. The polynomial generating F is g(x) = x2 + 1 of
discriminant −22, so the condition becomes, for p 6= 2, 3:

p = x2 − 3y2 ⇔

{(3
p

)
= 1 and

x2 + 1 has a root modulo p

In terms of the Legendre symbol this is
(3
p

)
= 1 and

(−1
p

)
= 1, which by quadratic reciprocity

is equivalent to p ≡ 1 (mod 12), just as we found with genus theory.
Since the narrow class field of a quadratic field is Galois over Q, same results and theorems on

when a prime is represented by the form corresponding to the totally positive principal ideal class
hold. From this we have the following generalisation of Theorem 5.17 to all quadratic fields:

Theorem 6.8. Let q(x, y) be the quadratic form corresponding to the totally positive principal
ideal class in K. Then there is a polynomial f(x) of degree h+(K) = h+(∆K) such that for p an
odd prime not dividing ∆K or the discriminant of f(x), we have:

p is represented by q(x, y)⇔
{(

d
p

)
= 1 and

f(x) has a root modulo p

This polynomial can be taken to be the minimal polynomial of the algebraic integer α for which
L = K(α) is the narrow class field of K.

Again we left with the problem of actually computing the narrow class field of a quadratic field.
When the narrow class field is larger than the Hilbert class field we will have to rely on Magma
for the computations. Using the tables from Cohen we may be able to spot an abelian extension
of K which is unramified at the finite primes but ramifies at the infinite primes, something like
K(i). The composite of this with the Hilbert class field will be the narrow class field, we will still
have to rely on Magma to find the polynomial generating this extension.

We are now in a position to find criterion for primes to be represented by the form corresponding
to the totally positive principal ideal class in the remaining real quadratic fields.
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Primes of the Form x2 − 142y2

The form x2 − 142y2 corresponds to the totally positive principal ideal class in the real quadratic
field K = Q(

√
142). This field has class number h(K) = 3, and narrow class number h+(K) = 6.

Cohen tell us that the Hilbert class field of K is given by K(ω), where ω is a root of the polynomial
z(x) = x3 − x2 − 6x − 2. From earlier results we know that K(

√
−2) = K(

√
−71) is an abelian

extension of K unramified outside of the finite primes. Therefore L = K(ω,
√
−2), the composite

of this and the Hilbert class field, is an abelian extension of K unramified outside of the finite
primes. It has degree [L : K] = 6, and therefore is the narrow class field of K.

Magma tells us that this field is also given by L = K(α), where α is a root of the polynomial
f(x) = x6 − 2x5 − 5x4 + 56x2 + 64x+ 128 of discriminant −23154712.

Theorem 6.8 then says that for p 6= 2, 5, 71:

p = x2 − 142y2 ⇔

{(142
p

)
= 1 and

x6 − 2x5 − 5x4 + 56x2 + 64x+ 128 has a root modulo p

Primes of the Form x2 + xy − 80y2 and x2 − 321y2

The form X2 +xy−80y2 corresponds to the totally positive principal ideal class in K = Q(
√

321).
This field has class number h(K) = 3, and narrow class number h+(K) = 6. Cohen tells us that the
Hilbert class field ofK is given byK(ω), where ω is a root of the polynomial z(x) = x3−x2−4x+1.
Since −3 ≡ 1 (mod 4), the field K(

√
−3) is an abelian extension of K unramified outside of the

infinite primes. The composite, L = K(ω,
√
−3), of this and the Hilbert class field is therefore an

abelian extension unramified outside of the infinite primes of degree [L : K] = 6. Therefore L is
the narrow class field of K.

Magma tells us that this field is also given by L = K(α), where α is a root of the polynomial
f(x) = x6 − 2x5 + 2x4 − 2x3 + 47x2 − 20x+ 163 of discriminant −26391127921072.

So, as always, we have for p 6= 2, 3, 11, 79, 107:

p = x2 + xy − 80y2 ⇔

{(321
p

)
= 1 and

x6 − 2x5 + 2x4 − 2x3 + 47x2 − 20x+ 163 has a root modulo p

Using the identity:
x2 + xy − 80y2 = (x+ y

2 )2 − 321y2

and looking modulo 2, we see that any prime of the form x2 +xy− 80y2 is of the form x2− 321y2,
and vice versa.

Hence we also have for p 6= 2, 3, 11, 79, 107:

p = x2 − 321y2 ⇔

{(321
p

)
= 1 and

x6 − 2x5 + 2x4 − 2x3 + 47x2 − 20x+ 163 has a root modulo p

6.2 Subgroups of the Class Group
For each subgroup H of the class group, or the narrow class group there is an associated class field
which can detect when a prime ideal lies in H.

Let H be a subgroup of the ideal class group C(K). Then the pre-image of H under the quotient
map j : I(K) → I(K)/P(K) defines a subgroup j−1(H) of I(K) containing P(K). So j−1(H) is
a congruence subgroup for the modulus m = 1.
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By the Existence Theorem there is a unique abelian extensionM of K arising from the modulus
m = 1, and the congruence subgroup j−1(H). The Artin map Φ: I(K) → Gal(M/K) has kernel
j−1(H). Therefore:

Gal(M/K) ∼= I(K)/j−1(H)

The homomorphism induces from the composition:

I(K) C(K) C(K)/H
j

has kernel j−1(H), therefore we have an isomorphism:

I(K)/j−1(H) ∼= C(K)/H

Combined with the isomorphism arising from the Artin map we have:

Gal(M/K) ∼= C(K)/H

By the corollary to uniqueness in the existence theorem since P(K) ⊂ j−1(H), the class field
M is a subfield of the Hilbert class field L. Since L/K is Galois M must be a fixed field of L for
some subgroup of the Galois group Gal(L/K) ∼= C(K). The result above showsM = LH . We have
precisely the same result with subgroups of the narrow class group too.

By construction the kernel of the Artin map ΦM/K,m is the congruence subgroup j−1(H), that
is the ideals in any ideal class of H. Therefore the prime ideals which split completely in M/K
are the prime ideals which lie in some class in H.

Since Gal(L/K) is abelian, every subgroup is normal, and so every intermediate field of L/K
is Galois over K. If K is a quadratic field, our previous results show that the class field M ,
corresponding to the subgroup H of either class group, is a Galois extension of Q. As before M
is the composite of K and some field F = Q(α), and we can formula complete splitting in M as
splitting in K and in F .

From this we have a further generalisation of Theorem 5.17:

Theorem 6.9. Let the subset of forms {qi(x, y)} correspond to the subgroup H of the narrow class
group of the quadratic field K = Q(

√
d). Then there is a polynomial f(x) of degree h+(K)/ |H| =

h+(∆K)/ |H| such that for p an odd prime not dividing ∆K or the discriminant of f(x), we have:

p is represented by some qi(x, y)⇔
{(

d
p

)
= 1 and

f(x) has a root modulo p

This polynomial can be taken to be the minimal polynomial of the algebraic integer α for which
M = K(α) is the fixed field LH of the narrow class field, that is the class field corresponding to
the subgroup H.

Primes of the Form x2 + 26y2 and Other Forms of Discriminant D = −104

The form x2 + 26y2 corresponds to the principal ideal class in K = Q(
√

26). The field K class
number h(K) = 6, so its class group is isomorphic to Z6, generated by r. The correspondence
between forms and ideals tell us we have the following identifications:

Class Group Quadratic Form
e x2 + 26y2
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Class Group Quadratic Form
r 5x2 + 4xy + 6y2

r2 3x2 − 2xy + 9y2

r3 2x2 + 13y2

r4 3x2 + 2xy + 9y2

r5 5x2 − 4xy + 6y2

Through a sequence of steps we will find a criterion to determine which primes each of these
forms represents.

Cohen says the Hilbert class field of K is K(α), where α is a root of the polynomial f(x) =
x6 − x5 + 2x4 + x3 − 2x2 − x− 1 of discriminant 210132. By our previous result we get the result
for p 6= 2, 13 that:

p = x2 + 26y2 ⇔

{(−26
p

)
= 1 and,

x6 − x5 + 2x4 + x3 − 2x2 − x− 1 has a root modulo p

The forms x2 +26y2 and 2x2 +13y2 correspond to the subgroup H1 = {e, r3} of the class group.
The associated class field is the fixed field LH1 of the Hilbert class field, this field is K(β), where
β is a root of the polynomial g(x) = x3 + x2 + 5x+ 1 of discriminant −2513. Splitting completely
in LH1 tells us when (p) splits into ideals in the subgroup H1, and so p is represented by x2 + 26y2

or 2x2 + 13y2. Now Theorem 6.9 says for p 6= 2, 13 that:

p = x2 + 26y2 or
p = 2x2 + 13y2

}
⇔

{(−26
p

)
= 1 and,

x3 + x2 + 5x+ 1 has a root modulo p

As we observed earlier, except for opposite forms, different forms represent disjoint sets of
primes since ideals factor uniquely in a number field. We know when p is of the form x2 + 26y2,
and when it is represented by x2 + 26y2 or 2x2 + 13y2. By discounting primes represented by
x2 + 26y2 we can find when a prime is represented by 2x2 + 13y2 exactly; this simply means
f(x) = x6 − x5 + 2x4 + x3 − 2x2 − x− 1 doesn’t have a root modulo p. For p 6= 2, 13

p = 2x2 + 13y2 ⇔


(−26
p

)
= 1 and,

x3 + x2 + 5x+ 1 has a root modulo p and,
x6 − x5 + 2x4 + x3 − 2x2 − x− 1 has no roots modulo p

Similarly the forms x2 + 26y2, 3x2 + 2xy+ 9y2 and 3x2−2xy+ 9y2 correspond to the subgroup
H2 = {e, r2, r4} of the class group. The corresponding class field is LH2 , which is K(γ), where γ
is a root of h(x) = x2− 13 of discriminant 2213. Splitting completely in LH2 tells us when a prime
p is represented by x2 + 26y2 or 3x2 ± 2xy + 9y2. For p 6= 2, 13:

p = x2 + 26y2 or
p = 3x2 ± 2xy + 9y2

}
⇔

{(−26
p

)
= 1 and,

x2 − 13 has a root modulo p

Since the forms 3x2 ± 2xy + 9y2 are opposite they represent the same primes, excluding the
primes represented by x2 + 26y2, we find a criterion for primes to be represented by these forms.
For p 6= 2, 13:

p = 3x2 ± 2xy + 9y2 ⇔


(−26
p

)
= 1 and,

x2 − 13 has a root modulo p and,
x6 − x5 + 2x4 + x3 − 2x2 − x− 1 has no roots modulo p
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Lastly we are left with the forms 5x2 + 4xy + 6y2 and 5x2 − 4xy + 6y2. We have determined
when a prime is represented by any of the other forms, and these two are opposite forms. The
Legendre symbol

(−26
p

)
tell us when a prime is represented by one of the above quadratic forms,

this is equivalent to splitting in K, and K is the class field corresponding to the entire class group.
Excluding primes represented by the other forms gives us a criterion. For p 6= 2, 13:

p = 3x2 ± 2xy + 9y2 ⇔


(−26
p

)
= 1 and,

x3 + x2 + 5x+ 1 has no roots modulo p and,
x2 − 13 has no roots modulo p

Even if we can’t distinguish every quadratic form of a given discriminant, we can use the same
ideal to find which primes an arbitrary subgroup of quadratic forms represents.

Primes of the Form x2 + 74y2 an Other Forms of Discriminant D = −296

The quadratic form x2 + 74y2 corresponds to the principal ideal class in K = Q(
√
−74). This field

has class number h(K) = 10 and its class group is isomorphic to Z10, generated by r. We have the
following correspondence between forms and ideals:

Class Group Quadratic Form
e x2 + 74y2

r 5x2 + 2xy + 15y2

r2 3x2 − 2xy + 25y2

r3 6x2 − 4xy + 13y2

r4 9x2 − 8xy + 10y2

r5 2x2 + 37y2

r6 9x2 + 8xy + 10y2

r7 6x2 + 4xy + 13y2

r8 3x2 + 2xy + 25y2

r9 5x2 − 2xy + 15y2

Cohen tells us the Hilbert class field of K is given by K(α) where α is a root of the polynomial
f(x) = x10− 2x9− 3x8 + 4x7 + 5x6− 2x5 + 5x4 + 4x3− 3x2− 2x+ 1 of discriminant −229374. We
therefore get the condition for p 6= 2, 37:

p = x2 + 74y2 ⇔


(−74
p

)
= 1 and,

x10 − 2x9 − 3x8 + 4x7 + 5x6 − 2x5

+ 5x4 + 4x3 − 3x2 − 2x+ 1 has a root modulo p

The quadratic forms x2 + 74y2, 3x2 ± 2xy + 25y2 and 9x2 ± 8xy + 10y2 correspond to the
subgroup H1{e, r2, r4, r6, r8} of the class group. The corresponding class field is LH1 = K(β)
where β is a root of the polynomial g(x) = x2 + 2 of discriminant −23. Therefore for p 6= 2, 37

p = x2 + 74y2 or
p = 3x2 ± 2xy + 25y2 or
p = 9x2 ± 8xy + 10y2

⇔
{(−74

p

)
= 1 and

x2 + 2 has a root modulo p
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Excluding primes represented by the form x2 + 74y2 we obtain the condition for p 6= 2, 37:

p = 3x2 ± 2xy + 25y2 or
p = 9x2 ± 8xy + 10y2

}
⇔



(−74
p

)
= 1 and

x2 + 2 has a root modulo p and
x10 − 2x9 − 3x8 + 4x7 + 5x6 − 2x5

+ 5x4 + 4x3 − 3x2 − 2x+ 1 has no roots modulo p

Unfortunately using class field theory we cannot distinguish these forms any further.
Similarly the forms x2 + 74y2 and 2x2 + 37y2 correspond to the subgroup H2 = {e, r5}, and

the class field for this subgroup is LH2 = K(γ), where γ is a root of the polynomial h(x) =
x5 − 8x4 + 16x3 + 4x2 − 13x− 8 of discriminant 212372. So we get for p 6= 2, 37:

p = x2 + 74y2 or
p = 2x2 + 37y2

}
⇔

{(−74
p

)
= 1 and

x5 − 8x4 + 16x3 + 4x2 − 13x− 8 has a root modulo p

Excluding those primes represented by the principal form we obtain for p 6= 2, 37:

p = 2x2 + 37y2 ⇔



(−74
p

)
= 1 and

x5 − 8x4 + 16x3 + 4x2 − 13x− 8 has a root modulo p and
x10 − 2x9 − 3x8 + 4x7 + 5x6 − 2x5

+ 5x4 + 4x3 − 3x2 − 2x+ 1 has no roots modulo p

We can play precisely the same game with indefinite forms and subfields of the narrow class
field.

Primes of the Form x2 − 79y2 and Other Forms of Discriminant D = 316

The form x2 − 79y2 corresponds to the totally positive principal ideal class in K = Q(
√

79). This
field has narrow class number h+(K) = 6, and the narrow class group is isomorphic to Z6 generated
by r. By the correspondence between forms and ideals we have the following identification:

Class Group Quadratic Form
e x2 − 79y2

r 3x2 + 14xy − 10y2

r2 −3x2 + 16xy + 5y2

r3 −x2 + 79y2

r4 −3x2 − 16xy + 5y2

r5 3x2 − 14xy − 10y2

Cohen tell us that the Hilbert class field of K = Q(
√

79) is K(ω), where ω is a root of the
polynomial z(x) = x3−x2−4x+2. We then observe that K(i) = Q(

√
−79) is an abelian extension

unramified at all the finite primes. The composite L = K(ω, i) is then an abelian extension
unramified at all primes with degree [L : K] = 6. Since K has narrow class number h+(K) = 6 we
conclude that L is the narrow class field of K.

Complete splitting of (p) in the narrow class field tell us when p is represented by x2 − 79y2.
Magma tells us that the composite field above which is the narrow class field of K = Q(

√
79) is

K(α), where α is a root of the polynomial f(x) = x6 − 2x5 − 4x4 + 8x3 + 17x2 − 22x + 34 of

94



discriminant −222232792. So for p 6= 2, 23, 79:

p = x2 − 79y2 ⇔

{(79
p

)
= 1 and,

x6 − 2x5 − 4x4 + 8x3 + 17x2 − 22x+ 34 has a root modulo p

The forms x2 − 79y2 and −x2 + 79y2 correspond to the subgroup H1 = {1, r3} of the narrow
class group. The corresponding class group is the fixed field LH1 = K(β), where β is a root of
g(x) = x3 − 12x2 + 41x− 34 of discriminant 2479. Complete splitting of (p) in LH1 means that p
is represented by x2 − 79y2 or −x2 + 79y2. Excluding the primes represented by x2 − 79y2 gives
for p 6= 2, 23, 79:

p = −x2 + 79y2 ⇔


(79
p

)
= 1 and,

x3 − 12x2 + 41x− 34 has a root modulo p and,
x6 − 2x5 − 4x4 + 8x3 + 17x2 − 22x+ 34 has no roots modulo p

The forms x2−79y2, −3x2+16xy+5y2 and −3x2−16xy+5y2 correspond to the subgroup H2 =
{e, r2, r4} of the narrow class group. The corresponding class field is the fixed field LH2 = K(γ),
where γ is a root of h(x) = x2 + 1. Complete splitting of (p) in LH2 means that p is represented
by one of these forms. Excluding those primes represented by x2 − 79y2 gives the criterion for
p 6= 2, 23, 79:

−3x2 ± 16xy + 5y2 ⇔


(79
p

)
= 1 and,

x2 + 1 has a root modulo p and,
x6 − 2x5 − 4x4 + 8x3 + 17x2 − 22x+ 34 has no roots modulo p

Lastly we are left with the forms 3x2 +14xy−10y2 and 3x2−14xy−10y2. We have determined
when a prime is represented by any of the other forms. The Legendre symbol tells us when a prime
is represented by some form, excluding all other forms give the criterion for p 6= 2, 23, 79:

3x2 ± 14xy − 10y2 =


(79
p

)
= 1 and,

x2 + 1 has no roots modulo p and,
x3 − 12x2 + 41x− 34 has no roots modulo p

6.3 The Genus Field
The class field L corresponding to the subgroup C+(K)2 of squares in the narrow class group C+(K)
of a quadratic field K detects whether the class of a prime ideal p lies in this subgroup. In terms
of quadratic forms, complete splitting in L happens if and only if a prime p can be represented by
some quadratic form corresponding to the subgroup of squares.

We know from genus theory that the genus containing the principal form is exactly the subgroup
of squares, and so complete splitting in this class field detects that p is represented by some form in
the principal genus. This link to genera of quadratic forms motivates calling L the genus field of the
quadratic field K, and gives a class field theoretic interpretation of genus theory for fundamental
discriminants.

A more general definition of the genus field of a number field is given in Ishida [13, p. 1] for
which the previous becomes a special case:
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Definition 6.10. Let K be an algebraic number field. The genus field L if K is the maximal
abelian extension of K which is the composite of an absolute abelian and K, and is unramified at
all the finite primes.

As stated in Ishida [13, p. 3–5] the genus field of a quadratic number field can be explicitly
described as follows.

Let K = Q(
√
m) be a quadratic number field, where m is a square-free integer. For a prime

divisor p of m, define:

p∗ =


(−1)(p−1)/2 if p is odd
−4 if p = 2 and m ≡ 3 (mod 4)
8 if p = 2 and m ≡ 2 (mod 8)
−8 if p = 2 and m ≡ 6 (mod 8)

which is the discriminant of the quadratic field Q(
√
p∗).

If p1, p2, . . . , pt are the prime divisors of ∆K , then ∆K =
∏
p∗i , and the genus field of K is

given by:
L = Q(

√
p∗1,
√
p∗2, . . . ,

√
p∗t )

Complete splitting of q in this field means that q is represented by some quadratic form in the
principal genus. This is equivalent to splitting in each of the quadratic fields Q(

√
p∗i ), which can

be explicitly described in terms of the Legendre symbols
(p∗

i

q

)
= 1. Using quadratic reciprocity we

can transform this into a congruence condition.
This turns out to be very closely related to Gauss’s definition of genera in terms of assigned

characters, and here reduces to the condition that a form is in same genus as the principal form.
For this see Lemma 3.20 and Section 6 of Cox [7, p. 57, pp. 121-127]. Thus we can formulate genus
theory in terms of class field theory.
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Appendix A

Magma

Magma is a computer algebra system designed primarily for defining and performing computa-
tions on algebraic structures such as rings, fields and groups. It has many built in functions for
performing the frequently occurring calculations the arise when working with algebraic structures.

I will give a brief overview of how these functions could be used to perform some of the
calculations required in this report.

A number field is defined using the NumberField function. This function takes an irreducible
polynomial as input, and returns the extension defined by adjoining a root of the polynomial to
the coefficient field of the polynomial. To define a polynomial over Q use the PolynomialRing
command with argument Rationals() and assign the generating element to the variable x as
follows:

R<x> := PolynomialRing(Rationals());

Then the number K = Q(α), where α is a root of the polynomial x2 + 5, is created as follows,
where the generating elements α is assigned to the variable s:

K<s> := NumberField([x^2 + 5]);

Given a number field K, its Hilbert class field can be computed using the HilbertClassField
command. The Hilbert class field is returned as a relative extension of K. The command outputs a
description of this extension by giving the polynomial which generates it over K. In order to make
the output more understandable, first define the polynomial ring over K, and assign its generator
to a variable y:

S<y> := PolynomialRing(K);
HilbertClassField(K);

> Number Field with defining polynomial y^2 + 1 over K

This shows the Hilbert class field of K = Q(
√
−5) is given by K(β), where β is a root of the

polynomial y2 + 1. That is, the Hilbert class field of K is K(i).
If we need to view an extension of a number field as an extension of Q, use the AbsoluteField

command. This returns a relative extension of number fields as an absolute extension of Q, and
outputs a description by giving the polynomial which generates it over Q:

L := HilbertClassField(K);
AbsoluteField(L);

> Number Field with defining polynomial x^4 + 12*x^2 + 16 over the Rational Field
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So the Hilbert class field of K = Q(
√
−5) is also given by Q(γ), where γ is a root of the polynomial

x4 + 12x2 + 16.

To compute the composite of two absolute number fields use the Compositum command. It
returns the composite as an absolute extension of Q, and outputs a description by giving the
polynomial which generates it over Q:

E := NumberField([x^2 - 2]);
F := NumberField([x^2 - 3]);
Compositum(E, F);

> Number Field with defining polynomial x^4 - 10*x^2 + 1 over the Rational Field

Magma can compute more general class field using the RayClassField command. It takes
an ideal m0 of a number field, and a list of real infinite primes as input, and returns the abelian
extension arising from the modulus m = m0m∞ and the congruence subgroup PK,1(m). To compute
the narrow class field of the quadratic K = Q(

√
3) we could proceed as follows:

K<s> := NumberField([x^2 - 3]);
S<y> := PolynomialRing(K);
NumberField(RayClassField(1*MaximalOrder(K), [1, 2]));

> Number Field with defining polynomial y^2 + 1 over K

So the narrow class field of K = Q(
√

3) is K(i) = Q(
√

3, i).

The SubfieldLattice command is used to generate a list of all subfields of a given number field
K. Using this we can find the intermediate fields of the extension L/K, and identify the class fields
corresponding to subgroups of the class group. To list the subfields of K = Q(

√
2,
√

3) = Q(δ),
where δ is a root of the polynomial x4 − 10x2 + 1, we would use:

K<s> := NumberField([x^4 - 10*x^2 + 1]);
SubfieldLattice(K);

> Subfield Lattice of K
> [1] Rational Field
> [2] Subfield generated by a root of x^2 - 8
> [3] Subfield generated by a root of x^2 + 10*x + 1
> [4] Subfield generated by a root of x^2 - 4*x - 8
> [5] Subfield generated by a root of x^4 - 10*x^2 + 1

A more detailed explanation of these commands and the other commands available in Magma,
along with examples of their usage it available in the Magma Handbook [27].
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Appendix B

List of Criteria

Primes Represented by Non-Primitive Forms . . . . . . . . . . . . . . . . . . . . . . . . 29
Primes Represented by Reducible Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Primes of the Form x2 + y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Primes of the Form x2 + 2y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Primes of the Form x2 + 3y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Primes of the Form x2 + 4y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Primes of the Form x2 + 7y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Primes of the Form x2 + xy + 3y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Primes of the Form x2 − 2y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Primes of the Form x2 − 5y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Primes of the Form x2 − 13y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Primes of the Form x2 + xy − 3y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Primes of the Form x2 + xy − 9y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Primes of the Form x2 − 13 · 169my2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Primes of the Form x2 + 6y2 and Other Forms of Discriminant D = −24 . . . . . . . . . 55
Primes of the Form x2 + 8y2 and Other Forms of Discriminant D = −32 . . . . . . . . . 58
Primes of the Form x2 − 3y2 and Other Forms of Discriminant D = 12 . . . . . . . . . . 58
Primes of the Form x2 − 15y2 and Other Forms of Discriminant D = 60 . . . . . . . . . 58
Primes of the Form x2 + xy + 4y2 and Other Forms of Discriminant D = −15 . . . . . . 59
Primes of the Form x2 + 6y2 Again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Primes of the Form x2 + xy + 6y2 and x2 + 23y2 . . . . . . . . . . . . . . . . . . . . . . 81
Primes of the Form x2 + 29y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Primes of the Form x2 + xy − 64y2 and x2 − 257y2 . . . . . . . . . . . . . . . . . . . . . 82
Primes of the Form a3 + 11b3 + 121c3 − 33abc . . . . . . . . . . . . . . . . . . . . . . . . 83
Primes of the Form a3 + 7b3 + 49c3 − 21abc . . . . . . . . . . . . . . . . . . . . . . . . . 84
Primes of the Form x2 − 3y2 Again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Primes of the Form x2 − 142y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Primes of the Form x2 + xy − 80y2 and x2 − 321y2 . . . . . . . . . . . . . . . . . . . . . 90
Primes of the Form x2 + 26y2 and Other Forms of Discriminant D = −104 . . . . . . . 91
Primes of the Form x2 + 74y2 an Other Forms of Discriminant D = −296 . . . . . . . . 93
Primes of the Form x2 − 79y2 and Other Forms of Discriminant D = 316 . . . . . . . . 94
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