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Question: Which numbers can be written as the sum of two squares?

More fundamental: Which primes can be written as the sum of two squares?

Prime Two Squares? Prime Two Squares?
2 12 + 12 31 No
3 No 37 12 + 62

5 12 + 22 41 42 + 52

7 No 43 No
11 No 47 No
13 22 + 32 53 22 + 72

17 12 + 42 59 No
19 No 61 52 + 62

23 No 67 No
29 22 + 52 71 No

Answer: This intrigued Fermat (1601–1665) who noticed a simple pattern in the results of the
table. Primes surpassing a multiple of four by one are the sum of two squares, primes surpassing
a multiple of four by three are not.

Fermat claimed this to always be the case, announcing his Two Squares Theorem1:

p = x2 + y2 ⇐⇒ p = 2, or p ≡ 1 (mod 4)

But not one for proving his claims, Fermat left this for subsequent mathematicians to supply.
How can this be proved and generalised?

Claims: Fourteen years after making this claim, Fermat announced two further tantalising
results related to it. He found conditions describing when a prime is the sum of a square and
twice or thrice a square:

p = x2 + 2y2 ⇐⇒ p = 2, or p ≡ 1, 3 (mod 8)

p = x2 + 3y2 ⇐⇒ p = 3, or p ≡ 1 (mod 3)

It would take four decades of work and effort from Euler (1707–1783) before these claims
would finally concede to proof. But this only served to raise more questions, and lead Euler to
many results and conjectures of his own.

Out of this several questions naturally arise:

1The ‘congruence’ notation a ≡ b (mod n), meaning a and b differ by a multiple of n, provides a concise way
to write the claim.
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− Do conditions describing which primes are represented always exist?
− How can we find or construct these conditions?
− Are such conditions always similar to those Fermat found?

Elementary Solutions: Gauss’s (1777–1855) theory of quadratic forms leads to a simple and
elegant condition describing the primes certain groups of quadratic forms represent. It gives a
unified explanation for Fermat’s claims and their similar structure. But this simplicity is at the
expense of generality. It provides a complete solution in only a few cases, and cannot separate
groups containing many forms.

Lagrange’s (1736–1813) genus theory refines the results of this condition, breaking the forms
in one group up into ‘genera’. It gives a more fundamental reason for the appearance of congru-
ence conditions in Fermat’s claims, and allows similar conditions to be derived effortlessly:

p = x2 + 5y2 ⇐⇒ p ≡ 1, 9 (mod 20)

p = x2 − 3y2 ⇐⇒ p ≡ 1 (mod 12)

Unfortunately, it severely limits when congruence conditions are sufficient. Two forms in the
same genus can never be separated with congruences.

Sophisticated Solutions: When genus theory fails we are forced to reach for more sophisti-
cated techniques. By relating quadratic forms to more algebraic objects we can unleash the full
power of class field theory on the problem. This produces a complete solution to primes of the
form x2 +ny2, and sets a general form for the criteria: “a certain polynomial has a root modulo
p”. This can be made explicit in examples:

p = x2 + 23y2 ⇐⇒

{
−23 is a square modulo p, and

t3 − t2 + 1 has a root modulo p

But even this only applies to special types of quadratic form. Currently, the quest to find similar
solutions for more general equations is the theme of eminent Langlands (1936) program.

The poster takes the reader on a tour through a cross-section of the history and results of
number theory, sparked by Fermat’s observations. Throughout, we introduce and apply increas-
ingly powerful and general techniques to study the problem of representing primes by quadratic
form. Pushing these techniques to their limits, I concoct a multitude of original criteria describing
the primes represented by an eclectic range of forms.
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