Identities arising from coproducts on
multiple zeta values and multiple

polylogarithms

Steven Paul Charlton

A thesis presented for the degree of

A
A

Doctor of Philosophy

_
¥ Durham

University

Pure Mathematics Group
Department of Mathematical Sciences
Durham University
United Kingdom

October 2016






Dedicated to

My mother, Joyce,
who didn’t live to see
this thesis finished

Joyce Charlton
8 March 1953 — 24 June 2016

Also to

My sister, Susan






Identities arising from coproducts on multiple zeta

values and multiple polylogarithms

Steven Paul Charlton

Submitted for the degree of Doctor of Philosophy
October 2016

Abstract: In this thesis we explore identities which can be proven on multiple zeta values using the
derivation operators D, from Brown’s motivic MZV framework. We then explore identities which occur

on multiple polylogarithms by way of the symbol map S, and the multiple polylogarithm coproduct A.

On multiple zeta values, we consider Borwein, Bradley, Broadhurst, and Lisonék’s cyclic insertion
conjecture about inserting blocks of {2}% between the arguments of (({1,3}"). We generalise this
conjecture to a much broader setting, and give a proof of a symmetrisation of this generalised cyclic
insertion conjecture. This proof is by way of the block-decomposition of iterated integrals introduced
here, and Brown’s motivic MZV framework. This symmetrisation allows us to prove (or to make
progress towards) various conjectural identities, including the original cyclic insertion conjecture, and
Hoffman’s 2¢(3,3,{2}") — ((3,{2}",1,2) identity. Moreover, we can then generate unlimited new

conjectural identities, and give motivic proofs of their symmetrisations.

We then consider the task of relating weight 5 multiple polylogarithms. Using the symbol map, we
determine all of the symmetries and functional equations between depth 2 and between depth 3 iterated
integrals with ‘coupled-cross ratio’ arguments [cr(a, b, ¢, d1),...,cr(a,b, c,dy)]. We lift the identity for
Iy (z,y) +I471(%, %) to an identity holding exactly on the level of the symbol and prove a generalisation
of this for I, s(x,y). Moreover, we further lift the subfamily I,, 1 to a candidate numerically testable

identity using slices of the coproduct.

We review Dan’s reduction method for reducing the iterated integral I;; .. ; to a sum in < n —2
variables. We provide proofs for Dan’s claims, and run the method in the case I71,1,1 to correct Dan’s
original reduction of I ;1,1 to I3 and I;. We can then compare this with another reduction to find
I3 ; functional equations, and their nature. We then give a reduction of 11 11,11 to 31,1, I32 and I5,

and indicate how one might be able to further reduce to I5 2 and I5.

Lastly, we use and generalise an idea suggested by Goncharov at weight 4 and weight 5. We find
Li, terms when certain Liy, Lis and Liy functional equations are substituted into the arguments of
symmetrisations of I,, 1(z,y). By expanding I,,, 1 (Lix equation, Li; equation) in two different ways we
obtain functional equations for Lis and Lig. We make some suggestions for how this might work at

weight 7 and weight 8 giving a potential route to Li; and Lig functional equations.
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Chapter 1
(Motivic) multiple zeta values

We review the basic definitions and theory surrounding multiple zeta values, including some of their
history. The definition of an MZV is motivated by considering products of Riemann
zeta values. We consider Euler’s results on evaluating ((2k) (Theorem 1.1.6)) and on reducing the
double zeta values ((1,k) to polynomials in ((n)’s (Theorem 1.1.8). We see how to represent MZV’s

as iterated integrals (Proposition 1.1.16)), and how multiplying them gives a shuffle product operation,

which complements the stuffle product obtained by multiplying the series representation (Section 1.1.4)).

We then consider some reasons for the interest in MZV’s, particularly questions dealing with the

transcendentality aspects that have so far defied solution (Section 1.1.5]).

Then we turn to the idea of a motivic MZV, originally defined by Goncharov (Section 1.2.2)) and extended
by Brown. Motivic MZV’s provide a purely algebraic lifting of the usual MZV’s, that eliminates
transcendentality problems from the start. We review Goncharov’s Hopf algebra of motivic iterated

integrals (Section 1.2.1f), and see how the coproduct (Theorem 1.2.1)) provides new insight into the

structure of the usual iterated integrals, and MZV’s (Proposition 1.2.6)). Finally we introduce Brown’s
motivic MZV framework (Section 1.2.3)), and the combinatorial tools it provides to algorithmically
decompose MZV’s. These combinatorial tools include the family of derivations D, (Definition 1.2.12)),

and Brown’s characterisation of the kernel of this family ker D (Theorem 1.2.15|).

1.1 Multiple zeta values

1.1.1 Definitions

Multiple zeta values (which we may henceforth abbreviate as MZV’s) are an intriguing class of real
numbers, first studied by Euler in the special case of double zeta values. Systematic study of the general
case begins with Hoffman |[Hof92]. The multiple zeta function is a generalisation of the Riemann zeta
function to a k-tuple of arguments, but for number theoretic reasons, we are mainly interested in the

case where the arguments are positive integers.
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The definition of a multiple zeta value can be somewhat motivated by considering what happens when
we multiply the Riemann zeta values ((a) and {(b). This will involve a sum over the first quadrant
Z~o X Z~g, which can then be decomposed into a sum over a diagonal piece, an upper trianglar piece

and a lower triangular piece.

6

We find

Now we give the more general definition of a multiple zeta value.

Definition 1.1.1 (Multiple zeta values). Let s1,2,...,58; € C. Then the multiple zeta function

C(s1,82,...,8;) is defined as follows
1
((31752,...,5]@) = Z W
0<ni<na<---<ng 172 k
Taking s1, o, ..., sk to be integers in Z~q, we obtain the multiple zeta value {(s1, 82, ..., Sk)-
Warning 1.1.2. There are two competing conventions about the index of summation. Some take
niy > ng > -+ > ng > 0, rather than the index 0 < n; < ng < --- < ny used above. This essentially has

the effect of reversing the arguments to the multiple zeta function, so no information is lost. However,

one must be aware of which convention is in use, especially when numerically checking identities.

Multiple zeta values can be viewed as special values of the multiple polylogarithms, to be introduced
later in We won’t need this point of view, except for the fact that multiple polylogarithms

(and hence MZV’s) can be written as iterated integrals.

Auxiliary to the definition of an MZV are the notions of depth and weight.

Definition 1.1.3 (MZV weight, MZV depth). Given an MZV ((s1, so, . .., si) we define the following.
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e The sum of the arguments s1 + s3 + - - - + s, is called the weight of ((s1,82,...,Sk).
e The number k of its arguments is called the depth of ((s1,sa,...,sk).

Proposition 1.1.4. Suppose s1,S2,...,5; € Zso. Then the MZV ((s1,S2,...,Sk) s convergent if

and only if s > 1.

Proof sketch: Since the series consists only of positive terms, it converges if and only if it converges

absolutely. In particular the summation order does not matter.

‘=7’ If s =1, then by taking the subseries where n; =i, for i =1,...,k — 1, we obtain

1 =1
Clstyeessn-1y1) 2 I N LZNT%
Npe=

but the latter series is (a multiple of a tail of) the harmonic series. In particular this diverges. Hence
C(s1y...,8k—1,1) is divergent by comparison. So by the contrapositive, ((s1, s2, ..., Sg) is convergent

implies s > 1.

‘<" Suppose that sy >2. Let I={1<i<k|s;>1},and J={1<i<k|s;=1}

By fixing some ny, we have that

n k—1 n
Z 1 < . 1 |
S1 Sk—1 — E : s1 Sk—1 E 5i
0<ni<---<np—1<ng st Mg—1 N1, Np—1=1 st M1 i=1n;=1 *
For the terms ¢ € I where s; > 1, we have that
n o0
LI | 1
E ns < E no = C(Sl) .
n;,=1 1 n,=1 1

For the terms ¢ € J, where s; = 1, we can apply the integral test to obtain the upper bound

ngk 1

So we obtain

2. (log(ng) + 1)#/
C(Slv ,Sk) < HC( 7,) Z ek
el ne=1 k
Since
1+1
lim L1800 _
n—o00 ne
for any € > 0, we can take e = %, so that
#J
1 1)#J 1 1
im % Y (ORI
n—o0 n N —> 00 n;#.l

This means that the sequence is bounded, and so there is a constant C such that

(log(ne) +1)* < On? |
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for all ng.
Plugging this back into the upper bound for ((s1,..., sx) gives us that
(log(ng) + 1
Cls1,- s 5 <1_[C Z n° CHCSz Z se—1/2 "
el np=1 k i€l ne=1 T
But this latter series is convergent since s > 2 means that s, —1/2 > 1.

Combining both directions shows that ((s1,...,sk) converges iff s > 1, as claimed. O]

1.1.2 Euler’s results
1.1.2.1 Evaluation of {(even)

Perhaps one of Euler’s most famous results is the successful evaluation of {(2), and by extension all
¢(2k). This leads to an answer to the question of the algebraic nature of {(even), namely ((even) is a

transcendental number.

To state Euler’s result, we first need to define the Bernoulli numbers B, .

Definition 1.1.5 (Bernoulli numbers). The Bernoulli numbers Bs, are defined by the following

generating series

Theorem 1.1.6 (Euler, [Euld3|). Let k € Z~q. The following evaluation of ((2k) holds.

(2m)*H (=1)** ' By

C(2k) = 2(2k)!

(1.1.1)
In particular, ¢(2k) is a rational multiple of m2*

Proof sketch (not Euler’s proof): The following series converges to mz cot(mz)

— 1
nzcot(mz) = 14 222 E -
z
=1

2

But 7z cot(rz) is holomorphic at 0, so we can use this series to find the power series expansion of

wzcot(mz) at z = 0. For |z| < 1, we obtain
t(mz) =1 2200 !
mzeot(mz) =1+ 2z Zm
_ 2
1—222 S )
(o) o0
=1—zz22(2(> .

k=0

We can interchange the order of summation to obtain

=1- QZ <Z n2k+2> 22+2

n=1




1.1. Multiple zeta values 5

=1-2 i((%)z% . (1.1.2)
k=1

On the other hand, we can write

2miz :
e +1 (27iz) .
wz cot(mz) = wiz e Rl + 7iz.

Expanding this out using the power series definition from [Definition 1.1.5] we obtain

= 1+;(k—g(2mz)k. (1.1.3)

Comparing coefficients between [Equation 1.1.2] and [Equation 1.1.3|leads to

—20(2k) = g;’)“! (2mi)? |

which can be rearranged to give O

From this evaluation, we can conclude that ((2k) is irrational, and in fact transcendental, using
Linderman’s theorem on the transcendentality of . Moreover, since 7 is transcendental, all (2k) are
Q-linearly independent. Euler, however, was not able to evaluate {(3), nor any other {(odd), and the

algebraic nature of ((odd) still remains largely a mystery.

1.1.2.2 ((1,2) =¢(3), and reduction of double zeta values

The earliest results on genuine multiple zeta values date back to Euler’s investigations of double zeta
values, i.e. those where the depth is 2. His goal was to reduce these double zeta values to polynomials

in ¢(n)’s. One of the simplest examples of this reduction is the following result of Euler.

Proposition 1.1.7 (Euler, [Eul75|). The following identity relates ((3) and ((1,2).

¢(3) =¢(1,2)

Proof. There are many, many different proofs of this identity ranging from direct proofs involving
manipulating series, to subtler proofs which establish generalisations for g-multiple zeta values, or for
Witten multiple zeta values. Details of these proofs and more can be found in [BB06|. Perhaps the
quickest proof, which appears at the start of section 2 of |[BB06], and is credited to Steinberg [Ste52],

is the following.

Consider
oo

1
S = Zm

n,k=1

We can write

1 11 1
nk(n+k) n2\k n+k)’
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to obtain

=1 /1 1 1 (K1
=5 (i) - nz<zk>

n,k=1

)

to
co n—1 00
1 1
=22t
n=1 k=1 n=1

Alternatively, one can write
1 (1 n 1 1
nk(n+k) \n k) (n+k)?2’
to obtain
— (1 1 1 — 1
5= (24 1) oo =2 S st
S\ k) (n+k) vl n(n + k)

This is by using the n <+ k symmetry of the two terms in the first expression. Then by changing

variables, £ = n + k, we obtain

_22 ¢(1,2).

0<n<€

Comparing these two expressions for S gives immediately

¢(1,2) =<¢(3),

as claimed. 0O

This is an instance of the so-called duality of MZV’s. Once the idea of duality is introduced more gen-
erally below, this identity will be an effortless one-line result. However, Euler provided a generalisation

of this (1,2) = ¢(3) result in a different direction.

Theorem 1.1.8 (Euler, [Eul75]). For m > 2 € Z, the following reduction, of the double zeta value

¢(1,m) to a polynomial in Riemann zeta values {(n), holds.
m—2
2¢(1,m) =m¢(m+1) = > C(j+1)¢(m—j).
Jj=1

Although Euler’s goal was to reduce all depth 2 MZV’s to polynomials in Riemann zeta values ((n), he
did not succeed. For example, no reduction for {(3,5) appears to exist, although the fact that ((3,5)

is ‘irreducible’ is still only conjectural. We will revisit the question of the irreducibility of {(3,5) in

[Proposition 1.2.6] where we sketch Goncharov’s proof of this result on motivic MZV’s.

1.1.3 Iterated integrals

As already remarked, iterated integrals will give us another way of writing MZV’s. This integral

representation enriches the algebraic structure of MZV’s, and will play an important role in the motivic
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framework introduced first by Goncharov, and subsequently improved by Brown.

Definition 1.1.9. Write
dt

t— a;

w(ai) =
for the unique differential form of degree 1, holomorphic on P!(C) \ { a; }, which has a pole of order 1
and residue +1 at a;.
Definition 1.1.10 (Chen iterated integral, [Che77]). Let zg,...,Zm+1 be complex numbers. Then a
(Chen) iterated integral is defined by

dty A dt,,
5 tl'_ x1 un — Tm

Ify(fﬂo;wlwn@m;mmﬂ) 1:/
A

= / w(xl)(tl)/\"'Aw(Im)(tm)a
A

5
where v is a path from g to @41 in C\ {z1,...,2m}, and the region of integration A, consists of all
m-tuples (y(t1),...,7(tm)), with t; <ty < -+ <.

The integral I, (zo; 1, ..., Tm; Tm+1) depends on the choice of path v between x¢ and z,,41, so it is a

multivalued function of xg, ..., Ty

Remark 1.1.11. We will often drop  from the iterated integral notation I (zo; 1, ..., Zm; Tm+1) and
simply write I(zqg; 21, ..., Zm; Tmy1) instead. In the case of MZV’s, this is because there is a standard
choice for the path v, (Proposition 1.1.16)). In the case of multiple polylogarithms (Chapter 3| we

will be more interested in the algebraic properties of I(xg; 1, ..., Zm;Tm+1), rather than the analytic

properties (when computing the coproduct (Theorem 1.2.1J), or the symbol (Section 3.3.2)), say).

Remark 1.1.12. We may also use the following notation
Tm+41

I($0;$17...,$m;xm+1):/ w(ay)o---ow(ay)
zo

- / <ty <<t < w(ar)(t) A=+ Aw(an)(tn)

to write these integrals.

These integrals deserve the name iterated integrals because we can integrate each variable ¢; one-by-one

in a recursive way

Tn41
/ H(2o: 21, 1 D)) (8)

0

Tyl
:/ / w(ay)o---owl(an—1) | wlay)
To o<ty Sto < <tp_1<tn

w(ay)o---ow(ay)

/Ioﬁtlétzﬁ“'étnéznﬂ

=I(T0;T1, .- Tps Trg1) -

These integrals are convergent if xg # x1, and x,, # x,,+1. Otherwise they are divergent.

These integrals satisfy a number of standard, and well known properties.
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Property 1.1.13 (Chen, |[Che77]). The iterated integrals I, (zo; 1, .. ., T, Tny1) satisfy the following

properties.
i) (Equal boundaries) If n > 1, g = @y,41, and +y is the trivial path from zg to z,,+1 = xg, then
I(xzo;21,. .., Zn; Tny1) =0.
ii) (Unit/Empty integral) For any x,z1, we have L, (zo; 1) = 1.

iii) (Path composition) Let y € C be fixed. Let « be a path from z( to y, and 8 be a path from y to
ZTm+1. Denote by af the composite path obtained by following « and then following 5. Then

Iog(zo; 21, .oy Tp; Tpg1) =

n
Z[a(ﬂfo;l‘h cee 7$k§y)lﬁ(y§$k+1’ cee 7xn;xn+l) .
k=0

iv) (Shuffle product) Two iterated integrals, with the same limits, can be multiplied using the shuffle
product (explained fully below)

I(a;z1, ..o, Tm; 0) Iy (@ Tit s - ooy B 0) = Iy(a; (21 - @) W (Zg1 -+ - Tt ); D) -

v) (Reversal of paths) Let 7 be a path from g to 2,41, and denote by y~* the reversed path. Then

reversing the path of integration gives

L(xo;21,. s Tps Tng1) = (—1)"Iy-1 (Tng15 Tny - -, T150) -

vi) (Functoriality) Given a (piecewise) smooth map f: C — C, we have

. dtq L dt
L,(xo;xl,...,mm;xmﬂ):/ f Y L —
By tl - tm — Im
In particular, under f(t) = 1 — ¢, we obtain
I(zo;1, . o T Tong1) = iy (L —zos 1 — 21, .., 1 — 23 1 — Zppy1) -

Remark 1.1.14. The definition of an iterated integral, and the above properties, hold more generally.

One does not need to restrict to the particular differential forms

dt
w(a;) = T
Any family of differential forms w1, ...,w; will work; as long as the path v of integration avoids the

poles of the w;’s, the resulting integral is well-defined. In particular, in [Chapter 5] we shall generalise

w(a;) to a form w(a;, x), which agrees with w(a;) when x = co.
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Definition 1.1.15 (Shuffle product). Given two words w = a1 -+ @y, and v = @41 - * Amtn OVET

some alphabet, the shuffle product w1 v is defined as follows.

w v = Z Ao (1) """ Qo (m4n) >
0ESm,n

where S, is the set of (m,n)-shuffles

Smn ={0€Sntm| c(1)<o(2)<---<o(m)and o(m+1)<o(m+2)<---<o(lm+n) }.
Alternatively, the shuffle product can be defined recursively by the following conditions.

i) For any word w, 1 Ww = w w1 = w, where 1 is the empty word.

ii) For any words wy, ws, and letters a, b, we have

(awy) W (bws) = a(wy W (bws)) + b((awy) LW ws) .

The idea to keep in mind with the shuffle product is that the letters of the words w and v are permuted
together, but individual letters of w remain in order, as do the individual letters of v. The words w

and v are riffle shuffled, like a deck of cards.

According to Zagier [Zag94], Kontsevich was the first to notice how MZV’s can be written using these

iterated integrals.

Proposition 1.1.16 (Kontsevich). Let ((s1,...,s;) be an MZV. Then
C(s1y--ysp) = (F1RI(0; 1, {0} 71, L {0}~ h1),

where here {0}° :=0,...,0 means the string formed by repeating 0 a total of s times. (Here the path
——

s times

of integration is the straight line path from 0 to 1.)

Proof. This is actually a special case of a corresponding statement for multiple polylogarithms. The

sketch proof of the general case is presented in Essentially, it involves expanding out
the integrand as geometric series, and integrating term by term. O

1.1.4 Algebraic structure of MZV’s and standard relations

Using the Kontsevich integral representation, we are motivated to encode an MZV as a string of 0’s
and 1’s, or rather as a string of y’s and z’s in the non-commutative polynomial ring Q(x,y). This
approach, explained below, is described in detail in [Hof05|. It provides a very elegant framework for

stating important families of relations on MZV’s.

With this encoding, we match the word yz®1=1 ... yz**~1 with the multiple zeta value ((s1, ..., s).
Since ((s1,...,sk) is convergent if and only if s, > 1, this correspondence above lands in the vector

subspace H° of admissible words.
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Definition 1.1.17 (Subspace $°). The subspace of admissible words h° is the subspace of Q{x,y),

which is generated by words which start with a y, and end with an x.

s1—1

We can then view ¢ as a Q-linear map ¢: H° — R, sending yz - yz® 1 to the numerical value

C(Sl,...,sk).

1.1.4.1 Duality of MZV’s

Define the anti-automorphism 7: Q(z,y) — Q(x,y) by 7(z) = y, and 7(y) = . Then we have the

following theorem.

Theorem 1.1.18 (Duality, Section 9 of [Zag94]). Let w € $° be any admissible word. Then

Proof. This theorem is essentially proven by considering the integral representation. Let the admissible

word w = yz*1~1 - - yx**~1. We have
C(w) = (—1)F1(0; 1, {0}~ ... 1, {0}~ 1 1).
Then apply the change of variables t' = 1 — ¢ in the iterated integral, to arrive at

= (=D*I(1;0, {1}, ... 0,{1}* % 0).

Now apply the [reversal of paths| property from [Property 1.1.13]to get

= (=D)F(—1)Frsttse o, {137 0,. .., {1}52,0:1) .

However, this last integral has depth (s —1)+--- 4 (s1 —1) = s1 + -+ + s — k. We can recognise the

encoded word as 7(w), since the word has been reversed and we have interchanged 0 <+ 1. So this is

= (CD)A (s ()R ()

= ((r(w)),

as claimed. m

From this theorem we get the promised one line proof of Euler’s ¢(3) = ((1, 2) result, [Proposition 1.1.7

Consider ¢(3). This is encoded by the word w = yx?. But 7(w) = y%x, which encodes ¢(1,2), so we
obtain ¢(3) = ((1,2) by the [Duality theorem| (Theorem 1.1.18]).

Remark 1.1.19 (Duality of iterated integrals). A restatement of the Duality theorem in terms of
iterated integrals follows by applying the reversal of paths| property, and the property
under ¢ — 1 — ¢ from [Property 1.1.13] We have

I(0;a1,...,an;1) = (=1)"I(1;an,...,a1;0) = (=1)"1(0;1 — ap,...,1 —as;1)
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1.1.4.2 Shuffle product of MZV’s

We know from the shuffle product property of iterated integrals in that two iterated

integrals with the same limits can be multiplied using the shuffle product. Since the integral represen-
tation of an MZV always has lower limit 0 and upper limit 1, we can multiply MZV’s by multiplying

their iterated integral representations.

The shuffle product w endows (Q(x, y), L) with the structure of a commutative algebra. Since iterated

integrals multiply with the shuffle product, we find that ¢ is a homomorphism
C: (Q(x,y%u_l) — (Rv ! ) .

More explicitly, this means that for any two words w; and ws in $°, we have

C(wr)((wz2) = (w1 Wws).

Example 1.1.20. We can multiply out ¢(2)¢(2) using the shuffle product. We have that ((2) is

encoded by w = yx. We get that
yr Wyxr =2 yryr + 4 - yyrx .

So
C(2)¢(2) = (2 - yryx + 4 - yyxx) = 2¢(2,2) +4¢(1,3) .

1.1.4.3 Stuffle product of MZV’s

Alternatively, we can multiply MZV’s by multiplying their series representations. The product of two
such series can be written as a sum of other MZV-type series, where the indices of summation are

taken in all possible ways compatible with the original indices.

Rehashing the motivation for defining an MZV, we have the following example.

Example 1.1.21. Consider multiplying the series for ¢(2) with itself. We obtain

@)=Y 53

n>0 m>0

By splitting up the summation region Z~y X Zs into an upper triangle region, a lower triangular

region, and a diagonal region, we obtain

— ((2,2) +((2.2) +(4)
= 20(2,2) +¢(4).

This example generalises, and the associated multiplication is reflected in the stuffle product * on

Q(z,y). For further details see [Hof92].
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Definition 1.1.22 (Stuffle product). The stuffle product * on Q(x,y) is defined recursively as follows.

i) For any word w, we have 1 % w = w x 1 = w, where 1 is the empty word,

ii) For any word w and any integer n > 1, we have

txw=wx*z" =wz",

iii) For any words w1, w2 and integers p,q > 0, we have

yrPw * yrlwy = yrP (wy * yxlws) + yad (yrPwr * we) + yaP T (wy + wy) .

The stuffle product has a better interpretation on the MZV arguments themselves, rather than the

zy-encoding strings. This interpretation can be obtained from the third part of [Definition 1.1.22]

namely: the MZV arguments are shuffled in all possible ways (coming from the first two terms), and
two arguments can be stuffed into the same slot (coming from the third term, and alternatively just

called ‘extra stuff’).

This endows (Q(x, y), *) with a different commutative algebra structure. Since the MZV series multiply

with the x-product we find that ¢ is a homomorphism

¢: (Q(m,y%*) - (Rv ).

More explicitly, this means for any two words w; and ws in H°, we have

C(w)¢(wz) = ((wy * w2).

1.1.4.4 (Regularised or extended) double shuffle on MZV’s

We have two distinct ways of multiplying MZV’s, so they demand to be compared. By expanding out
a product of MZV’s in the two different ways, the difference between both sides will be 0. This gives

us linear relations between MZV'’s.

Example 1.1.23. In [Example 1.1.20| we have an expression for ¢(2)¢(2) using the shuffle product.
And in [Example 1.1.21| we have an expansion for ((2)((2) using the stuffle product. Comparing the

two leads to
stuffle shuffle

The difference between the left and right hand sides gives the identity
4¢(1,3) = ¢(4).

Remark 1.1.24. This identity (after evaluating ((4)) is in fact a special case of the Zagier-Broadhurst
identity that will form part of the background to
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Identity 1.1.25 (Double shuffle). For any wi,ws € H°, the following standard family of linear
relations on MZV’s holds:

C(wy * we —wy Wwg) =0.

It is known that the relations in are insufficient for generating all linear relations
between MZV’s. For example, the minimum possible weight of a double shuffle relation is 4, coming
from ¢(2) LW ¢(2) — ¢(2) * ¢(2), so the weight 3 result ¢(1,2) = {(3) cannot arise. However, we can fix
things by allowing a formal symbol (1) for the divergent MZV, and extending the map ¢ to certain
non-admissible words. Comparing shuffle and stuffle leads to all divergent terms (formally) cancelling,

and new linear relations appearing.

Identity 1.1.26 (Extended double shuffle). For any w; € $' == Q1 + yQ(x,y) and wy € H°, the
following standard family of linear relations on MZV’s holds:

Clwy % we —wy Wwg) =0.

Here $' = Q1 + yQ(z,y) corresponds to the inclusion of words not ending in x. Equivalently $'

describes divergent MZV’s {(ni,na, ... ,ng) with ng = 1.

Example 1.1.27. Consider expanding ((2)((1) using the stuffle and shuffle products. For the stuffle

product we obtain

€(2) x (1) = Clyzr * y) = Clyyx + yay +yxx) = ¢(1,2) +¢(2,1) +¢(3),

whereas for the shuffle product we obtain

C(2)w¢(l) =C(yrwy) = (2 yyr +yzy) = 2¢(1,2) + (2, 1).

The divergent term ((2,1) cancels when comparing the two equations, and leads to another proof of

Euler’s identity [Proposition 1.1.7}

¢(1,2) =<(3).

Remark 1.1.28. As it currently stands, above is still only a formal proof. To be
made rigorous one has to show that the formal cancellation of the divergent MZV’s ((2,1) is actually
allowed. This is proven rigorously in Sections 2 and 3 of [IKZ06|, by defining certain regularisation
procedures for the divergent MZV’s, wherein the divergent (1) is replaced by an indeterminate 7. In
Theorem 1 of [IKZ06], a comparison of these regularisation procedures gives relations between different

MZV’s. It is later shown in Theorem 2 of [IKZ06] that this comparison is equivalent to (among other

things) the extended/regularised double shuffle relations in [Identity 1.1.26

Part of the procedure in [IKZ06| involves extracting the coefficient term of a polynomial in T' (the
formal symbol replacing ¢(1)). This ends up setting 7" = 0, so one can interpret this as regularising
¢(1) = 0, to get finite values for the divergent MZV’s. We will see this again when we discuss the
shuffle regularisation of motivic iterated integrals in



1.1. Multiple zeta values 14

Conjecturally, all relations between MZV’s come from this reqularised comparision of shuffle and stuffle.

Zudilin gives a precise version of this statement as follows.

Conjecture 1.1.29 (MZV relations, Conjecture 2 in |[Zud03]). The kernel of the ¢ map, which

describes all linear relations between MZV’s, is given by
ker{ = {uwv—uxv|uchH,ven},

where H' = Q1 + yQ(x,y) corresponds to the inclusion of words not ending in x. Equivalently $'

describes divergent MZV’s ((n1,na, ... ,ng) with ng = 1.

1.1.4.5 Examples of relations on MZV’s

It is evident from the double-shuffle identities in that MZV’s should satisfy a large
number of relations (something which is confirmed by the Dimension conjecture, in
below). Typically double-shuffle generates very messy and unstructured identities; one needs to combine
carefully chosen double-shuffle relations to obtain more aesthetically pleasing identities. The purpose
of this section is just to give a selection of these interesting or pretty identities, to make the theory a

little concrete.

Identity 1.1.30. Borwein, Bradley and Broadhurst [BBB97] use generating function methods to

recover the following identity

(o) = 220 (1)%“ - o

(2n+ 1)\ 2 2n+ 1)1’
which can also be established using a variant of Euler’s method for evaluating ((2). More generally, they

establish that (({2k}") € 72"Q = ((2kn)Q, with explicit expressions for small cases. The evaluations

2k(27)2"F
(2kn+Fk)!

Identity 1.1.31 (Broadhurst-Zagier). The following identity was conjectured by Zagier [Zag94)] on

have a very particular form: a factor multiplied by a sum over certain algebraic numbers.

For example,

the basis of much numerical evidence. A proof was later provided by Broadhurst [BBBLOI| using

hypergeometric functions.
27dn

(4n+2)!°
This identity is but the simplest example of a (largely) conjectural family of ‘cyclic-insertion’ identities
that will be the focus of [Chapter 3. The identity itself will be revisited in[Section 2.1.1] when we sketch

Broadhurst’s proof, and fit the identity into a broader context.

C({1,3}") =

Identity 1.1.32 (Gangl-Kaneko-Zagier, [GKZ06]). The following identity on double zeta values ((a,b)
is the first in an infinite family of identities which arise in connection to modular forms. There is a

similar identity at weight k, whenever there is a non-trivial cusp form of weight k on I'y. The weight
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k = 12 identity s

28(3,9) + 150C(5,7) + 168¢(7,5) — %g(u) .

Identity 1.1.33 (Cyclic derivations, Ohno). The following, very short, identity arises from applying
Ohno’s ‘cyclic derivations’ identity [HOO0S] to the word w = (yx?)™. One obtains

C({3}",4) = €(1,3,{3}") + €(2,{3}",2) .

1.1.5 Open questions about MZV’s, and reasons for interest

With regard to multiple zeta values, one of the main areas of focus is the attempt to fully understand

all the relations they satisfy. We have from [Conjecture 1.1.29|a conjectural description of the space

of all relations. This description entails plenty of further consequences, whose truth is still largely

unknown.

1.1.5.1 Direct sum conjecture

All known relations between MZV’s break up into relations between MZV’s of the same weight.
Conjecturally, all relations between MZV’s are homogeneous, and so the vector space of MZV’s is in

fact weight graded. The Direct sum conjecture in [Fur03] essentially states:

Conjecture 1.1.34 (Direct sum conjecture). When regarded as a Q-vector space, the space of MZV’s
is the direct sum of the subspaces Zy of MZV’s of weight k, so that all relations are homogeneous with

respect to weight.

From |Conjecture 1.1.29] we have a conjectural description of the space of all MZV relations. It is clear

from the statement of [Conjecture 1.1.29] that the relations produced by comparing shuffle and stuffle

are homogeneous.

1.1.5.2 TIrrationality and transcendence

The irrationality, transcendence and linear independence properties of these numbers are still very
mysterious. Thanks to Euler (Theorem 1.1.6) we know that ((2k) € 72*Q, so that all even zetas are
irrational and Q-algebraically dependent. Moreover, since 7 is transcendental, they are Q-linearly

independent.

The only other explicit result on irrationality of MZV’s is due to Apéry, as recently as 1978, when he
proved that ((3) is irrational [Apé79]. No one yet can even prove that ((5) is irrational, and aside
from some curious non-explicit results like ‘one of {(5),¢(7),¢(9) and ¢(11) is irrational’, and ‘infinitely
many ((odd) are irrational’ |[Riv00], little more is known. The question of proving {(5) and ¢(3) are

even Q-linearly independent, i.e. ((5)/¢(3) is irrational, seems hopelessly out of reach.

Morally, we do know what happens. We expect the following.
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Conjecture 1.1.35 (Algebraic independence conjecture, Conjecture 1 in [Zud03]). The numbers

7,¢(3),¢(5),¢(7),€(9), .-,

are algebraically independent over Q.

Moreover, as indicated above, no-one since Euler has been able to reduce ((3,5) to a polynomial in

Riemann zeta values ¢(n). So in fact, we even expect

((3,5),m,¢(3),¢(5),¢(7),€(9), - - ,

to be algebraically independent over Q.

1.1.5.3 Dimension and basis conjectures

Following extensive numerical computations, searching for linear relations between MZV’s, Zagier

found numerically that the dimension of the space Zj, of MZV’s of weight k is given by:

k“23456789101112
dimQZk‘111223457912

This leads to the general conjecture in Section 9 of [Zag94] that dimg 25 is given by the coefficient of

z¥ in the expansion of ﬁ, or equivalently by di, where dj, is defined by the recurrence relation:

di = dp_o + dp_3 with,

dy =ds3 =dy = 1

Conjecture 1.1.36 (Dimension conjecture, in Section 9 of [Zag94]). The dimension of the space Zj
of MZV’s of weight k is given by dy, satisfying the recurrence d = dy_o + di_s with initial conditions
do =d3=dy =1.

This recurrence relating weight £ MZV’s to weight k¥ — 2 and weight k£ — 3 in turn lead Hoffman to
propose a candidate basis for the space Zj might be given by ((w), where the word w is of weight k
and satisfies w € {2,3}*. That is, a basis might consist of zetas where the arguments are 2’s and 3’s

only.

Conjecture 1.1.37 (Basis conjecture, Conjecture C in [Hof97).). A basis for the space Zy, is given by

the Hoffman elements ((nq,...,n,), where ny,...,n, € {2,3}, with weight k.

It has since been proved, by various authors such as Goncharov [Gon02|, Terasoma |Ter02] and Brown
[Brol2a], that the upper bound dimg Zj, < dj, indeed holds. It is also known from Brown’s work with
motivic MZV’s that the Hoffman elements, ¢(w) with w € { 2,3}, do span the space of MZV’s. Later,
we can sketch some ideas from one proof of this which uses Brown’s motivic MZV’s, to be introduced

below.
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The reverse inequality is much harder to tackle. We don’t even have a single proven instance where
dimg 25 > 1. Nobody seriously entertains the notion that dimg Z; =1, for k£ > 5, but for all we know
the MZV’s of weight k are all rational multiples of {(k), with immensely complicated rational factors

we haven’t identified yet.

1.2 Motivic MZV’s

Motivic MZV’s provide a way to study MZV’s from a purely algebraic point of view, free from the
analytic ‘fiddleyness’ that plagues the real-valued MZV’s. Goncharov |Gon05, end of Section 1.2] goes
as far as to claim that in his opinion “...an understanding of the transcendental aspects of the iterated

integrals is impossible without investigation of the corresponding motivic objects”.

Goncharov provides a construction of motivic iterated integrals. These motivic iterated integrals
have a richer algebraic structure than the classical iterated integrals, in that form a Hopf algebra
with coproduct A. By analogy with the Kontsevich integral representation of MZV’s, Goncharov
can then define motivic MZV’s and make use of this Hopf algebra structure to study motivic MZV’s.
Unfortunately Goncharov’s motivic MZV’s are not completely satisfactory because his (™ (2) element
is necessarily 0. Brown’s motivic MZV framework provides a refinement to this, further lifting the Hopf
algebra of iterated integrals to a comodule where (™(2) # 0. The exact details of Gonchaov’s motivic
iterated integral construction, and the further refinements for Brown’s motivic MZV framework, are

not essential to the rest of this thesis, so we will provide only an overview of the construction.

The most important aspects of the motivic MZV framework for us are the combinatorial tools (namely
the derivations D, giving the infinitesimal coproduct, and Brown’s theorem characterising ker D )

which make it possible for us to algorithmically decompose motivic MZV’s.

1.2.1 Goncharov’s Hopf algebra of motivic iterated integrals

After fixing an embedding Q@ < C, Goncharov [Gon05| shows how the iterated integrals
I(xo;21, ..., Tn;Tnt1), defined in above, can be upgraded to framed mized Tate motives
over Q, at least when the parameters x; are algebraic numbers. This procedure gives us a motivic
iterated integral:

IM(‘TO; O P o In+1) S An(@)
that by definition lies in a commutative, graded Hopf algebra A4 (Q).

Assuming the parameters x; are algebraic numbers, there are only finitely many, so one can suppose
they lie in some number field F, rather than just in Q. Then the graded, commutative Hopf algebra
A4 (F) is the (unipotent quotient of the) fundamental de Rham Hopf algebra of the abelian category
MT(F) of mized Tate motives over F.
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Since the motivic iterated integrals lie in a Hopf algebra, they admit a coproduct A. This is a
genuinely new algebraic structure on iterated integrals; it is completely invisible at the level of numbers.

Goncharov [Gon05| proves that the coproduct is as follows.

Theorem 1.2.1 (Goncharov, Theorem 1.2 in [Gon05|]). The coproduct on the Hopf algebra of motivic

iterated integrals is given by the formula

M . . —
AT (ao,al,...,an,an+1) =
k
I (a07ai17"'7a’ik7an+l)® HI (aipaaip+17'~'7aip+171aaip+1)
0=1ip<i1<... <t <ipt1=n+1 p=0

Remark 1.2.2. This formula has an elegant interpretation in terms of cutting off segments of a

semicircular polygon. For example, the term:
™(ag; a1, a3, a6;a9) @ I’ (ag; a1) I (a1; az; az) 1™ (a3; aa, as; ag) I (ag; az, as; ag)

in the coproduct AIM(aO; ai,...,as;ag) corresponds to cutting off the indicated segments from the

semicircular polygon below:

The other terms arise from taking all other possible choices of segments.

There is a canonical surjective homomorphism:

Po: As(F) = PI(F)

M(ag;an, . aniangr) = I(o(ag);o(ar), ..., o(an); o(ant))

that realises a motivic iterated integral by the projection of its classical counterpart to the associated
graded PZ (F') of the filtered algebra P?(F') of periods of mixed Tate motives over F'. (Here o: F — C
is an embedding of F' into C.) Roughly, this means that any relations satisfied on the motivic level

also hold on the level of classical integrals, modulo integrals of lower weight.

Conjecturally this map p, should in fact define an isomorphism from the Q-vector space of motivic
iterated integrals to the Q-vector space of periods of mixed Tate motives over F. Whether or not
this is true, as a purely algebraic lifting of iterated integrals to motivic iterated integrals, we gain
the structure of a Hopf algebra, and eliminate the transcendence problems that plague the classical
iterated integrals. We can therefore use these motivic iterated integrals to gain new insights into the

classical iterated integrals.
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1.2.2 Goncharov’s motivic MZV’s

With the Kontsevich integral representation of multiple zeta values, we can make the following definition

to obtain Goncharov’s motivic MZV’s.

Definition 1.2.3. Goncharov’s motivic multiple zeta value (M (sy, ..., s;) is defined by
Mstyeys) = (DFIM0; 1, {0y 71 {0y ).

With this definition, Goncharov notes that (™ (2k) = 0 because (271) 2¥¢(2k) € Q and A = OUM),

the ring of regular functions on the unipotent part of the motivic Galois group. However, (M (2k+1) # 0

in this setting, and here we get to see the first success of the motivic viewpoint in eliminating the

analytic difficulties of MZV’s.

Proposition 1.2.4 (Goncharov, |Gon05|). Although no-one can prove yet that the numbers ((2k + 1)

are linearly independent over Q, we have that the motivic elements

CM(2]€ + 1) € As11(Q)

are linearly independent over Q.

Proof. The elements belong to components of different degrees in Aq(Q). Therefore they must be

linearly independent over Q. O

In fact we can prove even more than this. Not only are the elements (™ (2k + 1) linearly independent

over QQ, they are in fact algebraically independent over Q, as expected from [Conjecture 1.1.35]

Theorem 1.2.5. The odd motivic multiple zeta values ¢(™(3),¢M(5), CM(T),...,¢M(©2n +1),... are

algebraically independent over Q.

Proof. We will prove this by a induction on the size of the purported algebraically dependent set.

Firstly we observe that the odd motivic MZV (M (2n +1) is transcendental over Q. That is, (M (2n+1)
is not a root of any non-zero polynomial f(x) € Q[x]. This is an easy observation because of the weight
grading of motivic MZV’s. Suppose that f(z) = Zf:o a;x" is a non-zero polynomial of degree k which
has ¢(™(2n + 1) as a root. Then we have aj, # 0 and a; = 0 for i < k because of the weight grading. So
weight (2n 4 1)k part of this relation is only a¢M(2n + 1)* = 0. Since (M (2n 4 1) # 0, we conclude

that ap = 0, contradicting our definition of f.

We thus have that any size 1 set of odd motivic MZV’s is algebraically independent over Q. Suppose
now that S = { (M(a1),...,(M(ae) } is a set of £ odd motivic MZV’s, and that any set of size < £ —1
other odd motivic MZV’s is algebraically independent over Q. We will prove that S is also algebraically

independent over Q.



1.2. Motivic MZV’s 20

Suppose to the contrary, that S is algebraically dependent over Q. Without loss of generality, assume

that a1 < as < --- < ay. Let
f(xlv ce 7375) = Z O‘il,uwiexlll o 'm%
1 yeeyle

be the minimal polynomial witnessing this algebraic dependence. Here the sum runs over ¢1,...,4, > 0
with > a;i; = N, for some fixed weight N, and minimal means in terms of the total degree. With this
polynomial we have f(¢M(ay),...,¢M(ag)) = 0. Now apply the coproduct, and look at the weight
(a1, N —a;) component. In the coproduct, (*(a;) — 1® (M (ay) + (M(a1) ® 1, so the only way to
obtain (M(a;) ® --- is via the (M(a;) ® ¢(M(a;)"~ ! term from A¢M(ap)®, and the 1 ® (M (ay)

terms from each A(M(az)™. We get that the weight (a;, N — a;) component is
i - i i
M(ar) ® Z Qi <1>CM(CL1) M ag)™ - (M (an)™

ST Y

Here the sum runs over ¢; > 1 and 4o, ...,% with > a;i; = N.

Since the coproduct Af(¢M(ay),...,¢M(ar)) = A0 = 0, we must have that this (a;, N — a;) degree

component already vanishes. Since (*(a;) # 0, we obtain

after changing variables i = i} — 1, and otherwise i’ = i;. Here the sum runs over all 7},...,7; >0

with Zajij =N — aq.

We see that this combination is a strictly lower degree polynomial under which the algebraic dependence
of (M(a1),...,¢M(ay) is witnessed. This is not possible by out assumption that f is the minimal
such polynomial, so we conclude that Qi 41,00, (#y+1) =0. Since i; +1 >0+ 1 = 1, we find that

— i/
O‘i’1+1,i’2,..‘,i2 = 07 for Zj Z 0.

Plugging this information about « back into the polynomial f, we obtain
[z = S Qo ialt it = F(wa, .., w0)
12,...,00

is independent of x;. Since S’ = {CM(ag), oo, CM(ag) } is algebraically independent over Q by

AAAA

identically 0.

This now shows that f itself is identically 0. So the polynomial witnessing the algebraic dependence of
S = { M(ar), ..., ¢M(ar) } is identically 0. This is a contradiction since such a polynomial must be

non-zero. Hence the set S is in fact algebraically independent over Q.

Since we established directly that any set of size 1 is algebraically independent over Q, we obtain by
induction a proof that any finite set S of odd motivic MZV’s is algebraically independent over Q. This
proves the claim about the Q-algebraic independence of (M (3), ¢M(5), ¢M(7),...,¢M(2k +1),.... O
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In the same paper |Gon05], Goncharov gives an application of this motivic iterated integral framework,

and motivic multiple zeta value framework, to the detailed study of the motivic double zeta values.

One application is to show that (™ (3,5) is irreducible.

Proposition 1.2.6 (Goncharov, |Gon05|). The motivic MZV (™ (3,5) is irreducible, so cannot be

expressed as a polynomial in Riemann zeta values (M (n).

Sketch proof: Make use of the restricted coproduct A’, defined by A'(z) = A(z) —1® 2z — 2 ® 1. One
has that if A’(z) = A'(y) =0, then A'(zy) =z Q@y+yRx.

One computes that

A'(¢M(3,5)) = =5 CMB) @ ¢M(E).
Since (M (2n + 1) # 0, this shows that ¢(M(3,5) # 0 also.

Moreover if (™(3,5) were a (sum of) products of Riemann zeta values, we could antisymmetrise and

the result would vanish by the computation A’(xy) above.

But antisymmetrising A’'(¢CM(3,5)) = —5 - ¢(M(3) @ ¢M(5) gives —5 - ¢M(3) A ¢M(5) # 0. This proves

that (™ (3,5) cannot be expressed as a polynomial in Riemann zeta values, so is irreducible. O

A second application Goncharov gives is to prove that the motivic double shuffle relations suffice to
generate all relations on motivic double zeta values.

=M
Theorem 1.2.7 (Goncharov, Theorem 6.5 in [Gon05|). Consider the generating series ¢ (to,t1,t2) =
=M =M
¢ (t1,t2), where to+t1 +t2 =0, and { is the projection of (™ modulo products and depth 1 terms.
We have

. . . =M . . .
i) The generating series ¢ (to,t1,t2) satisfies the dihedral symmetry relations

ZM ZM ZM =M

(to,t1,t2) = ¢ (t1,t2,t0) = —C (to,t2,t1) =C (—to, —t1,—t2),

which are the motivic analogue of the (regularised) double shuffle relations.

.. . . . . =M
it) And there are no other relations between the coefficients of the generating series ¢ (to,t1,t2).

Goncharov’s motivic iterated integrals, and motivic MZV’s, do provide new insight into the structure
of real MZV’s. However, they are not a perfect tool for studying real MZV’s: the motivic element
¢M(2) vanishes, so we miss out on this part of the story. Because (™ (2) = 0, there is no period map
down to C, so we cannot compare numerically with the real valued classical MZV relations. Brown’s

motivic MZV framework plugs this gap.

1.2.3 Brown’s motivic MZV’s

In [Brol2a|, Brown shows how Goncharov’s motivic iterated integrals can be further lifted in such a

way that ("™(2) is non-zero. (Brown uses the notation m for his motivic elements.)
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For parameters a; € { 0,1}, the motives corresponding to Goncharov’s motivic iterated integrals
I'M(ag; a1, ..., an; any1) are unramified over Z, so they lie in AM7 = A,(Z). We can then introduce

a trivial comodule over AM7 | defined by
HMT+ = AMT 20 Q|f2],

where f5 is taken to be of degree 2. This fy will correspond to the non-zero lifting of Goncharov’s
¢M(2).
In Theorem 3.5 of |[Bro12b| Brown then proves that there is a Hopf subalgebra A of AM7 and a

graded comodule H = H, over A, satisfying the following properties. (See section 2 of [Brol2a], or the
summary in Theorem 3.5 of [Brol2b])

e It is spanned by the motivic iterated integrals
I™(ag;a1,...,an;an11) € Hy,
with a; € { 0,1}, satisfying the standard properties of iterated integrals given in [Section 1.1.3

e There is a period map

per: H — R (1.2.1)

I™(ag; a1, ... an; ane1) = L(ag;at, .. .5 an;any1), (1.2.2)

which is a ring homomorphism. This means that motivic relations descend exactly to relations

on classical MZV’s.

e There is a non-canonical isomorphism of Hopf algebra comodules

H = A QIC™(2)],
and a non-canonical embedding of Hopf algebra comodules H < HM7+ | which sends (™(2) =
—I™(0;1,0;1) to fa. ¢™(2) is non-zero in this incarnation.
Given Brown’s motivic iterated integrals, we can make an analogous definition of a motivic multiple

zeta value.

Definition 1.2.8. Brown’s motivic multiple zeta value (™ (s1,...,si) is defined by

CM(s1,. ., s1) = (=1)FI™(0; 1, {0}~ L, ..., 1,{0}*1;1).

1.2.3.1 Shuflle regularisation of (motivic) MZV’s

When dealing with (motivic) MZV’s, we obtain iterated integrals from 9 = 0 to z,4+1 = 1 which start
with z; = 1 and end with z,, = 1, as in I(0;1,...,0;1). In particular the corresponding real-valued

integrals are always convergent. It will be convenient (indeed necessary) to expand the class of allowed
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integrals to include divergent integrals by assigning them a finite value in a precise way. This process

of assigning a finite value to divergent integrals is known as regularisation.

The procedure for regularising iterated integrals is described by Brown, in Section 2.4 of [Brol2b]
for the real-valued MZV’s. A more explicit and precise procedure for doing this for motivic iterated
integrals is given in Section 5.1 of [Brol2b], in the paragraph following the list of relations. This

motivic procedure is equally applicable to the real-valued integrals.

After regularising the divergent integral I™(0;0; 1) =%, using property 11 [Theorem 3.5 in [Brol2b|, we
can regularise any divergent integral with parameters x; € { 0,1 } that starts I™(0;0,...) by repeated
application of the shuffle product formula. Any remaining divergences must be integrals that end

I™(...,1;1), which can be reduced to the previous case by duality.

Specifically, this regularisation is by way of relation R2 [Section 5.1 in [Bro12b).
(=1)krm0; {0}*, 1, {0}y, ... 1, {0} 1) =
14 R . o
3 (nl . +“> (n L )I‘“(O;l,{O}m*“ L L {0yt (1.2.3)

it tip=k h r
to deal with divergences where the integral starts I™(0;0,...). This is is proven by repeated application

of the shuffle product identity

0=1I"(0;0; )I™(0;w;1) = I™(0;0 W w; 1),
reg

coupled with the result that I™(0;0;1) = 0. Divergences where the integral ends I™(...,1;1), are

dealt with by applying duality, to reduce to the above case.

Example 1.2.9. For example, to regularise z = I(0;0,1,0,1,1; 1), we first apply rule R2 to get

S D SR (A | (A [ SRR N U NU AR

ivtistiz=1 \ U1 b2
= —2I(0;1,0,0,1,1;1) — 11(0;1,0,1,0,1; 1) — 17(0;1,0,1,1,0;1) .
The third term is now okay. Apply duality to the first and second, to get
z =-2I(0;0,0,1,1,0;1) — 11(0;0,1,0,1,0;1) — 171(0;1,0,1,1,0;1).
Now we can apply the rule R2 procedure to the first and second terms to obtain

z= —2(I(0;1,0,0,1,0;1) + 2I(0;1,0,1,0,0; 1) + 31(0,1,1,0,0,0; 1)) +
— (=21(0;1,0,0,1,0;1) — 2I(0;1,0,1,0,0; 1)) +
—1(0;1,0,1,1,0;1)

=21(0;1,0,1,0,0,1) — 1(0;1,0,1,1,0; 1) + 61(0;1,1,0,0,0; 1).
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At last, these integrals can be converted to MZV’s, and we obtain

2 =20(2,3) +¢(2,1,2) +6¢(1,4)

This regularisation procedure is closely related to the regularisation procedure mentioned in [Re]
mark 1.1.28] which is used in rigorously defining the extended double shuffle relations. There one
regularises ((1) 2% 0. This is equivalent to regularising I™ (0;0;1) % 0 here by duality. One can then
reinterpret in a perhaps more rigorous way.

Firstly, we compute the following regularisation of ((2,1). We have that ((2,1) = 1(0;1,0,1;1) =
—1(0;0,1,0;1) by duality. Then

TL1:2
: — k m =L+ . g — 14y
I(Om ) 17Oa1)_< 1) Z < il )I(O,l,{O} 71>
k=0 i1=1
= —2I(0;1,0,0;1)

=20(3),

reg

so that ((2,1) = —2((3).

Example 1.2.10. Recall the computations from where we established

C(1)*¢(2) = ¢(2,1) +¢(1,2) +<(3)
CHw¢2) =<(2,1) +2¢(1,2).

reg

Apply to this the regularisation ((2,1) = —2¢(3) computed above, and we get

reg

C(1)*¢(2) = ¢(1,2) = ¢(3)
C(w¢(2) = -2¢(3) +2¢(1,2).

The comparison between regularised values is allowed by Theorem 2 of [IKZ06|, and so we derive once

again ((1,2) = ((3).

1.2.3.2 ‘Levels’ of motivic MZV’s

In section 3.3 of [Brol2b|, Brown explains how these motivic MZV’s exist on a number of different

levels. On the highest level we have the comodule H, where (™(2) # 0.
Then we have the Hopf algebra
A=MH/C"(2)H,
in which ¢™(2) is killed. Brown writes ¢ for the image of (™ under the quotient map H — A. The

elements ¢*(ny,...,n,) are Goncharov’s motivic MZV’s, discussed in [Section 1.2.2] above.

Finally have the Lie coalgebra
fo A
AsoAso
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of indecomposable elements in A. This Lie coalgebra will play a role in the ‘infinitesimal’ version of

the coaction to be introduced below. Brown denotes the image in £ of an element (™ as ¢*.

The same notation is used for the image of a motivic iterated integral I™ in A, and in £, namely I°

and I* respectively.

This is summarised in equation 3.13 of |[Brol2b|, as follows

H A L

Mw) —— (H(w) —— ¢F(w)

I"™(w) —— I%(w) —— I*(w)

1.2.3.3 Coaction, and the infinitesimal coaction

As discussed in|Section 1.2.1] Goncharov [Gon05] showed how to compute the coproduct A: A®gA — A
for his motivic iterated integrals I%(ag; a1, ..., an; ani1) = I (ag;a1,...,an;an1). By lifting A to

the comodule H, we now get a coaction A: H — A ®q H.

In Theorem 2.4 of [Brol2a], Brown shows that the coaction for his motivic MZV’s is given by the same

formula as Goncharov’s coproduct, up to swapping the factors:

Theorem 1.2.11 (Brown, Theorem 2.4 in [Brol2a]). The coaction for the motivic multiple zeta values

is given by the following formula
AIm(ao; A1y ..., 0n; an+1) =

k

Z ( Ia(aip;aipﬂ,...,aip“1;aip+1)> ® I™(a0; Aiyy e vy @iy Qg -
0<io<i1 <+ <ip<ipr1=n+1 \p=0

In order to make explicit calculations with the coaction more tractable, Brown wants to consider an

infinitesimal version of it which factors through a family of operators D,. The coaction above involves

an exponential number of terms, as the weight grows. But the infinitesimal coaction will only have a

quadratic number of terms (each operator D, has a linear number of terms, and there are a linear

number of D,. operators as the weight grows).

In section 4 of [Brol2b|, Brown shows how the infinitesimal coproduct factors through the family of
operators D,., for odd r > 3.
Definition 1.2.12 (Definition 4.4 in [Brol2b|). The operators D, for odd r > 3 are defined as the

projection onto the Lie coalgebra of the weight (r, N — r)-graded part of the coaction. Namely

rN—r

A TR
Dy Hy ——— A, Qg Hn—r el g, ®g HN—r.

Here L, refers to the degree » component of the Lie coalgebra of indecomposables £. Similarly A, y_r

is the part of the coproduct which lands in the degree (r, N — ) component of A ®q H. Finally 7 is
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the quotient map

From the computation of the coaction A above, Brown obtains the following computation of the action

of D,.

Proposition 1.2.13. The operator D, acts in the following way on the element I™(ag; a1, ..., Gn; Gnt1)-
D, I™(ag;a1,...,an;Gny1) =
n—r
Lo . : .
Z I (apv Ap+1y -5 Aptrs ap—l—r—i—l) ® Im(a()a A1y« -5 py Aptr41y -5 An; an+1) .
p=0

Like Goncharov’s coproduct, these derivations have an interpretation in terms of cutting segments out
of a semicircular polygon. The operator D, can be viewed as cutting off a segment with r points, from

the semicircular polygon. By cutting off all such possible segments, we get D,..

Ap+tr

It is important to note that the boundary terms a, and a,4,4+1 appear in both the left- and right-hand

factors of D,., so they are part of both the main polygon, and the cut-off segment above.

It is convenient to give names to the left and right hand terms appearing above. Brown uses the
relation between the formula for D,, and the Connes-Kreimer coproduct for a certain class of graphs

to make the following definitions.

Definition 1.2.14 (Subsequence, quotient sequence, trivial subsequence). In the formula for

D, I™(agp;ai,...,ay; ant1), we name the terms as follows:

e The sequence appearing on the left
(Ap; Qpt1s s Qpir; Aptrtn)
is called the subsequence.
e The sequence appearing on the right
(@o;a1,...,Gp, Gpsr, ..., Gn;Gnt1)

is called the quotient sequence.
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Notice that the subsequence for D,. contains 7 interior points, for a total of r + 2 points.

If ap, = apqr41 in the subsequence, we will call the subsequence trivial. This is because the integral

I’Q(ap; Api1s- -+ Apir; Gpiri1) = 0 by the jequal boundaries| property in [Property 1.1.13

Roughly, these operators D, are used to decompose a motivic MZV into a chosen basis. The operator
D, extracts the coefficient of (™(2k + 1) as a polynomial in this basis. This forms part of an

‘exact-numerical’ algorithm to decompose an MZV, as explained in section 5 of [Brol2b.

The upshot of this algorithm, and the operators D,., is the following theorem. This theorem gives us
very combinatorial tools for producing and checking identities on MZV’s. For many purposes, the tools

themselves can be applied easily, without worrying about the motivic framework behind them.

Theorem 1.2.15 (Brown, Theorem 3.3 in [Brol2b]). Consider the operator
Doy = @ Doy -
3<2k+1<N

Then the kernel of Dy is (™(N)Q in weight N.

In other words, if the operators Doy, for 3 < 2k + 1 < N, all simultaneously vanish on a given

combination of weight N motivic MZV’s. Then this combination is in (™ (N)Q.

Remark 1.2.16 (Evaluation of the rational). Given some combination X in the kernel of Dy, we
know from [Theorem 1.2.15|that it must be a rational multiple ¢ of {™(N).

How can this rational be determined? So far there does not seem to be any conceptual or algorithmic
way of determining the rational exactly. Certainly one could determine and combine sufficiently many

MZV relations using the regularised double shuffld relations from [Section 1.1.4.4] Eventually one should

find the exact relation X — ¢{(IN) = 0, from which the rational ¢ is now known exactly. However, this
is a very impractical way of determining ¢ because the number of relations from regularised double
shuffle increases rapidly with the weight, and it becomes difficult to choose the right ones to combine

to get the relation X — q((V).

Instead, the method we will employ to determine this rational ¢ is by numerical evaluation, using the

period map. Given some motivic relation, with unknown ¢ € Q,
X —q(™(N)=0,
apply the period map to this and rearrange to obtain

q=X/((N).

We can then use some algorithms to numerically compute ((N), and the multiple zeta values in X. For
example zetamult, which is built into recent versions of GP/PARI |GP], can do this. From this, in
turn, we can compute ¢ to high accuracy, to hundreds or to thousands of decimal places. We can then

find the best rational approximation to this numerical value of ¢ using convergents of the continued
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fraction of ¢; this gives the best approximation with the denominator be small compared to the number
of decimal places. This approximation can be achieved using the bestappr command in GP/PARI
|GP).

We can now be pretty sure that we have determined the value of ¢ exactly, although there is of course
still the very small chance that we have merely found a very good approximation to it. For more
certainty one could recompute the result of X — ¢{(V) to more and more decimal places, checking the
result is 0, to within the error bounds imposed by the zetamult algorithm, or compute ¢ to higher

accuracy and compare with the initial approximation.

In section 5.3, item iii) of [Brol2b], Brown briefly discusses some potential directions that might
eventually lead to an exact way of computing ¢, such as finding bounds in the prime powers which can

appear in the denominator of ¢, or by finding a different (say, p-adic) realisation of motivic MZV’s.

We can give a simple example of these combinatorial tools, as follows. deals with identities

established in the same way for more general and complicated families of MZV’s and iterated integrals.

Example 1.2.17. As a simple example of this, we can show that (™(4,4) is a rational multiple of
¢™(8).

We have that ¢(™(4,4) = I™(0;1,0,0,0,1,0,0,0;1). Let us mark out the subsequences for D3 on
1™(0;1,0,0,0,1,0,0,0;1) in a table, for clarity. Each term vanishes because the subsequence starts

and ends with the same digit — this means the associated integral has equal boundaries so is 0. It is

what we called a trivial subsequence in [Definition 1.2.14}

Subsequence Term in D3

1™(0:1,0,0,0,1,0,0,0;1) | I*
S — |
e

0;1,0,0;0) ® I™(0;0,1,0,0,0;1) =

I™(0;1,0,0,0,1,0,0,0;1) | I°(1,0,0,0;1) ® I™(0;1,1,0,0,0;1) =
—

I™(0;1,0,0,0,1,0,0,0; 1
| F— |

7°(0,1,0,0,0) ® I™(0;1,0,0,0,0; 1) =

(
(
1™(0;1,0,0,0,1,0,0,0; 1
— ]
(
1™(0;1,0,0,0,1,0,0,0; 1
— ]
(

) | I ) )=0
) | I( )@ I™( )=0
) | 1£(0,0,0,1,0) ® I™(0;1,0,0,0,0;1) = 0
) | 1£(0,0,1,0,0) ® I™(0;1,0,0,0,0;1) = 0
) | I=( )@ I™( )=0
) | I=( )@ I™( )=0

1°(1,0,0,0;1) ® I™(0;1,0,0,0,1;1) =

1™(0:1,0,0,0,1,0,0,0; 1
— ]

Overall we obtain that

DsC™(4,4) = 0.

Let us mark out the subsequences for D5 on I™(0;1,0,0,0,1,0,0,0;1). Two terms in this already

vanish because they involve trivial subsequences.

Subsequence Term in D5y

I™(0;1,0,0,0,1,0,0,0;1) | I°(0;1,0,0,0,1,0) ® I™(0;0,0,0;1) = 0
— ]

I™(0:1,0,0,0,1,0,0,0; 1
|

)
I™(0;1,0,0,0,1,0,0,0;1) | I°(1,0,0,0,1,0,0) ® I™(0;1,0,0;1)
e — |
) | 7£(0,0,0,1,0,0,0) ® I™(0;1,0,0;1) = 0
)

(
(
(
(

I™(0;1,0,0,0,1,0,0,0; 1 1£(0,0,1,0,0,0;1) ® I™(0;1,0,0;1)
e — |
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So we obtain that

Ds¢™(4,4) = I°(1;0,0,0,1,0;0) ® I™(0;1,0,0; 1) +

+71°(0,0,1,0,0,0;1) ® I™(0;1,0,0;1) .

Now apply the [reversal of paths property from to the subsequence in the first term of
Ds. We have that

I(1;0,0,0,1,0;0) = (=1)°1°(0;0,1,0,0,0; 1),
so the terms in Dj cancel, giving

DsC™(4,4) = 0.

Finally, let us mark out the subsequences for Dy on I™(0;1,0,0,0,1,0,0,0;1). Each term in this also

vanishes because it involves a trivial subsequence.

Subsequence Term in D7

I™(0;1,0,0,0,1,0,0,0;1) | I°(0;1,0,0;0,1,0,0;0) ® I™(0;0;1) = 0

I™(0;1,0,0,0,1,0,0,0;1) | I(1;0,0,0,1,0,0,0;1) ® I™(0; 1;1) = 0

So we obtain that

D7C™(4,4) =0.

We have computed that D.g(™(4,4) = 0, so by [Theorem 1.2.15] we conclude that (™(4,4) € (™(8)Q.

This is confirmed by [Identity 1.1.30, where Borwein, Bradley and Broadhurst’s result [BBB97] that
C({2k}™) € 72k"Q is discussed. For this we may write

¢"(4,4) 2 ¢™8),

to mean they are equal up to a rational (see [Appendix Al).
So we have that

"(4,4) = qC™(8),
for some rational ¢ € Q. By numerically evaluating as in [Remark 1.2.16| we can find that ¢ ~ 1—12 to
any accuracy we care to try. So we have that

C"(4,4) = 75C"(8)

Applying the period map to this, we get the corresponding identity on the level of real numbers

ﬂ.8
(1) = 1) = o

Remark 1.2.18. The example above is rather trivial in the sense that the exactly identity can be

deduced very quickly from the stuffle multiplication. We have

C(4)? " 2¢(4,4) + ¢(8)-
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Then using Euler’s evaluation of {(2k) from [Theorem 1.1.6 we get
1 1 ™\ ? 78 3278

4,4) = — — — = .
(44 = 52 - ((8) = ((90) 9450> =

However, the idea of the motivic proof can be generalised to show that (™({2k}") € ¢(™(2kn)Q,

corroborating the evaluations Borwein, Bradley, and Broadhurst produce [BBB97|, as discussed in

dentity 1.1.30
A perhaps less trivial identity (in that sense that to obtain it, one needs to more carefully combine
various shuffle and stuffle identities) that can be proven motivically (up to Q) is the following.
Example 1.2.19. Consider the combination
X =("(1,2,3) +3¢"(4,2).

I claim that
X =¢"(1,2,3)+3¢™(4,2) = Z—;Cm(& .

We will show that this is in ker D, and then numerically evaluate to find the coefficient Z—g
Firstly convert this combination of motivic MZV’s to motivic iterated integrals. We get
X =-1I"(0,1,1,0,1,0,0,1) + 3/™(0,1,0,0,0,1,0,1) .

We dispose quickly with the computation of Ds. All of the terms vanish because they already involve

a trivial subsequence.

Subsequence Term in Ds
—I™(0;1,1,0,1,0,0;1) | —1%(0;1,1,0,1,0;0) ® I™(0;0;1) =
—I™(0;1,1,0,1,0,0;1) | —I(1;1,0,1,0,0;1) ® I™(0;1;1) =
3I™(0;1,0,0,0,1,0;1) | 3I(0;1,0,0,0,1;0) ® I™(0;0;1) =
3I™(0;1,0,0,0,1,0;1) | 3I°(1;0,0,0,1,0;1) ® I™(0;1;1) =0

Now we compute D3. We will need to make use of the regularisation (as in [Section 1.2.3.1)) that

n1:2
m _(_1\k ny— 14\ o ny—1+4
™0, 0 ,1,0,1) = (-1) Z o I™(0,1, {0}~ 1+ 1)
k=1 i1=1
= —2I"(0,1,0,0,1)
=2¢"(3).

We also need to use ¢"™(1,2) = (™(3), various instances of reversal of paths, and functoriality under

t — 1 —t. We obtain the following non-trivial subsequences.
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Subsequence Term in D3
-I™(0;1,1,0,1,0,0;1) —I%(0;1,1,0;1) ® I™(0;1,0,0; 1) = ¢*(3) ® ¢(™(3)
| S |
—I™(0;1,1,0,1,0,0;1) | —I%(1;1,0,1;0) ® I™(0;1,0,0;1) = 2¢™(3) ® ¢™(3)
I

(
I™(0;1,1,0,1,0,0;1) | —I%(1;0,1,0;0) @ I™(0;1,1,0;1) = 2¢™(3) @ ¢™(3)
e — |
I™(0;1,1,0,1,0,0;1) | —I%(0;1,0,0;1) @ I™(0;1,1,0;1) = ¢™(3) ® ¢™(3)
—]

3I™(0;1,0,0,0,1,0;1) | 3/™(0;0,1,0;1) ® I™(0;1,0,0;1) = —6¢™(3) ® ¢™(3)
— ]

The total contribution to Dj is therefore 0.

Since both D3 and D5 vanish on X, we have that X € ker D, so we obtain
X = ¢™(1,2,3) + 3¢™(4,2) € C"(6)Q,
using Therefore, there is some ¢ € Q such that
¢™(1,2,3) +3¢™(4,2) = q¢™(6)..

Applying the period map and numerically evaluating as in [Remark 1.2.16|shows that ¢ ~ %, so we get
the identity

97
C™(1,2,3) + 3¢™(4,2) = 72C™(6).
Applying the period map gives the corresponding identity on the level of real numbers

7 7
C1.2,3)+3C(4,2) = 110(6) = 5 =

Further examples of this motivic approach to proving (infinite families of) identities are given in

[Chapter 2| In[Section 2.1.1| we start by revisiting the Broadhurst-Zagier identity and giving a motivic

proof that (({1,3}") € 7"Q. We then set the Broadhurst-Zagier identity into a broader context, and

generalise it to a much larger family of identities which we can prove motivically.

1.2.4 Applications of Brown’s motivic MZV’s

With this motivic MZV framework, Brown was able to provide a new proof for the bound dimg 25, < dj,
on the dimension of the space of weight £ MZV’s. However, a more significant application was to
provide a proof that the Hoffman elements {(w), with w a word containing only 2’s and 3’s, span the

space of MZV’s. This was accomplished by proving that the motivic Hoffman elements are a basis for

the space of motivic MZV’s. This gives some progress towards [Conjecture 1.1.37]

We will sketch some of the ideas involved in these proofs. Complete details are found in [Brol2aj

Brol2b|.
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1.2.4.1 Dimension of the space of MZV’s

The following is the combination of Lemma 3.3 and Remark 3.7 in [Bro12b|. By the period map, and

by construction of # < HM7+, we have:
dimg 2 < dimg Hj, < dimg Hy'"F.
By computing the Poincaré series (the generating series of the dimensions of the graded pieces), we will

determine dimg 7-[2/[7—+ = dj,. Brown says that AM7 is non-canonically isomorphic to the cofree Hopf

algebra on cogenerators fo,11 in degree 2r + 1 > 3, so that the comodule has the following structure:

YMT + o~ Q(fs, f5,- -+ fart1s---) @0 Q[f2]

The Poincaré series for Q(fs, f5,...) is given by:

1 1=
13 — 5 — oo —g2r+1 .. T 1 2 437
Multiplying this by the Poincaré series for Q[f2], which is ﬁ, gives the Poincaré series for HM7+ as:
2
D dimo (H’f )t R R Ry D DL
k>1 k>1

So we obtain dimg ’HQATJ’ = dj, as required.

This shows that upper bound dimg Zj, < dj, of Zagier’s Dimension conjecture, [Conjecture 1.1.36|above,

does indeed hold.

1.2.4.2 Basis for the space of motivic MZV’s, and a spanning set for MZV’s

In considering the elements (™ (2’s and 3’s), Brown is able to show they are linearly independent over
Q, [Theorem 7.4 in|Brol2a]. Their number in weight k is dy, so gives the lower bound dimg Hy > dj on
the space of motivic iterated integrals of weight k. Overall this establishes an isomorphism H = HM7+,

not just an embedding.

Brown’s proof that {(w), w a word in 2’s and 3’s, are linearly independent over Q works inductively
on the level, defined to be the number of 3’s in the word w of the argument of (™. The base case
is provided by the fact that all Hoffman MZV’s of level 0, i.e. the elements (™({2}"), are linearly
independent over Q. This is clear because they have different weights, so lie in components with

different grading.

The induction assumption is that all Hoffman MZV’s of level < ¢ are linearly independent over Q.
Brown shows how a relation between Hoffman MZV’s of level £ must imply a relation between Hoffman
MZV’s of strictly smaller level, which contradicts the induction assumption. Establishing this relies
heavily on an explicit computation of {(2,...,2,3,2,...,2) by Zagier |Zagl2], and the 2-adic properties

of coefficients in this expansion.
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The linear independence of ("™ (w), w a word in 2’s and 3’s, and the number dj of them in each weight
k, means they form a basis for the space of motivic MZV’s of weight k. So every motivic MZV can be
written as a unique Q-linear combination of these motivic Hoffman elements. Applying the period

map shows that the elements Hoffman elements ((w), w a word in 2’s and 3’s, must span the space of

classical MZV’s, confirming one part of Hoffman’s proposed Basis conjecture, [Conjecture 1.1.37]

1.2.4.3 Structure of the motivic Galois group G 7

Finally, with the previous results Brown settles one conjecture about the structure of the motivic
Galois group Gy of MT'(Z). Here MT'(Z) is the full Tannakian subcategory of MT(Z) generated
by the motivic fundamental group of P!\ {0,1, 00}, and MT(Z) is the category of mixed Tate motives
unramified over Z. The conjecture is that the map Garr — Gaqg~ is an isomorphism, where G 7 is
the motivic Galois group of MT(Z). A further consequence of this is that the periods of MT(Z), of

mixed Tate motives unramified over Z, are Q[5L-]-linear combinations of MZV’s.






Chapter 2

Block decomposition of iterated
integrals, cyclic insertion on MZV’s

and motivic identities

In this chapter we introduce a new combinatorial structure on iterated integrals, called the block

decomposition (Definition 2.2.4). After defining reflection operators (Definition 2.2.15) and the

reflective closure (Definition 2.2.22)) of a block decomposition, we show that summing all permutations

of these blocks forces the resulting combination to cancel to 0 under Brown’s motivic MZV derivation
operators Dy. Using Brown’s characterisation of ker D, this leads to a way of generating infinite

families of identities by summing all permutations starting from some arbitrary iterated integral block

decomposition (“Symmetric insertion” [Theorem 2.4.4]).

Numerical experimentation on the resulting identities shows that they typically break up into sums over

cyclic shifts of the blocks. This leads to a vast conjectural generalisation (“Generalised cyclic insertion”

[Conjecture 2.5.1)) of the previous Borwein-Bradley-Broadhurst-Lisonék cyclic insertion conjecture on
sums obtained by cyclically inserting blocks of 2 into the MZV ¢({1,3}") (Conjecture 2.1.5). We also
obtain a unification with Hoffman’s conjectural identity 2¢(3, 3, {2}") — ¢(3,{2}",1,2) = —¢({2}"*3)

(Conjecture 2.1.9)). The block decomposition framework is powerful enough to prove Hoffman’s identity
(up to Q) (Theorem 2.6.5)), and produce a symmetrised version of the BBBL cyclic insertion conjecture
(Theorem 2.6.2] |Chal5]) which provides something of a refinement to the Bowman-Bradley theorem

(Theorem 2.1.7)).

We provide many further examples of the generalised cyclic insertion conjecture, and
the resulting symmetrisations. We focus mainly on identities generated from a subclass of MZV’s,
which we call 123-MZV’s , because these cyclic/symmetric insertion identities are
already sums of MZV’s and do not need regularising. Moreover, we can describe cyclic insertion

on 123-MZV’s purely by way of a ‘cyclic operator’ which manipulates the arguments of the MZV

35
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(Proposition 2.5.12). Finally, we numerically investigate some other identities (Section 2.8) which can

be described elegantly in terms of the block decomposition, such as alternating sums over the odd

position blocks (Conjecture 2.8.2)).

2.1 Background to the cyclic insertion conjecture

We will start by recalling the cyclic insertion conjectured as proposed by Borwein, Bradley, Broadhurst,
and Lisonék, and will set this in its historical context. The cyclic insertion conjecture is obtained
by successively generalising an identity of Zagier, by inserting blocks of 2. So far the conjecture has
resisted proof, but some limited progress has been made via the Bowman-Bradley theorem which is

implied by the conjecture.

2.1.1 Broadhurst-Zagier identity

Firstly, recall the Broadhurst-Zagier identity, which as originally written, states

27‘(4"
C({1,3}") = n+a)
This was conjectured by Zagier on the basis of much numerical evidence in [Zag94]. A proof was later
provided by Broadhurst in Section 11 of [BBBLO01], using hypergeometric functions. Because of its
historical interest it is worth giving the ideas of this proof.

Generating series proof (exact). First interpret (({1,3}™) as a special value z = 1 of the ‘single variable

multiple polylogarithm
. z
Lis, . (2) = Z TR TR T
0<ny<na<---<ng k

In the paper the notation L is used, and this is defined in terms of a function A used earlier. To be

self-contained I use the above. Then one has

d %Lisl,...,sk—l(z) if Sk > 2

— Lis, s, (Z) =
dZ i Li31,...,sk,1(2') if Sp = 1.

In Theorem 11.1 of [BBBLO1|, Broadhurst shows that

2 b

Z Li{1,3}n(z)t4" =.F (t(lgii)a _t(lgii); L;2)o Fy (t(lii) _t(lii) i12).
n=1

Here , F; (a, b; ¢; z) is the Gauss hypergeometric function defined by

oo

2 Fy(a,bsc;2) = Z (a)(z )

n=0

3
—~
=
=
S
S

and (¢), =q(q¢+1)--- (¢ +mn —1) is the rising Pochhammer symbol.
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Broadhurst proves this theorem by noting that both sides of the identity are annihilated by the

(o) () -

and both sides have the same initial conditions. Namely both sides start

differential operator

t* t* 8 + 44¢*
1+722+723++7 4

8 18 1536 © TOE-

In Corollary 2, following this theorem, Broadhurst uses Gauss’s , F} summation theorem to say

sin(ma
o F (a,—a;1;1) = 75@ ) .
By setting z = 1 above, Broadhurst obtains
= 2 sin(1H 1) sin( 1 7t)
Soc(n gyt = 2T
n=0
_ coshmt — cosmt
N w22
e oindn
_ 3
= (4n + 2)!
Comparing coefficients of 4" gives Zagier’s identity. O

Given the role this will play later, it is also worth noting that a non-explicit version of this result follows
readily from Brown’s motivic MZV framework. Indeed, in [Bro12b|, Brown uses this as an illustration
of how much information the operators Do, yield about MZV’s and their motivic versions. Note,

however, that in various versions of [Brol2b| the proof Brown gives is not quite correct.

Motivic proof (up to Q). To show Zagier’s identity motivically, it suffices to compute the operators

Dy, 1, for 7 > 1, on ¢™({1,3}"), and show they all simultaneously vanish. The result follows by
eorem 1.2.15] and applying the period map.

Firstly, as an iterated integral, we have
¢"({1,3}") = 1"(0,{1,1,0,0}",1).

So computing Da,11¢™({1,3}"™) involves marking out substrings of length 2r + 3 (recall 2r + 1 is the

number of interior points) on the word w := 0(1100)™1.

Brown claims in [Brol2b| that all subsequences on I™(0;{1,1,0,0}™;1) start and end with the same
letters, unfortunately this is not correct. Observe that the word w is periodic with period 4. So if r is
odd, then 2r + 2 is a multiple of 4, and any subsequence of length 2r + 3 on w will start and end with

the same letters. So trivially Da,41¢™({1,3}") = 0, in this case, and Brown’s claim holds.

But, if r is even, the subsequences start and end with different letters, and Brown’s claim does not

hold! However, this is not a problem. Write r = 2s, and label the positions of the word w starting
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with the first digit as index 0. For convenience rewrite w as (0011)™01. If the subsequence starts at

position i, we obtain different contributions according to the value of i (mod 4).

For example, when ¢ = 4k, we mark out the following subsequence

subsequence
1
(0110) - - - (0110) (0110)°011 0 (0110) - - - (0110) 01,
| S — | S —
k blocks n — k — s — 1 blocks

to obtain the term

I°((0110)°011) ® I"™((0110)*0 | 10(0110)"~*=*=101)

in Dar11¢™({1,3}™). In this expression, | is just a notational device to denote the location of the cut

out sequence. We will also often drop the commas for notational ease.

Similarly, we obtain the following terms according to 7 (mod 4):

i =4k I°((0110)%011) ® I™((0110)%0 | 10(0110)"~*=*~101)
i=4k+1 I£(110(0110)*) ® I™((0110)*01 | 0(0110)"*~*~101)
i =4k +2 1%(10(0110)*0) ® I™((0110)*011 | 0110(0110)"*~*~201)
i=4k+3 I%(0(0110)*01) ® I™((0110)*0110 | 110(0110)"~*~*201)

Observe that the I™ factors agree in i = 4k and ¢ = 4k+ 1, and the I* factors are reverses of each other.
Since the I* factors have odd length, they differ by a minus sign. This means the 4k term cancels
with the 4k 4 1 term. Similarly the I™ factors agree in i = 4k 4+ 2 and i = 4k + 3, and the I* factors
are reverses of each other, so differ by a minus sign. This shows that the 4k + 2 term cancels with the
4k + 3 term. Also note that the last term in Dg, 1 occurs for ¢ such that i+ (2r+3)—1= (dn+2)—1,

in particular for ¢ odd.

Now Da,11¢™({1,3}™) is the sum of these terms from ¢ = 0 to ¢ = 4n — 2r — 1. Since the first term
has even index, and the last term has odd index, each even index term cancels with the odd index

term following it. This means Dsy,41¢™({1,3}") cancels completely to give 0.

Since Dar+1¢™({1,3}™) is always 0, we find that ¢(™({1,3}") € ker D<y. By |Theorem 1.2.15| we
conclude ¢™({1,3}) € ¢(™(4n)Q. Upon taking the period map, we obtain

¢({1,3}") € C4n)Q = 7*"Q.

This proves the claim. O

Before continuing, I wish to slightly rewrite Zagier’s identity so that it fits better into the general

context. I also want to introduce some convenient notation.

Definition 2.1.1 (wt). In any expression involving MZV’s; which is homogeneous in the weight, write

wt for the weight.



2.1. Background to the cyclic insertion conjecture 39

Example 2.1.2. In Zagier’s identity, the weight is 4n. So with this notation, the identity can be

rewritten as follows,

2rdn
(4n + 2)!
7.(.4n

(2n+1)(4n + 1)!

wt

C({1,31") =

1 m
2n+1 (wt+ 1)

2.1.2 Borwein-Bradley-Broadhurst-Lisonék cyclic insertion conjecture

As we will now explain, later work by Borwein, Bradley, Broadhurst, and Lisonék (BBBL) has provided
a vast conjectural generalisation of this identity. In [BBBL98|, these authors manage to prove some
special cases of the identity. Bowman and Bradley [BB02| have also proven a family of identities which

arises as a consequence of this conjecture.

First let us introduce some notation from [BBBL9§| to make writing the identities easier.

Definition 2.1.3. Let n € Z>q. For 0 <i < 2n, let a; € Z>q, to obtain a list of 2n + 1 non-negative

integers. Then define

Z(ag, ... ,a9n+1) = C({2}%,1,{2},3,...,1, {2}~ 3, {2}%").

That is, Z(ag, . ..,a2,+1) is the MZV obtained by inserting the string {2}% into the i-th gap of the
arguments of ¢({1,3}™).

Definition 2.1.4. Let n and a; be as above. Let o € Sy,11, viewed as a permutation of the letters

{0,1,...,2n }. Then we define a version of Z with arguments permuted by o as follows

Zg(ao, ceey agn) = Z(aa(o), e ,ao.(Qn)) .

Then BBBL make the following conjecture, which we have slightly rewritten to fit with the notation

introduced above.

Conjecture 2.1.5 (BBBL cyclic insertion, Conjecture 1 in [BBBL98|). Let n and a; be as above. Let
Cont1 ={(01 --- 2n)) be the cyclic group of order 2n + 1, viewed as a subgroup of Sapi1. Then
l ,/th

Z Za(ao,...,agn) m

0€Cant1

Here — denotes an identity which holds numerically in all cases tested, to several hundred decimal

places. (See |Appendix A).

This conjecture does indeed represent a generalisation of Zagier’s identity. Take ag = a1 = -+ = a9, = 0.
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Then we have

Z(ag, ..., a;) = C({2}°,1,{2}°,3,...,1,{2}°,3,{2}")
=(({1,3}").

But for any o € So,11
Z,(0,0,...,0) = Z(0,0,...,0).

So taking the sum over o € Cs,41, we obtain

> Z,(0,0,...,0)= > <¢({1,3}")

0€Can 41 0€Can 41

=(2n+1)¢({1,3}").

On the other hand, the conjecture would say that

0 7.(.wt
> Z,(0,0,...,0) = ———.
|
cComn (wt + 1)!
Putting these two equalities together gives
Cn+ e L
n ) = T T av
(wt 4+ 1)!

from which Zagier’s identity is obtained by dividing through by 2n + 1.

In [BBBL9S§|, Borwein, Bradley, Broadhurst, and Lisonék manage to prove a special case of this

conjecture, which gives Zagier’s identity “dressed with 2”7, as follows.

Theorem 2.1.6 (Theorem 2 in [BBBLI8|). The following identity holds

wt

T
g Zy(1,0,...,0) = ——.
|
o0€Cant1 (Wt + 1)
That is the case ag =1, a1 = ag = --- = agn41 = 0 case of the conjecture holds, as does any cyclically

equivalent choice.

The above theorem can be viewed not only as inserting all cyclic permutations of the blocks of 2’s
given by {2}1,{219,... {2}, but also as inserting all possible blocks of 2’s whose total length sum to
1. It is in this direction that Borwein, Bradley, Broadhurst, and Lisonék have succeeded in proving

and explicitly evaluating such combinations of MZV’s. This reduces to the previous when m = 1.

Theorem 2.1.7 (Bowman-Bradley, Corollary 5.1 in [BB02|). Let n,m € Z>o be a non-negative

integers. Then
wt

Z Z(a a a )_ 1 i m+2n
0T ) T oy (we+ DI\ 20 )

ao+---+azp=m
aiZO

It should be noted that the statement in the theorem above is obtained after slightly rewriting the
result of Corollary 5.1 in [BBBL9S].
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Simpler and more refined proofs of this result have since been given by Zhao |[Zha08] and Muneta

[Mun09].

This result is compatible with the cyclic insertion conjecture. Any composition Ziio jx = m of m into
2n + 1 parts remains a composition of m into 2n + 1 parts when cyclically shifted. Hence the terms in
the Bowman-Bradley sum can be re-grouped into subsums, where each subsum is taken over a set of

compositions which differ by a cyclic shift. Conjecturally, each of these subsums is then a rational

multiple of 7%%; explicitly it should be ﬁ(:irl)” where « is the number of distinct compositions

obtained by cyclically shifting a representative composition appearing in this subsum. So on average

ﬂ_wt

——, giving a total which agrees with the above.

each of the (m+2") compositions contributes Tlﬂ s

2n

2.1.3 Family of evaluable MZV’s

If the BBBL cyclic insertion conjecture is true, then one consequence will be the evaluability of a
certain two-parameter family of MZV’s, for which Zagier’s ({1, 3}") is one of the simplest examples.

This family was conjectured by Borwein, Bradley, and Broadhurst in [BBB97]|.

Conjecture 2.1.8 (Equation 18 of [BBB97|). Let n,m € Z>( be non-negative integers. Then

? 1 Wt

CHZ™ L3 21 = 5 e

This family is obtained as the ag = a1 = - -+ = ag, = m case of the cyclic insertion conjecture. And in

the case where m = 0, we recover Zagier’s identity.

2.1.4 Hoffman’s identity

Another conjectural family of identities, attributed to Hoffman in equation 5.6 of [BZ], is the following

Conjecture 2.1.9 (Hoffman). Let n € Z>( be a non-negative integer. Then

2 7.[.wt

2(3,3,{2)") = €(3,{2)",1,2) & ~C(2)™%) = —

This family of identities has much the same flavour as the cyclic insertion conjecture. A certain length

block {2}" is inserted into some MZV’s, and the resulting sum is (up to sign) (w:iitl)' This result has

been checked up to weight 22, where n = 8, using tables of known MZV relations by Vermaseren [BZ].

2.1.5 Unification of identities and progress towards proofs

It turns out that Hoffman’s identity, and the BBBL cyclic insertion conjecture, both arise from the
same procedure applied to (what I call) the block decomposition of an MZV. That is to say, both
of these conjectural identities are part of the same, and indeed much larger, family of conjectural

identities.
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The goal of this chapter is therefore two-fold. Firstly, we want to illustrate the procedure which

unifies these two families of identities into a generalised cyclic insertion conjecture (Conjecture 2.5.1).

Secondly, although we cannot prove this generalised conjecture exactly, we will use Brown’s motivic

MZV framework to show that a sufficiently symmetrised version of the identity holds up to a rational

(Theorem 2.5.4)).

I proved this for the original BBBL cyclic insertion conjecture much earlier, and this was written up

and published in [Chalb]. The results here for the general cyclic insertion conjecture are therefore new.

The main result in [Chal5|, [Theorem 2.6.2] below, becomes a simple consequence of [Theorem 2.5.4

In Section 5.10 of [Zhal6], Zhao notes that “by a tedious computation” using the idea of |[Chal5,

Hoffman’s identity can indeed be proved up to Q. In what follows, we will establish a general framework

by which Hoffman’s identity can be proven, and indeed generalised (Conjecture-Example 2.6.6|and its

symmetrisation, [Theorem 2.6.7)), by quick and elegant calculations on block decompositions.

2.2 Block decomposition and reflection operators

2.2.1 Block decomposition of iterated integrals

In order to formulate a generalisation of the BBBL cyclic insertion conjecture, and to prove some results
in this direction, we need to introduce a new way of encoding/describing MZV’s, and by extension

iterated integrals over the alphabet {0,1 }.

Firstly, we introduce notation for the two basic strings which serve as building-blocks for the words

over { 0,1 }, which define the iterated integrals.
Definition 2.2.1 (Strings Wy and W7). Let Wy denote the (infinite) string
Wy :=01010101...,

consisting of an alternating sequence of 0’s and 1’s, beginning with a 0. And let W; denote the (infinite)
string

Wy =10101010... ,
consisting of an alternating sequence of 1’s and 0’s, beginning with a 1.

We write W/ to denote the string obtained by taking the first £ letters of W;.

Notation 2.2.2. Given two words w and u over the alphabet { 0,1 }, the concatenation of w and u

can be denoted simply by the juxtaposition wu. For emphasis it may be denoted using @, as in w & .

Lemma 2.2.3. Let w be a word over { 0,1 }. Then the word w can be expressed as a concatenation of

words of the form W, fori=1,...,n, where the last letter of Wjej agrees with first letter of ngfll.

Moreover, this representation is unique.
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Proof. 1t is of course trivial that w can be expressed as a concatenation of Wy’s and W7’s because
W¢ =0 and W} = 1. Requiring that the last digit of Wf 7 agrees with the first digit of Wffll is less

trivial.

Uniqueness: First let us deal with the uniqueness claim. Suppose that B; = Wfll ®-- D Wf;f
and By = Wfll O--- D Wf;f are two (ostensibly) different decompositions of w, satisfying the above

conditions. We want to show that n = m, and that §; = ¢; and k; = ¥¢;, fori=1,...,n.

We may remove any leading terms Wf 9 from B; and B, which happen to agree. If this leaves two

copies of the empty word, we are done, so we assume that it does not.

This procedure cannot result in only one copy of the empty word. Suppose B; leaves an empty word
Bi =0, but Bs leaves a non-empty word Bj. Then B} and Bj have different lengths, respectively 0
and > 0. We obtain the original words B; and B by prepending the same word, By = Wfll &) Wfﬁ' of
length L to both. This will mean B; has length 0 + L = L, and Bs has length > 0+ L = L. This

shows that By and By cannot express the same word.

So after removing any identical leading terms, we may assume that the first difference between By and
B occurs in the first term. Since the words described by B; and Bs are equal, their first letters in
particular are equal. Therefore we have €; = d;. Now consider the lengths ¢, and k;. Since there is a

difference in the first term, we must have ¢; # ki, and by swapping B; < Bs, we can assume that

U < k.

Now compute the letter at position ¢ + 1. Using B, we find this is equal to the €1 + (¢1 — 1) (mod 2),
as illustrated

(0101...01)( 1 0...10).
———

¢1 symbols position ¢1 + 1

But using B, we find that is is equal to d; + (¢1) (mod 2), as illustrated

(0101...01 0 ...).
—

¢1 symbols position £; + 1

Since these must be equal, we must have €; + (/1 — 1) = 01 + (1) (mod 2). Knowing €; = 41, this

entails 0 = 1 (mod 2), a contradiction.

We conclude, then, that it is not possible to have two different decompositions for the word w.

Existence: Now let us show that such a decomposition does indeed exist. This will be by induction.

We can explicitly check the case where w has length L = 1, since

w = 0 decomposes as W, and

w = 1 decomposes as W7.
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Suppose now that all words of length < L can be so decomposed. Let w be a word of length L. If w
does not contain the substring 00, and does not contain the substring 11, then w must be an alternating

sequence of 0’s and 1’s. Therefore w = I/VGL17 where ¢; is the first digit of w.

Otherwise, we can find the first occurrence of 00 or 11 in w. We split w into w; and ws at this point,
so that wy ends at the first 0 of 00, and wy starts at the second 0 or 00. (Or the equivalent if we

find 11 occurs first.) Since wy has length < L, we can decompose it as W2 @ --- & Wr

€En )

using the
induction hypothesis. As w; does not contain the substring 00 and does not contain the substring 11
(since we cut in the middle of the first such occurrence), we can express it as w; = Wfll for some €;

and some /1, as above.

Since the first digit of ij agrees with the last digit of Wfll by construction, we can put these together
to obtain

w:Wfl®"'®W£n,
as a decomposition for w. This completes the proof. O

Definition 2.2.4 (Block decomposition). Let w be a word over { 0,1 }, and let

w:Wfll®"'®W£7l

€n

be the decomposition of w as produced by We define the block decomposition of w to be

block(w) = (€15 1,...,4p).

If ¢, = 0, then we may write (¢1,...,%,) instead of (0;¢1,...,¢,).

Remark 2.2.5. Notice that only €; is required in this description. We can calculate €; 41 from ¢;

by knowing that the first digit of Wffjll is equal to the last digit of W. The last digit of W is

€

€+ (¢; — 1) (mod 2), so €;41 = €; + (¢; — 1) (mod 2). We can therefore recover w from block(w).

Definition 2.2.6 (word). Given a block decomposition B = (e1; #1,...,4,), we will write

word(B) = Wi @& Wi,

This recovers the word which gives the indicated block decomposition.

Remark 2.2.7. It will often be helpful to use the block and word functions to identify a block
decomposition with the word it encodes. That is, give a word w and a block decomposition B, we may

write B = w to mean word(B) = w, or equivalently B = block(w).

Definition 2.2.8 (Block integral, number of blocks). Given a block decomposition B = (e1; £1,...,4,),
we define the block integral I} (B) as follows:

IN(B) = I™(word(B)).

We shall call n the number of blocks in the integral.
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If e, = 0, we may write
IS (b, ..., 0) = I5(0; bq,...,4,) = I™(word(0; £1,...,4,))

for simplicity.

Example 2.2.9. Suppose, for example, we take the integral

I™(w) = I™(001010011101010110011) .

We find that the word w can be decomposed as follows

w = (0) @ (01010) @ (01) @ (1) ® (1010101) @ (10) ® (01) @ (1)

=Wy Wy WEW W] WEWE W,
Therefore the block decomposition of w is given by

block(w) = (0; 1,5,2,1,7,2,2,1).

As a block integral, we have the following. Here the separators | are just a visual device to make

identifying the blocks more straightforward.

I™(w) = I"™(0] 01010 | 01 | 1] 1010101 | 10 | 01 | 1)
=I5(0; 1,5,2,1,7,2,2,1)

=I3(1,5,2,1,7,2,2,1),

since €; = 0. This integral consists of 8 blocks.

Notation 2.2.10. It is convenient to introduce some notation to refer directly to different aspects of
the é-th block of a block decomposition. Let B = (ey; ¢1,...,¥4,) be a block decomposition. We will
write BF := ¢; to mean the length of the i-th block. We shall write B5* to mean the initial digit of the
i-th block, that is Bf' := ¢;. We shall also write B{™ to mean the final digit of the i-th block, so that
B™ i=¢; + (¢; — 1) (mod 2).

Here we collect some simple facts about the block integral, and block decompositions.

Lemma 2.2.11. Let Ij(e1; 41,...,4,) be a block integral. Then the integral has weight —2 + . (;.

We use this connection to define the weight of a block decomposition as —2+ ", ¢;

Proof. The word w = word(ey; £1,...,¢,) has length ). ¢; because the i-th block has length ¢;. But
this word includes the upper and lower bound of the iterated integral I™(w), which we must discount.

So the weight is =2+ 3" ¢;. O

Lemma 2.2.12. Let I = If}(B) be a block integral with weight t and n blocks. Then the upper and
lower bounds are equal, meaning I} (B) = 0, if and only if t = n (mod 2). Such a block decomposition

B will be called non-trivial if the upper and lower bounds of the corresponding integral are different.
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Remark 2.2.13. It is interesting to compare the structure of this with Tsumura’s depth-partiy
theorem [Tsu04]. Both results have that form that an object simplifies (to zero in this case, or to lower
depth in Tsumura’s case) if some parity condition holds (equal parity in this case, and opposite parity
in Tsumura’s case). Of course this result is just a trivial observation that the bounds of integration are

equal, whereas [Tsu04]’s result is highly non-trivial.

Proof of[Lemma 2.2.19 Say B = (e1; £1,...,¢,). Then first letter of I is €1, this is the lower bound
of I (B).

We claim that the first letter of the j-th block is e; + Zf;ll (¢; — 1) (mod 2). This can be shown by

induction. In the case j = 1, we obtain the first digit as e; + Z?:l(fi — 1) = €1. Suppose this holds for

j — 1. Then we know that B* = BS" |, and B$", = B5" | + (B}, — 1). Therefore we get for j

j—2
Bi' =B + (Bj_; — 1) = (a1 + Z(ﬁi 1))+ (41 -1)
i=1
j—1
=€ + Z(& —1) (mod 2).
i=1

So the last letter of the n-th block is

n—1
BI =B+ (ly— 1) =1+ Y (6~ 1)+ (€ — 1) (22.1)
=1

=61+Z(€i—1)=el—2+t—n (mod 2) .
i=1

So the last letter of I is €; +t — n (mod 2), this is the upper bound of I}}}(B). This is equal to the

lower bound €; if and only if ¢ —n = 0 (mod 2), which is if and only if ¢ = n (mod 2). O

Lemma 2.2.14. Let I = I}(B) be a block integral with n blocks and weight t. Suppose that t #
n (mod 2), and t > 2. Then I is divergent if and only if B¥ =1 or BL = 1.

Proof. Recall from [Section 1.1.3|that an integral I™(ag;ay,. .., @m; @m+1) With weight m > 2 amd
ag # am+1 is said to be divergent if ag = a1 or a,, = amy1. The condition ¢ # n (mod 2) is equivalent

to ag # ama1, and t > 2 is equivalent to m > 2.

If B =1, B' = B{" = B{', so word(B) = W2 W/ & - .-, which starts €11 --~. So agp = a1, and the
integral is divergent. Similarly if B = 1, then B$" |, = B = BS". So word(B) = --- & W, , W} |

which ends - - - €,€,. This means a,, = a,,—1 and the integral is divergent.

On the other hand, if Bf' > 1 and BY > 1, then word(B) = W2 '@®- - -&W_>! which starts (e1)(1—€y) - -

and ends --- (1 — €1)(e1). This means ag # a; and a,, # a1, and the integral is not divergent. [



2.2. Block decomposition and reflection operators 47

2.2.2 Reflection operators

We are now going to define reflection operators on the set of all words over { 0,1 }, via their block
encoding. Later, this will be lifted to define a reflection operator on subsequences of words, in order to

compute the derivations Ds, 11 as applied to some combination of motivic iterated integrals.

Definition 2.2.15 (Reflection R, ). Let B = (e1; #1,...,¢,) be a block decomposition with n
blocks. For each 1 < j < k < n, we define the reflection operator R; . as follows. We set R; B =

(ey; 04,..., L)), where €] := €1, and

p l; fori < j,ori >k, and
i
lpj—i for g <i<k.

We then set R; yw = word(R, , block(w)) to define the reflection operators directly on words over
{0,1}.

This operator reverses the block lengths from positions j to k, inclusive.

Remark 2.2.16. The on MZV’s and iterated integrals is closely related with the

reflection operator R; ,,, which reflects an entire block decomposition B consisting of n blocks.
Assuming that B = (e1;¢1,...,¢y) is a non-trivial block decomposition (in the sense of [Lemma 2.2.12))

with n blocks and weight ¢. Then the dual to the integral If}(B) = If}(e1; 1, . . ., £yn) is the integral
(1) IS (R1,nB) = (=1) Ini(e1; bny - . ., 01).

Lemma 2.2.17. The reflection operator R; . preserves the weight, and number of blocks, when applied

to a block decomposition B.

Proof. This is clear by the definition of R; ; on the block decomposition B = block(w) = (e1; 41, ..., 4y,).
The result of R ;B is another block decomposition with n blocks, and the weight is still =2+ 3. ¢;,

although the ¢; are summed in a different order. O

Lemma 2.2.18. Where defined, the operator R; . is an involution. So for 1 < j <k <n, each R;

defines an automorphism on the set
{ B | B has n blocks }

of block decompositions with n blocks.

Proof. Let B = (e1; {1,...,4,), and 1 < j < k < n be given. Say that R;pB = (¢; ¢},...,¢,,). Then
Rk is defined on R; ;B. So suppose R;xR;xB = (ef; 0{,...,4).
By definition we know that €/ = €] = ¢;. Now look at ¢/. For i < j, or i > k, we have that ¢/ = ¢, = ¢;.

For j <14 <k we have £ = /]

ftj—i- But notice that j < k+ j — < k, for this range of <. We therefore

compute E;H_j_i = Lot j—(ktj—i) = Ls-

Overall this means ¢ = ¢;, for all 1 <4 < n. Hence R;xR;xB = B, and the claim is proved. O
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Example 2.2.19. Consider again the integral from
I™(w)=1™(0]01010]01]1]1010101 | 10|01 |1).
The word w describing this integral has block decomposition
B = block(w) = (0; 1,5,2,1,7,2,2,1).

We can compute Ro 5B to be
ResB=1(0; 1,7,1,2,5,2,2,1).
———

reversed

This is the block encoding of the word

word(Ra,5B) = (0)(0101010)(0)(01)(10101)(10)(01)(1) .

Later one, in

bection 2.2.4f and

Section 2.3| we will use the R; 1 to define a reflection operator R on

subsequences of words, and use this to cancel terms in D . Thus we will be able to cancel a subset

of terms in Dy between

I™(0] 01010 | 01| 1] 1010101 | 10 |01 | 1) and

I™(0]0101010 | 0 | 01 | 10101 | 10 | 01 | 1)

reversed

= I™(Ry5001010 | 01 | 1] 1010101 [ 10 | 01 | 1).

Remark 2.2.20. The reflection operator R is only defined on words, and not in the motivic iterated
integrals themselves. This is because these the reflection operators and block decompositions do not

respect the relations satisfied by motivic iterated integrals.

Indeed, even the number of blocks is not preserved under all relations, as the follow shows. The MZV

¢({1,3}™) has block decomposition
¢m({1,3}") = I™(01 | 10 --- | 01) = [ ({2}*"*),
consisting of 2n + 1 blocks of length 2. Whereas the MZV (({2}?") has block decomposition
¢C™({2}%") = I™(0101...01) = I3 (4n +2),

consisting of a single block of length 4n+2. However, by the Broadhurst-Zagier identity (Identity 1.1.31)),
we get the following equality

(2n + DIB ({22 = IN(4n + 2),

which relates a 1 block integral, and a 2n + 1 block integral.

In the above case, the reflection operator Ri 2,41 is defined for the block decomposition B; =
(0; {2}?"*1). However, R 2,41 it is not defined on the block decomposition By = (0;4n + 2), even

though the corresponding integrals are equal (up to a rational multiple).
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By abuse of notation, we could extend the notion of reflection operators to integral I™(w). However,
this would only be with the understanding that the reflection operator act on the particular choice
of word w appearing as the argument of the iterated integral. We would not be allowed to use any

relations rewrite I™(w) in another form, before computing R; .

2.2.3 Reflectively closed sets

We are now in a position to define the main objects which will be used to create identities on iterated

integrals and MZV’s.
Definition 2.2.21 (Reflectively closed sets). Let S be a subset of
{ B | B is a block decomposition, with n blocks, and weight ¢ } .

We say that S is reflectively closed if for every B € S, the result of R; ;B is already in S, for
1 <3 <k<n.

Definition 2.2.22 (Reflective closure). Let S be a subset of

{ B | B is a block decomposition, with n blocks, and weight ¢ } .

We define the reflective closure of S, written (S)x, to be the smallest reflectively closed set containing

S. That is, (S)r is such that (S)g is a subset of any other reflectively closed set containing S.

Remark 2.2.23. Using the identification in we may extend the notion of reflective
closure from block decompositions B to words w whose block decompositions have a fixed number of

blocks n, and fixed weigh t¢.

Proposition 2.2.24. Let S be a subset of
H = { B | B is a block decomposition, with n blocks, and weight t} .

Then the reflective closure of S exists, and it may be computed as the intersection of all reflectively

closed sets containing S.

Proof. Observe that some reflectively closed set containing S does indeed exist. We may take that
set to be all of H. Since R;  preserves the weight, and number of blocks, in an iterated integral, we

certainly have R ;B € H, for every B € H, and every 1 < j <k < n.

We show that the intersection of a family of reflectively closed sets containing S is a reflectively closed
set containing S. Let F be such a family. Then we have S C F for every F € F, so that S C (| F.
Moreover, let B € (| F, then B € F for every F' € F. But by the reflective closure of F' we see
that R; B € F, so R; B € F for every F' € F, and we conclude R; B € (| F. Therefore F is a

reflectively closed set containing S.
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Finally let F = { F'| F is a reflectively closed set containing S }. We show that

T=(\F

is the reflective closure of S. Certainly we know that 7T is a reflectively closed set containing S. We
show that it is the smallest. Let U be another reflectively closed set containing S. Then U € F, so
that (\F C U. Therefore T C U. Thus we have T = (S)x. O

Example 2.2.25. Consider the word w = 0101001101 which describes the iterated integral
I™(0101001101) = ¢™(2,3,1,2). The word w has block decomposition B = (0;5,2,3) = (5,2,3).
The block decomposition B has weight 8, and consists of 3 blocks. If we continually apply R; i to this
block decomposition, and all subsequently generated block decompositions, we find the following set of

block decompositions.

S ={(0:3,5,2),(0;3,2,5), (0;5,3,2),
(0;5,2,3),(0;2,5,3), (0;2,3,5) }

Upon using the identification between block decompositions and words from we can say
this is
— (0100101001, 010]01]10101, 01010010 |0,

0101 | 001 | 101, 01| 10101 | 101, 01 |101|10101}.

One can check that this set S is indeed reflectively closed. Moreover, since every element of this arises
by applying some sequence of reflection operators R; x, this is the smallest possible reflectively closed

set containing 0101001101. Therefore

S = ((0;5,2,3))% = (01010 | 01 | 101) .

As a foreshadowing of what is to come in [Theorem 2.3.8| and [Corollary 2.3.9] let us integrate these

block decompositions, and convert the results back to MZV’s. Remembering the (—1)3¢P*" we obtain

the following set of MZV’s

S={-C"(3,2,3),(™(3,1,2,2), —C™(2,3,3),

Cm(27 37 17 2)7 _Cm(]~7 27 27 17 2)7 _Cm(17 27 17 27 2)} .

It turns out that
Do) = s=2"(2,2,2,2) €("(8)Q,

so in particular
8

per (12, ) = 2(2.22.2) =25 €(®Q =",

Here the weight is low enough that a brute force evaluation using tables of known MZV relations is

possible.
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Here is a useful proposition giving a condition for determining what the reflective closure of a particular

block integral is. This result is visible already in

Proposition 2.2.26. Let B be a block decomposition. Suppose B = (e1; £1,...,¢n). Then

(B)r = { (€15 lo(1)s -+ lom) |0 € Sn } -

That is, the reflective closure consists of block decompositions arising from all possible permutations of

the él

Proof. Since the reflection operators include the operators R; ;+1 which give transpositions (4,7 + 1)
on the /;, we necessarily generate every permutation of the ¢;. But then this set is reflectively closed.

Applying Rj, k, then merely gives a permutation of the ¢;, all of which are already in the set. O

We will need the following lemma in order to compute (or rather disregard) certain subsequences from

the calculation of D_,,.

Lemma 2.2.27. Suppose that B is the block decomposition of some iterated integral, and further
suppose that R;pB = B, for some j, k. Then, in particular, B,I;_Z- = BJLH, for 0 <i<k—j. Moreover,
ifk—j+1is even, orif k —j+ 1 is odd andB S (h—j)/2 is odd, then Bbt Bpr.

Proof. By the definition of Rj; on B, it is clear that B}H = BL | since BJI-‘H- = (’RJkB)]JrZ =

L L
Bk+J (G+9) — =By,

By removing blocks < j, and removing blocks > k, we can assume that the computation is of Ry, B,
with B having n blocks. The case where k — j + 1 is even corresponds to n even, and the case k —j + 1

is odd corresponds to n odd.

For n = 2m even, we have that BZ = B3| by the definition of a block decomposition. Since

B, = B, ., we see that B = B2, ;. Continue this outwards until we get B5* = BS".

For n = 2m + 1 odd, we have (R1,B)5t,; = B3, | by assumption. We have that (j + (k — j)/2)
corresponds to 1+ (2m + 1 —1)/2 = m + 1, so that BY_, is odd. This means that B, , =
BSt ., + (Bhy —1) = Bgt 1 (mod 2). Then use the argument above to work outwards to get

Bst Ben O

Example 2.2.28. These examples will illustrate block decompositions which are invariant under some

Rk, and how the start/end point of various blocks behave.

i) For example, the block decomposition B = (0; 3,4, 4, 3) is invariant under Rq 4. This corresponds
to the word
010 | 0101 | 1010 | 010,

and indeed B5' = B$™.
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ii) The block decomposition B = (0; 3,4,2,4,3) is invariant under Rq 5. This corresponds to the
word

010 | 0101 | 10 | 0101 | 101.

The middle block has even length, so we do not have B' = BE".

iii) However, the block decomposition B = (0; 3,4, 1,4, 3) is also invariant under R4 5. In this case

the middle block has odd length. This corresponds to the word
010 | 0101 | 101 | 1010 | 010,

and indeed B5' = Bg".

2.2.4 Reflection operators on subsequences

Using the reflection operators defined above on iterated integrals, we will now define a reflection
operator on subsequences marked out on iterated integrals. Using this we can compute Dy, and
ultimately prove identities. A special case of this encoding is given in [Chal5], but here we extend the

encoding of subsequences to the more general case via the following.

Definition 2.2.29 (Encoding of a subsequence). Suppose w is a word describing some iterated integral
I™(w), and let P be a subsequence of w of length > 2, in the sense of the derivation’s D,.. Then the

encoding of the subsequence P on w is given by the following data:

e the block encoding B = block(w) of the word w, upon which P is defined,

the block s in which P starts,

the block ¢ in which P finishes,

the number of letters £ before P in the block s, and

the number of letters m after P in the block t.

We assemble these into the tuple, and identify it with the subsequence to write
P = (B;s,t;¢,m).
We may also say that P is a subsequence on the block decomposition B

Observation 2.2.30. From these data, we can calculate the length of the subsequence as E:ZS BF —

{—m.

Lemma 2.2.31. An encoding (B; s, t;£,m) of a subsequence is valid (that is, corresponds to a subse-

quence of length > 2) if and only if the following conditions hold

i) 1 < s <t<n, wheren is the number of blocks in B,
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i) 0 < ¢ < BY,
iii) 0 <m < BF, and

) if s =t, we must have £ +m + 2 < BL.

Proof. The conditions are necessary for the following reasons. Item i) corresponds to the fact that a
subsequence starts before it finishes, and lies within the word w. Item ii) corresponds to the fact that
the subsequence may start as early as the first letter of a block (so has 0 letters before it), or can start
as late as the last letter of the block (so has BL — 1 letters before it). Similarly for item iii). Item iv)
corresponds to the fact that when a subsequence lies entirely within one block, it must start before it

finishes and have length > 2.

Conversely, given a subsequence encoding satisfying these conditions, we can mark uniquely a sub-
sequence on the word w = word(B) as follows. Find blocks s and ¢ in B; the first condition ensures
blocks with these indices exist, and that block s is before block t. Count ¢ letters from the start of
block Bj to find the starting point of the subsequence. This is within block s by condition ii). Similarly,
count m letters from the end of block B; to find the ending point of the subsequence. This is within

block ¢ by condition iii).

In the case that s = ¢, condition iv) ensures the start point occurs before the end point, and enough
room is left for the sequence to have length > 2. In the case s # t, the start point occurs before the
end point because the start block occurs before the end block. The subsequence necessarily has length

> 2 because it consists of at least one point from each of two different blocks. O

We now define the reflection of a subsequence using the reflection operators defined earlier on words

and block decompositions.

Definition 2.2.32 (Reflection of a subsequence). Let P = (B;s,t;{,m) be a subsequence on some
word w with block decomposition B, which describes some iterated integral I™(w). Then the reflection
operator R is defined on P by

RP = (RsB;s,t;m,0).

One should check that this actually does describe a subsequence on some word. For this we have

Lemma 2.2.33. On applying the reflection operator R to a subsequence P = (Bj;s,t;£,m), we obtain

a valid(!) subsequence on the word w = word(R s B).

Proof. We need to check the conditions in [Lemma 2.2.31| hold. We have that RP = (R B;s,t;m,{),

so the ‘subsequence’ is defined on R, ;B.

Condition i) requires 1 < s < t < m, where m is the number of blocks in Rs;B. But since R,
preserves the number of blocks by m = n, where n is the number of blocks in B. Since

P is a valid subsequence we know 1 < s <t < n holds. So we conclude condition i) holds for RP.
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Condition ii) requires 0 < m < (Rs,B)L. But by definition (R, ,B)L = B?SH = BF. And then

)—s
0 < m < Bf holds because it is condition iii) for P.

Similarly iii) requires 0 < ¢ < (Rs;B)F. But (Rs:B)F = BL

(s4t)—t = BL. And then 0 < ¢ < BY holds

because it is condition ii) for P.

Lastly condition iv) requires m + ¢ + 2 < BL if s = t. But this condition is exactly the same as

condition iv) for P, so it holds.

Therefore RP defines a valid subsequence on R B. O]

Lemma 2.2.34. The operator R preserves the length of a subsequence.

Proof. Let P = (B;s,t;¢,m) be a subsequence. Then RP = (RsB;s,t;m,{). Using
we compute the length of RP to be

t

t t
S RuB)Y ~m— =Y Bl —t—m=3 BF—t—m,

i=s i=s

which is exactly the length of P. O

Lemma 2.2.35. The operator R is an involution on the set of all subsequences on block decompositions

with weight t and n blocks.

Proof. Let P be a subsequence on some block decomposition B with weight ¢ and n blocks. We have
from that R is an involution on this set of iterated integrals, so that Ry Rs B = B.

Therefore, we compute

RRP =R(RsB;s,t;m, L)
= (RStRstB; S, t? Ey m)
= (B;s,t;¢,m)

=5. O
Example 2.2.36. Consider the indicated subsequence on the following word.
0]01010]01]1]1010101|10|01 1.
We know the block decomposition from The encoding of this subsequence is therefore

((0; 1,5,2,1,7,2,2,1);2,5;2,6) .

We compute that
R((0; 1,5,2,1,7,2,2,1);2,5;2,6)

= (Ra5(05 1,5,2,1,7,2,2,1);2,5;6,2)

=((0; 1,7,1,2,5,2,2,1);2,56,2) ,
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using the computation of R 5 from [Example 2.2.19] We therefore obtain the following subsequence on

the transformed word

0] 0101010001 |10101 |10 |01 1.
e — |

Here we gather some facts about subsequences and their behaviour under the reflection operator R R,

which will be used in the following section to generate identities.

Lemma 2.2.37. Let P = (B;s,t;¢,m) be a subsequence. Then as words, the subsequence RP is either

the reverse of P, or the dual of P, i.e. the reverse with 0 < 1.

Proof. By removing the blocks < s, and the blocks > ¢, we may assume s = 1 and ¢t = n, where n is

the number of blocks in B.

In the case where B5' = B, we will show that the subsequence RP is the reverse of the subsequence
P. Let B = (€15 ¢1,...,4,). The first digit of P is then €; +¢. And Ry, B = (e1; 4n,...,¢1), so the

last digit of RP is (R1,B)" — £. As in [Equation 2.2.1|in the proof of [Lemma 2.2.12| we have that
(R1nB)e" = €1+ > 1, (¢; — 1) = B (mod 2) and by assumption this is = B (mod 2). So the last

n

digit of RP is B§* — £, which equals the first.
We can repeat this one letter at a time to see that the subsequence RP is exactly the reverse of P.

In the case where B # B, the RP is the dual of the subsequence P. Observe that in this case we
have that the last digit is 1 — B§* — ¢, so at every point we have the extra step of taking 1 — B$™. Not

only is the subsequence reversed, but we also interchange 0 <+ 1, giving the dual overall. O

Recall from [Definition 1.2.14] that a subsequence (of odd length > 3) is called trivial if the first and

last digits are the same. When the first and last digit are the same, the integral of the subsequence

is trivially 0 by the [equal boundaries| property from [Property 1.1.13] so it will contribute nothing to

Dcy.

Lemma 2.2.38. Suppose that the subsequence P is a fixed point of the reflection operator R. Further,
suppose that P has odd length. Then P is trivial.

Proof. It P = (B;s,t;¢,m) is a fixed point, then we must have Ryt B = B, and ¢ = m by the definition
of R.

Firstly we show that it is not possible for P to have odd length, be a fixed point, and have t — s+ 1

even. For if this were the case, by [Lemma 2.2.27| we necessarily have B!, , = Bf_,, and no ‘middle
block’. This means P has length 3/ BF — ¢ —m =2 Zf;(t_s)/z Bf — 20 =0 (mod 2).

Therefore we are in the case where ¢t — s + 1 is odd. Here we claim that we must have B§+(t—s)/2 odd.
Otherwise as before, P would have length ZZ:S Bf —t—m = QZfiét_S)/Q B + By (1-s)2 — 20 =
0 (mod 2).

Now we can apply to conclude that BS' = B, for the subsequence P. Therefore the
first digit of P is BS' 4 ¢, whilst the last digit of P is B{® —m = B — { = BS' + ¢ (mod 2). Thus the

subsequence is trivial. O
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Example 2.2.39. Following on from [Example 2.2.28] these examples will illustrate when we can have
odd length subsequences which are invariant under R, and illustrate the result that these subsequences

are in fact trivial.

i) For example, the subsequence P = ((0; 3,4,4,3);1,4;2,2) is invariant under Ry 4. It is the
following subsequence

010 | 0101 | 1010|010,

but this subsequence has even length 1 +4 +4 + 1 = 10.

ii) The subsequence P = ((0; 3,4,2,4,3);1,5;2,2) is invariant under Ry 5. It is the following
subsequence

0100101 | 10| 0101 | 101.

The middle block has even length, so this subsequence has even length 1 +4 424441 =12.

iii) However the subsequence P = ((0; 3,4, 1,4,3);1,5;2,2) is also invariant under Ry 5. In this case

the middle block has odd length. It is the following subsequence

0100101 | 101 | 1010 | 010,

This subsequence has odd length 1 +4 4+ 3+ 4 4+ 1 = 13, and is indeed trivial. The first and last
digits of the subsequence are both 0.

2.3 Identities from reflectively closed sets

We are now in a position to use this framework to prove the main theorem of this chapter, from which
we can then produce a lot of new identities on MZV’s and iterated integrals. These identities will
include some motivic proofs, up to a rational, of some currently conjectural results. We give some

auxiliary results first, which will be combined to prove the theorem.
In what follows, let S be a reflectively closed subset of
H :={ B | B is a block decomposition, with weight ¢ and n blocks } .
And let T be the set of all odd length subsequences on the block decompositions in S.
Lemma 2.3.1. The reflection operator R defines a map from T — T.
Proof. Let P be a subsequence in T'; then P = (B;s,t;¢,m) for B a block decomposition in S, and
some s,t, £, m. We have that RP = (R B; s, t;m, ). But from the assumption, S is reflectively closed,

and therefore R4 B is some (possibly different) block decomposition in S. We know from [Lemma 2.2.33
that R P defines a subsequence on R4 B. Therefore RP € T, as required. O
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We know from [Lemma 2.2.35| that R is an involution on 7, meaning that R? = id;. We can consider
the group G = {idr, R }, and its action on the set T' of subsequences.

Lemma 2.3.2. The group G = {idr,R } acts on T.

Proof. This is clear since G is a group of functions, and the action is function application. The rule
for evaluating (f o g)(x) as f(g(z)) is one of the condition for a group action. That the function idy is

the identity function on 7T is the other condition for a group action. O

Lemma 2.3.3. The set T breaks up into orbits of size < 2 under the action of G = {idr,R }.

Proof. By the Orbit-Stabilizer theorem, the size of an orbit under this action divides the size of G,
which is 2. |

Lemma 2.3.4. Let O be an orbit of T under G, which has size 1. Then the subsequence in O is

trivial, since it has odd length. (Recall, this means the end points of the subsequence are equal.)

Proof. Suppose O = { P }. Then we must have RP = P, so the subsequence P in O is a fixed point
of R. Now, since O has odd length, we know from that it is trivial. O

Lemma 2.3.5. Suppose that O is an orbit of T under G, which has size 2. Then either O contains

two trivial subsequences, or it contains two non-trivial subsequences.

Proof. Suppose that O = { Py, P, }, and that P, = (B;s,t;£,m) is non-trivial. We have therefore that
the first digit of Py, which is BS' 4 ¢, and the last digit of Py, which is Bf™ — m, are distinct.

Now compute the first and last digit of P» = (R B;s,t;m, ). In the case where BS* = Bf", we
get (RaB)S* = Bf™ and (RsB)s™ = Bj', so that the first and last digits of P, are Bf™ +m =
B — m (mod 2), and BS* — ¢ = BS' 4 £ (mod 2). These are the same as those of P;, so are still

distinct.

In the case where BS' # B, we find (RsB)S' = 1 — B and (Rs:B)$™* = 1 — B§', so that the first
and last digits of Py are 1 — B* + m =1+ B —m (mod 2), and 1 — BS* — ¢ =1+ BS' + £ (mod 2).
Since these are the opposite of those of Py, they are also distinct. O

Lemma 2.3.6. Let O be an orbit of T under G, which consists of two non-trivial subsequences. Then
the quotient sequences determined by these subsequences are equal, and the integrals of the subsequences

are negatives of each other.

Proof. Let the two subsequence be Py = (B;s,t;¢,m) and P» = RPy = (RaB;s,t,m,{). Say
B = (e1; 41,...,£,). Then for ¢ < s and i > ¢, the blocks of B and R B agree, so the quotient
sequences agree here. Since P; is non-trivial, the first and last letters are different. Suppose P starts

with z, then it ends with 1 — 2. Set § = B5'. Then the quotient sequence is

¢ a1yt 1yp/t tn
we! ---W6;711W5+ EBW{T; Wit Wer .

€t11
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Since Wf“ ends with z, and W™ 1! starts with 1 — x, we have
W @ W = e,

So the blocks in B are joined by the word W§+m+2.

But for the same reason, the blocks in Ry B are joined by W™mT+2 where € = (R4 B)St = BSt, by the
definition of Rg;. Therefore the quotient sequences ()1 from P; and Q2 from P, are both identical. So

we certainly have I™(Q1) = I™(Q2).

Using we know that the subsequences P; and P, are either the reverse, or the dual, of
each other. If P, is the reverse of P;, then by the [reversal of paths| property from we
have I°(P;) = —I*(P,) since P; and P, have odd length. If P, is the dual of P;, then by we
also have I*(Py) = —I*(P,), since P; and P, have odd length. O

Lemma 2.3.7. Let O be an orbit of T under G. Then the sum of the terms this gives rise to in Doy
is 0.

Proof. If O has size 1, then by the subsequence in O is trivial, and the orbit O contributes
0 to D<N.

If O has size 2, and the two subsequences it contains are trivial, then the orbit O contributes 0 to

D_y. Otherwise, by the two subsequences P; and P in O are non-trivial. But then by

Lemma 2.3.6| we have I*(P;) = —I*(P,), and I™(Q1) = I™(Q2), where Q; is the quotient sequence
obtained from P;. Then the orbit O contributes

I5(P) @ I™(Q1) + I(P2) @ I™(Q2)
=I%(P) @ I™(Q1) — I*(P1) ® I™(Q1)
=0. O

At this point we can state and prove the main theorem of this chapter.

Theorem 2.3.8. Let S be a reflectively closed set of block decompositions with a fixed weight t, and

fizxed number of blocks. Then the sum of the corresponding block integrals satisfies the following
m m
ZSES Ifi(s) € C"(1)Q.

Proof. The goal is to compute Dy, for weight N = ¢ on the sum ) ¢ Ifj(s). Since the coefficients of
all the integrals in the sum are +1, the terms of Dy arise exactly from the set of all odd subsequences

on the block decompositions in S. Write T for the set of all odd subsequences on S.

By we know that the set T breaks up into orbits of size < 2 under the action of the
group {idp, R } generated by the reflection operator. From [Lemma 2.3.7| we know that all of these

orbits contribute 0 to D<y.
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Therefore Doy > g If(s) = 0, and by Brown’s characterisation of ker Dy, [Theorem 1.2.15, we

have » ¢ Ifi(s) € ¢™(t)Q, as required. O
In particular we have the following corollary, which gives a way to generate identities, by finding the
reflective closure of the block decompositions associated to some initial set of iterated integrals.

Corollary 2.3.9. Let S = {I™(w;) } be a set of iterated integrals, with corresponding block decompo-
sitions S = { B; }. Suppose that S consists of block decompositions with a fized weight N, and a fized

number of blocks, but that S is not necessarily reflectively closed. Then
m m
ZS€<S>R Iii(s) € C"(N)Q.

Proof. The set (S)r is reflectively closed by definition, so this result follows immediately from

Theorem 2.3.8 O

Remark 2.3.10. By applying the [period map| from [Equation 1.2.1| to [Iheorem 2.3.8] and [Coroly

we obtain analogous results on the level of real numbers for the classical iterated integrals

and multiple zeta values.

This corroborates the observation in [Example 2.2.25| that starting from the integral I™(01010 | 01 |
101) = ¢™(2,3,1,2) with block decomposition (0; 5,2, 3), the sum

m
ZSES’ I5i(s)

over the reflective closure S’ = {(0;5,2,3))g, has period in 7°Q = ((8)Q.

2.4 Examples of identities following from reflective closure

In this section we will collect a number of identities which follow from this construction.
Proposition 2.4.1. Let
H(t,n) = { B ‘ B is a block decomposition, with weight t and n blocks, and B;' = O} .

Then
D scrm () €CTOQ,

And applying the period map shows that

per (30 () € Q.

Proof. The set H(t,n) is reflectively closed because [Lemma 2.2.17| shows that the reflection operators
preserve weight and number of blocks. They also preserve B5'. The result follows from [Theorem 2.3.8
O
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Corollary 2.4.2. Let
H(t)={B ‘ B is a block decomposition, with weight t and B}* =0} .

Then
S B €Cm 00

And applying the period map shows that
m
per < E SGH(t) Ibl(s)) S g(t)@ .

Proof. Technically, we cannot appeal directly to reflective closure, since the number of blocks is not

constant in H(t). However, we can write

t42

H(t)= | H(t,n),

n=1
where the union is disjoint. It is clear that any integral has at least one block. An integral of weight ¢
is described by a word of length ¢ 4 2. If this is the word constant word 000 - - -0, then at ¢ + 2 blocks

are required (one block for every symbol).

[Proposition 2.4.1{shows that > . ) I (s) € ¢™(t)Q. Therefore we have

t+2
Do)=Y | > I e"®Q. O
SEH(t) n=1 \s€H(t,n)

Remark 2.4.3. In the above proposition, we could (should) also impose the condition that the number

of blocks in B is different from ¢ modulo 2. If they are equal, the integrals of such blocks are trivially

0 using [Lemma 2.2.12| so ZsEH(n,t) It (s) =0 if n = ¢ (mod 2).

A more interesting family of identities is the following. They form the most ‘basic’ type of identity
provable within this framework. These identities will arise when we discuss a generalisation of the

cyclic insertion conjecture; they will enable us to make some partial progress towards it.

Theorem 2.4.4 (Symmetric insertion). Letn € Zsq, and let {1, ..., ¢, be given. Sett = —2+> " {;,
to be the weight of the integral block decomposition (0; 1,...,£4,), and assume t > 2. Then
7L Loy, o) €CT Q.
gESy
Proof. Essentially this result is equivalent to [Iheorem 2.3.8| although we restrict to reflectively closed

sets generated by one element, and give the corresponding result explicitly in terms of permutations of

the blocks.

From [Proposition 2.2.26] we have that

S = <(0; 61,...,€n)>1g = { (O; EU(U,...,&,(”)) ’ S Sn} .
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Since S = ((0; 41,...,£,))r is reflectively closed by definition, we conclude by [Theorem 2.3.8] that
D IO Loy bom) = DI (s) € CM(H)Q. 0
ocES, seS

Remark 2.4.5. At odd weight, all of the above results are, in fact, trivial. This is because, as

discussed in the reflection operator Ry, acting on a block decomposition B with n
blocks returns the block decomposition of the dual integral, up to sign. If ¢ is the weight, the

relation then shows that I/} (R1,B) = (—1)'I{%(B). So when summing the integrals of a reflectively

closed set of odd weight, the terms merely cancel in pairs.

However, at even weight the results are definitely non-trivial, as we shall later see.

2.4.1 Relations on MZV’s

It behooves us to consider what sort of identities these results give us about MZV’s. We know that every
iterated integral I™(w) can be expressed in terms of MZV’s, by shuffle-regularising the divergences
away, as in However, this procedure can obscure much of the structure of the original
identity. When can we convert directly back to MZV’s?

From we know divergent integrals correspond to block decompositions B which start

with BY = 1, or end with BL = 1. [Proposition 2.2.26|shows that a reflectively closed set contains all

permutations of the lengths B}, so to be guaranteed a convergent integral, we must require BJ* > 1

for all 7.

Definition 2.4.6. A block decomposition B (with weight different from number of blocks mod 2)

which has BF > 1 for all i will be called always convergent.

Proposition 2.4.7. Always convergent block decompositions describe MZV’s z = (™(aq,...,ax)

satisfying the following conditions:
i) each argument a; is contained in {1,2,3 }, and

1) there is no consecutive pair of arguments a; = a;4+1 = 1.
Proof. An argument a; > 3 in MZV’s corresponds to the substring

10%1=100---0.

1
—_
> 3 symbols

This corresponds to the following decomposition into blocks
10[0]---1]0,

and so cannot occur because length 1 blocks are forbidden.

Similarly consecutive arguments a; = a;+1 = 1 correspond to the following substring

111

| I |
> 3 symbols
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which cannot occur because length 1 blocks are forbidden. O

Definition 2.4.8. Suppose ((aq,...,ax) is an MZV satisfying the two conditions

i) each argument a, is contained in { 1,2,3 }, and

ii) there is no consecutive pair of arguments a; = a;4+1 = 1.
We will call this a 123-MZV.

Using this, we can prove an identity involving a sum of this type of MZV.

Proposition 2.4.9. Let
S =1 128-MZV’s of weightt } .

Then
S )Pz e,

where dp is the depth of the MZV.

Proof. First convert this to a statement of iterated integrals. The factor (—1)P(*) disappears when we

do this conversion.

These MZV’s exactly correspond to always convergent block decompositions of weight ¢, where the
number of blocks is different from the weight modulo 2. Including those where number of blocks =

weight (mod 2) will not change the sum, as they contribute trivially 0.

The sum then reads

m
ZSET Ibl(s) )

where T := { B | B is a block decomposition, with weight ¢, B5* = 0, and all BX > 1 }

Break this into a disjoint union over sets
T(n) = { B ’ B is a block decomposition, with weight ¢, n bocks, B5' = 0, and all BzL >1 } ,

which contain block decompositions with a fixed number of blocks. We see that each of these sets is
reflectively closed; the reflection operators permute the lengths, so they do not change whether the

lengths are all > 1.

So we conclude by that
_1)dr(2) , —
>0 = (2, 1)) €. a

Remark 2.4.10. This identity breaks up into smaller sums which involve only permutations of some

fixed blocks, using
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Example 2.4.11. At weight 8, there are 17 such 123-MZV’s. We obtain the following sums with the
indicated block lengths.

8
Lengths (10): €(2,2,2,2) = %
7'('8
Lengths (2,2,6): €(1,3,2,2) +((1,2,2,3) + ((2,2,1,3) = o
Lengths (27 37 5): 7€(3, 27 3) + 4(27 33 17 2) - C(]-, 27 ]-7 2& 2) +
278
- C(Qa 37 3) + C(gv ]-7 23 2) - C(la 2, 27 ]-7 2) = ?
,].(.8
Lengths (2,4,4): €(1,2,3,2) +¢(2,1,3,2) +¢(2,1,2,3) = o
7'('8
Lengths (3,374): ¢(3,3, 2) — C(S7 2,1, 2) + C(Z, 1,2,1, 2) = o
8
Lengths (2,2,2,2,2): ¢(1,3,1,3) = 5ol

Here the weight here is low enough that tables of relations can be used to explicitly evaluate these
combinations. Alternatively, one can obtain the rational multiple of 78 /9! in each identity by numerically

evaluating as in and finding the rational to sufficiently high precision to be confident

in the result.

For the sum in [Proposition 2.4.9] over

S = { 123-MZV’s of weight 8 }

we obtain

(a0, = 2T

5 9l
z€S 5 9

2.5 The (generalised) cyclic insertion conjecture

In this section, we will introduce a generalisation of the cyclic insertion conjecture proposed by Borwein,
Bradley, Broadhurst, and Lisonék in [BBBL98|. Some shadow of this conjecture can be seen in the
evaluations presented in above, specifically in the fact that each sum evaluates to a

very precise multiple of g—f.

The name of this conjecture comes from the first instance conjectured in [BBBL9S|. In this instance,
blocks of 2’s were being inserted cyclically into the arguments of another MZV. Whilst the generalisation

does not have this particular quality, it still uses a cyclical shifting and so the name remains apt.

Conjecture 2.5.1 (Generalised cyclic insertion). Let B = (0; ¢1,...,¢,) be a block decomposition of
weight t. Let Cp, = ((12 --- n)) be the cyclic group of order n viewed as a subgroup of Sy, generated
by the n-cycle (12 --- n).
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i) If B has even weight, n is odd so that the integrals are not trivially zero, and there does not exist

a consecutive pair of lengths BF' = Bl | =1, then

ST Iy o) = I +2) = (~1)2C({2)1/?2) .
oeC,

And applying the period map would give

,ﬂ.t

s Q.

?
Z Ini(lo(1)s -1 lom)) = (—1)2

ceCy,

it) If B has odd weight, n is even so that the integrals are not trivially zero, and there does not exist
a consecutive pair of lengths BF' = Bl | =1, then
?
Z ]{;}(Zg(l), . ,fg(n)) = Ig{(t + 2) =0,
ceCy,

with the same result after applying the period map.

One could paraphrase this conjecture as saying roughly that at a given weight, cyclically symmetrised
block integrals have a constant value. The restrictions on the BX are necessary, as shown in|Remark 2.5.

below.

FEvidence and outlook. In we present tables of the dimensions of cyclic insertion relations

(Conjecture 2.5.1)), symmetric insertion relations (Theorem 2.5.4f), and other numerically verified block

relations. In particular, we tested the cyclic insertion conjecture for every valid block decomposition

up to weight 16, plus numerous other examples in higher weight.

It appears that the identities in [Conjecture 2.5.1] satisfy some sort of ‘stability’ under the derivations

D_ n, which opens up a potential avenue to a partial ‘proof by recursion’ using the motivic framework.
For further details, see the later where we can explicitly refer to examples that illustrate
this stability. Be aware though, that the motivic framework cannot yet provide a full proof of these

results, since the rational multiple needs to be numerically evaluated. O

Remark 2.5.2. Briefly revisiting |[Example 2.4.11] we should look at the block decompositions with

lengths (2,3,5) and (2,2,2,2,2) in a little more detail, just to clarify some points of potential confusion.

The lengths (2,3,5) give rise to the following sum

_C('?)v 27 3) + C(27 37 ]-7 2) - C(]-v 27 ]-7 27 2) +

o8

- <(2a 373) + C(37 17 27 2) - <(17 27 27 17 2) = F

Each row of this is itself an instance of the cyclic insertion conjecture. The first row cyclically sums
over (2,3,5), whilst the second row cyclically sums over (2,5,3). Each row sums to ’;—T according to

the cyclic insertion conjecture, explaining the coefficient 2 in the result.
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Whereas, for the lengths (2,2,2,2,2), the cyclic insertion conjecture produces 5 copies of the blocks
I11(2,2,2,2,2) because the blocks are already cyclically symmetric. So we get

51%1(2,2,2,2,2) Z I, (10) or

5I™(0;1,1,0,0,1,1,0,0;1) = I™(0;1,0,1,0,1,0,1,0;1).

Converting to MZV’s and applying the period map gives
8

5(1,3,1,3) = ((2,2.2,2) = 47,

we can then divide through by 5, to get the result in [Example 2.4.11} which explains the coefficient %

Remark 2.5.3. The restrictions that there is no pair B = Bl in both cases, seems somewhat
ad-hoc. It appears that these (conjectural) identities are just an easy version of some statement which
holds even more generally. These restrictions are most certainly necessary, as shown by the following

examples.

In even weight, applying the cyclic insertion conjecture to the blocks [¢;] = [1,1,2,3,3] does not
produce even a rational multiple of 78, despite this block decomposition having weight 8. In this case
we obtain
> In(loqys - - lo(s) = 27.89973142. . 7;—? :
oeCs
However, we do obtain (by use of below) that the fully symmetrised sum does produce

a rational multiple of 78, namely
78 s
Z Ibl(fo(l)a s aea(S)) = *185 e Q.
og€Ss5 :

Similarly, in the odd weight case, applying the cyclic insertion conjecture to the blocks [¢;] = [1,1,2, 3]

produces a non-zero result in contrast to the result of 0 we would desire. Specifically

> llorys - - logay) = 395460870059 . ..
ceCy

=20(2)¢(3)-

In the context of [Remark 2.6.18| this cyclic combination for [¢;] = [1,1,2, 3] appears as part of the

computation of Ds for the cyclic combination [¢;] = [1,1,2, 3, 3] above. This in fact leads to the result
that for [¢;] =[1,1,2,3,3],
2 m
Z Ibl(gﬂ(l)v s 7&7(5)) = C(Q)C(S) — 63

9!
oeCs

Alternatively (after applying some identities), this may be written as

=2¢(2)¢(1,2,1,2) + ¢(2,2,2,2,2)

= —2]b1(4)fb1(2, 3, 3) + Ibl(lo) ,



2.5. The (generalised) cyclic insertion conjecture 66

where the blocks [2, 3, 3] from [¢;] make a second appearance.

This indeed offers a suggestion for how to generalise the cyclic insertion conjecture to all block
decompositions. From recent cursory investigations, it appears a general result holds for [{;] =

[k1,...,kn—2,1,1], where k1 # 1, k,,_2 # 1, and there is no pair k; = k;11 = 1. The result is as follows.

ST Iilloqys s lotny) = ~2Loi (@) Toi(kr, - kn) + Tot(ky + - + koo +2).
oeCy

Generalisations to [¢;] = [k1,...,kn—3,1,1,1] and beyond also appear to hold.

We claim now that the generalised cyclic insertion conjecture (Conjecture 2.5.1)) is a generalisation of

both the BBBL cyclic insertion conjecture, and of Hoffman’s identity. This will be shown explicitly

in |Conjecture-Example 2.6.1] and [Conjecture-Example 2.6.4} It is not surprising then that we cannot

prove this conjecture. We can make some progress towards it in the form of the following theorem,

which is a restatement and reinterpretation of applied to the context of [Conjecture 2.5.1]

Theorem 2.5.4 (Generalised symmetric insertion). Let B = (0; £1,...,¢,) be a block decomposition

of even weight t. Then some sufficiently symmetrised version of |[Conjecture 2.5.1| holds. More precisely

the following evaluation, consisting of a sum of (n — 1)! cyclic insertion identities, holds

D> I (loqys - lomy) € CM({2}HQ = (" (1)Q.

oES,

So applying the period map produces

Z Lni(lo(1ys- - - o)) € CH{2}2)Q = ¢(1)Q = 7'Q.

ocES,

Proof. This result is a restatement and reinterpretation of The equalities follow using
the evaluations (and their motivic counterparts) which state

7.‘.Qk

2k + 1)!
(71)k+1B2k (27.(.)2]6
2(2k)!

c({21h) =

C(2h) =

The result holds in fact for any choice of /;, including in the case where some consecutive pair

l; ={;11 =1 occurs. O

Remark 2.5.5. An analogous result for odd weight does hold, but is trivial. The symmetrisation

produced by cancels pairwise, an integral with its dual, to give 0.

In the following section we will present a number of examples of conjectural identities given by the cyclic

insertion conjecture, [Conjecture 2.5.1] along with the proven symmetrisations from

Typically we will restrict these examples to 123-MZV’s, since they produce ‘nice’ identities, so I am

content to give two simple examples of the general case of cyclic insertion here.
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Example 2.5.6. Consider the MZV z = —((4,1,2), which corresponds to the integral 7(010 | 0 | 01 |
101), with block decomposition Iy (3,1, 2, 3).

Taking [¢1,4s, 03, 44] = [3, 1,2, 3], we form the sum

Z Ini(loqrys - - o))

ceCy
=1n(3,1,2,3) + 1(1,2,3,3) + 11(2,3,3,1) + 1141(3,3,1,2)
= (010 | 0] 01 | 101) + I(0 | 01 | 101 | 101) +

+ (01101 | 101 | 1) + (010 | 010 | 0 | 01).

The first and last integrals can be converted directly to the MZV’s —((4,1,2) and ((3,4) respectively.
The second and third require shuffle-regularising, as in [Section 1.2.3.1} They give the following

1(001101101) = —1(010101101) — 21(011001101) — 1(011010101) — 27(011011001)
= 7C(Qa 2, ]-7 2) - QC(L 37 ]-a 2) - C(la 2, 27 2) - QC(la 27 ]-a 3)
1(011011011) = 31(010001001) + 37(010010001)

=3¢(4,3) +3¢(3,4) .

Thus we obtain the sum

Z Ibl(ea(l)v s 760(4)) = (_<(4a ]-7 2)) + (C(Sv 4)) + (34(4a 3) + 3((3a 4)) +

oeCy

+ (_C(27 2’ 17 2) - 2<(1737 17 2) - C(17 23 27 2) - 2<(17 27 17 3)) )

which indeed equals 0, using tables of known MZV relations. This is the result expected by cyclic

insertion.
Example 2.5.7. Consider the MZV z = —((1, 1, 2,2,4), which corresponds to the integral (01 | 1 |
101010 | 0 | 01), with block decomposition I1,(2,1,6,1,2).

Take [¢;] = [2,1,6,1,2], and form the sum

Z Ini(loqrys -1 lo(s)) -

oeCs

‘We obtain

Ib1(2, 1,6,1, 2) + Ibl(]-a 6,1,2, 2) + Ib1(6, 1,2,2, 1) + Ibl(l, 2,2,1, 6) + Ib1(2, 2,1,6, 1)
— 7(01| 1] 101010 0| 01) + I(0 | 010101 | 1 | 10 | 01) + I(010101 | 1 | 10|01 | 1)+

+ (0] 01100 010101) + I(01|10]0 010101 | 1)

These integrals shuffle regularise to give the following sum of MZV’s, where some terms have been

combined via duality. The first integral gives the first term. The second and fifth integrals give the
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third term. And the third and fourth integrals give the second term.

= - C(la 1727274) +
+2-(—2¢(1,4,2,3) — 2¢(1,4,3,2) — 4¢(1,5,2,2) — ¢(2,4,2,2)) +
+ 2 : (3<(27 2’ 17 174) + C(27 27 1’ 2’ 3) + <(27 27 27 1’ 3) +

7'(10

+2¢(2,3,1,1,8) + 2((3,2,1,1,3)) = =177 -

This evaluation is obtained using tables of known MZV relations. This is indeed the result expected

by cyclic insertion.

2.5.1 Cyeclic insertion on 123-MZV’s

If we restrict to the class of 123-MZV, the associated block decomposition never contains a block
of length 1. So any cyclic permutation of the block lengths is guaranteed to produce a convergent
integral. This means that the terms produced by the cyclic insertion conjecture can be converted
directly to MZV’s, and will produce relatively short and highly structured conjectural identities. It is
worth considering, then, how these terms can be generated directly from an initial MZV without going

through the block decomposition first.

Lemma 2.5.8. The arguments of a 123-MZV are composed of an arbitrary string formed by concate-

nating a unique combination of substrings of the following type

i) {2}*,3, where £ > 0. This contributes 1 block.
i) {2}4,1,{2}",3, where £,n > 0. This contributes 2 blocks.

i) {2}, (1,2), {2}™, ..., (1,2), {2}, 1,{2}", 3, where {,m;,n > 0. This contributes k + 2 blocks.

k repetitions

Then ending with

iv) {2}, where £ > 0. This contributes 1 block.

v) {2}, (1,2),{2}™,...,(1,2),{2}™, where £,m; > 0. This contributes k + 1 blocks.

k repetitions

Here the notation (1,2) is just to emphasise that in these MZV’s (1,2) seems to function as one

argument. One should perhaps view it as 3, the dual of 3.

Proof. In the block decomposition, consider the position of the first block after By which has B5* = 0.

Suppose this block occurs at position 7 = 2, the first such available position. Since the first block must
end 0 to make B5' = 0, the first block must have odd length. Since we restrict to 123-MZV’s, all
lengths must be > 1. So the word in the integral representation of the MZV must begin

0(10)‘10 [ 0--- =W @ .-,
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where ¢ > 0. This gives case i).

Now suppose the block occurs at position ¢ > 2. Then the first block must end 1, meaning it has
even length. The blocks in position j = 2,...,i — 2 must start 1 and end 1, giving them odd length.
Finally the block in position ¢ — 1 must end 0, giving it even length. Restricting to 123-MZV’s forces
all lengths to be > 1. So the word in the integral representation of the MZV must begin

0(10)°1 ] 10(10)™1 | --- | 10(10)™*1 | 10(10)™ | 0 - --
— W02f+2W12m1+3 . W12mk+3W12n+2 EB .
where £, mq,...,mg,n > 0. This gives case ii) and iii).

After dealing with all such blocks, there will be blocks with B5* = 0 remaining. Then the word in the

integral representation of the MZV must look as follows
0(10)%1 | 10(10)™1 | - -+ | 10(10)™*1,

where £,m; > 0. The first block cannot end with 0, otherwise the second block starts with 0. Similarly
all subsequence blocks must end with 1. Since they also start with 1, this forces their lengths to be
odd. Finally restricting to 123-MZV’s means that all block lengths are > 1. This gives case iv) and v)

since no further blocks can occur. O

Notation 2.5.9. It is convenient to separate the blocks of 2’s from the surrounding arguments above,

and write
C(al, ceey A ‘ bl, e ,bk,karl) = C({Q}bl,al, {2}b2,a2, ey {Q}bk,ak, {Q}b’“Jrl) 5

where a; € {1,3,(1,2) }. The substrings in [Lemma 2.5.8| forbid consecutive arguments a; = (1,2) and
a;+1 = 3. This will consist of k + 1 blocks.

Definition 2.5.10 (Cyclic operator). Let z = £((a1,...,ax | b1,...,bpt1) be a 123-MZV with
corresponding block decomposition Iy (€1, ..., %), where n = k + 1. Assume the sign is chosen so that

we have equality. Let i be the first position for which B$* = 0, not including B;. Define
Cz=w,
where w is the 123-MZV with block decomposition

Iy (Ciy ligry oo by by b))

If no such i exists, set

Cz=w

where w is the 123-MZV with block decomposition

Ib1(€27»€3’ ... 7’€n7£1)
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Proposition 2.5.11. Let £C(a1,...,ax | b1,...,bgy1) be a 123-MZV with corresponding block decom-
position I (¢q, ..., L,), where n =k 4+ 1. Assume the sign is chosen so that we have equality. Then
the set

{C2|i=0,....n—1}

contains exactly the same terms as produced by sum EC Ini(Uorys - -1 Lo(n)), from the cyclic insertion

conjecture.

That is )
Z Ibl(fg(1)7 N ,fg(n)) = Z Clz .
=0

oeCy

Proof. From the definition it is clear that each term is one of the terms from the cyclic insertion
conjecture. Namely, each application of C produces a cyclic shifting of the block decomposition. We

only have to show that eventually any ¢; is moved to the first position.

Let S={i>1|B*=0},and T={4> 1| B* =1}. The block corresponding to the j-th element
of S is moved to position one by applying C’/. Application of C changes the starting digit of the blocks
Ly, ..., ¢; which are moved to the end. This is because the starting digit of B$* = 0 must be flipped to
match the last digit BS" = 1. Therefore the block corresponding to the j-th element of 7" is moved to
position one by applying C!51*7. O

Proposition 2.5.12. Let ((a1,...,a% | b1,...,bky1) be a 1253-MZV. In accordance with the cases in
application of the cyclic operator C has the following results.

i) C(3,rest | £,rest) — —((rest, (1,2) | rest, ?),
it) C(1,3,rest | £,n,rest) — ((rest, 1,3 | rest, £,n) and

i) C({(1,2)}*,1,3,rest | £,my, ..., my,n,rest) —

(—1)*¢(rest, 1,3, {3}* | rest, £,mq,...,mp,n) .
Otherwise, only the final substrings appear, and we have

w) C(0]€)—¢D]0),

v) CH(L, 2 | 6,my, ... yme) = C{3YF | my, ..., my, £).

Proof. The proof of [Lemma 2.5.8 made use of the position of the first block beginning B5* = 0. So C

interacts well with the structure presented there. So we can check on a case by case basis.

Case i):  The word describing the integral corresponding to the MZV starts

0(10)°10]0--- =W+ ...
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So only the first block is moved in this case. The 0 at the start of the second block becomes the lower
bound of the integral, so the arguments after {2}¢, 3 will remain unchanged. Moving this block to the
end, we obtain

11001 = - @ WS,

The upper bound of the integral now becomes the start of the next argument at the end of the MZV.

This gives new arguments
(1,2),{2}*

at the end. The depth changes by one, 3 becoming (1,2), so we pick up a minus sign when converting

from the integral back to an MZV.

Case ii) and iii): The word describing the integral starts

0(10)°1 ] 10(10)™1 | --- | 10(10)™*1 | 10(10)™ | 0 - - -

= W2 ts ety ant2 gy

In this case the first k& 4+ 2 blocks are moved. The 0 at the start of the (k + 3)-th block becomes the
lower bound of the integral, so the arguments after our initial string will remain unchanged. Moving

these blocks to the end gives

.-+11(01)%0 | 01(01)™0 | --- | 01(01)™*0 | 01(01)"

= O W125+2W02m1+3 e W02mk+3]/V02n+2 ®---

The upper bound of the integral now becomes the start of the next argument at the end of the MZV.

This gives new arguments

1,{2}%,3,{2}™ 3,..., {2} 3, {2}"

at the end. The depth changes by k, as k arguments of the form (1,2) become arguments of the form
3. So we pick up sign (—1)* when converting from the integral back to an MZV.

Case iv) and v): The word describing the integral is

0(10)“1 [ 10(10)™*1 | --- | 10(10)™ 1 = WZEF2wami 3 gy 2mets,
By definition, we only move one block to the end in this case. We obtain

01(01)™10 | --- | 01(01)™*0 | 0(10)“1 = W™ H3 .. yygmetspy2e+2.

This gives the MZV
(_1)kC({2}m173a R {Z}mkﬂ?’, {2}6) .

The depth changes by k since k arguments (1,2) become arguments 3. So we pick up a sign (—1)*. O

We will give examples of this proposition in action in the following section, where we present various
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examples of cyclic insertion and symmetric insertion.

2.6 Examples of cyclic insertion, and symmetrisations

In this section, we will present various examples of the kind of identities one can obtain from cyclic
insertion. We will also present the motivically provable symmetrisations which give currently best
known identities in that direction. We will at last show how the BBBL cyclic insertion conjecture, and

Hoffman’s identity, arise from the general conjecture.
Conjecture-Example 2.6.1 (BBBL cyclic insertion). Consider

z = (_1)d<({2}a1’ 1, {2}a2 ;3 {2}1137 1 {2}112,,,’ 3, {2}a2n+1)

= (—1)dC({17 3}” | ai,y ... ,a2n+1) s

where d = 2n + ), a; is the depth, so that the corresponding integral has coefficient 1.

Applying the cyclic operator C produces
Cz= (_1)dCC(17 37 {17 3}n—1 | a1,a2,0a3,..., an)

= (—D%({1,3}" 11,3 | as,...,an,a1,az)

(71)dC({1a 3}n | ag,...,0n,a, a2) .

That is, the blocks of two {2}% are cycled around by two steps.

One finds that the integral describing z has 2n + 1 blocks, namely

z = I(O(IO)all | 10(10)(12 ‘ . ‘ 0(10)a2n+1 1)

= Ib1(2a1 +2,2a3 + 2,. --720/277,-‘,-1 +2) (261)

Since there are an odd number of blocks of 2, we conclude that

n

dCz=(=1D" > C{L3}" [ as)- s Go@nt)) -

=0 0€Can 11

From |Proposition 2.5.11f we know this matches with the sum in the general cyclic insertion conjecture

[Conjecture 2.5.1] Then that conjecture tells us to expect

i
§ n ? 7T
(_1)d C({lvg} | aa’(l)>‘-~7aa(2n+1)) = (_1)t/2 R
o€omin (t+ 1)!

as the weight ¢ = 4n + 23 a;, even. Since (—1)/2? = (—1)2”+Zz‘ % = (-1)4, the sign on the RHS
matches the sign on the LHS. Therefore we can write wt for the weight, and simplify this to

? W

20 CULBY oy o) = iy

c€Cany1

This is exactly the statement of the BBBL cyclic insertion conjecture from [Conjecture 2.1.5]
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Theorem 2.6.2 (Symmetrised BBBL, [Chal5|). [Theorem 2.5.4| shows the following symmetrisation
of |Conjecture- Example 2.6.1| holds.

Z C({I,S}n | a0(1)7...,a0(2n+1)) (S WWtQ.

0E€San+1

This is Theorem 3.1 in [Chal)).

Moreover, we have

wt

1 ™
Y CHL3Y gy, ozary) = (2”)!m'
0ESan 41

Here = denotes an identity which holds up to Q, and where the expected rational is 1. (See|Appendiz A

Proof. To obtain the symmetrisation, [Theorem 2.5.4] tell us to replace ZJEC%H with ZUESQn,+1'

Doing this in the above case we obtain

Z Ibl(QaU(l) + 2, 2&0(2) +2,..., 2(10(2”_1_1) + 2) .

0€San+t1

Using |[Equation 2.6.1} we can convert this to

:l: Z C({l,?)}n | ao(l),...,aa(2n+1)).

0ESan41

But [Theorem 2.5.4] shows us
£ Y CHLBY lasq),- - tozntn) € C(OQ,

0ESa2n+1

where the weight t = 4n 423", a; is even. Since + does not change rationality, we get
Z C({la 3}77, | A1)y« aa(2n+1)) € ’R—Wt(@a

o€S2n+1
as claimed.
Moreover, this is made up of (2n + 1)!/(2n + 1) = (2n)! cyclic insertion identities, each of which

conjecturally contribute one lot of Adding these gives the expected identity above. O

_n_wt
(wt1)1*

By setting a1 = ag = - -+ = ag,41 = m above, we obtain 2n + 1 copies of the same MZV. Dividing

through by 2n + 1 we obtain the following corollary which partially confirms [Conjecture 2.1.8|

Corollary 2.6.3 (Evaluable family of MZV’s). The following result holds

1 7TWt

C({{2m,1, {2}, 31" {2}m) £

2n+1 (wt+1)!7

so at least is € TVQ.

Let us consider how Hoffman’s identity fits into this picture. We have the following more general

version.
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Conjecture-Example 2.6.4 (Hoffman’s identity). Consider

z = (_1)dg({2}a’ 3, {Q}ba 3, {2}0) = (_1)C(37 3a | a, b7 C) :

Where d = 2+ a + b+ c is the depth. This has 3 blocks, and one can check it has block decomposition

z = 1(0(10)%10 | 0(10)°10 | 0(10)°1) = I1;(2a + 3,2b + 3,2¢ + 2) . (2.6.2)

Applying C gives
Cz=—(-1)%(3,(1,2) | b,c,a) = I11(2b + 3,2¢ + 2,2a + 3) (2.6.3)
C?z = (—1)%((1,2),(1,2) | ¢,a,b) = Iy (2¢ +2,2a + 3,2b + 3) . (2.6.4)

So from [Proposition 2.5.11] and [Conjecture 2.5.1] we expect

(71)d(<‘(33 3 | a, ba C) - <(3, (17 2) | b, ¢, a) + C((la 2)7 (13 2) ‘ ¢ a, b)) ; (71)15/2 (t _T_ 1)| )

as the weight ¢ = 6 +2(a + b + ¢) is even. Since (—1)%/2 = (—1)3+ot+0+c = (1) we obtain
7 ﬂ.wt

¢(3,3 ] a,b,¢) —€(3,(1,2) | bye,a) + ¢((1,2),(1,2) | ¢,a,b) e

In particular, the case a = b = 0 produces Hoffman’s original conjectural family, as given in
iture 2.1.9

Theorem 2.6.5 ((Symmetrised) Hoffman’s identity). Symmetrising Hoffman’s conjectural identity

[Conjecture-Example 2.6.4) using [Theorem 2.5.4] shows that the following identity holds

€(3,3,| a,b,c) — ((3,(1,2) | b,c,a) +¢((1,2),(1,2) | ¢,a,b) +

wt
+¢(3,3,1 bya,¢) = €(3,(1,2) | a,¢,0) + C((1,2), (1,2) | &,b,a) = —2——— .
(wt+1)!
Applying duality shows that
1 ,/th
2C(37 37 | a, ba C) - 2<(37 (17 2) | bv C, a) + 24((17 2)7 (L 2) ‘ ¢ a, b) = *2m

So that we obtain a proof of (twice)|Conjecture-Example 2.6.4| up to a rational, and in particular a

proof of (twice) Hoffman’s conjectural identity, up to a rational in the case a = b= 0.

Proof. To obtain the symmetrisation, tell us to sum over all permutations of the block
lengths. So we get the following 3! = 6 terms

I (2a+ 3,20+ 3,2¢ + 2) + I (2b+ 3,2¢ + 2,2a + 3) + Ini(2¢ + 2,2a + 3,2b+ 3) +

+ Ini(2b+ 3,2a + 3,2¢ 4+ 2) + Ini(2a + 3,2¢ + 2,20 + 3) + I (2¢ + 2,2b + 3,2a + 3) .

Using [Equations 2.6.2 to [2.6.4], we convert these back to the given MZV’s up to £1. Since the weight

is even, the result is in 7V Q.
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Moreover, each line is an instance of the cyclic insertion conjecture, so it expected to contribute one

wt

lot of —m

By duality, we have that {(3,3 | a,b,¢) = (((1,2),(1,2) | ¢,b,a), ¢(3,(1,2) | b,c,a) = ((3,(1,2) | a,c¢,b),

so the terms combine as indicated. O

Conjecture-Example 2.6.6 (Generalised Hoffman identity). A higher version of Hoffman’s identity
arises from considering

2= (=1)%{3}* | ay,...,am,c¢),

where d = 2n + ). a; + c is the depth. This has 2n 4 1 blocks, and block decomposition

z=1In(2a1 +3,2a2 + 3,...,2a0, + 3,2¢+ 2).

We calculate

Cz=(—1)M¢({3}*"1,(1,2) | ag, ..., aon, ¢, a1)
= Ib1(2a2 +3,...,2a2, +3,2c+ 2,2a; —|—3)
C2Z = (71)d+2C({3}2’ﬂ*2’ {(17 2)}2 | as,...,Qa2n,C, a1, CLQ)

=L(2a3+3,...,2a2, + 3,2c+ 2,2a1 + 3,2a2 + 3).
And by induction

Clz = (—1)U=DCH{3*"{(1,2)} | aig1, .- -, Gon, €, a1, . . ., a;) (2.6.5)

= (20141 + 3, ..., 2a20 + 3,2+ 2,2a1 + 3, ..., 2a; + 3) . (2.6.6)

By [Proposition 2.5.11| and |[Conjecture 2.5.1| we obtain

2n 2n
ZCZZ = (_1)d Z(_I)ZC({3}2n717 {(17 2)}Z | Aj4+1y--+,02n,C a1, ... 70@)
=0 =0

,? t/2

o 1\t/2

= (-1 t+1)"

as the weight ¢ = 3 x 2n + 23", a; + 2¢ is even. Since (—1)/2 = (—1)"*¢ we can write this as

2n

S DB ALY | aigas - agn, a0, a3)

=0

2 7TWt

(=1" (wt + 1)1

Theorem 2.6.7 (Symmetrised generalised Hoffman identity). Symmetrising the generalised Hoffman

identity, [Conjecture-Example 2.6.6}, using[Theorem 2.5.4] shows the following identity holds,

2n
Z Z(_l)zg({3}2n71, {(17 2)}1 ‘ Ao(it1)y -3 Ag(2n)> G A1)y - -5 aa(i))

o€Sayn =0

1 n
= ety

,n_wt

Proof. says we need to sum over all permutations of the block lengths. We can group
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these permutations by the position of the even length block 2¢ + 2 to obtain the following sum

2n
Z Z Ini(2a5(i41) + 3, - -, 2a0(2n) + 3,26 + 2,2a5(1) + 3, - . ., 20,y + 3) € T'Q.

€S2 i=0
Using this is converted into the MZV’s above.

Moreover, for each fixed o € Sa,, we obtain a cyclic insertion conjecture identity of the original starting
type as the inner sum. So this is a sum of (2n)! cyclic insertion identities, each of which is expected to

O

t

contribute (—1)" (W%il)u ~

The above instances of the cyclic insertion conjecture have already been proposed. However, the

generalised cyclic insertion conjecture [Conjecture 2.5.1| can generate plenty of new identities which can

be numerically verified. Henceforth we may begin to skip some details, since these ideas should now be

familiar.
Notation 2.6.8. It is convenient to write (¢(a1,...,an | b1,...,bnt1) to mean the sum obtained by
applying the cyclic insertion conjecture to {(ai,...,an | b1, ..., bpt1).

We will also use the notation Symy, . 1 to mean the sum of over all permutations of the variables

x;. That is
Sym{ T1yeey @y } f(xh s ’xn) = Z f(xa(1)7 s axo(n))

o€S,
Conjecture-Example 2.6.9 ({(1,3,3,3)). Consider

z=(-1)%¢(1,3,3,3 | a1, a2, a3, a4, as)
where d =44 )", a; is the depth. It has even weight ¢ =10 +2 )", a;, and block encoding
z = In(2a1 + 2,2as + 2,2a3 + 3,2a4 + 3,2a5 + 2),

with 5 blocks.

We find

Cz = (—1)dC(3,3, 1,3 as,aq,as,a1,a2) = Ini(2a3 + 3,2a4 + 3, 2a5 + 2,2a1 + 2, 2as + 2)
C?z = —(—1)"1((37 1,3,(1,2) | ag,as,a1,a2,a3) = Ini(2a4 + 3,2as5 + 2, 2a1 + 2, 2a2 + 2,2a3 + 3)
C3z = (—1)‘%(1,37 (1,2),(1,2) | as, a1, a2,a3,a4) = Inj(2a5 + 2,2a1 + 2,2as + 2, 2a3 + 3,2a4 + 3)

Clz = (=1)%((1,2),(1,2),1,3 | az, a3, a4, as,a1) = I (2as + 2,2a3 + 3, 2a4 + 3, 2a5 + 2,2a; + 2).
Since (—1)%/2 = (=1)'*4, we obtain the conjectural identity

CC(1737373 | a17a27a37a47a5)
= C(1737333 | al,a2»a3»a4aa5) + C(3737173 | a3aa4aa5aa1;a2) +
- C(3a la 37 (17 2) | a4, 05,01, G2, a3) + ((1737 (17 2)5 (17 2) | as,ay, az, asg, a4) +

? Wt

+6((1,2), (1,2),1,3 | az,a3,00,05,01) = — =
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Conjecture-Example 2.6.10 (¢(1,3,3,(1,2))). Consider
z=(-1)%¢(1,3,3,(1,2) | a1, a2, a3, a4, as),
where d =54 )", a; is the depth. It has even weight ¢ = 10 +2 ). a;, and block encoding
z = In(2a1 + 2,2as + 2,2a3 + 3,2a4 + 2,2as5 + 3),

with 5 blocks.

We find

Cz= (—1)dC(3, (1,2),1,3 | a3, a4, a5, a1, a2) = Ini(2a3 + 3, 2a4 + 2, 2a5 + 3,2a1 + 2,2a5 + 2)
C?z = —(—1)d§((1, 2),1,3,(1,2) | a4, as,a1,a9,a3) = I (2a4 + 2,2as5 + 3,2a1 + 2,2as + 2,2a3 + 3)
C3z=(-1)%((1,2),1,3,3 | as,as, a4, as,ar) = Ipi(2az + 2,2as + 3, 2a4 + 2, 2as5 + 3,2a; + 2)

C4z = —(—1)d<(37 17 3’ 3 | a5,a1,a2,a3,a4) = Ib1(2a5 + 3, 2(11 + 2, 2&2 + 2, 2a3 + 37 2a4 + 2) .
Since (—1)!/? = (~1)¢, we obtain the conjectural identity

CC(173733 (1,2) | 01,112,113,(14,(15)
= C(17373a (172) | a17a27a37a4aa5) + <(3a (1a2)7 173 | a3va4aa5valva2) +
- C((1a2)7 173a (152) | a4,a5,a1,a2,a3) + C((1a2)7 17373 | GQ,G3,G4,G5,G1) +

? 7.[.wt

—¢(3,1,3,3 | as, a1, a2,a3,a4) = WDl

Theorem 2.6.11. Applying[Theorem 2.5.) to the identity in[Conjecture-Ezample 2.6.9 above, shows
the following identity holds

Symyq0,5y Symy g4y (¢e(1,3,3,3 | ay, a2, a3, a4, as)
wt

1 71—
- <C(17373a (172) | a17a27a37a57a4)) = _4'm .

Notice this also works as a symmetrisation of|Conjecture-Example 2.6.10,

Proof. If we symmetrise the above identity, we must sum over all permutations of block lengths. There
are 5! = 120 permutations. These are grouped into 5!/5 = 24 cyclic insertion identities. The odd
lengths can be permuted in 3! = 6 ways without changing the type of MZV’s which appear. Similarly
the even lengths can be permuted in 2! = 2 ways without changing the types of MZV’s which appear.
This reduces the number of permutations to consider to

51

53 2

These ‘basic’ permutations are

Ib1(2a1 + 2,2a0 + 2,2a3 + 3, 2a4 + 3, 2a5 + 2) and

Ib1(2a1 + 2,2a9 + 2,2a3 + 3, 2a5 + 2, 2a4 + 3) .
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They do not differ by a cyclic shift because in the first the odd length block are consecutive, and in
the second the odd length blocks are separated by 1. They respectively correspond to the MZV’s

(_1)dc<1a37353 ‘ a17a27a/37a/47a/5) and

- (_1)dC(173737 (172) | a17a27a37a57a4)7

where d = 44 ", a; is the depth of the first MZV.

To get all permutations from these, we sum over the cyclic shifts, giving the cyclic insertion terms
above. We also sum over all permutations of a1, as,as, and all permutations of as, a4, giving the

Symy 55y and Symyg,y’s. Finally, each of the 24 = 4! cyclic insertion identities is expected to

wt

contribute —m to the total. O

Remark 2.6.12. In the case where the number of blocks n is composite, more care is necessary when
choosing the representatives of all permutations modulo cyclic shifts, permutations of evens lengths
and permutations of odd lengths. This is because S{ cven lengths } X S{ 0dd lengths } X Cn 10 longer acts

freely on S,.

For example in the case n = 9, the block decomposition

(2a4 + 3,2a5 + 3, 2a6 + 2,2a7 + 3,2ag + 3,2a9 + 2,2a1 + 3,2as + 3,2a3 + 2)
is obtained from

(2a1 4 3,2as + 3,2a3 + 2,2a4 + 3, 2a5 + 3,2a6 + 2, 2a7 + 3, 2as + 3,2a9 + 2)

in two ways. It is obtained either by a cyclic shift of 3 left, or by permuting even lengths as (as, ag, ag)

and the odd lengths as (a1, a4, ar)(az, as, ag).

To work out the number of representatives, one could use Burnside’s counting theorem. To work

out the representatives, one can always first quotient by C;, and by the larger of S{ cyen lengths} OF

S{ odd lengths }-

Conjecture-Example 2.6.13. Consider
= C(]-v 37 17 3a 37 3 | ai,0a2,03, 04,05, g, CL7) ;

where d = 643", a; is the depth. The weight ¢ = 14+2 3", a; is even. And (—1)!/2 = (=1)4+! = —(-1)<.

So applying the cyclic operator C gives the conjectural identity

¢e(1,3,1,3,3,3 | a1, as, as, aq, as, ag, ar)
=((1,3,1,3,3,3 | a1, a2, as, a4, as, ag, ay) +

+¢(1,3,3,3,1,3 | as, as, a5, ag, a7, a1, az) +

+¢(3,3,1,3,1,3 | as, ag, ar, a1, a2, a3, aq) +

- C(37 1737 1337 (172) | a67a77a17a27a37a47a5) +
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+ C(lv 37 1a 3) (17 2)’ (15 2) | ar,ai,asz,as, a4, as, aﬁ) +
+ <(17 37 (1a 2)7 <1a 2)) 173 | ag,as, a4, as, ag, ay, a/l) +

+ C((]'? 2)’ (17 2)7 17 37 173 | G4, 05, 0¢, A7, 01, A2, CL3>

? 7TWt

- (wt+ 1)1

Theorem 2.6.14. The motivically proven symmetrisation of |Conjecture-Ezample 2.6.15 is

SYI sz arsam ) SV g1 (Ce(1,3,1,3,3,3 | a1, 02, a3, 04, a5, 06, a7) +
- CC(173a (172)7 1a3a3 | a17a27a37a57a47a67a7) +

+Ge(1,3,3,1,3,3 | a1, a3, 05,3, a4, s, a7) )
wt

1o

(w4 1)

Proof. The integral corresponding to z has block decomposition
I (2a1 + 2,2a9 + 2,2a3 + 2,2a4 + 2,2a5 + 3,2a¢ + 3,2a7 + 2),

with 7 block.

We must sum over all permutations of the lengths. Permuting the even block lengths 2a; + 2, 2as +

2,2a3 + 2,2a4 + 2,2a7 + 2 in 5! ways, and the odd block lengths 2a5 + 3, 2ag + 3 in 2! ways, will not

change the type of MZV’s which occur. This gives the Sym,

az,

asz,aq,a7 } and Sym{ as,a¢ }* We can

also group together the terms which come from the same cyclic insertion identity. This means grouping

together 7 cyclic permutations of each block length.

This leaves % = 3 permutations to consider. We find

It (2a1 + 2,2a9 + 2,2a3 + 2,2a4 + 2,2a5 + 3,2a6 + 3,2a7 + 2)
I (2a1 + 2,2a9 + 2,2a3 + 2,2as5 + 3,2a4 + 2,2a6 + 3,2a7 + 2)

I (2a1 + 2,2a9 + 2,2as5 + 3,2a3 + 2,2a4 + 2,2a¢ + 3,2a7 + 2),
which give the MZV’s above.

Conjecture-Example 2.6.15. Consider

z = (71)(1((1’3’3737373 | alaaQaGSaa4;a5aa6;a7)7

where d = 6+, a; is the depth. The weight ¢ = 16+23", a; is even. And (—1)"/2 = (=1)%*+2 = (1)<,

So applying the cyclic operator C gives the conjectural identity

gc(173a3537373 | 01,02,03,04,(15,(16,(17)
= C(1737373a373 ‘ a17a27a37a47a57a67a7) +
+ C(37 373737 1’ 37 | as, aq4, as, ag, a7, a1, a2) +

- <(3a 3737 17 37 (17 2) | a4, 0as,ag, ar, a1, a2, a3) +
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37 1737 ( )a (17 2)a (15 2) | ag,ar,ai, az,as, a4, a/5) +

+¢(3,3,1,3,(1,2),(1,2) | a5, ae, ar, a1, az, as, as) +

— ¢

+¢(1,3,(1,2),(1,2),(1,2),(1,2) | ar,a1, a2, a3, aq, a5, ag) +
+¢(

( ) ( ) )7(172)3(1,2)7173 | a2;a3;a4;a57a67a77a1)

2 ,ﬂ.wt

(wt+1)!"

Theorem 2.6.16. The motivically proven symmetrisation of|Conjecture-Fxample 2.6.15 is

SYMY 4y asar 1 SYMY ag.04,a5,a6 } (Cc(l,37 3,3,3,3]| a1, az,as, a4, as,ag,a7) +
—¢c(1,3,3,3,3,(1,2) | a1, az,as,aq,as,ar,ag) +
+¢c(1,3,3,3,(1,2),(1,2) | a1,a2,a3, a4, az,as,a6) +
—¢e(1,3,3,(1,2),(1,2),(1,2) | a1, a2, a3, a7, aq, as,ag) +

(

+CC ( ) (132)7(172)3(1,2) | a17a37a27a47a73a53a6))

t
v
L6l

“(wt+ 1)

Proof. The integral corresponding to z has block decomposition

Ib1(2a1 + 2,2a0 + 2,2a3 + 3, 2a4 + 3, 2a5 + 3, 2a¢ + 3, 2a7 + 2) R

with seven blocks.

We must sum over all permutations of the lengths. Permuting the even block lengths 2a; + 2, 2as +

2,2a7 4+ 2 in 3! ways, and the odd block lengths 2a3 + 3,2a4 + 3, 2a5 + 3,2ag + 3 in 4! ways, will not

change the type of MZV’s which occur. This gives the Symy ,, 4, 4,1 and Symy . . o0 4,3 We can

also group together the terms which come from the same cyclic insertion identity. This means grouping

together 7 cyclic permutations of each block length.

This leaves

7!
7-3141 T

= 5 permutations to consider. We find

I (2a1 4+ 2, 2a9 + 2,2a3 + 3, 2a4 + 3, 2a5 + 3, 2a¢ + 3,2a7 + 2

In(2a1 4+ 2, 2a9 + 2,2a3 + 3, 2a4 + 3, 2a5 + 3, 2a7 + 2,2a¢ + 3

( )
( )
Ini(2a1 + 2,2a2 + 2,2a3 + 3, 2a4 + 3,2a7 + 2, 2a5 + 3, 2a¢ + 3)
Iy (2a1 + 2,2a9 + 2,2a3 + 3,2a7 + 2,2a4 + 3,2a5 + 3,2a6 + 3)

( )

Ivi(2a1 + 2,2a3 + 3, 2as + 2,2a4 + 3,2 + 2a7,2a5 + 3,2a6 + 3),

which give the MZV’s above.

O

It should be clear that we can continue stating conjectural identities, and producing provably true

symmetrised versions which hold motivically, ad nauseum.

Before finishing this section, we will give two further examples of the cyclic insertion conjecture; one
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example in the odd weight case, and one example of what happens when it is applied in a ‘degenerate’

case.
Conjecture-Example 2.6.17. Consider

z=(=1)%(1,3,3 | a1,a2,a3,a4) .
where d =34 )", a;. The weight 7+ 2" a; is odd.

Applying the cyclic operator leads to the identity

Ce(1,3,3 ] ar,az,a3,a4) = ((1,3,3 | a1,a2,a3,a4) +((3,1,3 | a3, as,a1,az) +
- C(laga (172) | a4,a1,a2,a3) - C((132)7 173 | a25a37a47a1)

2
=0.

(There is no point producing a symmetrisation in this case, since the terms will cancel pairwise using

the duality of MZV’s.)

Remark 2.6.18. It should be mentioned here that the above identity occurs when trying to investigate
the exact BBBL cyclic insertion conjecture motivically. When computing D~ y, and attempting to
check it vanishes, one obtains this combination of MZV’s. In order for D to vanish this combination

needs to be 0 motivically. A similar feature holds in other cases of the generalised cyclic insertion

conjecture. See |[Example 2.6.19a) for a specific example of this phenomenon.

This suggests that it might be possible to partially tackle the general conjecture motivically using
some kind of recursion procedure. Indeed, Glanois |Glal6] has a notion of families of identities that
are stable under the derivations. This allows her to lift analytically known families of identities to
motivic identities, via recursion. The procedure, though, requires an analytic version of the identity to

start the procedure, and to compute the rational at each step.

Other versions of cyclic insertion do always appear when computing the derivations Daogyq. A

subsequence which crosses i blocks, has « letters before it starts, and J letters after it finishes (as in

[Definition 2.2.29), gives rise to the following term in Doy 1.

Ig]l(gjp--7€n7€1,€2,-~-,€i7£i+17-~-,€j—1)
wI}f](él —a,&,...,éi_l,éi—ﬁ)@[ﬁ}(éj ceislp b4+ 4 — (2k+1),€i+1,...,£j_1).

By taking those cases where the blocks /1, ...,¥¢; are contiguous, we can mark the corresponding

subsequence, as above. Thus in Do we obtain the (n + 1 — i)-term cyclic insertion identity
IS —oly, . i = B)@ Y IS (G + -+ 4 — (2k+ 1), Liga, . L)
cycle

The cases were {1, ..., ¥¢; are not contiguous do not contribute anything to this, since the corresponding

subsequence does not exist here.
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One can potentially use this to make progress towards the conjecture. Knowledge of the cyclic insertion
conjecture at all weights < IV could potentially be used to prove a motivic version of the cyclic insertion
conjecture at weight N via cancellation in the derivations. However, a complete proof of the cyclic
insertion conjecture at weight N would still require explicitly evaluating the rational factor, which
cannot yet be done motivically. It is therefore unlikely that the conjecture can be resolved only using

motivic MZV’s,

Moreover, the computation and simplification of D.y in the odd weight cases appears to require

explicitly eliminating products in the I* factor. See [Example 2.6.19|b) for an example. In |[Glal6],

Glanois establishes new types of relations on the I* integrals, particularly the so-called Lu-antipode

relations, which could potentially be useful in this regard.

Example 2.6.19. a) For example, trying to prove (¢(1,3,1,31]0,0,0,1,2) = (¢(1,3,1,2,3,2,2) =

4 motivicall y leads to the following computation.

Lo
D3(F(1,3,1,2,3,2,2) = —3¢*%(3) @ (F'(1,2,2,3,3) + 3¢*(3) ® (F(1,2,3,2,3)

= -3¢*(3) ® ¢ (1,3,3]0,2,0,0) + 3¢%(3) ® ¢2(1,3,30,1,1,0) .

To conclude D3 vanishes, we need to use (a motivic version of) [Conjecture-Example 2.6.17} to say each

summand is 0.

b) Moreover, trying to prove motivically that {¢(1,3,3]0,2,0,0) = (¢(1,2,2,3,3) = 0 leads to the

following computation (after replacing ¢(™(1,3) = %Cm (2,2)).

DrGe(1,3,310,2,0,0) = (=5¢*(1,3,3) — ¢5(2,2,3) - ¢¥(2,3,2) = 2¢%(3,1,3) +

- 2<£(3a 2) 2) - 3C£(2a 17 17 3)) 0y Cm(27 2) .
To conclude D7 vanishes, we need to recognise the £ factor can be written
= —CF(2)¢%(2,3) = 205 (2)¢*(3,2) + 20%(3)¢*(2,2) -

This does now vanish because in the £ factor we work modulo products.

Finally, here is an example of cyclic insertion in a ‘degenerate’ case.
Conjecture-Example 2.6.20. Consider
2= (-1)%¢(3,(1,2), {2}, (1,2),1,3,{2}%,3,3,(1,2), {2}*),
where d = 11 + 3a is the depth. The weight t = 22 + 6a is even. Notice we have (—1)¢ = (—1)%/2.

If we apply C in this case we obtain

Cz= _(_1)dC((17 2)7 {2}(1’ (17 2)7 1,3, {2}(17 3,3, (17 2), {2}a7 (17 2))
C2Z = _(_l)dC({Q}av'?’v 37 (1a 2)’ {2}a7 (17 Q)a 1; 3, {2}(1; 373) :
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Then, surprisingly, we have C3z = z. So we have Zf:o C'z=3 Z?:O C?, and by dividing through we

obtain the following conjectural identity

€(3,(1,2),{2}%,(1,2),1,3,{2}%,3,3,(1,2),{2}°) +
-¢((1,2),{2}*,(1,2),1,3,{2}%,3,3,(1,2),{2}%,(1,2)) +

¢
¢({23%,3,3,(1,2),{2}%,(1,2),1,3,{2}%,3,3)

,n_wt

(wt 4+ 1)1

2?3
9
One can check numerically this appears to be the case, to at least 5000 decimal places, for various

small values of a.

2.7 Other motivically provable symmetrisations

The above framework shows that all cyclic insertion identities can be sufficienly symmetrised in order
to obtain a motivically provable identity. The symmetrisation procedure above happens in a very
particular way. This means that there are plenty of motivically provable identities which do hold, but

fall outside the scope of this framework. In this section we will present some identities that can be

motivically proven, but not using [Theorem 2.5.4]

2.7.1 (c(1,3,3,(1,2) ] 0,0,0,0,n)

Theorem 2.7.1. The following identity, a cyclic insertion identity on the nose, can be motivically

proven.

CC(1’3737 (172) | 0,0,0,0,’/7/)
=((1,3,3,(1,2) ]0,0,0,0,n) + ¢(3,(1,2),1,3,] 0,0,n,0,0) +

-¢((1,2),1,3,(1,2) | 0,n,0,0,0) +¢((1,2),1,3,30,0,0,n,0) +

,n_wt

1
—¢(3,1,3,31n,0,0,0,0) = ———
o I ) (wt +1)!

The identity would, a priori, fall into the symmetrisation given in[Theorem 2.6.11], and include 6 times

as many terms. But, by good fortune, this is not necessary.

Proof. This is a cyclic insertion conjecture identity. The generating MZV has depth d = 5 + n, and
the weight t = 10 4 2n. Since (—1)% = (—1)¥/2, we expect the value to be +(W’;7r1)1.

To really begin the proof, let’s first write down the terms generated in this identity in their full form.

We find

C({Q}na 17 3737 17 2) + C(Sa 1) 27 17 {Q}Ha 3) - C(la 27 17 {2}11’ 3a 1; 2) +

7.‘.2n+10

n n Lo
+¢(1,2,1,3,3,{2}") — ((3,{2}",1,3,3) = (2n + 11)!
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Now we compute Doy 1 on each term of this identity.

First term

The first term of this identity corresponds to the integral

I™(0(10)™1 10 010 | 01 | 101) = I™((01)™** || 10 | 010 | 01 | 101).

We distinguish subsequences (hence terms of Dy) by their location on the integral — either in the Left

half before ||, in the Right half after it, or covering both halves. Since k = 2¢ + 1 is necessarily odd, we

will track the operator a term contributes to by ¢.

L: Any subsequence lying in the left half is automatically trivial because it starts and ends with the

same symbol (remember & is odd).

R: We can systematically list the terms by labelling the positions in the string

and looking for labels of the same parity which contain different letters. We find

1-5:
1-9:
2-8:
2-10:
3-T:

6-10:

1 12345678910
I™((01)™*! || 1001001101),

I°(10010) ® I™((01)"**1 | 001101)
I£(100100110) @ I™((01)"1 | 01)
I(0010011) ® I™((01)™*110 | 101)
7(001001101) @ I™((01)"*110 | 1)
I(01001) ® I™((01)™*1100 | 1101)

( )

I°(01101) ® I™((01)"1100100 | 1

Notice that term (1Ra)) cancels with (1Re]).

LR: By replicating the 01 pattern from the left hand side through into the right, we see that the only

for =1
for £ =3
for £ =2
for £ =3
for £ =1
for £ =1

terms which can contribute are those with odd label and letter 1, or those with even label and letter 0.

We find for k = 2¢ 4 1, the following possibilities

end at 1:  I°(01(01)1) ® I"™((01)"~“0 | 1001001101) for 1 </ <n

end at 2:  I~(
end at 6: I*(
I

end at 7:

Second Term

£(1(01)*10) @ I™((01)"~“01 | 001001101) for 1 < ¢ <mn
1(01)¢72100100) ® I™((01)" 201 | 01101) for 2 < ¢ <n +2

£(01(01)*721001001) ® I™((01)"~*730 | 1101) for3</l<n+3

The integral is I™(01001101 || (10)**! || 01). This time we have terms in the Middle of the two ||’s.

We get terms
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L: I°(01001) ® I™(01 | 101(10)"**01) for £ =1 (2La)
I°(01101) ® I™(0100 | 1(10)"*101) for £ =1 (2Lb)

M and R: None.

LM: I°(01001101(10)731) @ I™(0 | 10(10)"~**301) for 3</(<n+3 (2LMa)
I£(1001101(10)47210) ® I™(01 | 0(10)"~“*301) for3 < <n+3 (2LMb)
I°(001101(10)*721) ® I™(010 | 10(10)"~**201) for 2 </{<n+2 (2LMc)
I°(101(10)*7110) ® I™(010011 | 0(10)"~**101) for 1 </ <n+1 (2LMd)
I°(01(10)°1) ® I™(0100110 | 10(10)*~01) for1<{<n (2LMe)
I°(1(10)%10) ® I™(01001101 | 0(10)*~“01) for 1 <{<n (2LMf)

MR: I°(10(10)0) ® I™(01001101(10)*~“1 | 01) for 1<l <mn (2MRa)

I°(0(10)°01) ® I™(01001101(10)* 10 | 1) for 1<l <mn (2MRbD)

LMR: I£(01101(10)"*101) ® I™(0100 | 1) for £ =n +3 (2LMRa)

I£(1101(10)"*10) ® I™ (01001 | 01) for £ = n + 2 (2LMRD)

Third Term

The integral is I™(01101 || (10)™*! || 01101)

L: I°(01101) ® I™(0 | 1(10)"™101101) for £ =1 (3La)

M: None.

R: I°(01101) ® I™(01101(10)"**0 | 1) for £ =1 (3Ra)

LM: I°(101(10)7110) ® I™(011 | 0(10)"~“F101101) for 1 < <n+1 (3LMa)
I°(01(10)1) @ I™(0110 | 10(10)"~*01101) for 1 </ <n (3LMb)
I°(1(10)%10) ® I™(01101 | 0(10)"~“01101) for 1 <{<n (3LMc)

MR: I°(10(10)%0) ® I™(01101(10)"~“1 | 01101) for 1 <£<n (3MRa)

I°(0(10)°01) ® I"™(01101(10)"~“10 | 1101) for 1 </ <n (3MRb)

LMR: I°(01101(10)"*01) ® I™(0 | 1101) for £ =n +3 (3LMRa)

I°(1101(10)""10) ® I™(01 | 01101) for £ =n + 2 (3LMRDb)
I°(101(10)"*10110) ® I™(011 | 01) for £ =n +3 (3LMRc)
I°(01(10)"*1011) ® I™(0110 | 101) for £ = n + 2 (3LMRA)
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I£(01(10)"101101) ® I™(0110 | 1) for £ =n+3 (3LMRe)

I°(1(10)"T10110) ® I™ (01101 | 01) for £ = n + 2 (3LMR)

Fourth term

The integral is 1™(0110110010 || (01)"*1).

L: I°(01101) ® I™(0 | 110010(01)" ) for £ =1 (4La)
I°(011011001) @ I™(0 | 10(01)"*1)  for £ =3 (4Lb)
I(1101100) ® I™(01 | 010(01)" ") for £ =2 (4Lc)
I°(110110010) @ I™(01 | 0(01)" 1) for £ =3 (4Ld)
I£(10110) ® I™(011 | 0010(01)" 1) for £ =1 (4Le)
I°(10010) ® I™(011011 | 0(01)" ') for £ =1 (4Lf)
Notice that term cancels with .
LR: I(10110010(01)*~20) @ I™(011 | 01(01)"~“*3) for3<l<n+3 (4LRa)
I£(0110010(01)47301) ® I™(0110 | 1(01)"~“F3) for3 </ <n+3 (4LRb)
I°(110010(01)*720) ® I™(01101 | 01(01)*~“*2) for2 <l <n+2 (4LRc)
I°(010(01)7101) ® I™(01101100 | 1(01)"~“F1) for 1 </ <n+1 (4LRd)
I°(10(01)%0) ® I™ (011011001 | 01(01)" %) for 1 <¢<mn (4LRe)
I°(0(01)%01) ® I™ (0110110010 | 1(01)" %) for 1 <f<mn (4LRf)
Fifth term
The integral is I™(010 || (01)"** || 1001001)).
R: I(10010) ® I™(010(01)"*11 | 001) for £ =1 (5Ra)
I(01001) ® I™(010(01)"*1100 | 1) for £ =1 (5Rb)
LM: I°(010(01)7*01) ® I™(0 | 1(01)"*17*1001001) for 1 </ <n 41 (5LMa)
I£(10(01)%0) ® I™(01 | 01(01)"~“1001001) for 1 < £ <n (5LMb)
I°(0(01)%01) @ I"™(010 | 1(01)"~“1001001) for 1 </ <n (5LMc)
MR: I£(01(01)“1) ® I™(010(01)"~“0 | 1001001) for 1 < £ <n (5MRa)
I°(1(01)%10) ® I™(010(01)" %01 | 001001) for 1 < ¢ <mn (5MRDb)
I°(1(01)%72100100) @ I™(010(01)"~**201 | 01) for2<{¢<n+2 (5MRc)
I°(01(01)*731001001) ® I™(010(01)" 30 | 1) for3<¢<n+3 (5MRA)

LMR: I°(010(01)"*11001) ® I™(0 | 1001) for £ =n+3 (5LMRa)
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I°(10(01)"*1100) ® I™(01 | 01001) for £ =n + 2 (5LMRD)
I°(10(01)"*110010) ® I™(01 | 001) for £ =n +3 (5LMRc)
I°(0(01)"*11001) ® I™(010 | 1001) for £ = n + 2 (5LMRA)

Now we attempt to see which terms cancel, and how they do so. The following series of lemmas identify

the cancellation between all terms in D .

Lemma 2.7.2. The remaining terms from (1Ral)~(1Rf]) cancel with those from (4La))—(4Lf), as follows

I™((01)™*1 || 10 | 010 | 01 | 101) < I™((01)™* || 101 | 10| 010 | 01)

=I™(01 ] 101 | 10 | 010 || (01)™*1)

Lemma 2.7.3. The terms from (LLRa)—(LLRb) cancel with the terms from (2MRa)—(2MRb), as

follows

I™((01)™ | 10 010 | 01 | 101) «» I™(01 || (10)™+1 || 010 | 01 | 101)
e — | e —

= I™(010 | 01 | 101 || (10)"** | 01).
I — |

Lemma 2.7.4. The terms (ILRc)—(1LRd) cancels with the terms (bMRd)—(5MRd), as follows

I™((01)" | 10] 010 | 01 | 101) «» I™(01 | 101 | 10 || (01)™+ || 101)

=I™(010 || (01)""* || 10| 010 | 01)

Lemma 2.7.5. The terms (2La)) cancel with (3Ra)), and (2Lb|) cancel with (3La) via

and

I™(010 | 01| 101 || (10)™** || 01) < I™(01 | 101 || (10)"** || 01 | 101),
| I—| | I—

I™(010 | 01 | 101 || (10)™** || 01) <> I™(01 | 101 || (10)™** || 01 | 101).
| I—| | I—|

Lemma 2.7.6. The terms (2LMal)—(2LMc) cancel with (4LRa))-(4LRd) via

I™(010]| 01| 101 || (10)™** || 01) <> I™((01)"** || 101 | 10 | |010 || O1)

= 1™ (01 |[101]| 10 | 010 || (01)"+Y).

Lemma 2.7.7. The terms (2LMd)—(2LM{) cancel with (3LMa))—(3LMc) via

I™(010 | 01 | 101 || (10)™+" || 01) < I™(010 | 01 || (10)™** || 010 | 01)
e — | e —

=I™(01 | 101 || (10)"** || 01 | 101).
S — |

Lemma 2.7.8. The terms (ALRd))—(4LR{]) cancel with (5LMal)—(5LMc|) via

N

I™(01]101] 10010} (01)"** <> I™(01 | 101 | 10 || (01)"** ||| 101
— ] —
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=TI™(010]] (01)"** || 10| 010 | 01).
I — |

Lemma 2.7.9. The terms (3MRa)—(3MRDb)|) cancel with (5MRal)-(bMRb) via
I™(01 | 101 || (10)™*! || 01 | 101) < I™(01 | 101 | 10 || (01)™** || 101)
e — | e — |

=1™(010 || (01)"** || 10| 010 | 01).
e — |

Lemma 2.7.10. The terms (2LMRa))-(2LMRDb)) cancel with 3LMR5]H SLMRD) via

I™(010 | 01 | 101 || (10)™** || 01) <+ I™(010 | 01 || (10)™*! || 010 | 01)

=TI™(01 | 101 || (10)™** || 01 | 101).

Lemma 2.7.11. The terms (3LMRc)—(3LMR1) cancel with (5LMRa])-(5LMRDb|) via

I™(01 | 101 || (10)™*1 || 01 | 101) < I™(01 | 101 | 10 || (01)"** || 101)

=71™(010 || (01)™* || 10 | 010 | O1).

These lemmas show that all the terms in Dy cancel. So using Brown’s characterisation of ker D

in [Theorem 1.2.15| we conclude that this combination is a rational multiple of 7%*, as claimed. O

Remark 2.7.12. Alongside the usual reflection of blocks, this cancellation could be seen to involve a
kind of ‘splice’ operation where a substring is cut out from one place, and stitched into a different
place. This occurs in It also involves a kind of ‘extended reflection’. For example in
cancelling with , the subsequence lies over blocks 2 and 3, but the cancellation occurs by
reflecting blocks 2, 3 and 4.

2.7.2 Zweak compositions CC(L 37 37 37 | ai, .-, &5)

We can give a different symmetrisation of the (¢(1,3,3,3 | a1,...,as) identity from [Theorem 2.6.11
This symmetrisation is very reminiscent of the [Bowman-Bradley theorem|from [BB02] (Theorem 2.1.7]

above), involving a sum over all weak compositions. (Recall, weak compositions are compositions

>_; a; = m, where parts a; = 0 are allowed).

Theorem 2.7.13. The following identity is motivically provable

1 5+m ﬂ'Wt
> Cc(1,3,3,3a1,...,a5):_( )(

— -
b Tonm m ) (it 1)!
a; ZO
Proof sketch. Firstly, it is a standard result that there are (5;’”) weak compositions of m into 5 parts.
Since the generating MZV has depth 4+ " a;, and weight ¢t = 10+2 3", a;, we have (—1)¢ = —(—=1)¥/2,
we expect each cyclic insertion identity to contribute 7(“;:7:;)!.
Now we need to show all the terms in Dy cancel. We will only sketch the ideas for this proof, without

making all of the details precise.
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We have five types of terms with the corresponding integrals (up to +)

€(1,3,3,3 | a,b,c,d,e 01)**+1(10)*+1(01)+1[00](10)4+1 (01)¢*1)
01)a+1(1O)b+1(01)c+1(10)d+1(01)e+1)

( (Type 1)
( ( )
1(0J(10)*** (01)"** (10)*** (01)* (10) [ 1) (Type 3)
( ( )
( ( )

~ o~

(
C(3?37173|a7bﬂc7d7e (

Type 2

€(1,3,(1,2),(1,2) | a,b,c,d, e) = I((01)1(10)>+1(01)“F(10)4F1 11 ](01)°+?)

(01)
(01)a+1(10)b+1(01)c+1(10)d+1(01)e+1) )

Type 4
1

)
)
—¢(3,1,3,(1,2) | a,b,¢,d, )
)
)

€((1,2),(1,2),1,3 | a,b,c,d,e Type 5
Any subsequence which does not intersect , and does not intersect , can be made to cancel by
reflecting the blocks which contain the subsequence. For (Type 1)), this entails

reflect

—_—~
I((01)1(10)"+1(01)°+ 00 ](10) 1 (01)F1) «» T((01)"F1(10)*F1(01)°F00](10)4+1 (01)=*Y).

Notice that the cancellation happens within an integral of the same type, with some permutation of
the lengths a;. The sum over all weak compositions includes all permutations of the individual a;, so

this cancellation is okay.

In integrals of (Type 1)), (Type 2)), (Type 4) or (Type 5)), any subsequence which crosses or

and ends away from it can be made to cancel by reflecting the containing blocks. In this case, some

integrals of (Type 1]) cancel with integrals of (Type 2|), with some permutation of the a;, as follows

reflect

I((01)+1(10)"+1(01)*1[00](10)1 (01)“*1) +» 1((01)H+1[00](10)“+ (01)"*+1 (10)*+1 (01)=+1).

However, other integrals of (Type 1)) cancel with further integrals of (Type 1)), and some permutation
of the a;. Namely

I((01)2+1(10)>F (0 1)+ 00 ](10) 1 (01)¢FL) «» 1((01)*F1(10)*T(01)F[00](1 0)=F (01)°+Y).

Similarly, integrals of (Type 4)) and (Type 5| cancel, by duality. The sum over all weak compositions

includes all permutations of the individual a;, so this cancellation is okay.

If a subsequence ends at the end of 7 or starts at the start of , then it can be made to cancel by

reflecting the blocks containing the subsequence. For example

reflect
I((01)*F(10)P+1 (0 1)“F1[00](10)4+ (01)°) < I((01)*F*(10)+1 (01)“+ [00](1 0)*** (01)**)

shows how some (Type 1)) integrals cancel with other (Type 1| integrals, for some permutation of the

a;. This example

reflect

I((0 )™ (10)" 1 (01)“F1[00](10) 1 (01)+1) 4+ 1((01)*FH[ 00 (10)F4(01)"+* (10)*+ (01)“*)

shows how some (Type 1|)integrals cancel with (Type 2| integrals, for some permutation of the a;. An
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analogous cancellation holds for (Type 4) and (Type 5) integrals by duality.

So far all of the cancellation has happened by using the usual technique of reflecting the blocks containing
the subsequence. Unfortunately, this cannot be used to cancel the last remaining subsequences. The
remaining subsequences we must consider begin, or end, at the midpoint of or . They may
also go to the end points of the (Type 3| integral.

We can cancel these subsequences on (T'ype 2) and (Type 3|) integrals, with some permutation of the

a; as follows

reflect

I((Ol)a+1@@(lo)b+l(01)c+1(10)d+1(01)e+1) o I(@(lO)a+l(Ol)e—H(10)d+1(01)c+1(10)b+1).

And by duality, these subsequences on (Type 4) and (Type 3|, with some permutation of the a; will

also cancel.

Attempting to cancel by reflecting the blocks for the subsequence

reflect

I((Ol)aJrl (10)b+1 (01)c+1@@(10)d+1 (Ol)eJrl)

leads to the subsequence

I((01)* [1]01)er (10)>+ [ 0](10)?+ 1 (01)°+?).

But this is not an integral of (Type 1))—(Type 5], since the odd length blocks are no longer consecutive!

Instead, we may cancel the subsequences on (Type 1)) integrals as follows

reflect

1((01)*1(10)” (10)*” (01)**[0][0](10)4+* (01)(01)°)
)

reflect

I((01)***(10)" (10)(01)*'[0][0](10)* (01)" (01)°).

In this case an integral of with lengths a; given by (a,b,c,d,e), cancels with an integral
(Type T)with lengths a; given by (a,b’,d,c,b” + e — 1), where b’ + b = b+ 1. These are two different
compositions, which are not just related by a permutation. A similar cancellation happens with
(Type 5) integrals, by duality. By summing over all weak compositions of the parameters a;, we can

guarantee that this cancellation is okay.

Therefore, if we sum over all weak compositions of the parameters a;, we deduce that all terms in
D cancel. By Brown’s characerisation of ker Dy, from [Theorem 1.2.15] we have that this sum is
in Q. O

Remark 2.7.14. More generally it appears that

> Cc({1,3}",3,3 | a1, ..., a2,13) € ™°Q

a1+--tasntz=m
(17;20
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is motivically provable. The proof should be obtained by appropriately generalising the above proof.

It appears that one can also give other curious motivically provable symmetrisations for the (¢(1,3,3,3 |
0,0,0,0,n) identity, and others of a similar form. These symmerisations involve a sum taken over a

very specific lists of compositions. One example of this is the following.

¢c(1,3,3,3]0,0,0,0,n) + ¢c(1,3,3,3]0,0,0,n,0) +

n—2
+ZCC(1,3,3,3|O,O,i,0,n—i)+
=1
1 7TWt
1,3,3,3/0,1,0,n—1,0) = 1)———
+CC(? 39y | y 4, U, 1 ) ) (n+ )(Wt+1)'

I do not yet know how this fits into the above framework of generating motivically provable identities,

but it suggests that there may be more general ways to cancel terms in D .

Remark 2.7.15. By incorporating the new types of cancellation introduced in the above proof, and
any types of cancellation arising from the above remark, it may be possible to obtain a more general

framework for proving motivic identities and generalising

2.8 Numerically found block relations, and ranks of relations

In this final section, we would like to mention a number of numerically found identities which can be
expressed rather neatly using the block decomposition. This is very much in the spirit of the original
cyclic insertion conjecture paper [BBBLIS|. We will also indicate what fraction of the MZV relations
are obtained by these identities and the cyclic insertion identities.

2.8.1 Other block relations

Notation 2.8.1. We will use the notation Alt{, . ., } to mean the signed sum over all permutation

of the variables z;. That is

Altf oy, any f(21, 0 20) = Z sgn(0) f(To(1), -+ To(n))
O’ESn

In Section 7.2 of the paper [BBBL9S]|, the authors mention that the following identity, distinct from

the cyclic insertion conjecture, appears to hold.
Altf gy 05,053 C(1,3,1,3 | a1, az, a3, a4, as) Zo.
What is not to be remarked on, is that this identity appears to readily generalise to the following
Altga, |1 0aa} C({1,3}" [ a1,... 20 11) = 0. (2.8.1)
We can try to convert these to block decompositions. In this case, reads

Alt{ ai | i odd}Ibl(zal +2,2a0 +2,...,2a9041 1+ 2) Z 0.
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From here it is not too much of a leap to see if arbitrary block lengths work. Indeed we get

Conjecture 2.8.2 (Alternating odd position blocks). Let Iy (¢1,...,lan+1) be a block decomposition

of an even weight integral with > 1 block. We have

?
Altsg, i odd} To1(f1, .- s lony1) = 0.

Conjecture-Example 2.8.3. Consider applying [Conjecture 2.8.2| to

z = C({?’}Qn_l? (17 2) | ALy ey a2n+1)

= :I:Ib1(2a1 +3,2a2 +3,...,2a2,—2 + 3,202, + 2,2a2,41 + 3) .

The only even block length 2as,, + 2 occurs in position 2n. Since the sum is taken over permutations
of the odd positions, this length is unchanged. Therefore every permutation in the sum expresses the

same type of MZV as z.

‘We obtain

2

Alt{ a; | iodd } C({3}2n_17 (]-7 2) | A1y .- 7a2n+1) =0.

This can be numerically verified in various cases.

Remark 2.8.4. Various other relations appear to hold, which can be described using the block

decomposition. For example

?
Altfayaz,a5} Zfbl(l, 1,a1,1,a2,n,a3) =0.
Cr

Notice the inner sum looks like a cyclic insertion sum. However, since there are two consecutive blocks

{1 = fy = 1, [Conjecture 2.5.1 does not apply.

Currently these relations are not well structured, having been found in a very ad-hoc manner. Further

investigation may identify larger patterns, and a more overarching structure.

Remark 2.8.5. Notice that in the case of 3 blocks, [Conjecture 2.8.2| simply expresses the duality of
iterated integrals, as explained in [Remark 2.2.16

2.8.2 Ranks of relations

Finally, it is worth considering what fraction of MZV relations we get from these identities: the cyclic

insertion identities [Conjecture 2.5.1] the symmetric insertion identities and even the

alternating sum identities [Conjecture 2.8.2]

Symmetric and Cyclic: Consider weight ¢, and furthermore assume ¢ is even. We first consider

how to obtain equations from cyclic and symmetric insertion, which are not trivially linearly dependent.

Let ¢ = [¢1,...,¢2,+1] be a composition of ¢ into an odd number > 1 of parts, with each part £; > 1.

Since the composition with 1 part gives a tautologically true identity, we ignore it.
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If ¢ contains no consecutive ¢; = ¢; 11, then ¢ gives rise to a cyclic insertion identity. If ¢ does not
contain two length one blocks ¢; = ¢; = 1, then the sum over all permutations is redundant because it
breaks up into cyclic insertion sums. Otherwise, some permutation of ¢ contains a consecutive £; = ¢; 1

and cyclic insertion doesn’t apply, so we should also compute the symmetric sum for c.

Weight | Number of | Number of | Rank of cyclic and | Expected number of
cyclic symmetric symmetric relations 2¥=2 — d,

4 3 2 3 3

6 7 5 11 14

8 22 10 31 60

10 62 20 81 249

12 181 37 217 1012

14 535 66 600 4075

16 1614 113 1726 16347

From the table it appears the rank of the cyclic and symmetric relations is simply
rank(cyclic and symmetric) = #cyclic + #symmetric — 1.

Unless this is prevented by the total number of relations 22 — dj,

Alternating: We now consider how to obtain non-trivial equations from the alternating sum

identities, [Conjecture 2.8.2] We will restrict ourselves to identities from > 3 blocks. The conjecture

does not apply in the case of 1 block, and in the case of 3 blocks it is simply the duality relation.

If any of the odd positions in the composition ¢ are repeated, then the terms in the alternating sum
identity will trivially cancel to 0. This is because a transposition of these blocks changes the sign of

the summand. Therefore discount these compositions from the list.

Weight | Number of | Rank of alternating | Expected number of
alternating relations 28=2 — d,

4 0 0 3

6 1 1 14

8 7 7 60

10 25 25 249

12 68 68 1012

14 161 161 4075

16 351 351 16347

From the table it appears that the alternating relations are always linearly independent.
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Both and duality: Lastly, we consider how these sets of relations interact, and how many new

relations they give on top of the duality of MZV’s.

Weight | Rank of alternating, | Rank of Duality Rank of duality, | Expected number of

cyclic and symmetric alternating, cyclic | relations 28-2 — d
and symmetric

4 3 1 3 3

6 12 6 13 14

8 38 28 50 60

10 105 120 181 249

12 282 496 657 1012

14 755 2016 2436 4075

16 2066 8128 9247 16347

On top of duality, the relations given by the cyclic, symmetric and alternating sum do not add a
significant number of new relations. By themselves, the cyclic, symmetric and alternating sum relations
appear to be largely independent, and do produce plenty of relations. The discovery of further families
of block relations, as mentioned above, may help close the gap with the expected number of relations

on MZV’s.



Chapter 3

Multiple polylogarithms, the
coproduct and the symbol

In this chapter we review the definitions and theory surrounding polylogarithms and multiple poly-

logarithms (MPL’s). The definition (Definition 3.1.1]) of the polylogarithm Li, (x) is motivated by

generalising the Taylor series of —log(1 — x). By considering products of polylogarithms, we are lead
naturally to multiple polylogarithms , and then see how to write MPL’s as iterated
integrals . Some reasons for interest in MPL’s are discussed, particularly the existence
of functional equations for Li, (z) which play an important role in K-theory and particle

physics calculations.

Next we introduce the symbol of an MPL (Section 3.3). This is an algebraic object which contains
information about the analytic and differential properties of an MPL, and is an important tool for
finding both functional equations and relations between MPL’s. We review Goncharov’s tree definition
(Section 3.3.1)) of the symbol (called the ®™-invariant, [Definition 3.3.4)), and see the connection with
iterating the coproduct on his Hopf algebra of motivic iterated integrals. We also look
at the differential interpretation of the symbol, and its connection with the differential
forms appearing in iterated integrals. We also review Gangl, Goncharov and Levine’s polygon algebra
and Rhodes’s hook-arrow trees (Section 3.3.4)), and their connection with the symbol. We also mention
the Mathematica implementation in Duhr’s PolylogTools package [PT].

Finally we consider the different ‘levels’ of information which can be extracted from the symbol by
looking modulo products , or looking modulo products and depth 1 terms (“modulo §”
. We see also that Nielsen polylogarithms provide an ‘obstruction’ to the rule of thumb
that a symbol vanishing modulo § can be written in terms of Li,’s (Section 3.4.2.1)).

95



3.1. Definition of polylogarithms and multiple polylogarithms 96

3.1 Definition of polylogarithms and multiple polylogarithms

The s-th polylogarithm function is a generalisation of the usual logarithm function log(z), motivated

by considering the Taylor series of —log(1 — z).

The Taylor series of —log(1 — z) is

oo
—log 1—2 :Z%

1

The exponent of n in the denominator is n-, so we make the following generalisation to define the

polylogarithms as first done by Leibniz [Leib5|.

Definition 3.1.1 (Polylogarithm). For s € Z~g, the s-th polylogarithm function Li,(z) is defined by

the following Taylor series
>  _n

Lis(z) = — L]zl < 1.

By taking s = 1, we find that
Liy(2) = —log(l — 2),
so we recover the usual logarithm, and Lis(z) genuinely does generalise it.

By computing the derivative of Lis(z), one finds

d _. .
P Lis(2) = Lis—1(2),

so one can analytically continue Lis(z) to the cut complex plane C \ [1,00) by the following integral

dt

L) = [ i

In the same way that multiple zeta values can be motivated by considering products of Riemann
zeta values (see [Section 1.1.1)), one can motivate and define a multiple polylogarithm as in [Gon95b).
Henceforth “multiple polylogarithm” may be abbreviated as MPL.

Definition 3.1.2 (Multiple polylogarithm). Let s; € Z~(, then the multiple polylogarithm function

Lis, .5, (21,...,2k) is defined by the following series
ni ng
Z ... Z
. — 2 : 1 k
Llsl,...,sk(zl7"'7zk) T S1 Sk °
nl ... nk
0<ni<ne<---<ng

For example, by considering the product Li,(x) Li;(y), we obtain

Lis(z) Lis(y Z

n m:

We can then break the sum over n,m =1 to co into n < m, n = m, and n > m, to get

(Texey)is

nm n=m n>m

= Li, +(2,y) + Lis+(2y) + Liz s(y, z) .
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This is an example of the stuffle product on MPL’s, which should be compared with the analogous

construction on MZV’s in [Section 1.1.4.3)
Moreover, by taking z; = 1 in the MPL Lig, . s, (21,...,2,) we find that
Lis,, s (1,...,1) =C(s1,...,8k)

Therefore, the multiple zeta values of can be viewed as special values of MPL’s, as claimed.

The notions of depth and weight have analogues for MPL’s.

Definition 3.1.3 (MPL weight, MPL depth). Given a MPL Lig, . s, (21,...,2;), we make the

following definitions.

e The sum of the indices s; + - - - + sy, is called the weight of Lis, s (#1,..., 2k)-

e The number k of its indices is called the depth of Lis, s, (21, .., 2k)-

3.1.1 Multiple polylogarithms as iterated integrals

One viewpoint that we will make continual use of in the rest of this thesis is the equivalence between
multiple polylogarithms and certain iterated integrals. Recall the definition of an iterated integral

from [Definition 1.1.10]in [Section 1.1.3l

The iterated integral
L(zo;21,. .., Tm; Tmeg1) = /w(ml) o-ow(wy),
¥

v a path from zg to Zym41, is sometimes referred to as a multiple logarithm |Gon98|. It can also called
a hyperlogarithm [p. 8, Gon01], having been considered by under this name by Kummer [Kum40],
Lappo-Danilevsky |[LD2§|, and Poincaré (but as an analytic functions of the upper limit 2,,,1 only, in

the case where x¢g = 0). Here they are considered as multivalued anlaytic functions of xg, ..., Tmi1-

Goncharov [Gon98| gives the following definition of a ‘multiple polylogarithm’ in terms of the above

iterated integral.

Definition 3.1.4 (Goncharov multiple polylogarithm). Let s; € Z~¢, then the multiple polylogarithm
I, .. su (71, .., 2;) is defined by

I, oso(z1y 0oy 2i) = 1(0; 21, {0}51_17 e, Tl {O}S’“_l; 1).

Goncharov’s choice to name this Is, . s, (21, ..., 2;) a multiple polylogarithm is justified. The functions

Iy, .. and Li, . are closely related by the following theorem.

Sk Sk

Theorem 3.1.5 (Goncharov, Theorem 2.2 in [GonO1|). Suppose |z;| < 1, for all z;. The functions

Lis, .., and Iy, . s, are related as follows.

Lis,..os0 (21,5 20) = (_1)161517“.,%(% o R B

ez Zoezp )" ) 2k
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Proof sketch: For simplicity, Goncharov restricts to the case k = 2. This makes the idea of the proof

clear, without getting bogged down when keeping track of all of the details for higher depth. Rhodes

gives a version of this proof with more details than Goncharov in [Rhol2].

In the case k = 2, the integral is

dt dt dt
(,1)2/ 711/\72/\.../\&/\
0Kt <oty 1oy <1l = i t2 tsy
A dtsl-‘rll A dt81+2 Ao A dt81+32 ’
tlerl s t81+2 t81+82
and Goncharov claims this is equal to
ny . n2

ri T
. _ 1 T
LlSl,Sz(xhx?) - § : S1,,52 °

nin
0<ni<ng 172

We can develop
dt,

r1xT2

as a geometric series. We obtain

dit;
1-— tll'l.’EQ

—(1‘1.%2) dtl Z(tﬁbl.ﬁg)i
=0

= —(7172)

dt; & ,
= —71 (tl.’lﬁlxz)z.
i1 4
i=1

oy 41

Plugging this, and the corresponding result for back into the integral gives

51+1 12

dts  dt,

dt;
= —_— (tlxlxg) AN —A"- A
0<ti <ty 4y <1 U1 4 t2 tsl

o0

dts, +1 o dts, 4o dis, 4.
/\5712(1551+1$2)]/\t571/\"'/\M-

to 41 = 5142 sy +ss

Now integrate term by term, integrating out the variable ¢; first. We get that

qt2
dt; , = (t i
[ Sy = |y Bk
0<ti<t, l1 i

i=1 i=1 £ =0

_ i (tg.%‘ll‘g)i
‘ 1

7=

—

We can repeat this for to,t3,...,t,,, to get that the original integral equals

;o0
_ dt81+1 sl+1$1-732 l dt81+2 dt51+82
= t 81+1x2 7t /\/\725
0<ts) 415 <tsy 45, <1 Ps1+1 ;5 =1 s1+2 s1+s2
dts o~ T Lo dt dt
_ 1+1 1 it s1+2 s1+S2
—/ T E —r (ts;4172) j/\ti/\"'/\ti~
0<ts) 41 Sty 45, <1 P51+l 0y ¢ s1+2 s1+s2

(3.1.1)



3.2. Functional equations for polylogarithms 99

Then integrate out ¢s,4+1,...,ts,4s, in the same way to get
- > st
i1(i+j)*
Finally, we can make the change of variables £ =i 4+ j. The new summation range runs over 0 < i < /£,

so the sum becomes

i ol
xhx
_ 1T .
- Z 51052 _LIS1,52($1ax2),
o<i<t

as claimed. O

Remark 3.1.6. In the case where z; = --- = z; = 1, we obtain that

C(s15-vsk) = (—DFI, o (1,...,1) = (=D)*1(0;1, {0}~ ... 1,{0}**7 1),

which finally completes the proof of [Proposition 1.1.16}

3.1.2 Variants and modified polylogarithms

The polylogarithm Li,, is a multivalued analytic function on C\ { 0,1 }. However, there is an associated

single-valued version, defined as follows.

Definition 3.1.7 (Single-valued polylogarithm, |Zag91]). For n > 1, define the single valued polyloga-
rithm %, as follows.

n

_ B2k )
Zn(z) =Re, Z u log |z| Lin—k(2) |, n>2

k=0

Z1(z) =log|z| ,
where By are the Bernoulli numbers defined in and

Re if n odd
Re, =

Im if n even.

These functions will play a role when describing functional equations of polylogarithms; essentially
2, satisfies ‘clean’ functional equations, without any lower order product terms. Moreover, they enter

into an important conjecture on special values of the Dedekind zeta function [Section 8 in |Zag91].

Zagier proved that %, (z) is real-analytic on C\ { 0,1 }. More precisely

Theorem 3.1.8 (Zagier, |Zag91|). The function £, (2) is single-valued and continuous on P(C).

3.2 Functional equations for polylogarithms

The big area of interest with regard to polylogarithms is in finding and understanding their functional

equations. There are at least two reasons for this interest. On the number theory side, polylogarithms
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have a role as ‘higher regulators’ of a number field, and sufficiently generic functional equations for Li,,
should play some role in giving explicit generators and relations for the K-groups Ka,+1(F'). This in
turn feeds into Zagier’s conjecture on special values of the Dedekind zeta function [Zag91]. Roughly:
up to known factors, (r(n) can be expressed as an ro(F) X ro(F') determinant of Z,,’s of elements of
F'. The case (r(2) was partially handled by Zagier [Zag86] using a connection to volumes of hyperbolic
manifolds. Generally it follows from the work of Bloch and Suslin [Blo77; |Sus86]. The case (z(3) was

proven by Goncharov |Gon91| using his Liz functional equation.

On the physics side, calculations of amplitudes and Feynman integrals often produce large expressions
involving polylogarithms and MPL’s [RV00; [Wei07; [BW11]. For example, the full analytic expession
for the remainder function for the ‘two-loop Hexagon Wilson loop’ Ré?‘),[, ;, involves weight 4 multiple
polylogarithms, and fills 17 pages of appendix H in [DDDS10|. Having a good understanding of
(multiple) polylogarithm functional equations can lead to drastically simpler formulae, both in terms of
length and in terms of the complexity of the functions involved. In [GSVV10], this remainder function

RéQ‘),V 1, was re-written as a single line of classical Liy polylogarithms after observing the vanishing of

the symbol of Rg‘)/vL modulo &, where § is as in |Section 3.4.2| below.

3.2.1 Examples of functional equations

The baby instance of polylogarithm functional equations comes from the fundamental property of log,

namely log(zy) = log(x) + log(y). In terms of Li;(z) we have the following.

Proposition 3.2.1. The polylogarithm Liy satisfies the following functional equation

Proof. This is just a direct application of the definition that Li; () = —log(1 — x), and the functional
equation log(zy) = log(x) + log(y). O

This is expected to be a feature of all higher weight polylogarithms. Indeed every polylogarithm
satisfies its own version of the so-called duplication relation, or the more general so-called distribution

relations.

Proposition 3.2.2 (Distribution relation, duplication relation). Let (, := exp(2mi/p) be a primitive

p-th root of unity, p € Z~o. Then Liy satisfies the following functional equation
p—1
Lip(a?) = p" 1> Lig(¢x) -
§=0
This reduces to the so-called duplication relation
Lig(2?) = 271 (Lig(z) + Lig(—x))

in the case p = 2.
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Proof. Write out the Taylor series for both sides. On the right hand side we get
P Z 2= C

When p | n, the numerator becomes pz™ since each term (Cg)” is identically 1. Otherwise the numerator

is 0 since ¢, is another primitive p-th root, and we just get some permutation of

Sq-§

p_ 1
Gy,

Only the term p | n survive, so we can take n = pm on the right hand side, and get

P Z T L),

k
—1 m

P

as claimed. O

The duplication relations, the distribution relations, and the so-called inversion relations

1
Lix(z) + (—1)% Li () = elementary
z
are considered trivial. They can be proven easily for polylogarithms of any weight, and so are not
particularly interesting.

Beyond these trivial functional equations, it is expected that every polylogarithm satisfies some
non-trivial function equations, but so far these are only know up to Li; |[Gan03]. The prototypical
example of such a non-trivial functional equation is the 5-term relation for the dilogarithm (weight 2
polylogarithm). This functional equation has been discovered and re-discovered many times by many

different people including Abel, Spencer, Kummer, Hill and Schaeffer.

Theorem 3.2.3 (5-term relation, Schaeffer’s [Sch46] form of Abel’s equation [Abe81) p. 193]). The

polylogarithm Liy satisfies the following functional equation. For 0 <y < z < 1, we have

Lb@)hﬂw+1@(z)Lm<1:55>+Lh(i:z)
m 11—z
:fi—mg@kg<l_y>

Written in terms of the modified polylogarithm Z5(z) above, the 5-term relation simplifies to the

zgmynzgw+i@(z)—33(1:Z;>+33<1:§>:o

This illustrates what was meant earlier by saying .%,, satisfies ‘clean’ functional equations, without

following

any extra product terms.

The 5-term relation for Liy is expected to be the fundamental functional equation for Lis, in the
sense that every other functional equation follows by specialising it, but currently this remains only

a conjecture. Some evidence in this direction can be see in [Soul5| , where an infinite family of
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dilogarithm functional equations (arising from the combinatorics of dihedral coordinates on MMy ,,) is
proven to reduce to 5-term relations. Other evidence come from Wojtkowiak’s result [Woj96|] that

every one variable functional equation for Lis can be obtained by specialising the 5-term relation.

Moreover, it is known, that the 5-term relation somehow characterises the dilogarithm in the sense
that any measurable function f(z), z € C that satisfies the 5-term relation is proportional to Z5(z)

[Blo00).

3.2.2 Geometry behind polylogarithm functional equations

Functional equation for Lis: The 5-term relation for Lis can be described elegantly in terms of
the geometry of the projective line P*(C). This motivates a search for functional equations arising

from geometric constructions.

Recall the cross-ratio of 4 points z1,..., 24 € C is defined by

21— 23 [R2— 23
cr(z1, 225 23, 24) == .
21 —24) 22— 23

By using the homogeneous coordinates of P!(C), and writing Z; = [1: 2;], the cross-ratio can be defined

on all of P1(C) =CU{ o0 }.

The 5-term relation for Lis now has the following form. Let z1,..., 25 be 5 points in P*(C). Then

5

Z(_l)ifg(cr(zl, cesZiyeey25)) =0,

i=1
Taking z1 = 00, 20 =0, 23 = 1, 24 = x and z5 = y reduces this equation to the previous version of the

5-term relation (up to applying the inversion relation .Z(z) = — Z2(1) to some terms).

Functional equation for Liz: Goncharov [Gon95a] has exploited this geometric viewpoint to
produce a highly generic functional equation for Liz using the so-called triple-ratio r3. He has also
produced precise conjectures for what to expect at higher weight, although so far an equivalent Li,

functional equation has not been found.

Let {1,...,07 be 7 points in P?(C), and let L; € C? be the vector projecting to /;.

Definition 3.2.4 (Triple-ratio). The triple-ratio of 6 generic points /1, ..., s in P?(C) is defined to
be the formal linear combination in Z[C\ { 0,1 }]

A(Lla L?v L4)A(L27 L33 L5)A(L3a Ll, L6)
A(L1, Lo, Ls)A(Lo, Ls, L) A(Ls, L1, Ly)

1
Tg(fl, NN 766) = TS Alt{ 1,...,6 } |:

Here A(Lq, Lo, L3) = det(Lq | Lo | L3) is the determinant of the matrix with columns Ly, Lo, L3.

The fully symmetric 840 = 7!/6-term functional equation |Gon94] is given by

7

Z(fl)ifg(ria(gl,"'aé\iv"'a£7)) =0.

i=1
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Notation 3.2.5. We will use the notation Cyc¢,, ., } to mean the sum over all cyclic shifts of the

variables x;. That is

Cyciay, w1 f(@150ian) = Zf(x“...735”,:1:1,...,:51-,1).

This triple-ratio can be extended to degenerate configurations of points. For the following highly

degenerate choice of points, where ¢; is given by the i-th column of the matrix

100110 2
0101z 1 0],
00110y 0

one obtains Goncharov’s 22(+1)-term Liz functional equation below.
zx—x+1 zx—x+1
Ls(—ayz)+Cyep gy 2y {92”3(295 —z+1)+ .23 (z:r) — L () +

) fre

3.2.3 Bloch groups; towards the symbol of polylogarithms

An important collection of objects that arise when trying to study polylogarithms over C, or more
general fields F', are the so-called Bloch groups B, (F). They are defined in such a way as to capture,
non-explicitly, all of the functional equations of the polylogarithm .#,,. In some sense they can be seen

as a precursor to the symbol of MPL’s.

3.2.3.1 The subgroups of relations R, (F)

The key to defining the Bloch groups is somehow capturing the functional equations of polylogarithms,

despite not being able to explicitly write them all down.

Define by induction subgroups R.,(F) < Z[P*(F)]. Then set
Bo(F) = Z[P'(F)]/ Ra(F)

to be the weight n Bloch group. We will write {z}, for the image of [z] in B, (F).
Subgroup R (F): The subgroup R (F) is explicitly defined by
Ru(F) = {[z] + [y] = [zy] | 2,y,€ F* } U{]0], [o0] } .

This subgroup Rq(F) captures the functional equation log(xzy) = log(z) + log(y), which we know
Z1(z) = log |z| satisfies.
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Inductive definition of R, (F): Define a homomorphism d,,, as follows.

Bu1(F)® F* n>3
Z[P'(F)] —
N\’ F* n=2
{.13},,171 ®@r n= 3
[] — .
I-z)Ax n=2
Also §: [00], [0], [1] — 0.

Now set

By (F)@F* n>3
A, (F) = ker | 6,: Z[P*(F)] —

N F* n=2

Extending by linearity means the specialisation homomorphism ¢ — #g, tg € F, gives a map

Z[P' (F(t))] — Z[P'(F)]
[fi@®)] = [fi(to)].-

This works even if g is a pole of f;(¢). We can now give the inductive definition of R, (F) as follows.

Definition 3.2.6 (Subgroup of relations). The subgroup of relations R,,(F) is defined by
Rn(F) = { (0) —a(1) | a(t) € An(F(t)) } U{[0], [00] } -

3.2.3.2 Consequence for functional equations

By extending .Z(z) to Z[P!(C)] by linearity, we obtain the following motivating theorem

Theorem 3.2.7 (Theorem 1.15 in [Gon94]).
Zn(R,(C) =0
Which is to say the subspace R,,(C) does actually give functional equations for £, (z).
Sketch of n = 2 case: Firstly we need to establish the result of Lemma 1.16 in [Gon94]. Namely for
=" milfi(0)] € ZP(C),
if
0 = dra(t) ZmlffZ YA filt G/\(C

then
d (Z n; fg(fi(z))> —0. (3.2.1)

It then follows immediately that > n; Z2(fi(2)) is constant. So £5(a(0) — (1)) =0, and

Z>(R2(C)) =0.
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To prove [Equation 3.2.1] we need to consider the following diagram.

Z[PM(C(1))] —2— A*C(t)”

£ J/T2

SO(PY(C)) —= S (P'(C))
Where here
ra(f A g) = —log|f| darg(g) +log|g| darg f,
and S*(P!(C)) is the space of smooth i-forms on P*(C).
Since Z5(z) = Im(Liz(z)) + arg(1 — z) log |z|, we can compute d.Z5(z) as follows.

We have

d(arg(l — 2) log |z|) = log |z| darg(l — z) + arg(1l — z) dlog|z|,
using the product rule. Also we have
dLis(z) = Liy(2) dlog(z)
= —log(1 — 2) dlog(z)
= —(log|l — z| +iargz)(dlog|z| +idargz).
So
dIm(Liz(z)) = Im(d Liz(2)) = —log |1l — z| dargz — arg(1 — z) dlog |z| .

Overall this means

dZy(z) = —log|l — z| darg z + log |z| darg(1l — z) . (3.2.2)

Now [Equation 3.2.2| shows that the above diagram in fact commutes. This means that we can make
the following computation
0 = ry 0 dz(a(t))
— do Zs(alt))

. d (Znifg(fi(z))) .

This proves the Goncharov’s Lemma, and hence proves the theorem for n = 2. For the case n > 3, see

[Gon94]. O

This begins to show how powerful the algebraic approach (rather than the analytic approach) to
polylogarithms can be. The algebraic object (1 — z) A z attached to Liy above is closely linked with
the symbol of Lisy, to be defined later.

More generally we have the following result of Zagier, moving towards the symbol of Li,.

Theorem 3.2.8 (Zagier, Proposition 3 in [Zag91]). Let { n;,z;(t) } be a collection of integers, and
rational functions in C(t). Suppose that

Yo nilzO" 7 @ ([z(O] AL - 2i(t)]) = 0
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in (Sym™ 2 C(t)* ® A\>C(t)*) @z Q. Then

Zni Zm(x;(t)) = constant.

That is, the algebraic object [2]™2 ® [2] A [1 — 2] attached to Z,,(z) detects functional equations of
L.

To fit better with the symbol below I would prefer to swap the order of terms over and get —[1 — 2] A
[2] ® [2]™~2.

3.3 Coproduct, and symbol of MPL’s

In this section we will introduce a very important tool for studying the functional equations of MPL’s,
namely the symbol. This tool will be used continually throughout the remainder of this thesis. As
hinted at above, the symbol is some algebraic object which can be attached to an MPL, somehow

enriching the correspondence %), () e~ —[1 — 2] A [2] @ [2]" 2.

The symbol was first introduced by Goncharov, under the name the ®”-invariant, in Section 4 of
[Gon05]. There it was defined by associating certain combinations of labelled binary trees to the
MPL iterated integral I, . s, (21,...,2x). Goncharov also identified it as coming from iterating the

coproduct on the Hopf algebra of (motivic) iterated integrals.

The symbol should also be seen as somehow describing the differential structure of an MPL. As
seen above, t least for m = 2, the object —[1 — 2] A [#] ® [#]™~2 ‘corresponds’ to the derivative of
% m(x). With this viewpoint, it is no so surprising that > n;[1 — z;(¢)] A [2;(¢)] @ [2;(¢)]™ 2 = 0 leads
to n; L m(x;(t)) = constant. So we ought to expect the symbol of MPL’s to play a similar role in

detecting and characterising functional equations.

A final viewpoint on the symbol of MPL’s is provided by Rhodes’s [DGR12; [Rho12] hook-arrow tree
construction built on top of the polygon algebra of Gangl, Goncharov, and Levin [GGL09]. In Chapter
4 of [Rho12], Rhodes used this construction to give explicit formulae for the symbols of the depth 2
MPL I, 4(x,y) and the depth 3 MPL I, ; .(x,y, z), for any a, b, c. Duhr is developing this approach
into the PolylogTools package [PT] for Mathematica. This package provides a convenient and robust
way of working with MPL symbols, especially at high weight and/or height depth where the symbols
become too large for calculations by hand. This package will be used for most of the calculations in

the remainder of this thesis.

3.3.1 Goncharov’s ®™-invariant

Goncharov’s ®™-invariant is defined by associating certain combinations of decorated binary trees to
the MPL Iy, s, (%1,...,2%). The following is a synthesis of Goncharov’s original description [Section

4 in |Gon05|, and Rhodes’s very clear exposition [Section 1.2 in [Rhol2].
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A binary tree is a rooted trivalent tree, embedded in the upper half-plane. View the tree as growing
downwards towards the real line; the root extends up to co, and the remaining external vertices extend
down to the real line. If the binary tree has k + 2 external vertices, the k + 1 vertices extending down
to the real line will split the real line into k + 2 intervals. These intervals can then be labelled in

increasing order by elements of some list of decorations R = [aq, ..., akt2].

Example 3.3.1. For example the following is a binary tree with 6 external vertices, decorated with

the labels R = [aq, ..., ag].

a;p a2 Aasz a4 a5 Qe

The decoration on a particular interval J can be pushed into the region of H which has J as part of its

boundary, to get a labelling of the regions, viz:

al a
ag 6

as

az a4

Given a such a binary tree T with k + 2 external edges, there is a canonical partial ordering on the
internal vertices of T' defined by the distance from the root. We set u < v iff there is a path from the
root through u and v, and on this path wu is closer to the root than v. A total ordering v; < --- < vy

on the internal vertices of T', is said to be compatible with < if v; < v; implies ¢ < j.

Example 3.3.2. Consider the two total orderings below. The left hand one is compatible with <,
because any path down from the root to the real line encounters the vertices in the correct order. We
either go v1vqvy, Or v1v9v3, both of which are good. However in the right hand one, following the path

vgvav leads to vy < v1, yet 4 £ 1. So the right hand total order is not compatible with <.

U1 U3

Vg U3 vl V2

Since the binary tree T is trivalent, every internal vertex v is on the boundary of three distinct regions

v, DY, DY of H. The positive (anticlockwise) orientation of the upper half-plane fixes a cyclic ordering
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Dy — Dy — D3 — D; on these regions. From the vertex v only one edge leads to the root of T, so
this allows us to canonically fix the ordering by imposing that the first region lies directly anticlockwise

of the edge leading to the root.

To the root

v v
Dl D3
v

Dy

Let apy be the label attached to region D} in the tree 7. We then attach to the vertex v the following

rational function g of the labels a Dy-

apv—apwv . Lo
—3 2 if all apv are distinct
U‘D’i’ 70‘D§ i

1 .
if aDg = CLDS7 but aD;’ = aD;

apv—a
gl = PiTers (3.3.1)
apy—apy .
——= if Gpv = apy, but apy #+ apy
1 if all ap» are equal
K3

Remark 3.3.3. The expression for g7 that Rhodes gives in equation 1.2 of [Rho12] is only partially
complete. If all the apw are distinct, or all are equal, then we have the same expression. But if only two
of the labels are equal, then there are still two distinct labels around this vertex, and it is important

to remember these in the calculation.

The definition of gI" is modelling the e-regularisation of the integral

log <<% if a, b, ¢ all distinct

a—b
cre  qt logﬁ ifb=c, but a #b
o A
Tate T log €=t if a=b, but b# ¢

log 1 if all a, b, c are equal,

as given in equation 5 of [Gon05].
Finally we are in a position to define the ®™-invariant of an MPL. Consider an MPL
I=1, o (x1, . 2) = 10521, {0} 1w, {0351 1)

Then I has weight w = s7 + - -+ + s;. Including the limits of the integral, it has w + 2 arguments,

forming the following list.

[07.%‘1,0,...,071‘2,07...,07...,$k,0,...,0,1].
—— —— ——

5171 5271 Skfl

Definition 3.3.4 (®™-invariant). The ®™-invariant (also called the symbol) attached to the MPL

Lo, oso(@1, .o xp) = 1(05 24, {0}51_17 e, Thy {0}5’“_1; 1)
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of weight w = s1 + -+ - + s is denoted

It is given by
SUay s (@1, ) =D Y. gr®@--®g
T {vi,..., Vy }
where the sum over T runs over all binary trees with w + 2 external, and decorated with the ordered
labels
[0,21,0,...,0,22,0,...,0,...,24,0,...,0,1].
—— —— ——
s1—1 s2—1 sp—1

The sum over { v1,...,v; } runs over all total orders of the internal vertices of T which are compatible

with the partial ordering <.

Example 3.3.5. We can apply the above definition to find the symbol of I; o(x,y). We list the binary

trees with 3 + 2 = 5 external edges, labelled with [0, z,y,0, 1], as follows. There are 5 = Cj5 such trees,
1 (2n

T n) is the n-th Catalan number.

where C,, =

On each of the first 4 trees above, there is exactly one compatible total order, because there exists a
path from the root which contains all 3 vertices of the tree. The fifth tree has two compatible total

orders - the lower two vertices can be labelled v5 and v3 in either order.

Consider in detail the first tree, with the (unique) compatible total order of vertices, and how the

decorations label the regions. We obtain

T, = 0 S
T U3
0/y
We compute that
1-— 1—y
got = gl == gol=—",
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to obtain the following as one term in S(I21(z,y))
1—2 1 1—-y
T - — .
{71, {vi,v2,03 )}~ ( . >® (33) ®( - )

It turns out that the fourth and fifth trees contribute 0 to S(I2,1(x,y)) for the following reason. With

the following total order

T, =

we have that
0—=x

But 1 € Q(z,y)* is the identity element, so a term like 1 ® a« ® 8, where one tensor is 1, vanishes for

the ‘standard reason’. Namely
Ioa®f+1lRaf=1)2axf=10a®0,

then we subtract 1 ® a ® 8 from both sides. So the fourth tree contributes 0. The fifth tree contributes

0 for the same reason.

Altogether we obtain the following result for S(I21(x,y)); the order of the terms matches the orders of

S(Iz(z,y)) = (1_;) ®© (i) @ <1—yy> i
(5o (3291 e

the (non-zero) trees.

Remark 3.3.6. In any computations involving the symbol, we should always bear in mind that the
following equality holds
a®fRyv=a® (-8)®7. (3.3.3)

This equality comes from the following calculation
2. (a®BR®Y)=a® 20y
=a®(-f)?®y (3.3.4)

=2-(a®(=p)®7).

Since symbols are elements of some Q-algebra &, Q(x1,...,zr)*, we can divide both sides of
by 2, and obtain
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Consequently, the symbol of I5 1 (x,y) can be simplified to the following
1—x 1 1-—
St = (F5) o (1) o (2) +
x x Y
1-— 1-—
(7)o =)0
x T—y x
1— _
(1) ()= )
Y T T

3.3.2 The iterated coproduct definition

In [Gon05|, Goncharov also identifies the ®™-invariant as a maximally iterated version of his coproduct
on the motivic iterated integrals from [Section 1.2.1l Given a positvely graded Hopf algebra A,, there

is a canonical map

A[m]: .Am — ®A1,

which can be defined as the following composition

i id®i id®(m-1)
Am 2 A1 @ AL 28 Ay © A @ A, 228K, . 28K R Ar

Then proposition 4.5 in |[Gon05| claims the following equality is provable by induction on n.

Proposition 3.3.7 (Goncharov, proposition 4.5 in [Gon05|). The symbol S arises from maximally

iterating the coproduct A of iterated integrals
SI(xo; w1, .+ p; tns1)) = APIIM (o2, ans 2nas)

after making the identification

b—c b—c
Mo b o) = loo™
I'"'(a;b;¢) = log (b—a) o~ T (3.3.5)

and performing any required reqularisation.
Example 3.3.8. We can apply this iterated coproduct construction to I5 1 (z,y), to give an alternative
calculation of the symbol.

The first step is to compute the coproduct of I 1 (x,y) = I(0;2,0,y; 1), and to take the (2,1)-degree
component. For notational ease, we drop the M from the notation. Using we compute
the coproduct to be the following. Some simplifications using I(0;a;0) = 0 and I(0;1) = 1 are possible.

AI(0;2,0,5;1) = 1 ® I(0;2,0,;1) +
+ I(0;251) @ (03 2) (50,5 1) + 1(0;0; 1) @ I(0;.250)1(0; 95 1) +
+1(0;y;1) @ 1(0;.2,0,9) 1 (y; 1) +
+1(0;2,051) @ 105 2) 1 (2;0)1(0; 55 1) + (052, y; 1) @ I(0;2) 1 (w; 0;9) I (y; 1) +
+1(0;0,9,1) @ I(0;2;0) I (z; ) (y; 1) +

I(0;2,0,y;1) ® 1
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=1®I1(0;2,0,y;1) + I(0;2,0,y;1) ® 1 +
+1(0;2;1) ® I(z;0,y;1) + 1(0;9; 1) ® 1(0; 2,05 y) +

+1(052,0;1) @ I(0;951) + (032,93 1) @ I(; 03 ) -
So the (2,1)-degree component of A is given by

Ao 1(0;2,0,y;1) = 1(0;2,0;1) @ 1(0;9;1) + 1(0; 2,93 1) ® I (5 0;9) -

Now iterate this: compute the (1, 1)-degree component of AT(0;x,0;1) and of AT(0;z,y;1). We obtain

A1 11(0;2,0;1) = 1(0;2;1) ® I(2;0,1)

A 1(052,y;1) = 1(05251) @ I(z;931) + 1(0;951) @ 1(0; 25 ) -

Putting these together gives

AP0, 2,0,y;1) = 1(0; 251) @ I(2;0;1) @ T(0; ;1) +

+1(0;2;1) @ I(w5y51) @ (2505 ) + 1(0;9;1) @ 1(0;2;9) @ I(;50;5y) -

Upon using the identification from [Equation 3.3.5] we obtain the symbol for I5 1 (z,y) that we computed
in

It has already been mentioned that the symbol is a powerful tool for finding identities and functional
equations on MPL’s. It does this by translating analytic problems into algebraic questions that are
easier to handle. However, the symbol only captures the ‘top-slice’ of identities, and cannot detect
anything about constant x lower weight. Since the symbol can be made to arise from the coproduct

on iterated integrals, the coproduct is a good place to remedy this shortcoming. We will see this in

action in

3.3.3 Total differential of iterated integrals

Seeing how the differential structure of multiple polylogarithms and iterated integrals is reflected in
the symbol helps us understand how we should think about and interpret the symbol. This leads to a

way of directly reading the symbol from a (very particular) way of writing an iterated integral.

From Theorem 2.1 in [Gon01], we have the following computation of the total derivative of an iterated

integral.
Theorem 3.3.9 (Goncharov, Theorem 2.1 in |Gon01]).

m
~ Tit+1 — &4
dI(xo; 21, oy T Topt1) = E I(xo; 21,y Ty v oy T Tpt1 ) dlog | ———— | .
Pl Ti—1 — Zo

By repeatedly computing the total derivative, we ‘peel off” a layer of differential forms from an iterated

integral. These differential forms, written as total derivatives, give a factor of the symbol.
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Starting with I 1 (x,y) we compute

dI2,1(xa y) = dI(07 x,07y; 1)

o
8
O
@

= I1(0;0,y;1)dlog

)
S
—
&

>+I(0;x,y, )dlog(

% I@x@lyu%<yé>

C@
[

—I(O;m,y;l)dlog< __y

) 101,01 tog (2

—
8
<

So, in some sense, we have
0— 00—y y—1 1
Laz,y) = [ 1(02,y;1)dlog | 37— | +1(0;2,0; 1) dlog { ~—3

Now iterate this; find dI(0;0,y;1) and ‘peel off” a second layer of differential forms. Do this for each

iterated integral appearing above.

dI(0;z,y;1) = I(0;y;1) dlog (x—y) +I(O;x;1)dlog<y_1>
y—=

T
1
dI(0;2,0;1) = 1(0;x;1) dlog(x>

And of course

b
dI(a;b;c) = dlog <b_2> .

So we can write
T
z—1 y—1 Y
+ dlog ([ £==) o dlog ——fom%(0+ (3.3.6)
T y—x T

For an iterated integral written in the form

F= / dlog(f1)o---o dlog(fn),

we read off its symbol as

SF)=f® @ fu.
From this means we get

S(Ia(x,y)) = (y;l) ® (x;y) ®(L)+

z—1 y—1 Y
() (=) 0+
(=) )= ()
+ (=)o (f—),

x x Yy

in complete agreement with the original calculation in [Equation 3.3.2) up to 1 in each tensor factor
(Remark 3.3.6) and some rearrangement.
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We see here how closely related the symbol is to the derivative of an iterated integral. Knowing
this correspondence, it is not surprising that the symbol will capture functional equations and
relations between MPL’s. Requiring the symbol of a combination to be 0 will amount to forcing the
derivative of this combination to be 0, so that it evaluates to a constant and gives a relation, modulo

constant x lower weight terms.

3.3.4 Polygon dissections and Rhodes’s hook-arrow trees

Gangl, Goncharov and Levine [GGL09| define an algebra of R-decorated polygons (R-deco for short).
They then associate one of these polygons to an MPL, in such a way so that the symbol can be
calculated from the combinatorics of these polygons (see as well [DGR12]). Rhodes provides a more

detailed overview of this construction in Section 1.3 of [Rhol2].

Polygons: An R-deco polygon P(ay,...,a,) is a polygon, with a specified first vertex (marked with
a circle), and a final side (drawn double) giving a choice of orientation. The sides of the polygon are

labelled, from first to last, by elements of the list R = [a1, ..., a,], as follows.

Although not made explicit, the vertices gain an ordering v, ..., v, due to the polygon’s orientation,

and choice of first vertex.

The polygon algebra Pg(R) is generated as a vector space by wedge products of R-deco polygons. The
lower grading counts the number of non-root edges in all factors of this wedge product. The upper

grading counts the number of factors in the wedge product.

Arrows: The algebraic and combinatorial structure comes from arrows dissecting the polygon. By
an arrow, we mean an arrow from a vertex, to a non-adjacent side. Here is an arrow « joining vy (the

second vertex) to the side as.

as aq

An arrow from vertex v; to side a; is said to be backwards if j < i. Otherwise the arrow is forwards.
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Dissections: These arrows let us dissect polygons. Given a polygon P = P(aq,...,a,), and an

arrow from vertex v; to side a;, the polygon is dissected into two polygons

P =(ai,...,ai-1,a;5,...,a,) and P, = P(a;,...,a;)
if a is a forwards arrow. Otherwise the polygon is dissected into

Py =(ay,...,ap,04...,a,) and Py = P(a;—1,...,ap)

if o is a backwards arrow. One should think of collapsing the arrow « to pinch the polygon into two
pieces — « points to the new last side, and first vertex. With this dissection, the sign of the arrow « is
defined by

(_1)#non—root edges in P> if o backwards
sgn(a) =
1 otherwise

Example 3.3.10. This arrow dissects the R-deco polygon P into P; and P» as follows.

ar a2
al ae
’ ~soay P, as and as P, as
as as
a3 a4 az a4
Since P, has three non-root edges, and the arrow « is backwards, we get that sgn(a) = (-1)3 = —1.

Maximal dissections and the dual tree: A mazimal dissection p of a polygon P is a set of
n — 2 distinct, non-crossing, dissecting arrows. The overall sign sgn(p) of the maximal dissection is
sgn(p) = (—1)#backwards arrows " Thig dissects the polygon into n — 1 regions, which can be viewed as

2-gons.

We can also consider the dual tree of this dissection. Make a point at the centre of each of the n — 1
regions. Join two of these points with an edge if and only if the regions are share a boundary. This
produces a tree graph. The first vertex and last side of the polygon P canonically defines a root vertex
for the tree: the root vertex lies in the the region which contains the first vertex and (part of the) last

side of P.

Example 3.3.11. The following shows a maximal dissection of the polygon P = P(ay,as,...,as),

along with the dual tree. The root vertex of the dual tree is marked as a hollow circle.
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as

ay ar

as ag

as as

as

Now that rooted trees have appeared in the picture, we can define a partial ordering < on the vertices
of the tree according to their distance from the root. This gives a partial ordering on the regions,
and hence on the 2-gons in the maximal dissection. The definition is exactly as in for
Goncharov’s trivalent rooted binary trees. A total ordering on the vertices of the dual tree is said to

be compatible with the partial ordering if v; < v; implies ¢ < j.

Symbol from polygons: Define the map p on 2-gons as follows

1 -2 if 2,9,0 are distinct
y : _

y ify#0,butz=0
z i ifr=y,and y #0

1 otherwise.

This map is very similar to the map gfl from [Equation 3.3.1

We are finally in a position to define the symbol using this framework.

Definition 3.3.12 (Symbol). Given an MPL I, ., (z1,...,2%) = I(0;21, {0} 71, .. 2y, {0} 715 1)
of weight n = s1 + - - - + sg, we attach to this the (n + 1)-sided polygon

P =Pz, {0} .. ay, {01 1)

Then

S(Isl7~~-75k(m1""’xk)) ZZZSgn(p) Z /I'(Pl)@"'@,u(Pn)a
P {Pi,....,P, }

where the first summation runs over all maximal dissections p of P. And the second summation runs

over all compatible total orders P, ..., P, of the 2-gons.

The work in |[GGLO09| establishes a correspondence between the algebra of R-deco polygons and Hopf

algebra of iterated integrals, meaning the construction in [Definition 3.3.12|is well-defined. Specifically

Proposition 8.1 in [GGL09| establishes an isomorphism from the graded Lie coalgebra Zso(R)/Z>0(R)?
of indecomposable iterated integrals over R to (V&#(R), d), the graded Lie coalgebra of R-deco polygons.
Theorem 8.2 establishes a map of coalgebras (B(w)|m € Pg(R)) — Z=o(R)?, comparing in detail the
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coproducts in each case. (Here B(r) is some element in the bar construction B(P?) that is associated
to the polygon , as in Definition 6.9 of [GGL09].) Moreover, in Chapter 3 of [Rho12|, Rhodes proves
explicitly that the symbol given by the polygon framework, and the ®™ invariant given by the binary

tree framework are indeed bijective.

Duhr has implemented this polygon dissection method of computing the symbol as the PolylogTools
|PT] package for Mathematica. This package provides a robust and convenient way of working with
MPL symbols at high weight, or high depth, which would otherwise be too cumbersome for hand

calculations. The majority of calculations in this thesis have been completed using this package.

Hook-arrow trees: In Chapter 2 of [Rho12|, Rhodes introduces the notation of Hook-arrow trees to
solve the problem of how to represent and work with the ‘visual’ requirements of polygon dissections

on a computer. Rhodes defines a hook-arrow tree as follows.

Definition 3.3.13 (Rhodes, Definition 2.4 in [Rhol2]). A hook-arrow tree is a rooted spanning tree
on a set of vertices in a linear order [vy,...,v,], which is not interlaced and has root v,. The edges

are directed towards v,,.

Here the vertices are meant to correspond to edges of an R-deco polygon. The term ‘interlaced’ means
there is no choice of four vertices v; < vy < vg < vy such that the edges (vi,vs) and (vg,v4) are both

contained in the graph. This captures the notion that edges of the spanning tree do not cross.

In Section 2.3 of [Rhol2], Rhodes shows how to obtain terms in the symbol directly from these
hook-arrow trees. In Chapter 4 of [Rhol2], Rhode argues that the hook-arrow tree construction
provides a more efficient method of computing the symbol of an MPL of given depth since one can
isolate which terms will have non-zero coefficients from the start, rather than having to compute with

every possible binary tree or every possible maximal dissection and see which terms happen to vanish.

Rhodes uses this to compute the symbol of I, ,(z,y) and Iop (2, y, z) for arbitrary a,b, c. We will
make use of the depth 2 calculation in [Chapter 6| to explicitly prove an identity about I, ;(z,y) +
(—=1)*T0, (2, %) on the level of the symbol.

3.4 The symbol modulo L, and modulo ¢

From [Section 3.2.3.2] we know that the object —(1 — 2) A x ® 2®"~2 attached to the polylogarithm

Zn(z) captures the pure functional equations of .#,,(z). Another way to view this is as the functional

equations of Li,(x), modulo product terms. If we compute the symbol of Li,(z), we find
SLiy(2)) = -1 -2)@2z@z®" 2.

So how do we go from —(1 —z) ® x ® 2772 to —(1 — ) Az ® ®"~2 and find identities which hold
modulo products? And more coarsely, can we isolate things like the pure polylogarithm components of

a symbol? Or only the depth 2 contribution?
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3.4.1 The symbol modulo L

If we have two MPL’s I; and I, with corresponding symbols a1 ® - - - ® a,, and b; ® - - - ® b,y,, then the
symbol of the product 1715 is given by the shuffle product of the respective symbols

S(Illg)ZS(Il)LUS(IQ):Cll@®anLL|b1®®bm

We want to introduce some operator which kills all shuffle products, leaving only the symbol modulo

products. This is done in Section 5.4 of [DGR12|, via the following projection operator.

Definition 3.4.1. Define a linear operator II,, acting on elementary tensors of lengths w > 1 by

II; =id, and for w > 2

w—1
My(a @ @ ay) = R (My—1(a1 ® -+ aw—1) @ @y — My—1(a2 @ - - - ay) @ az) .

Remark 3.4.2. The reason for the normalisation in defining II,, is to ensure II,, is idempotent. One

might instead prefer to take the following normalisation
Pw = wlly ,

and lose the idempotency. As remarked in [DGR12|, this family of operators p,, is already established

in the shuffle algebra literature.

Proposition 1 in [DGR12| establishes the following property of II,,, following from the same property

already known for p,,.
Proposition 3.4.3 (Proposition 1 in [DGR12|). The kernel of I1,, is the ideal generated by all shuffle

products. That is, for any tensor £, we have

Ly (f) =0
if and only if & can be written as a linear combination of shuffle products.

Example 3.4.4. By applying p,,, we can recover the —(1 — z) A x ® ©"~2 object corresponding to
Li,(x) from the symbol of Li,(z).

We know that S(Li,(z)) = —(1 — 2) ® 2 ® 2"~ 2. Computing p,,(S(Li,(x))) gives

pr(S(Lin(2))) = pu(~(1 - 2) @ z ® 2"?)
=—pn1((l-2)@2@2" %) @r+poai(z@2" )@ (1 -1).

Since clearly 2 ® -+ @ x = 2®" = Lgtn

is a shuffle product, it vanishes under p,,, leaving
=poi(-(l-2)@ze2*" )@,
Checking the base case

p(—(I-r)®r)=p(-(1-2) @z —p(-()) (1 -
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=—(1l-2)@z+z®(1—-1)

=—(1-2)Az,
establishes by induction that

SLiy(z))=-(1-2) @@z 2 —(1-2)Az@z® 2

In the PolylogTools package |PT], this family II,, of operators is implemented using the command sh.
For this reason, and since the the result of II,, is to kill shuffle products L, we will refer to this as

working modulo LU, or working modulo products.

Notation 3.4.5. In calculations involving the symbol, we write Sy = S, to denote two symbols which
are equal modulo products. That is p(S1) = p(Sz2). (See )

By abuse of notation, we may also write I = S, to mean that the iterated integral I has symbol &;

modulo products.

It will be convenient to write {z}, = —(1 —z) Az ® z®" 2, to reaffirm the connection of the symbol

with the the Bloch groups from earlier. So S(Liy(z)) = {z},,.

In this notation, we have the following

Proposition 3.4.6 (Li,, inversion). On the level of the symbol, modulo products, the inversion relation
says
S(Lin(3)) = =(=1)"S(Lin(z))
So
{2h, =-(0"{a}, .

3.4.2 The symbol modulo §

Now we consider how to isolate and remove the depth 1 term, Li,(z), from the symbol. A readable

account of this, with many explicit calculations, is given in [Ver].

The origin of this process to isolate Li,(z) terms lies in considering a group £,, describing all multiple
polylogarithms of weight n, much like the Bloch group B,, describes the polylogarithms of weight n.
(Compare with the groups H,,(F) that Dan defines in [Danll|, discussed in [Section 5.1.2])

Recall that A, is the Hopf algebra of iterated integrals from Then we want to consider

the Lie coalgebra of indecomposables
__ Aso
Aso-Aso

This is the space of iterated integrals, modulo products. It inherits a Lie cobracket § from the coproduct

Le:

A on the Hopf algebra. This cobracket ¢ is defined as follows

d=(mr®m)o(A—AP),
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where

m: Ae — Lo
is the canonical projection map and A°P is the opposite coproduct. That is, if A(x) =" a; ® b;, then
A°P(z) =>"b; ® a;. So ¢ defines a map

5: Lo— N\ L

that gives £, the structure of a Lie coalgebra, whence 62 = 0. Notice that for computations we can
replace A and A°P by their respective reduced versions A’ = A — 1 ® id —id ®1. This is because the
terms 1 ® x + 1 ®  will always cancel in (A — A°P)(z).

Conjecturally, we expect exact sequences connecting £,,, and B,, to arise. We can view B,, (weight
n polylogarithms) as a subset of £,, (weight n multiple polylogarithms) in a natural way. The maps
out from £,, are obtained from the graded components d,; of the cobracket ¢, but only the degree

(> 2,> 2) parts are used.
These exact sequences should give important information about weight n polylogs. At weight 4 and 5,
we expect the following short exact sequences.
2
0= Bys—Ly— [\ Bo—>0

0—>Bs—Ls > BdB3s — 0.
At weight 6, the sequence is no longer short
0—Bs— L= B3sAB3sDBa®Ly %/\35’2 — 0.
Roughly one can think that the function I3 2 2(z,y, 2), for example, genuinely has depth 3, and has a

component in A\® Bs.

These exact sequences mean that ker @, ,~, 0qp in £, should equal (the image of) B,. So we can
isolate and remove pure polylog terms using . From the conjectural existence of these exact sequences,

we get the following which is a version of Zagier’s polylogarithm conjecture.

Conjecture 3.4.7 (Zagier). Any expressions which vanish under @a7b>2 0a,p can already be written

in terms of polylogarithms only.

Indeed, we have the following easy calculation confirming that the image of B, in £,, lands in kernel

of ®a7b22 5,175.

Lemma 3.4.8. Under @, ;>3 04, Lin(z) maps to 0.

Proof. Li,(z) is the iterated integral I(0;x,{0}"~!;1), up to sign and inversion of x which we can

ignore.

We will talk about the coproduct A of I(0;x,{0}"~!;1) using the semicircular polygon interpretation
Remark 1.2.2] In order to get a degree (> 2, > 2) component in A, we can assume n > 4.
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If there is no first vertex (not including the two end points, of course), we obtain one of the trivial

terms in the coproduct

1® I(0;z, {0} 1:1).

The first vertex of the semicircular polygon must occur at x, otherwise it would be at one of the 0’s as

follows

1(0;z,0,...,0,...,0;1)
I

trivially O

We would then obtain an integral I(0,...,0) = 0 in the right hand factor of the coproduct.

Now if the second vertex occurs after the second 0, it looks like follows.

1(0;2,0,0,...,0,...;1).
R S
a product
So we would obtain an integral I(z,0,...,0,0) = %I(m, 0,0)*, which vanishes modulo products.
k>2

If the second vertex occurs at the second 0, we cannot skip any more arguments, other we would obtain

1(0;0;0) =0 or 1(0;0;1) Z£ 0, as indicated

1(0;%,0,0,0,...,0;1) or I(0;2,0,0,0,...,0;1).
| I | — ]

trivially 0O regularises to 0

Therefore our choice of vertices is as follows,

and we obtain the term

I(0;2,{0}"2:1) ® I(0,2) I(x;0;0) I(0,0)I(0,0)---1(0,1)
~——

=1 =1

in the coproduct. Since the right hand factor is weight 1, it does not contribute to @, ;=5 6a,b-

Now it can only be the case that the second vertex occurs at the first 0. But by the same logic, we

cannot skip any more arguments. Our choice of vertices is as follows,

and we obtain

I(0;2,{0}" % 1) ® 1(0,2)I(2,0)1(0,0)---1(0,1),

which is nothing other than the other trivial term in the coproduct
I(0;z, {0} H 1) ®1.
We see that there is no contribution to @a7b22 dq,b, SO the claim holds. O

The first example in which we get a result which does not vanish under 0 is for the iterated integral

I31(z,y), which has a non-trivial d; » component.
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Example 3.4.9 (I3:(x,y) under d22). We compute the reduced coproduct A’ of I3i(x,y) =
1(0,2,0,0,y,1) to consist of the following 8 terms.

I(O,ac,l)®[(x,0,0,y,1)+l(0,y,1)®I(O,x,0,0,y)+[(0,x,0,1)®I(O,y,l)[(x,0,0)+

+1(0,,0,1) ® 1(0,0,y,1) + 1(0,z,y,1) ® I(x,0,0,y) + 1(0,2,0,0,1) ® 1(0,y,1) +

+1(0,z,0,y,1) ® 1(0,0,y) + 1(0,2,0,y,1) ® I(z,0,0)

Of the 14 terms which should appear in the reduced coproduct, the other 6 are trivially 0 because one

of the integrals involved has equal bounds I(0,...,0) = 0.

We only want to consider the d3 2 component, so we throw away all but the following 3 terms.
I(O7 I? 0? 1) ® 1(07 y7 1)1(:177 07 0) Jr I(O’ "1:7 07 1) ® I(O7 O’ y? 1) Jr I(O7 m’ y7 1) ® I(x’ 0’ 07 y) *

Computing A — A°P has the effect of replacing ® by A, when going to the Lie coalgebra. We also

disregard products in the Lie coalgebra, so we obtain only
1(0,2,0,1) A1(0,0,y,1).

The first of the 3 terms above is clearly a product in the second factor. But what happened to the
third term? It also involves a product in the second factor since I(x,0,0,y) = %I(x, 0,y)?, using the

shuffle product multiplication of iterated integrals.
We now try to convert this single remaining term back to more recognisable functions. We have

1(0,2,0,1) = — Lis(%), and modulo products this is equivalent to Liz(z) by the inversion relation. On

the other hand we need to shuffle regularise 1(0,0,y,1). We have that

0=1(0,0,1)1(0,y,1) = 1(0,y,0,1) + 1(0,0,y,1),
=0
so that
1(0,0,y,1) = =1(0,y,0,1) = Liz(;) -

We can therefore replace I(0,0,y,1) by — Liz(y) modulo products. This gives the final result that
62,2(I3,1(w,y)) = — Liz(z) A Liz(y) -

Remark 3.4.10. The result that dz 2(I31(x,y)) # 0 shows that it is not possible to express I3 1(z,y)
in terms of the classical polylogarithm Liy. So at weight 4 a genuinely new function appears. However,
certain combinations of I5;’s can be made to vanish under 6z o, which suggests that they should be

expressible in terms of Lis’s. For example,
S2.2(Is 1 (2,y) = Isa (3, 5)) =0,
after using that Liz(1) = — Liy(z). Gangl |Gan16] provides the following Liy terms for this combination

I 1(2,9) = I31(3. ) = Lia(la] = ] + 3(3)).
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by working on the level of the symbol modulo products. Gangl [Gan16] also finds many other similar

identities and functional equations between weight 4 polylogarithms, using such an approach.

How to work with § on the symbol? For the rest of this thesis we will be working almost
exclusively with the symbol of MPL’s. We would therefore like a way to work with some version of §

directly on the level of symbols, rather than having to go through the coproduct, and the Lie coalgebra.

Vergu [Ver| outlines how to work with the symbol modulo 4. To compute ¢ of a weight n symbol, we
want to project the symbol to the various different weight (k,n — k) pieces and assemble these into a
final result. For clarity, write S,, to mean the space of weight n symbols. To obtain a weight (k,n — k)
contribution from the symbol, we can gather the first k, and last n — k tensor factors, and regard each
of them as a symbol in their own right. In the Lie coalgebra £,,, we work modulo products, so this

will translate over to working with the symbol modulo products.

On symbols, we can therefore build § up as the following composition

5=38,%s,

T2,n—20BTn_22

SRS 2@ - BS-2®S

LR, S @@ B S 2 S,

Here p is the operator which kills products from |[Definition 3.4.1| and [Remark 3.4.2] and 7y, ,_j is the

map which gathers the first £ factors of the tensor product together, and gathers the last n — k factors
of the tensor product together. Informally, perhaps, we should think about identifying £,, with p(S,,)

to aid the intuition.

The following example of the calculation of § in the weight 4 case is found in Vergu [Ver].

Example 3.4.11. Let’s see how ¢ acts on the symbol a ®b® c®d. As a first step we need to compute
a®b® c® d, modulo products. We get

AbRcRd¥ abRcRd—b®a®c®d—bRcRad—bRcRd®a+

+cRb®a®d+c®b®d®a+c®db®a—dRc®bRa.
Now gather the terms under 72 2, to get
2 a2b) @ (c@d) — (b®a) @ (c®d) — (bec)@(@@d) - (bec)®(doa)+
+(c®b)@@Rd)+(c®b) @ (d®a)+ (cRd)®@ (b®a)—(d®c) @ (b®a).
We can quickly check that p(a®b) = aAb, so applying p® p, gives after some cancelling and regrouping

P20 2(a Ab) @ (e Ad) —2(c Ad) ® (a AD)

=2(aANb)A(cNd).
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Therefore, on weight 4 symbols, we can compute § as a kind of 8-fold antisymmetrisation
0(a®@b®@c®d)=2(anb)A(cAd),
as was discussed in |[GSVV10].

Example 3.4.12 (I3 ;(x,y) modulo 6). We can apply the above to the symbol of I5 ;(x,y), which is
Szi(z,y) = (550 B) o) e (G + (B3 oY) e (2)+

o)+

Y

(BHey+(HH ) e @) e () +
(

|
‘ 8
~
(24
—~

)@ () @y + (52 e (22 @ (L)

T r—y

xT

o r
0
®
T

There are a number of simplifications to make initially. For example, we have

(A =—(1-2)Az+aAz=—(1-2)Ax,

x

which we may write as {z}, using the established shorthand. Similarly, we have

(

8

INE)=—(yAra)+zhe=—(yAx).

Applying this to the first two terms of S(I31(x,y)) gives (up to a factor of 2)

{a}g AR A C52) 4+ fahy A (52 A (1) = 0.

Applying it to the fourth and fifth terms gives

(A ED) A @AY = (55 A G2 A (@Ay) =0.

And applying it to the sixth and seventh terms gives

(FOAEZN A (@Ay) = (DA A @ Ay) =0,
The only term which survives is the third term, and on applying § to the third term, we obtain
—2{z}, ANy}, -
So under §, we have
S(Ina () % ~2{x}, Ay}, -

Notice that this agrees (upto an overall scaling) with the computation of d2 2(I51(z,y)) from
ple 3.4.9} once we make the usual identification {x}, with the symbol of Liz(z), modulo products.

Remark 3.4.13. We can see quickly that the symbol of any pure polylogarithm Li,, (x) vanishes under
0. The reason is simple: when n > 4, the last n — 1 factors of S(Li,(z)) are all z. So applying p to the

second component of 7y, ., always yields 0, since n — k ranges from 2 to n — 2. For smaller n, there
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is not even enough room to split off the first and last two factors. This agrees with the result from

Lemma 3.4.8]

The routine to compute the symbol modulo § is built into Duhr’s PolylogTools [PT] package as
del. As already observed there, there appears to be some choice of scaling to be made since
del[CreateTensor [/3(x,y)1] returns ‘essentially” — {z}, A {y},, agreeing with For
the remainder of this thesis, any calculations involving § will be done with Duhr’s PolylogTools package

to ensure consistency of results.

Notation 3.4.14. When computing with symbols S&; and S5, we shall say the symbols agree modulo
§ and write S; = S, to mean 0(S1) = 0(S2). (See )

By abuse of notation, we may also write I 2 S1 to mean the iterated integral I has symbol &; modulo

J.

According to Zagier’s conjecture, when working with the symbol modulo § we should
think that this is the symbol modulo the depth 1 terms Li,,. Given the conjectural status of this result,
we will typically say that some result which vanishes modulo § is ‘morally’ expressible in terms of Li,,
to avoid treating this conjecture as an inviolable truth. A similar construction appears to exists to
work modulo depth 2 terms, or even higher by iterating and considering some ‘version’ of d, §2, et
cetera. 1 will touch on this slightly in although since 62 = 0 on L,, it is perhaps not

entirely clear how this construction should be interpreted.

3.4.2.1 Nielsen polylogarithms and the kernel of §

Zagier’s conjecture that the kernel of ¢ consists exactly of classical polylogarithms Li,,, [Conjecture 3.4.7]
usually works very well in explicit computations. That is to say, given some combination with symbol
Sy that vanishes modulo 6, it is usually possible to generate a large enough set of ‘good arguments’
(through intuition, analogy with lower weight cases, or semi-exhaustive computation using packages
like Danylo Radchenko’s MESA |[MESA]) to find Li,, terms which agree with the symbol &1 modulo

products.

However, there is a special class of iterated integrals which appears to be something of an obstruction
to this. As Brown notes [Bro|, the a priori slightly larger class of Nielsen polylogarithms [Nie09], also

vanishes modulo §.

Definition 3.4.15 (Nielsen polylogarithm). The Nielsen polylogarithm S, ,(z) is defined by the

iterated integral

Snp(e) = (=1)PI(0; {1}",{0}"; x) .

We readily compute the symbol of S, ,(z) to be
S(Snp(2) = (-1)P(1 = 2)*P @ 2",

and observe that S,,—11(x) = Li,(z) is the usual polylogarithm.
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Proposition 3.4.16. Under 6, the symbol of the Nielsen polylogarithm Sy, ,(x) of weight n =m +p
goes to 0.

Proof. For weight < 3, § always vanishes because there is not enough room to compute a non-trivial

result. When weight > 4, we find that the first p positions agree and last m positions agree.

SEmp@)=x(1-2)0 - @(1-72)070 -z

p positions m positions

The contribution for (p ® p) o g — is 0 whenever k < p because the first p vanishes. Otherwise, when
k > p, we have n — k < n —p = m, to the contribution for (p ® p) o mg ,_j still vanishes because the

second p vanishes. Overall, all terms in 0S(Sy, p()), vanish as claimed. O

Remark 3.4.17. The truth of would imply that the Nielsen polylogarithms S, ,(z)
can be expressed in terms of Li,. Indeed, we can give the following symbol level expression for Ss 2(x)
x

Soa(z) S Liy <[x] —[l—a]+ [D +
r—1
. 1 3, 1 4
— Liz(z)log(l — z) — 8 log(z)log(1 — x)° + 21 log(1 —x)*.
Unfortunately, despite many extensive attempts, I have not been able to find a reduction of Ss2(z) to
classical polylogarithms.

However, we can relate all of the different Nielsen polylogarithms in weight 5, 6 and 7 back to S,,—22(x)

and Li, (), as follows. Generally it appears that S, ;() = —Sj.o(1 — z). Then the remaining cases are

53,3(95)%%16(1_;5”%542 ([33]—3[1—33]—|: z D

rz—1

54,3(9c)£L17<—3[x]+2[1—x]—3{ * D+55,2 ([x]—[l—xﬁ{xflb.

z—1
Somehow S,,_22(x) and Li,(x) seem to be the ‘basic’ functions which vanish modulo J, in weight
< 7. Therefore the question of characterising ker § here is reduced to determining whether or not
Sn—2,2(x) can be expressed in terms of the classicl polylogarithm Li, (z). Starting at weight 8 further
obstructions appear, for example S5 3(z) does not seem to be expressible in terms of S, _2 2(x) and

Li,,, without searching again for yet more ‘good arguments’

When studying weight > 5 multiple polylogarithm functional equations in [Chapter 4] and [Chapter 7]

we will explicitly allow Nielsen S,,_22(x) terms when attempting to find the terms missing ‘depth 1’
terms in symbol level identities. That is to say, we shall leave resolving the question of whether Li,, is
exactly the kernel of ¢ as a problem for future investigation. Indeed, without yet having a reduction of

Sz 2(x) to Lis’s, there are definitely times when Nielsen terms appear to be necessary, starting already

in [Section 42.1.3

Remark 3.4.18. Finally, it is curious to note that modulo LU, we have

Sp-9.2(x) = Iy—11(1,2) + nLi,(z).
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So that the Nielsen polylogarithm S,,_2 2(x) can be expressed via some kind of ‘single-variable’ depth

2 integral.






Chapter 4

Relating weight 5 MPL’s

In this chapter we shall investigate the symmetries and relations between various weight 5 MPL’s,
following previous investigations by Gangl [Ganl6] in the weight 4 case. We try to motivate this
investigation by claiming that in order to understand the weight 5 polylogarithm, one really needs to

understand how it fits into the broader context of weight 5 multiple polylogarithms (Section 4.1.1)).

From the start, we restrict to a relatively small but potentially interesting set of arguments of the
form [cr(a,b,c,dy),...,cr(a,b,c,dy)] (“coupled cross-ratios”, [Notation 4.1.1)). We discuss the potential
computational difficulties (memory and CPU time, in finding all relations between
iterated integrals with these arguments, and some of the strategies to minimise these such as the

“numerical valuations” idea from Danylo Radchenko.

We start by looking for symmetries, and short functional equations, for the weight 5 depth 2 iterated
integrals. We do this first for I, ; using ‘coupled cross-ratio’ arguments, modulo ¢ (Section 4.2.1f).

Then we try to lift them to identities for I, ; holding modulo products (Section 4.2.1.3)), and even on
the level of the symbol (Section 4.2.1.1} [Section 4.2.1.2). We encounter an ‘obstruction’ in the form of

Nielsen polylogarithms when trying to lift some of these identities (Section 4.2.1.3)). We then repeat
this process for the multiple polylogarithm I3 > (Section 4.2.2), and we determine how I ; and I3
relate (Section 4.2.2.3))

Next we will investigate identities holding between depth 3 MPL’s using ‘coupled cross-ratio’ arguments

(Section 4.3]). We look for identities on I3 11 modulo ¢ (Section 4.3.1). However, it turns out that

allowing a small selection of I3 5 terms (but not so many as to make everything trivial) drastically
simplifies the structure of the relations amongst depth 3 MPL’s (Section 4.3.2| onwards). We can even
explicitly lift the identities for I3 1,1 mod I5 2 to identities modulo products (Section 4.3.2.2) Moreover,

we find the curious result (Theorem 4.3.18)) that any depth 3 MPL is equivalent modulo these I3 o
terms to a sum over any other depth 3 MPL.

Finally, we indicate some results which occur at higher depths, such as a reduction of I 11 to
I31,1’s, and some short functional equations for I; 1,111 (Section 4.4). We also suggest a larger set of

sy dydy

arguments which might lead to ‘better’ identities between weight 5 MPL’s |Section 4.4.3)).

129
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4.1 Introduction

4.1.1 Motivation

In order to understand better the behaviour of the weight 5 polylogarithm Lis, it becomes important
to understand how it fits into the more general picture of multiple polylogarithms. For example, in
an idea of Goncharov’s will let us find functional equations for Lis by studying the iterated
integral I, ;. The pure polylogarithms Li,, cannot be treated in isolation without losing far too much
of the important structure which comes from the multiple polylogarithms. Indeed, Gangl has made a
similar study of the weight 4 case [Ganl6], and by understanding how certain combinations of depth 2
iterated integrals relate has been able to find a highly generic Lis functional equation using Goncharov’s

idea for weight 4. This will again be discussed in

4.1.2 Notation and goal

We will initially look at symmetries of iterated integrals I, . 4, (1,..., %), where the arguments are
cross-ratios. There are two main reasons for restricting to this choice of arguments. The first reason is
that Gangl [Ganl6| has had a great deal of success analysing such arguments in the weight 4 case. A
second, deeper, reason for this choice of arguments has to do with the connection to the geometry
of the moduli space My ,,, of n marked points on P!, with cross-ratios providing a natural choice of
coordinates on My ,,. For further details of the connection between multiple polylogarithms and 9 ,,,
see Section 6 of [Bro09]. In particular, Corollary 6.17 of [Bro09], shows that every iterated integral on

Mo, » can be expressed as a sum of products of multiple polylogarithms of the form

:E . PR !’Ee !’E . _ PR xf
: J1 Jr—1
Llnl,m’nr< R, 7...,:,er~-~$g> ,
ij DRI xé IJT DR me
and logarithms log(z1),...,log(z¢), where z1,...,x¢ are cubical coordinates on My, and 1 <
J1,- -+, Jr < £ are any indices.

Given 4 points a, b, ¢, d, we will abbreviate the cross-ratio as follows

abed = cr(a, b, c,d) = Z:;/g:;

Then if we have an iterated integral with cross-ratio arguments I,,, ., (abeds, abeds, . . ., abedy), we

will abbreviate this to
Iy ...y (abedrds .. dy) == I, . n, (abedy, abeds, . . ., abedy) .

For example

I3 2(abede) = I3 o(cr(a, b, ¢, d), cr(a, b, ¢, e)) .

This does have the effect of strongly coupling the variables together, and so restricts the scope for
finding identities and relations. But at the same time, this gives us a tractable set of arguments to

work with initially, so that the task of finding relations is not hopelessly open-ended.
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Notation 4.1.1 (Coupled cross-ratio arguments). We will call arguments of the form [abed, abce] =
[cr(a, b, c,d),cr(a, b, c,e)], or more generally [abedy, . .., abedy] = [cr(a, b, ¢,dy), ..., cr(a, b, c,dy)], cou-

pled cross-ratio arguments.

From here we can expand to relations between different iterated integrals, using a similar set up with

cross-ratio arguments.

We will look for symmetries and relations with varying levels of accuracy. On the coarsest level, we will
look modulo ¢, meaning (roughly) the identities hold modulo depth 1 terms, i.e. modulo Li,,. With
persistence maybe these identities can be upgraded to identities holding modulo LU, that is modulo
products. In some cases it may even be possible to find identities which hold on the level of the symbol

exactly.

It does not (quite) make sense to look for identities holding ‘modulo % since one expects that every
iterated integral at weight 5 can already be written in terms of I5, I3 2 and I3 3 by eliminating the
indices 1. This would mean that every weight 5 iterated integral vanishes ‘modulo §2’. This is
investigated in more depth in However, it could be worth asking for relations which hold

true modulo depth 2 integrals with our (relatively) simple choice of cross-ratio arguments.

4.1.3 Strategy for finding relations

The basic strategy for finding relations between these types of iterated integrals is to apply brute-force

linear algebra. For example, to find relations for I, ; modulo §, form the linear combination

T = Z ¢oly1(0 - abede) .

0ES{ a,b,e,dye}

Then compute the symbol S(T'), and reduce modulo d. Setting this combination to 0 produces a linear

system of equations for the coefficients c¢,, which can then be solved to find relations for I, ; modulo 4.

4.1.3.1 Dealing with ‘potentially’ large systems of equations

This method of brute-force computing the symbol and setting up a large system of equations works
insofar as low depth, low weight integrals can be analysed like this. The main bottle-neck initially is
computing the symbol of each term. Already the symbol of I, ;1 (abede) modulo § involves 4536 terms
when fully expanded out to elementary tensors. Summing over 5! = 120 different permutations of abede
involves over half a million terms, taking up nearly 700 MB of memory. The intermediate calculations
in Mathematica require 4.6 GB of memory. For a higher depth integral like I5; 1, the symbol for a
single term of I3 1 1 (abedef) modulo ¢ has 23256 terms. Then we would sum over 6! = 720 different

terms, so the result would be approximately 30 times bigger already.

This large number of terms feeds into the next bottle-neck. The resulting system of equations is

hideously over-determined. In the case of Iy ; modulo 4, by setting the sum S(T') = 0 modulo J, we
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obtain 45360 equations for the 5! = 120 variables ¢,. Even removing exact duplicates still leads to
4200 equations. But the rank of the resulting matrix is only 20, meaning 4180 of these equations are

completely redundant!

Numerical valuations: From discussions with Danylo Radchenko, I learned of a better way to
generate the system of equations for the ¢,. Given a symbol (modulo L, modulo §, or otherwise)
s € Q,, Q(z1,...,2,)* one specialises each x1,...,z, to some sufficiently generic tuple of rationals
(or even integers), giving a map ),, Q(z1,...,z¢)* = ),, Q*. In this context generic means no pairs

x; = x; are allowed, and all x; are away from poles of factors of s.

Now choose a set of n primes p1,...,p,, and compute the valuation v, of tensor factor ¢ with respect
to prime p;, and take the product of the results. This gives a map @), Q* — Q*. (Remember that
we treat tensors as multiplicative rather than additive in each slot (ab) ® c=a® c+b®c.) On an

elementary tensor q; ® - -+ ® g, € Q®", we obtain

Q1®"'®qnHVm(%)"’”pn(qn)'

Overall we obtain a map N = Ny, 2y p1pn: &, Q(z1, ..., 20)" = QF, by extending formally to

symbols which are linear combinations of elementary tensors.

Applying this construction to S(T') = 0, above, leads to

Z ¢o N(S(I4,1(0 - abede))) = 0.

TES abc,de} €Q

So for each choice of specialisations, and primes, we produce one equation for the ¢,. By choosing
different specialisations and/or different primes, we obtain further equations for the ¢,. The linear
system can therefore be built up one equation at a time until the rank stabilises, and no new equations

for the ¢, arise.

Generating the system of equations this way had further advantages over the brute-force ‘compute and

expand out the symbol” approach.

Firstly, the symbol of Iy (o - abede) arises by plugging suitable arguments (namely, o - abed, and
o - abce) into Iy 1(z,y). So we can compute N(S(Iy,1(o - abede))) by first specialising the arguments,
then using the numerical valuation coming from I, ; (x,y). This means we only need to compute the
symbol of I, ; once, but can use it again and again for new choices of arguments. Moreover, the map
N does not depend on the particular presentation chosen for the symbol, so we are free to use the

most compact version we can.

For example, the version of the symbol produced by Goncharov’s tree definition (Section 3.3.1)) is
significantly shorter than than the version produced by Duhr’s PolylogTools package. Not least of
which this is because Duhr’s package necessarily must reduce the symbol to elementary tensors before

returning the result. Instead, I can implement my own version of Goncharov’s tree definition to
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compute the symbol for these calculations. I find (of course!) that it agrees with Duhr’s results in

every case, whilst making some of computations much more efficient.

Another advantage comes from noticing that the calculations of N for different specialisations, and
for different primes, are completely independent. Therefore multiple calculations of N can be run in

parallel, further reducing the computation time of the system of equations for ¢, .

4.1.3.2 Finding ‘short’ relations

Besides generating the matrix, another difficulty lies in finding ‘nice’ relations. Typically one wants
relations with integer coefficients (or rationals with small very small denominators). Moreover, one

wants relations with relatively few terms, roughly meaning short null vectors in one metric or another.

Gaussian elimination to find the nullspace of the resulting matrix will not lead to particularly nice
relations. One can try to use LLL reduction to find ‘better’ integer basis for the nullspace. In
Mathematica [MA] this can be done with the command LatticeReduce. Better results can be

obtained by passing the matrix to GP/Pari |[GP|, for processing with the matkerint command.

These routines do not guarantee the shortest possible relations, but in practice they typically work
well enough to identity very short relations. Due to the setup of the problem, any permutation of
arguments abcde in an identity necessarily produces another identity. By finding a short null-vector,
and generating further short null-vectors in the null-space, one can LatticeReduce several times to

try to find the shortest possible relations.

4.2 Depth 2 iterated integrals

At depth 2, there are four iterated integrals to consider, namely I4 1, I3 2, I2 3 and 1 4. In some sense,

1,1 is the simplest of these, having the shortest symbol, so it is best to start there.

4.2.1 Relations for /,; modulo §

Firstly we look for relations which hold modulo products, and depth 1 terms. That is modulo §. We

find some simple two term identities of the following form.
Identity 4.2.1. Modulo §, we have

L1 (abe(de)) £ I (abe(ed)) (4.2.1a)

Ii1((ab)ede) £ — I, 1 ((ba)cde) . (4.2.1b)

Remark 4.2.2. In these identities, and any subsequent ones, the bracketing of cross-ratio arguments

is only for emphasis. It is there only to help identify which variables in the cross-ratios have changed.
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Converting back from cross-ratios to rational functions, by setting a = 0o, b=0, c =1, d = z and

e =y, we can write these identities as

s
Iya(z,y) = Isa(y, @) (4.2.1a")

I4,1($7 y) g _-[4,1(%7 %) . (421]:)’)

We will see identities like [Equation 4.2.1b| occur for all of the depth 2 iterated integrals I, ;. Indeed,
deals with providing a general proof of this result, and lifting a certain subclass of identities,

those for I,, 1 to full numerically testable identities.

Potentially more interesting is the following cyclically symmetric identity

Identity 4.2.3. Modulo § we have

Cycype 11,1((abc)de) = Iy 1((abe)de) + 141 ((bea)de) + 14,1 ((cab)de) 20 (4.2.2)

Or equivalently,
5
Lia(e,y) + L, m) + laa(l— 4,1 - 5) = 0. (4.2.2)

-2’ 1—y T Yy

The above identities hold modulo §, which morally means modulo Lis terms and products. We should

try to find the missing Lis terms in order to get identities which hold modulo LL.

4.2.1.1 Lis and product terms for symmetry I, 1(z,y) 2 Ii1(y,x)
Identity 4.2.4. Modulo LI we have
I, 1 (abe(de)) = Iy 1(abc(ed))),

50 holds modulo W already.

Or equivalently
Lia(z,y) = La(y, o).

A similar result is observed by Gangl in [Ganl6] at weight 4, where it is stated that I (z,y) =

—1I51(y, ). Both of these symmetries are instances of the following general result.

Proposition 4.2.5. The following identity holds exactly for the iterated integrals.
Lna(z,y) = (1) T (y,2) = (=1)" > (=1 Li(@) Lng1-i(y) - (4.2.3)
i=1
So modulo LU, we obtain

In,l(xa y) = (_1)nIn,1(ya 33)

Proof. We firstly convert this to a result on differential forms, then we can use that the product of

iterated integrals is just the shuffle product of the word describing the differential forms, as in the
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property of [Property 1.1.13] On the right hand side of ignoring the
factor (—1)™, we have

n n

> (D L@ Lsai(y) = Y (=1 1052, {0} | DI(0 [y, {0} 1).
i=1 i=1
So really we want to evaluate the following combination of differential words

n

> (D)0 w (yom ).

i=1

By explicitly multiplying out and checking cases n < 3, we can assume n > 3 without loss of generality.

Then we can separate the i = 1 and i = n terms of the sum to obtain
n—1
=~z w (Yo" ) + (=)™ (20" ) wy + > (=1 (@0 ) w (yo" ).
i=2
Using the recursive definition of the shuffle product, we have
(0 1) W (y0™~%) = (202 W (0™ ) 0+ ((x0"~ ) w (y0™ ') 0.

Plugging this back into the sum, we obtain

n—1

= —zw (0" 4+ (=1)"(x0" ) wy + Z ((—1)1' (2072 W (y0™ ) 0+

i=2
- (1 (0w ) 0)
But now this sum telescopes, leaving only
=~z w (yo" ") + (=1)"(=0" ") wy + ((w L (y0"7%))0 — (=1)"((x0" %) y)0)> :
Finally we can rearrange the recursive definition of the shuffle product to get

—z W (0" H 4+ (2w (y0" )0 = —(Pwyo" Hz

(x0" D wy — (20" 2) Wwy)0 = (0" wh)y.
Plugging these into the previous shows that the right hand side is
= —(0w o ")z + (x0" ) W)y = —(y0"'z) + (=1)"(x0""y)

Taking the iterated integral of this result shows that

n

> (=110 2, {0} D)I(05, {0} 1) =

i=1

— 1(0; {0} a5 1) + (=1)"1(0; {0} y; 1) .

Multiplying by (—1)", and using the usual shorthand notation I, ;(z,y) > I(0; z{0}*1y{0}*~1; 1),

gives the desired identity. O
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So in fact we can add the missing product terms to get an identity which holds on the level of the
symbol. For psychological reasons, one might prefer to write this in terms of the usual polylogarithms,

rather than depth 1 iterated integrals. This can be done using the equivalence

Lin(2) = —I,(2).

Identity 4.2.6. The following identity holds on the level of the symbol.
Lia(z,y) — Liay,z) £ - Liy(3) Lia(y) + Lia(3) Lis(;) — Lis(3) Liz(;) + Lia(5) Lia(5) -

More generally, the following holds on the level of the symbol.

La(z,y) = (=1 Lna(y,2) 2 3 (=1)" " Lig (L) Lin1—i(L) .

i=1

4.2.1.2 Lis and product terms for symmetry I, 1(z,y) 2 —.74,1(%7 %)

The identity in does not hold modulo LU, so we do need to find Lis terms which make
it hold. Some brief searching with Mathematica uncovers the necessary Lis terms, giving the following

result.

Identity 4.2.7. The following identity holds modulo products.
Lia(@,) + Iaa(2, 1) 2 Lis (~[a] - [s) - 4[2])

This identity should be compared with the corresponding weight 4 identity in [Ganl16|, which states
Ioa(a,y) = Ba(t, ) = Lis (o] - ]+ 3[2]) -

With some further searching, we can find product terms which make the identity hold exactly on the

level of the symbol.

Identity 4.2.8. The following identity holds exactly on the level of the symbol.

S .. @
Lia(@,y) + Toa(2,5) 2 Lis (~la] - [y -4 2] ) +

+ Lia(y) log(«) — 5 Liz(y) log®(«) + 5 Lia(y) log® (x) — f; Lix (y) log* (z) +

4 Lis (5) log (g) + & (1og5 (5) - 1og5(x))
Again, this should be compared with the symbol level identity for I3 ;(z,y) — I3’1(%, %) presented in
|Gan16]. Even if not exactly equivalent, these two identities overwhelmingly share the same structures.
The similarities between these identities at weight 4 and weight 5 will be explored further in
There, a general symbol level identity which holds for any iterated integral I, ;(x,y) will be proven.
Moreover using slices of the multiple polylogarithm coproduct, the I,, 1(z,y) case will be lifted to a

candidate numerically testable identity, like Duhr does using Gangl’s weight 4 identity for I5 1 (z,y).
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4.2.1.3 Li; and Nielsen terms for relation Cycy,; .y {1,1((abc)de) 20

The 3-term identity in also needs Lis terms to complete it to an identity which holds
modulo . But here we encounter our first surprise! At weight > 5, it is only a rule of thumb that
vanishing modulo ¢ means Lis terms (hence the 'morally’ everywhere). As Brown notes [Bro], the class

of functions which vanish modulo § is strictly larger than Li, in general — one also needs to introduce

Nielsen polylogarithms (see [Section 3.4.2.1).

In this case we find the following Lis and Nielsen terms.

Identity 4.2.9. The following identity holds modulo products.

Lia(z,y) + L1 — 21— 1y 4 Iy (12, 1) = —2Lis(2) — 2Lis(32Y) — 2 Li5(X5=2) 4

1 z y(-z)
y 1-27 1-y y z(1-y)

—2Lis(x) — Lis(1 — 1) 4+ S32(z) +

—2Li5(y) — Lis(1 — ) + Ss2(y) -

Notice here that the other leading terms arise from symmetrising —2 Li(%) under the 3-fold symmetry
(z,y) — (1 — %, 1- %) which manifests on the left hand side. We can make this symmetry fully

manifest on the right hand side too, at the expense of using a large number of Nielsen terms.

Identity 4.2.10. The following, fully symmetric, identity holds modulo products.

Lia(@,y) + Tia(l = 2,1 3) + L, 15) 2 —2 (Lis(2) + Lis(122) + Lis(XH=)) +

. . . 1
= Lis(2) = Lis(1 = 3) = Lis(5) + 3
. . . 1
— Lis(y) — Lis(1 — ;) — Lis(3%;) + 3 (Ss,z(y) +S32(1— ) + 83 2(1iy)>
Or more compactly,

CyC{ a,b,c} I471((abc)de) = CyC{ a,b,c} < -2 L15(bade) —+

— Lis(abed) 4 £S32(abed) — Lis (abee) + éngQ(ab06)> .

In particular, we have the following identities for Nielsen polylogarithms from which the above

symmetrisation can be built.

Identity 4.2.11. The following identities hold modulo products, expressing combinations of weight 5

Nielsen’s in terms of Lis ’s.

Ss2(z) + S3.2(%) = 3Lis(x)

S3.2(x) + S3.2(1 — x) = Lis(x) + Lis(125) + Lis(1 — 2).
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4.2.1.4 Rank of relations for I, ; modulo §

By considering the relations arising under all permutations of the arguments abcde, we obtain the

following table which counts the number of linearly independent relations arising from each initial

relation.
1,1 relation Number of terms | Rank of relations
Equation 4.2.1a) 2 60
Equation 4.2.1b) 2 60
Equation 4.2.2 3 40
Overall rank 100

4.2.2 Relations for /3, modulo J, and the connection to I,

4.2.2.1 Symmetries of I3, modulo §

As hinted at above, in [Equation 4.2.1b|and [Section 4.2.1.2] we expect a symmetry from inverting the

arguments. Indeed we have this.

Identity 4.2.12. Modulo §, the following symmetry holds for I3 .
Is2((ab)ede) 2 —I55((ba)cde) (4.2.4)
or equivalently

5
Iio(z,y) = —Is2(3, 4) - (4.2.4")

As previously, we can find the Lis terms which make this identity hold exactly modulo products. We
find

Identity 4.2.13. Modulo Wi, the following identity holds for I >

Iyo(z,y) + Iaa(5 ) = Lis (—[x] +4y] +6 [ﬂ)

This is the only simple symmetry of I3 5, but other relations do hold modulo 4.

4.2.2.2 Other relations for I35 modulo §

A certain ‘symmetrisation’ of 2-term identities swapping x <> y (equivalently d <> e) does hold.
Identity 4.2.14. Modulo §, the following 4-term relation holds
5
I3 2(ab(d)c(e)) — I3 2(able)c(d)) = —(Is,2(abc(de)) — I3 2(abe(ed))) . (4.2.5)

So that I3 2(abe(de)) — I3 o(abe(ed)) is antisymmetric under swapping ¢ < d.
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Or equivalently
I3 5(ab(cd)e) + I3 2 (ab(dc)e) 2 I3 2((ab(ce)d) + I3 2(ab(ec)d) ,

so that I3 2(ab(cd)e) + I3 2(ab(dc)e) is symmetric under swapping d <> e.
Similarly a ‘symmetrisation’ of the 3-term ‘cyclic’ identity for I, ; holds.

Identity 4.2.15. Modulo §, the following 6-term relation hold
5
Cycfap,ey I3,2((abe)de) = — Cyey 4 01 13,2((abe)ed) (4.2.6)

so that Cycy 4.0y 13,2((abe)de) is anti-symmetric under d < e.

Knowing some ways to relate I3 2, and I4 1, these relations are not at all surprising. And moreover, it

becomes easy to add the missing Li; terms to get identities holding modulo L.

4.2.2.3 Relating I, ; and I52, and consequences for I3, identities

We can express certain combinations of I3 5 in terms of I ;, as indicated.

Identity 4.2.16. Modulo L, we have

Cycycay I3,2(ab(ed)e) = (Cyc{ cde } I471(ab(cde))> + 2 Lis(bade) — 4 Lis(abed) 4 2 Lis (abee)
(4.2.72)

w

Cycy gy I3.2(abe(de)) = —314,1(abede) . (4.2.7b)

Most interesting is the second equation above which expressed a single I, ; term in

terms of I3 5. This gives us a way to eliminate the index 1 from a depth 2 iterated integral; we will

make use of this later to reduce I 1,1,1,1 to I3 2 terms. It is worth asking whether a similar

sl

conversion expressing one I3 o term as a sum of I4;’s is possible.

I35 in terms of I, ;: Perhaps surprisingly, it is not possible to express I3 s(abede) = I3 2(x,y)
using terms of the form I, 1 (abede) with our ‘coupled’ cross-ratio arguments. However, a much more
brute-force route does lead to such an expression. Modulo ¢, we compute Iy 1(x,y) and I3 2(x, y) to be

as follows

Lia(z,y) < —{a}y AMyls + {o}s Ayl (4.2.8)

s T x
Laay) Z{al, A {2} — b n {2} + 20k A ubs + {0l A (o (4.2.9)
Since Liz(z) = Liz(3), we have {}; = {1 },. Therefore, using this we get
s
Lii(z,y) + Laa(z, ) = 2{z}, A {yldy

This combination of integrals will occur again in when we look at Goncharov’s approach to
finding highly generic functional equations for Li;. We can now write every term appearing Is 2(z,y)

mod d directly in terms of I, ; to obtain the following.
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Identity 4.2.17. Modulo §, we can express the single term Is o(x,y) using I11 as follows.

s 1
Is0(z,y) = (31—4,1(%3/) + Iy, ) + L@, ) +

2

e ) = a0 ) ~ L))

It would be desirable to find the Lis terms which make this identity hold modulo L. Using Danylo
Radchenko’s sage package MESA to search for ‘good’ Lis arguments, I find that it is possible
to do this. However, the resulting terms Lis arguments are significantly more complicated than one
might initially expect. Moreover, the identity itself is very long. The resulting identity is presented in
bection B. 1l

Returning to the original conversions between I3 5 and I, ; from it becomes clear that
{Identity 4.2.14] and [[dentity 4.2.15[follow from their counterparts for I, ;. We have

Explanation of [[dentity 4.2.14. Consider the left hand side of We have

I p(ab(ed)e) + I3 2 (ab(de)e) = Cycycay I3,2(ab(cd)e)

S Cycq e q,ey 11,1 (ab(cde)) .

Using the cyclic invariance now, we can write this as

LA Cycye,e,ay La1(ablecd))

i Cyc{ e} 13,2(0,1)(66)60

2 I3 o(ab(ec)d) + I3 2(ab(ce)d) .

But this is just the right hand side of [Equation 4.2.14 O
Ezxplanation of [dentity 4.2.15 The difference between the left hand side and the right hand side of

can be written as
Cyctap,et Cyepaey I3,2((abe)(de)),
but using [Equation 4.2.70] this is just
2 3 Cyey ap,cy 1a,1((abe)de) .

And this vanishes modulo § using [[dentity 4.2.3 O

Keeping track of the Lis terms throughout and using the corresponding I4; identities from

[tity 4.2.10|and [[dentity 4.2.7] means we can complete [[dentity 4.2.14] and [[dentity 4.2.15|to the following

identities holding modulo Lu.

Identity 4.2.18. Modulo Wi the following identities hold on I35.

L

I3 2(ab(cd)e) + I3 o(ab(de)e) — I3 o((ab(ce)d) — I3 2(ab(ec)d) = —6 Lis(abed) + 6 Lis (abce)
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Cycyap,ey I3,2(abe(de)) — I3 2(abe(ed)) = 6 Lis (bade) + 6 Lis (cbde) 4 6 Lis(acde) +
+ 6 Lis (abed) 4+ 3 Lis (bead) — 355 2(abed) +

+ 6 Lis(abce) + 3 Lis(bcae) — 353 2(abee)

An amusing way to phrase the two identities in along with is the

following.

Proposition 4.2.19. Modulo § and I, 1 terms, the iterated integral I o(abcde) is

e antisymmetric in cde, and

o symmetric in ab.

4.2.2.4 An ‘exceptional’ I3, identity

The identities from [[dentity 4.2.13] [Equation 4.2.14] and [Identity 4.2.15| describe nearly all of the

identities that hold between the terms I3 o(abede). Altogether they describe 90 out of the 91 identities

which hold. However one final identity is missing from this list.

To describe this identity it is convenient to briefly introduce some new notation as follows. Let
S(abede) = Cycy o4y I3,2(abede) = I3 a(abede) + I3 2(beade) + I3 2(cabde) .

Then we have the following identity.

Identity 4.2.20. Modulo §, we have the following 3 x 10-term identity.

Cyc{ abede} S(abede) 2 Cyc{ arciesbid } S(acebd) . (4.2.10)

On the right hand side the parameters in the argument step by 2 each time, whereas on the the left
hand side the parameters step by 1. So one can view this identity as equating Cyc, S((abcde)?) for

various choices of p (p =1 and p = 2 above) where (abcde) is interpreted as a 5-cycle.

We can lift this to an identity holding modulo W, using Lis and Nielsen terms.

Identity 4.2.21. Modulo Wi, the following 30 term identity on Is 2 holds

w

CYC{ape,dey Slabede) — Cycg g o p.ay Slacebd)
3 Lis (—7[abed] — 3[abee] + 5labde] + [achd) + [acbe] +
— 3acde] — 3[adbc] — 5ladbe] + [adce] + 11[aebc] +
— 9[aebd] + 11[aecd] + blbede] — 5[bdce] — 9[becd)]) +

+ 1855 2([abed] — [aebc] + [aebd] — [aecd] 4 [becd))
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4.2.2.5 Rank of I3, relations modulo §

By considering the relations arising under all permutations of the arguments abcde, we obtain the

following table, which counts the number of linearly independent relations arising from each initial

relation.
I3 5 relation Number of terms | Rank of relations
FEquation 4.2.4] 2 60
Equation 4.2.5 4 40
Equation 4.2.6 6 20
Equation 4.2.10 30 18
Overall rank 91

4.2.3 The remaining depth 2 iterated integrals I3 and I, 4 modulo ¢

Having fully analysed the symmetries and relations of I, ; and I3 modulo J, including relations
between the two different integrals, the remaining cases are not so interesting. Using the stuffle product

of multiple polylogarithims, we have the following identities relating I, and Iy 4.

Proposition 4.2.22. The following identity holds exactly for any depth 2 iterated integral.
Top(z,y) + Ival(z, %) = lay(x) + Ib(y)ja(f) .

Proof. This is a direct consequence of the stuffle product * of the corresponding multiple polylogarithms.

Converting back via we have

so that

Now convert to iterated integrals using to say

Lia,b(xa y) = a,b(%ya %) .

So we obtain

= Ib,a(x; %) + Ia,b(mvy) - Iaer(x) .

Rearranging this gives the desired equality. O
In terms of the cross-ratio arguments, this means we have

I.m(abede) = —1,, ,(badce) — Liy ., (bacd)
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so that identities for I3 9 modulo ¢ can be translated to directly to identities for I5 3, and vice-versa.
Similarly for I, ; identities and I, 4 identities. So there is no need to analyse the cases I 3 and I 4 in

detail.

4.3 Depth 3 iterated integrals

At depth 3, there are many more integrals to consider: I311, l131, 11,13, 12,21, I2.1,2 and 11 29.
Therefore, there are many more potential relations between different integrals to be investigated. The

simplest integral here appears to be I3 ; 1, so this is a good place to start.

4.3.1 Relations for /3,; modulo §

The integral I5 ; 1 (abedef) has no straight-forward symmetries, but perhaps the simplest relation for
I3.1,1 is the following, which has the form not dissimilar to the 2-term inversion relations that hold for

Lop(2, %) Specifically we have

Identity 4.3.1. Modulo § the following 4-term relation holds

Cye(any Iani((ab)(edef)) = Cyeyapy Isaa((ab)(fede)) .

From the left hand side to the right hand side there is a reversal of cdef.

Of course, we can find the Lis terms, to obtain a more precise identity.

Identity 4.3.2. Modulo L, the following relation holds

Cyciapy Us1,1((ab)(cdef)) — I31,1((ab)(fedc))) = Lis (—4[badf] + [baef] 4 4]abce] — [abed)) .
The next simplest identity, linearly independent from the previous, appears to be an 8-term relation of
the following form, which already holds modulo products.

Identity 4.3.3. Modulo §, and in fact already modulo LU, the following 8-term relation holds.
Alt{ ce} Alt{ d,f} (Ig@J(((lb)(Cd@f)) — 137171((ba)(fedc)) g 0.

By successively taking new identities, linearly independent from any of the previous, we obtain a

sequence of increasingly complicated identities, with an increasing number of terms.

For example, we find a 16 term identity.

Identity 4.3.4. Modulo § the following 16-term relation holds.

Alty o qy I31,1(—[abde fc] — [abdf ce] — [abdfec] + [abedfc] +

+ [abfdec] + [badecf] + [badf ce] — [baedfc]) 20
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Then we find a 24 term, a 36 term, a 48 term identity, and so on. It turns out that each of these has a

non-trivial Lis component.

The most generic (and most complicated) of all identities for I5 1,1 modulo ¢ appears to be a 152-term
identity, which involves only coefficients +1, +2. This 152-term identity generates a 522 dimensional
space, but already this exhausts all relations on I3 1 modulo d. Necessarily, since has a
non-trivial Lis component and this 152-term identity implies it, the 152-term identity has a non-trivial

Lis component.

The description of the I3 ; ; relations modulo § is rather more complicated than the corresponding

description for the [depth 2 integralsl This suggests that maybe we have been too restrictive in the

choice of arguments, or the depth we work modulo.

4.3.2 Relations for /3;; modulo I3,

Allowing only identities which hold between I3 ;i terms with cross-ratio arguments, modulo ¢ is

perhaps too restrictive. We should consider identities which involve lower depth terms beyond Lis.

However, it does not make sense to ask for identities holding modulo depth 2, since every iterated
integral of weight 5 is expected to be expressible in terms of depth < 2 iterated integrals. But
perhaps we can still find some interesting results by asking for combinations of I3 ;,; which can be
expressed in terms of depth 2 integrals with the ‘simple’ cross-ratio arguments. From
and we know how to express every depth 2 iterated integral in terms of I3 o, so it suffices

to consider only I3 .

Henceforth, we introduce the following notation.

Iss
Notation 4.3.5. We will write = to indicate results which hold modulo & and explicit I3 (abede)

terms, with these simple cross-ratio arguments.

Modulo I3 2, the integral I3 1,1 satisfies a number of genuine symmetries, namely we have the following.

Identity 4.3.6. The following symmetries hold modulo I3 5.

Is,1,1((ab)edef) o2 I31,1((ba)cdef) (4.3.1)

I3,1,1(ab(cdef)) e I31,1(ab(fedc)) (4.3.2)

Indeed, these are the only symmetries of I3 ;1 modulo I3 .

The next simplest identities which appear are 4-term identities.
Identity 4.3.7. The following 4-term identities for I3 11 hold modulo I3 5.

I3
Cyc(bc)(ef) IgJJ(CL(bC)d(Sf)) = Cyc(bc)(ef) 1371,1(d(ef)a(bc)) (433)

I
Cycpaey Is1.1(abe(de) f £ Cycfger I3 1,1(fcb(de)a) (4.3.4)
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Moreover, we now obtain two different types of 5-term identities for I3 ;1 modulo I3 5. Unfortunately

the identities appear to lack a nice structure, nevertheless we have the following.

Identity 4.3.8. Modulo I3 2, the following identities hold.

I3 1.1([abede f] + [acefdb] + [adf cbe] + [aecfbd] + [afdceb]) 2 (4.3.5)

I3 11 ([abedef] + [aecfbd] + [caefdb] + [cbeadf] + [cebafd]) 2 0 (4.3.6)

Maybe one would prefer a longer relation that is more structured. In which case, we have also an

8-term relation for I5; 1 modulo I3 5.

Identity 4.3.9. Modulo I3 2, the following 8-term relation holds for Is 1 ;.

Is

Alt{ c,d} Cyc(ae)(bf) Cyc(bc)(ef) 13,171(abcdef) 0 (437)

It turns out that these identities, [Equations 4.5.1] to 3.7}, are already more than enough to generate all

687 relations on I3 1,; modulo I35 2. The description of all I3 1,; relations modulo I3 5 is much simpler
than the corresponding description modulo §, but not trivially so. This confirms that looking modulo

I3 5 is a good idea.

4.3.2.1 Rank and bases of I3;; relations modulo I3

By considering the relations arising under all permutations of the arguments abcde f, we obtain the
following table which counts the number of linearly independent relations arising from each initial

relation.

I3 1,1 relation | Number of terms | Rank of relations
Equation 4.3.1 2 360
Equation 4.3.2 2 360
Equation 4.3.3] 4 180
Equation 4.3.4 4 180
Equation 4.3.5 5 432
Equation 4.3.6 5 672
Equation 4.3.7 8 180
Overall rank 687

We can take any of the following choices to obtain a ‘minimal’ basis for the I3 1,1 relations, modulo I3
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I31,1 relation | Number of terms Bases

Equation 4.3.1

Equation 4.3.2

Equation 4.3.3

Equation 4.3.4

Equation 4.3.5

Equation 4.3.6

o Tt Ut e e NN
{\
(\

v v IV

FEquation 4.3.7]

4.3.2.2 I35, Lis; and Nielsen terms for /3, ; relations holding modulo I3,

We can lift the identities in [Equations 4.3.1| to 4.3.6} to identities holding modulo § (and potentially

even modulo W), by finding explicit I3 2 and Lis terms.

Identity 4.3.10. We can find I3 and Lis terms for|lquation 4.5.4 and|Equation 4.3.1) to give the

following identities which holds modulo L.

IIE

I31.1(ab(cdef)) — I3.1.1(ab(cdef)) = I3 2(abede) — I3 2(abfed)

IIE

Q| =

I3 1.1((ab)edef) — Is1.1((ba)cdef]) I5 2 (3[abede] — [abedf] — 2[abee f] — [abefd] +
+ [abefe] — 2[abecf] + [abefc] — 3[abfed]) +

+ Lis ([abed] — 4[abee] + 3[abef] + 4[badf] + 2[baef]) .

The first 5-term identity, is very easy to lift to an identity modulo products, for we

have the following.

Identity 4.3.11. We can find I3 and Lis terms for|Equation 4.5.5 to give the following identity

which holds modulo L.

L

I3 1.1([abede f] + [acefdb] + [adf cbe] + [aecfbd] + [afdceb])
— I3 o([facbd] + [fbdac] + [fcabe] + [fdbae] + [feadc]) +

+ 6 Lis([acbf] + [aedf] + [afbd] + [becf] + [cdef])

However, lifting the 4-term identities is already more difficult. They require a large number of I3 o
terms. Moreover, Lis(abed) terms are not sufficient; we need to invoke weight 5 Nielsen polygarithms.

We have

Identity 4.3.12. We can find I3 and Lis and Nielsen terms for|Equation 4.3.5 to give the following

identities which hold modulo L.
Is1.1([abedef] + [achdfe] — [defabe] — [dfeach]) =
1

3[3,2(—[abdfe] + [abefd] — [acdef] — [acefd] + [acfed] — [aecbf] — [aecfb] +
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— lafbee] — [afbec] + [bafed] — [bdf ce] — [bdfec] + [bface] — [bf cae] +
+ [bfdec] + [bfeac] — [bfedc] — [edebf] — [edefb] + [ceabf] +
+ [cebdf] + [cedfb] + [cefab] — [cefdb] + [deacb] — [debea] +
+ |-

[dfbca] — [df cba

[ ] —

+ [bfcde]

~ Jcebaf]
[

+ [df abc] [edcba]) +
+ Lis (4[abef] — 4[acbe] — 4[acef] + 8laecf] — 4[afbec] + 4[afbe] + 4lafce] +
— 4[bede] + 4[beef] + 4lbdee] — 4lbdcef] + Albde f] + Albfed) — Albfce] +

— dlcfde] + [abef] — 4[abdf] — 2[abef] + 3[acbe] — [achf] + 4[acde] +

+ 2[acef] + [adbc] — [ade f] — [aebe] 4 3[aebf] — 3laecf] + 2[afbc] +

— [afbe] + [afce] + 2[bede] — [bedf] — 2[bee f] + 3[bdef] — [bde f] +

— [becf] — [bedf] — [bfed] — [bfce] — [bfde] + 2[cdef] — 2[cedf] + 2[cfde]) +
+ S3.9(—[abef] + [acbe] + [acef] — 2]aecf] + [afbe] — [afbe] — [afce] + [bede] +

— [beef] — [bdce] + [bdcf] — [bdef] — [bfcd] + [bfce] + [cfde])

Identity 4.3.13. We can find I3 > and Lis and Nielsen terms for|Equation 4.3.4) to give the following

identities which hold modulo L.

Is1.1([abedef] + [abeedf] — [fcbdea) — [fcbeda]) =
%Ig,g(mbcde] + [abced] — [abfde] — [abfed] + [acbde] — [achdf] + [acbed] +
— lacbef] — [acbfd] — [acbfe] + [acfed) — [afbed] — [afbee] — [afbde] +
— [afbec] — [afcbd) — [afcbe] — [afcdb] — [afceb] + [bfade] + [bfaed] +
— [bfcad] — [bfcae] — [bfeda) + [bfede] — [bfcea) + [bfced) — [cafde] +
[cfade] — [

— [cfade] — [cfbed]) +

cfaed] + [cfbde

+ Lis ([abef] — 5[abde] + [abdf] + [abe f] — 4[acbf] + 2[acde] — 2[acdf] +

I+
[

— Dlacef] — [adbe] — 2[adbf] — 2[adcf] — [aebd] — 2[aebf] — 3[aecf] +
J -

— 4lafbc] — 4[afbd] — 4afbe] — 4]afcd] — blafce] + [bdef] — 2[bdef] +
+ [becf] + [bedf] + 5[bfde] — 2[cdef] + [cedf] + Blcfde]) +
+ S3.2(—[abde] — [acbf] — [acef] — [adbe] — [aecf] — [afbc] — [afbd] +

— lafbe] — [afcd] —[afce] — [bdef] + [bfde] — [cdef] + [cfde])

Similarly, lifting the second 5-term identity, to an identity modulo § is difficult. The

shortest expression I find for it, modulo J, already involves a sum of 41 I3 5 terms.

Identity 4.3.14. We can find I3 2, Lis and Nielsen terms for|Equation 4.3.0, to give the following
identity which holds modulo L.

Is11([abedef] + [aecfbd] + [caefdb] + [cheadf] + [cebafd]) =
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é 3,2([acbde] + [acbed] — [acdef] + [acebf] + [acefb] — [acefd] + [acfed] +

— [aecfd] + [badfe] — [baefd] + [bafed] + [beafd] — [bedfa] + [befda) +
+ [bfced] + [daebc] + [daech] + [dcebf] + [deefb] — [deafb] — [debaf] +
+ [debef] + [defab] — [defcb] — [eabdf] + [eacdf] + [eadbf] + [eafdb] +
— [ecafd] + [ecdfa) — [ecfda) + [edcbf] + [fabee] + [fabec] — [fbade] +
+ [fbdae] — [fbdce] — [fbead) + [fbecd] + [fcbde] + [ fcbed))+

1 10
- g[dcea] + 2[deac] + [deba] — g[debc]] +

_10
3

+ Lis (3[daec] — [dbea] + [dcbe]
+ 3[fabc] + 2[fadb] + 5[fbac] + ?[ Fbde] + [fbea] — —[fbec] + [fcba]] +
+ [febe] + [fedb] + L??[ fede] + %[ feeal — 3[fdac] — 2[fdec] — 2[ feac]] +
— [feba] + 2[feda] + [fedc]) +

+ S3.2([daec] — [dbea] + [deba] — [debe] + [fabe] + [fadb] + [fbac] +
+2[fbdc] + [ fbea] — [fbec] + 2[fede] — [feac] — [feba] + [fedal) .

4.3.3 A simple way to relate depth 3 integrals, modulo L

We observed in the case I3 that some of the depth 2 integrals can be directly related. A similar

phenomenon happens for depth 3 iterated integral. Namely we have the following proposition, which

is a variant of |[Proposition 4.2.5] in depth 3.

Proposition 4.3.15. The following identity on iterated integrals holds exactly.
Lopa(@,y,2) = (=) Iy an(2,y,2) =

b a
=YV R s i n) — (DS ) @ s ()

Proof. As in [Proposition 4.2.5] we translate the identity to an identity on words describing differential

forms. I claim the following sum of words evaluates as indicated

b

Z(—l)i(acoi_l) W (2097 190" %) = —(20°~1 w209 Ny 4 (—=1)° (207 1y~ L)
i=1

The cases b =1, and b = 2 are just an easy check by expanding out all the shuffle products. So take
b > 2. Then

(71)1’(1:01'71) LLI (Zoaflyobfi)

s.
i M@
I

<
=

(—1)H (20" 1) w (207 1y0°) — 2w (207 150" 1) + (—1)°20° 1 W (207 1y)

@ﬂ-
= N

(—=1)"((x07%) w (0% 150" ~*))0 + (—1)* (20"~ ") w (20~ 'y0P~+1))0 +

@
Il
o
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— 2w (20° 1y~ + (=1)P (20~ 1) w (20 1y) ,
by expanding out the shuffle product using the iterative definition which removes the last letters.

Now this is

o
|

—_

o

(1) (@02 s (050" )0 — 37 (~1) (@00 72) s (201t =(+))

%

— 2w (20°7 0P + (=1)P (20 1) W (20 1y).

s
||
N
||
N

But only the i = 2 term of the first sum, and the ¢ = b — 1 term of the second sum survive, giving

= (rw (050 2))0 — (1)1 (202 W (20°y))0
— 2w (2007107 4+ (=1)P(20° 1) Wi (2097 1y) .

Using the definition of the shuffle product the vertical pairs can be combined to give

= (0w (20" 150" 1))z + (~1)°((20° 1) w (20" 1))y

= — (20710 ) + (= 1)" (20" ) w (2007 ))y.
So finally, if we consider the following sum of two versions of the previous result, we get

b
72(71)1(207,71) (xoa lyob 7 a+bz xol 1 (Zobflyoafi)

= — (@0 1y0" 1) + (=1)°((20"") W (2077 ))y) +
+ (=1) (= (20" Ty0 " ) + (= 1) (2077 w (20°71))y)
— (xoa—lyob—lz) ( )a—i—b( Ob 1 Oa 1 )

So taking integrals of this equality, we obtain the identity we want
Ia b 1(1' Y, Z) + (_1)a+b1b,a,1(z, Y, CL’) =
- Z 1, a b+1— 1,(-77 y a+bz Ib Jat+1— Z(Z :t/)

This proves the proposition. O]

In particular, this proposition allows us to claim the following identities, modulo L.

Identity 4.3.16. Taking a = 1, and b = 3 in[Proposition 4.3.15| gives

L
11’371(56, Y, Z) = I3,1,1(Zv Y, .’E) :
Or equivalently, in terms of cross-ratios

I 3.1 (abedef) = I31 1 (abefed) .
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The upshot of this identity is that we can convert directly any identity for I5; ; modulo LU, §, or I3 2,

into a corresponding identity for I; 31. Therefore, we do not need to analyse this case separately.

Identity 4.3.17. Taking a = b = 2 in|Proposition 4.3.15| gives

I2,2,1($»y7 Z) = 12,2’1(z7y,x) .

Or equivalently, in terms of cross-ratios

Iy (abe(d)e(f)) = Ioo1(abe(f)e(d)) . (4.3.8)

So we already know that I3 o 1 satisfies a genuine symmetry modulo LL.

4.3.4 More complicated ways to relate depth 3 integrals, modulo /3,

We know how to directly relate the integrals I1 31 and I3 1 1, using We can therefore
immediately skip the analysis of I3 ;1. But after analysing the relations between I ; 3 modulo I3 o, et
cetera, one finds that these integrals all have exactly the same number of relations. This is perhaps
unexpected. Moreover, many of the relations have a very similar structure. This very much suggests

that all the depth 3 integrals are somehow ‘equivalent’ modulo I3 5.
Indeed, this is the case.

Theorem 4.3.18. Modulo I3 2, all of the weight 5, depth 3 iterated integrals span the same space.
More precisely, if

By = { f(o-abedef) | o € Stabedef} } )

then Span Bf, modulo 13’2, s tnvariant fO’f‘ f € { 13’171,11,371,1171’3, .[272’1, .[271’2, I1’212 }

Proof. We shall prove this by showing that each span By equals (for example) span By, , ,, regardless
of which integral f is. We shall relate the integral to each other in the following way.

13;2 Ir_ig
Ii31 —— I311 < 113

13,2 I3,2
In2q = ZI/ I3 11 = 212.1,2

101 11,2

13,2 13,2
I122 = ka I1,2 = 211,2,2

Iioo

The arrows here express the source integral as a sum of the target integrals, modulo I3 2. By following
the arrows around, one sees that any integral can be expressed as a sum of any of the other integrals,

modulo 3. Therefore span By equals span B, , ,, regardless of whcih integral f is.
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The proof is nothing more than giving the relevant expressions for I 21 as sum of I5; 1’s and I33’s,

and likewise for the remaining cases.

From we already have

Identity 4.3.16. Taking a = 1, and b = 3 in|Proposition 4.3.15| gives

L
Il,3,1(£7 Y, Z) = 1371,1(27 Y, .’E) .
Or equivalently, in terms of cross-ratios

I 3.1 (abedef) = I31 1 (abefed) .

This deals with expressing I3 3.1 in terms of I3 7,1, and vice-versa..

For I; 1,3 in terms of I3 1, and vice-versa, we have
Identity 4.3.19.

I3 1,1(abedef) — I 1 3(abdefe) 2 %Igg(—[dbdf@] — [abfce] — [abfde] — [abfed] +

— [baefd] + [bafec] + [bafed)]) .

The expressions relating I3 1.1, I2,2.1, I2,1,2 and I 2 o are more complicated; with the simple cross-ratio

arguments one must relate I3 ;1 to a sum of I 5 :’s and vice-versa.

For I35 in terms of I3, 1, we have
Identity 4.3.20.

Iy o1 (abedef) = —I31 1 ([abedef] + [abedfe] + [abefde] + [abefed))

The remaining identities, expressing Is 11(abedef) as a sum of I 1 2’s, expressing Iz 1 2(abedef) as
a sum of I 9 2’s, and expressing I; 2 2(abedef) as a sum of Iz 2 1’s are significantly longer. They are

presented in O]

Remark 4.3.21. This theorem shows immediately that the number of identities that each of these
depth 3 integrals satisfies is the same, explaining the unexpected observation above. Specifically, the
number of relations must equal #Sy 4.p,¢,d,e,f } — dimspan By, , , = 687 in each case, since span By is

independent of f.

Moreover, we see that I5; 1, I1,3.1 and I; 1,3 must satisfy exactly the same identities structurally, since
we can exchange these term-for-term modulo I3 5. However this is not the case for the remaining
integrals because we need to replace each I3 1; term with a sum of I 9 ;’s, for example. And in fact,
the structural differences between the I35 1, 21,2, I1,2,2 and the I3 ; ; identities will prove that single

terms of these cannot be related, modulo I3 2, with coupled cross-ratio arguments.



4.3. Depth 3 iterated integrals 152

4.3.5 Identities for [,5; modulo I3,

Since we do not have a way to express I 2 1(abedef) as a single I3 11 term, modulo I3 5, this integral
may satisfy different identities. We should therefore analyse them. It turns out that Iy 5 ; satisfies
a number of relatively short identities, but in order to describe the relations completely it appears
that one must invoke longer and longer identities, when compared to the I3 1,; cases. Of the depth 3

integrals, I> 21 appears to be the most ‘complicated’ in terms of relations.

1521 satisfies two symmetries modulo I3 5. One of them we already know from (Identity 4.3.17]

Identity 4.3.17. Taking a = b = 2 in|Proposition 4.3.15| gives

I o1(,y,2) = Ir21(2,y,7).
Or equivalently, in terms of cross-ratios
Io o1 (abe(d)e(f)) = Ing (abe(f)e(d)) . (4.3.8)
The second symmetry is another example of the inverting arguments identity, which can be expressed
as a sum of 34 I35 terms.

Identity 4.3.22. Modulo I3 9, I2 21 satisfies the following symmetry.
I
[272,1((ab)cdef) 22 12,271((ba)cdef) . (439)

Remark 4.3.23. Notice that the first symmetry, permutes arguments 4 and 6, in
the form I 2 1 (abe(d)e(f)). This is different from the symmetry I5 1 1(ab(cdef)) fa2 I3 1.1(ab(fedc)),
which permutes arguments 3 <+ 6 and 4 <> 5. If I5 5 1(abedef) could be expressed as a single Is ;1
term, modulo I35, then any symmetry of one integral would translate directly to exactly the same
symmetry of the other integral. However, this since the integrals have different symmetries, this is not

the case. Therefore we cannot express Iz 2 1(abedef) as a single I3 1 term, modulo I3 5.

The next simplest type of identity that I5 2 ; satisfies appears to be a 4-term relation.

Identity 4.3.24. The following 4-term relation holds for I 21 modulo I3 .

I3,2

CyC(as)vay Alb{ ce } Iy 2.1(ab(c)d(e)f) = 0 (4.3.10)

Then I, 5 ; satisfies two different 6-term identities, one of which shows a good amount of structure.

Identity 4.3.25. 1521 satisfies the following 6-term relation, modulo I3 5.

I3,2

Altgcey Cycieary I>2.1(ab(cd)e(f)) = 0 (4.3.11)

The second 6-term identity does not show much structure, but in place of this it generates a larger

number of linearly independent relations.
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Identity 4.3.26. The following 6-term relation for I3 1 holds modulo I3 o

I 2.1([abede f] + [aebdf c] — [cdf eba] + [ebafdc] — [fedeab] — [fdebcal) a2 (4.3.12)

Then we have two highly structured 8-term identities.

Identity 4.3.27. I, satisfies the following 8-term identities, modulo I3 o.

Altypey Altg ey To(a(be)(de)f) — Tyo(f(de)(cb)a) 220 (4.3.13)

I32

CyCaeyvs) Altcay Cyeqe sy I221(ab(cd)(ef)) = 0 (4.3.14)

A rather unstructured 10-term identity holds. Unfortunately, it appears that we do need to use it

when describing the I5 2 ; relations modulo I3 5.

Identity 4.3.28. I, satisfies the following 10-term identity, modulo I3 5.

I 0.1(+[abede f] — [abecfd] + [abedcf] — [aebedf] + [aebdef]+ (4.3.15)

—[fedbea] + [fedeba] — [fdcbea] + [fdceab] — [fdebea)) fa2

The last identity we need to completely describe the null-space is a 15-term identity, which symmetrises
the building block of the 6-term relation in a different way. On top of all of the previous

relations, only one instance of the 15-term relation is required.

Identity 4.3.29. The following 15 term relation holds on I 21, modulo I3 2

I3,2

CYC{ b,e,d,e,f } CYC{ c,d,f} ,[2’2,1(ab(cd)€(f)) =0 (4316)

4.3.5.1 Rank and bases of relations for /5 5; modulo I3

By considering the relations arising under all permutations of the arguments abcde f, we obtain the

following table, which counts the number of linearly independent relations arising from each initial

relation.

I5 21 relation Number of terms | Rank of relations
Equation 4.3.8 2 360
FEquation 4.3.9 2 360
Equation 4.3.10 4 180
Equation 4.3.11 6 210
Equation 4.3.12 6 426
Equation 4.3.13 8 90
Equation 4.3.14] 8 135
Equation 4.3.15 10 360
Equation 4.3.16 15 144

Overall rank 687
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We can take any of the following choices to obtain a ‘minimal’ basis for the I3 ; relations modulo I3 5.

I5 5 1 relation Number of terms Bases
Fquation 4.3.8 2 v

Equation 4.3.9 2 v
Equation 4.3.10 4 v
Equation 4.3.11 6
Equation 4.3.12 6 VIV
Equation 4.3.13 8
Equation 4.3.14 8 v
Fquation 4.3.15 10 aRARaR4
Equation 4.3.16 15 VA A

4.3.6 Identities for I5;» modulo I3,

Next we focus on the integral I ;2. The relations for I5 ;2 seem to be slightly simpler than for I s 1,

intermediate in complexity between I 21 and I3 1 ;.

Differing from any of the previous integrals, the integral I5; o satisfies three distinct symmetries,

modulo I3 5.

Identity 4.3.30. The integral I o satisfies the following three basic symmetries modulo I3 o.

I51,2(ab(cdef)) & I51,2(ab(fedc)) (4.3.17)
I a(ablcd)(ef)) "2 Iy a(ab(de) (fe)) (4.3.18)
I51,2((ab)ede f) 2 I3 1 2((ba)cdef) (4.3.19)

Remark 4.3.31. Since even the number of symmetries differs from the integrals I5; 1 and I 21, we

certainly cannot write I3 2 as a single I3 1,1 term, or as a single 5 5 ; term.

Then I ; o satisfies its own type of 4-term identity.

Identity 4.3.32. I, ;2 satisfies the following 4-term identity modulo I3 o.

Altg g5y Cyepe gy I21,2(abedef) g, (4.3.20)

Repeated applications of LatticeReduce find no 6-term identities. The next identity is then an 8-term

identity.

Identity 4.3.33. I, o satisfies the following 8-term identity modulo I3 o

I3,
Alt{ b,d } Cyc(ae)(cf) Cyc(ac)(ef) Ig,lvg(abcdef) ;2 0. (4321)

The final relation that we need to fully describe the relations of I3 ; 2 is a 10-term relation. On top of

all the previous relations, only one instance of the 10-term relation is required.
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Identity 4.3.34. I, ;2 satisfies the following 10-term identity modulo I3 o

I 3y
CYCfaede sy C¥ere sy T2a2(abed(ef)) 220 (4.3.22)

4.3.6.1 Rank and bases of I, ; 5 relations modulo I3

By considering the relations arising under all permutations of the arguments abcde f, we obtain the

following table, which counts the number of linearly independent relations arising from each initial

relation.

I3 2 relation | Number of terms | Rank of relations
Equation 4.3.17] 2 360
Equation 4.3.18 2 360
Equation 4.3.19 2 360
Equation 4.3.20 4 240
Equation 4.3.21 8 90
Equation 4.3.22 10 138

Overall rank 687

We can take any of the following choices to obtain a ‘minimal’ basis for the I3 1 2 relations, modulo

.[3’2.

151 2 relation Number of terms | Bases
Equation 4.3.17 2 vV IV
Fquation 4.3.18 2 v
Fquation 4.3.19 2 v | v
Equation 4.3.20 4 v
Equation 4.3.21 8 VIV
Fquation 4.3.22 10 v |V

4.3.7 Identities for I, 5, modulo I3,

At depth 3, the final integral we need to consider is I 2 2. At first glance, this integral appear to be
even more complicated than I5 5 1, requiring a longer final relation to describe the null-space. On the
other hand, there are several striking similarities between the relations which do hold, which suggest

some other connection between I 21 and I 2.

The integral I; 5 o satisfies two symmetries.

Identity 4.3.35. Modulo I3 9, the integral I 22 satisfies the following symmetries.

L22(ab(©)d(e)f) 2 I o o(able)d(c) ) (4.3.23)

I 2.2((ab)cdef) o I 2.2((ba)cdef) (4.3.24)
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Remark 4.3.36. The first symmetry [Equation 4.3.23] which permutes positions 3 <> 5, shows that
I1 2,2 cannot be expressed as a single I 5 1 term, or a single I3 7 ; term since the symmetry is structurally

different from any symmetry I 51 satisfies, or I3 1,1 satisfies.

Next, we have a 4-term relation, and a 6 term relation.

Identity 4.3.37. Modulo I3 2, the integral I, 22 satisfies the following 4-term, and 6-term relations.

I3,2

Alt(ac)(be) Alt a,r y T1.2.2(abe(d)e(f)) = 0 (4.3.25)

I3,2

Altge 1y Cyeqeaey [1,2,2(ab(cde) f) = 0. (4.3.26)

Despite searching, no identity analogous to the unstructured 6-term relation for I5 9 ; has turned up.

The next identities are therefore 8-term relations.

Identity 4.3.38. Modulo I3, the integral I 2o satisfies the following 8-term relations.

I i
CYC(bC)(de) Cyc(bd)(ce) Alt{ a,f} 1172,2((a)bcde(f)) 3:2 0 (4327)

13,2

Alt{ a,d} Cyc(bf)(ce) Cyc(bc)(df) Il,gyg(a(bc)(d)e(f)) = . (4328)

No version of the unstructured 10-term relation for I 21 has turned up yet. However, we do have

a 15-term relation, which also occurs by symmetrising the building block of the 6-term relation

quation 4.3.26| differently.

Identity 4.3.39. Moduo I3, the integral I1 22 satisfies the following 15-term relation.

I3,2

Cyc{ bede,f } Cyc{ e } I 22(ab(cde) f) = 0. (4.3.29)

Currently, in order to fully describe the I; 2 2 relations, we can invoke an unstructured 12-term relation,
as follows. Since the relation is unstructured, it is almost too powerful — it generates 630 linearly
independent relations. Moreover, since it is necessary to describe the relations, it almost forces there

to be only one choice of basis for the I; 5o relations.

Identity 4.3.40. Modulo I3 9, the integral I 2o satisfies the follownig 12 term relation.

I 2 2([abedf c] — [abfdce] — [adcbe f] + [adecfb] + [adfbec] — [fceabd] + (4.3.30)
+ [fceadb] — [fcebad] + [fcedab] — [fedbac] — [fedcab] + [fedcba)) 2

Remark 4.3.41. I do not yet have a clear explanation why there is such a similarity between the

I 22 relations, and the 15 1 relations. Certainly, we know that there is no way to write I; 22 as a

single I5 2 1 because these integrals exhibit different symmetries.

Even if some short combination of I 5 1’s can be written as a short combination of I ; 2, it would seem
some level of good fortune is still necessary to re-write the I ; o relations directly to the corresponding

127271 relations.
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4.3.7.1 Rank and bases of I > relations modulo I3 >

By considering the relations arising under all permutations of the arguments abcdef, we obtain the
following table, which counts the number of linearly independent relations arising from each initial

relation.

I 22 relation Number of terms | Rank of relations
Equation 4.3.23 2 360
Equation 4.3.24] 2 360
Equation 4.3.25 4 180
Equation 4.3.26 6 210
Equation 4.3.27| 8 90
Equation 4.3.28 8 90
Equation 4.3.29 15 144
Equation 4.3.30 12 630

Overall rank 687

We can take any of the following choices to obtain a ‘minimal’ basis for the I; 5 o relations, modulo

13’2.

I 22 relation Number of terms | Bases
Equation 4.3.23
Equation 4.3.24]
Equation 4.3.25
Equation 4.3.26
Equation 4.3.27|
Equation 4.3.28
Equation 4.3.29 15 v
Equation 4.3.30 12 v

coO 00 O = N N

4.4 Higher depth, more arguments, more structure

As we will see in the following chapter, every integral of weight 5 can be reduced to integrals
of depth < 3. So, in principle, we do not have to analyse separately the depth 4 integrals I 111,

sy ds

Ii21.1, 111,21 or I11,1,2. Nor do we have to separately analyse the depth 5 integral I; 1,1,1,1. Of course,

since the reduction to depth < 3 is complicated, trying to read off any relations for these integrals is

not an easy task.

On the other hand, fully analysing the symmetries and relations between each of these integrals is
computationally much more intensive than the depth 3 cases. For this reason, I have not undertaken a

full analysis. I will however indicate a few avenues of investigation.
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4.4.1 Reduction of /57,

At weight 5 we have a kind of analogue of Gangl’s result [Ganl6] that I5 ;1 can be expressed as a sum

of 36 terms of the form 1715 (abcde).

Identity 4.4.1. At weight 5, the integral I> 11,1 can be expressed, modulo &, as a sum of 436 terms of
the form +I5 1 1(abcdef).

4.4.2 Symmetries and relations for [; 111

syt

Modulo 6, the integral I 1 1,1,1 already satisfies a large number of functional equations. Curiously all
of the identities which hold modulo § appear to hold already modulo LU, perhaps because the difference
in depth between Lis and I3 1,1,1,1 is too great. Therefore one really should look modulo /3> to try
to find more interesting relations. Unfortunately, the search for relations mod I35 has, so far, been
too computationally intensive to produce any results. Below we will give a selection of identities that

I1,1.1,1,1 does satisfy.

IR

Identity 4.4.2. Modulo W, I 11,11 satisfies the following two symmetries

Il 1.1.1 1(a(bc)defgh) i —Il 1.1.1 1(a(cb)defgh)

syl sLydyds

1171,171)1(abc(defgh)) g 1171y171,1(abc(hgfed)) .

In terms of the arguments v, w, x, y, z, these symmetries say the following

Liiaa(vwe,y,2) =Ll -v,l—wl—z,1-y1-2) (4.4.1)

Laaaa(vw,a,y,z) =i 11(z,y,z,w,v). (4.4.2)

sty ds syt

Combining [Equation 4.4.1| and [Equation 4.4.2] we obtain

Lhiiti11(v,w,z,y,2) = —hi11201-21-yl—2,1-w,1—v). (4.4.3)

This is an example of the limiting case p — oo of the Holder convolution of multiple polylogarithms.
See Equation 7.1 in [BBBLO1], or Section 1.5.1 in [Rho12]. In fact, [Equation 4.4.3| holds on the level
of the symbol, and indeed exactly. fits in the narrative as a higher depth instance of
[Proposition 4.2.5| and |[Proposition 4.3.15]

We also have, for example, a 5-term relation where one variable is shuffled through the argument string

Identity 4.4.3. Modulo L, I 1111 satisfies the following identity

Lty

Laijgg(vw{w,z,y,2}) =0.

Or in full
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Il 1,1,1 1(v,w,x,y,z) + 11,1,1,1,1(W7U7$>y72’) + Il 1,1,1 l(wvxvvayaz) +

syt sdydydy

+haiaa(wz,y,v,2) + Larii(wz,y,20) =0. (4.4.4)

Of course, is nothing but the simple fact that using the shuffle product of iterated

integrals

L(wiii(wz,y,2) =Liaw,zy,2) + L (w e,y 2) +

+haa(w,z,vy2) + L (we,y,v,2) + ha(wz,y, z,0).

sy dyds

There are still plenty of other identities for I; 1,1,1,1 modulo d left to investigate. But all of them are
in some sense too ‘simple’: they do not involve Lis terms. More interesting would be to find identities
holding modulo I35 in the hope that some identities genuinely involve Lis and/or I terms. One
would also hope that some extra symmetries, or short functional equations, for I7 11,11 hold modulo

sdydydy

1372.

4.4.3 More arguments

As explained at the start of the idea to use coupled cross-ratio arguments comes from
Gangl’s success with these type of arguments at weight 4, and from their position as natural coordinates
on the moduli space My ,,. One factor for this success is due to the fact that, modulo ¢, the integrals
look like sums of the form », {a;}, A {5;}5. Cross-ratio arguments describe the 5-term relation for

Lis, so fit well with finding relations for weight 4 iterated integrals.

At weight 5, modulo 0, the integrals look like sums of the form ), {a;}, A {8i}5. For example

Iya(z,y) 2_ {ads AMybs +{zhs A {ys

This can be calculated directly using the PolylogTools package [PT] in Mathematica. A calculation by
hand, in the manner of [Section 3.4.2|is possible (see [Proposition 7.5.1)), but takes more work than that
case I3 1 handled there in

The form of weight 5 iterated integrals, modulo §, suggests that Lis and Liz arguments would be a

sensible choice. Goncharov’s triple ratio for Liz (see[Section 3.2.2)) is potentially a good analogue for

the Lis cross-ratio. Some kind of coupled cross-ratio/triple-ratio arguments could provide an even

better source of arguments for identities and relations between weight 5 MPL’s.

4.4.4 More structure using representation theory

The identities presented above have a very ad-hoc appearance. They were found entirely using
computer linear algebra to determine all possible relations between integrals I, n, (o - abcde) (modulo
W, modulo §, modulo I32), with no real possibility to direct the computer towards structured or

aesthetically pleasing identities. In those cases where the identities do not have much structure (e.g.
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Identity 4.3.8] and the identities I3 1,1 modulo I3 2), additional work should be done to find a more

structured description of these identities.

In the case where the identities are already highly structured, it should be possible to identify a
deeper, theoretical basis for the structure. Specifically, these identities should have a representation

theoretic basis since we have an Si43 action on I,,, ., (abeds, ..., dy). For example, identities like

[Equation 4.3.20] [Equation 4.3.21] and [Equation 4.3.22| have a form already reminiscent of, and closely

connected to, the representation theory of the symmetric group S,, (every representation of S, is

built up as /\k SV, from wedge powers of symmetric powers of some vector space). Furthermore, it

has been suggested that the I3 5 and Lis terms in such identities (e.g. [[dentity 4.3.14) could have an

interpretation as some kind of projection operators on the initial representation.



Chapter 5

Dan’s reduction procedure, and a

reduction of 11111

In this chapter we will give an account of Dan’s reduction method [Danll] for reducing I 1,1 to a
sum of integrals of lower depth. We will provide a detailed explanation of the method Dan describes
(Section 5.1)), including providing the missing proofs for all of Dan’s claims. We start off first by giving
an overview of the method itself, then explain Dan’s algebraic setup for a space H,(E)
of multiple polylogarithms , before working through the steps of the method in detail

(Section 5.1.3| onwards).

Ultimately this will allow us to provide a corrected version of the Dan’s reduction of I ;1,1 to I3 1’s

and I4’s (Theorem 5.2.1). Given this, we can use the symbol to compare with Dan’s earlier reduction
of I 11,1 (Theorem 5.2.5| with small a correction by Gangl), and determine the nature of the resulting
functional equation of I5; (Section 5.2.2]).

Next, we will apply the method to I 1,1,1,1 at weight 5 (Section 5.3)) to produce a reduction to depth

Lyt

< 3 integrals first (Identity 5.3.1)) and then to I3;,1, I3 2 and I5, modulo products (Section 5.3.2).
Finally we will see how to reduce I5; 1 to I3 2, modulo  (Identity 5.3.5)), and indicate how this allows

us to reduce I1,1,1,1,1 to I32’s only, modulo 4, (Theorem 5.3.8]).

5.1 Dan’s reduction method

In [Dan11|, Dan gives a systematic method for reducing iterated integrals in n variables to a combination
of iterated integrals in n — 2 variables. This then has the effect of reducing a depth n iterated integral

to a sum of depth n — 2 iterated integrals, so the number of ‘slots’ for arguments decreases by 2.

The original papers are written in French, are currently unpublished, and provide limited explanation
of the steps. Moreover, they contain mistakes in the final calculations. The mistakes, at least in

the second paper, do not appear to be the result of simple typos in the final answer. This situation

161
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warrants a detailed investigation to determine the correctness of the method. Fortunately the reduction
method itself is correct, so by implementing it in Mathematica [MA] I can produce a corrected version
of Dan’s result. The result I produce is close enough to Dan’s (in number of terms, sizes of coefficients,
agreement of argument cross-ratios) to make me believe that this was the version he intended to write
down. However, it is still not clear exactly where Dan could have made a mistake, and it does not

warrant the effort needed to find it.

The goal of this section is to provide an account of the reduction method in these papers, and furnish

explanations and proofs for all the steps of the method.

5.1.1 Overview of the reduction method

Firstly, we will give an overview of how the reduction method works. This will allow the reader to

have a broad overview of the steps in the method, and not get hung up on the details initially.

Set-up: Introduce (Definition 5.1.4)), a slight generalisation
H(ap | a1,...,an J| T | any1) ~ [ao | ary... an J| | ant1],

of the hyperlogarithm /multiple logarithm /iterated integral I(xo;x1, ..., Tm;Tm+1), to be defined using

the differential form
(ai — )
(t—a;)(t—z)

This reduces to the usual hyperlogarithm when z = co.

w(a;,x) = dt.

Swap out z: Show that the hyperlogarithms obtained by swapping out one of the a;’s with the new

parameter x, namely

lao [ ar,....an [ @ | ans1] +lao | a1,. .., 6i-1,2, 0541, ..., 0 [/ G; | Gnya],

can be reduced to a sum in < n — 2 variables (Proposition 5.1.18). This is done with the A and B

operators (Definition 5.1.9} [Definition 5.1.11)), and packaged into the D operator (Definition 5.1.19).

Build a transposition of a;: Do this three times, to swap a; out, then a; out, then x out. This

gives a transposition

lao | a1, . a4, ... a5, . a0 [ | ang1] + a0 | a1,.. .05, . a4, ... a0 /] @i | Gnya),

of the a;’s as a sum in < n — 2 variables (Proposition 5.1.20]).

Apply to ajas Was...a,: Each term in this product can be converted back to a; ... a,, by some

suitable permutation. The previous step allows us to write this as a sum in < n — 2 variables.

(Theorem 5.1.23))
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Do this in a structured way: Write down the terms in the following manner

ajaz Was...an, = ALQ +
+ A3+ Az +
+ A4+ Az s+ Az s+

+ A5+ Ass+A3s+ A5+,

where A; ; has a; in position 4, and as in position j. Each A; ; + A;y1 ; is a transposition, so can be

written as a sum in < n — 2 variables. This leaves A1 9+ A1 4 + A16+ - -. (Lemma 5.1.28)

Finish: Use that Al,gm = (ALQm — A1,2m—1) + (A1,2m—1 - Al,gm_g) + A172m_2, to replace A172m
with Aj 2,,m,—2 and some transpositions that are a sum in < n — 2 variables. Push this all the way down

to A12 (Lemma 5.1.29), and so write [n/2] A1 2 as a sum in < n — 2 variables (Theorem 5.1.30]).

5.1.2 The space of multiple polylogarithms #,(FE)

Dan explains a generalisation for the construction of the Bloch groups B,,(E) described in [Section 3.2.3
to provide an algebraic description H,,(F) of the multiple polylogarithms over a field E. Here we

briefly outline this construction, so the symbol H,,(E) is meaningful below.

Write E7+2 for the following subset of (n + 2)-tules

E:+2 = { (a07"'7an+1) | ao #al and an #an"rl } )

which are meant to represent (convergent) iterated integrals.

The iterated integrals I(zo;21,...,Zn;Znt+1) from[Section 1.1.3|are invariant under affine transforma-

tions x; — ax; + b. So consider the quotient
B /(B x B)

where (a, 8) € E* x E acts as the affine transformations a; — aa; + 8. Write A, (E) for the Q-vector

space generated by the symbols [ag | a1, ..,an | ang1] for (ag,...,any1) € EPT2/(E* x E).

The graded vector space

AE) = P An(E)

n>0

admits a bialgebra structure. The multiplication is given by the shuffle product (compare with the

shuffle product| property of |Property 1.1.13)), as follows

lao | a1, ..., ak | akrer] - [ao | @ty s angr | aptes1] = [ao [ a1~ ag Waktr - akre | aptesn]
= Z [a0 | Go(1)s -+ Qo(ktk) | Qhter1]-
UGS}«,@

Here Sk is the set of (k, £)-shuffles, see [Definition 1.1.150 The coproduct is given by [Theorem 1.2.1
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The Lie coalgebra B*(E) = A(E)/(Aso - Aso) of irreducibles admits a co-derivation

§ =P (6.: BYE) = B*(E) 2 B"(e)) .

n

This will be used to inductively define the vector space of multiple polylogarithm relations Rg (E) C
BX*(E). We will then set H(E) = B*(E)/R,(E) to be the space of multiple polylogarithms, and

write [ag | ai,...,an | any1] for the image of the same element in B (FE) modulo the relations R*(E).

The vector space of 1-dimensional relations is generated by the following elements

RIEE) = (la|z|b+b|z|d=a]z]|]|zab,ccFE with 2z # a,b,c).

Write ICp,(E) for the kernel of the map
(pre@pr) o dn: Bi(E) = (H(E) ® H(E)),
where pr: BIY(E) — H(E) is already defined for k < n.

Definition 5.1.1 (Space of relations R*(E)). The space of multiple polylogarithm relations is

generated by the following elements

RI(E) ={a(l) = a(0) | a € Ku(E(1)) }

The map (pr® pr) o 8, factors through R*(E), to give a map
On: Hn(E) = (H(E) @ H(E))n -
This gives H(E) the structure of a graded Lie coalgebra.

Remark 5.1.2. One can think of H,,(E) as the space of weight n multiple polylogarithms (or iterated

integrals), taken modulo products.

5.1.3 Definition of the generalised hyperlogarithm

Definition 5.1.3. The unique differential form w(a;, z) of degree 1, holomorphic on P1(C) \ { a;,z }
which is 0 if a; = x, and otherwise has a pole of order 1 and residue +1 at a; and a pole of order 1 and

residue —1 at x is
w(a;,x) = Mdt.

(t—a;)(t—x)
The correct differential form to take when x = co is

dt
w(a;, 00) = P
(]

since this agrees with w(1/a;,0)(s) under the change of variables s = 1/¢, sending oo — 0 and

ap—)l/ai.
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Definition 5.1.4 (Generalised hyperlogarithm). Let a;,z € P!(C), such that ay # a1, ap # =,
ap # ant1 and  # an41. Then the generalised hyperlogarithm H(ag | a1, ..., 6, /| | apy1) is defined
by the following iterated integral
Qi1
H(ag | a1,...,an | T | apy1) = / w(ay,z) ow(ag,z) o - owlan,x).
ag

This should be compared with the definition of Chen’s iterated integrals in[Definition 1.1.10} Recall from
Section 3.1.1) Goncharov’s remarks [Gon98}; |(Gon01] that I(zg; 1, ..., Zm;Tm,1) are sometimes called
hyperlogarithms or multiple logarithms. The relationship between this generalised hyperlogarithm,
and the ordinary hyperlogarithm is straightforward.

Proposition 5.1.5. If x = oo then

H(ag | a1,...,an | 00| any1) = I(ao; a1, ...y Qn; Qi) -
Otherwise
H(ag | ai,...,an | @ | ani1) = I((ao — ) Y5 (ar — )71 o (an — )7 (apgr —2)70).
Proof. If x = oo, then the differential form w(a;, x) reduces to the usual form tf—zi appearing in the

definition of the hyperlogarithm.

Otherwise, change variables via ¢’ = 1/(¢t — x), which sends « — oo, and a; — 1/(a; — x). We have

that t = tl, + x, so that

(ai — )

_ il L
(e —a)(d ta—a) t?

1 /
=t

The bounds ag and a,41 change to (ap — x)~! and (an11 — )~ ! respectively. O

We can use the above relation to the usual hyperlogarithm, to give meaning to the symbol [ag |

a1,...,0n /| T | ant1] in the space H, (E) of multiple polylogarithms on ‘E’ |, as follows.
Definition 5.1.6. We set
[ap | a1,...,an | 00| any1] = ao | a1,...,an | ant1],
and for x # oo,
'

[ao | a1, san | | ans1] = [(ao —2) " | (a1 —2) 7. (an — )71 | (@ng1 — )71
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Observation 5.1.7. We can write
w(aiv x) = w(aiv y) - W(.’E, y) .

Proposition 5.1.8. The hyperlogarithm H(ag | a1,...,a, J/ © | ant1) can be expressed as an

alternating sum of hyperlogarithms of the form H(ag | — /| y | ant1). More precisely, we have

H(ag | ar,...,an [/ | apgr) = Z(*l)#l H(ao [ a1,...,an [/ y | ant1)ly,—y -
i

where the sum is taken over all I C {1,2,...,n}, and

H(a() ‘ ai,...,0n // Yy ‘ an+1)|a12m

means replace a; by x, for positions i € I.

Proof. We can prove this by induction on the depth n. In the case n = 1, we explicitly write out both
sides. On the left hand side we have H(ag | a1 // = | a2), and on the right hand side we have

Z(—l)#I H(ao | a1 /) y|az)l,,—,

I

taken over all I € {1}. That is, over I = 0,{ 1 }. This gives

H(ao | a1 [ yla2) —H(ao |z [ y|a2),

which is equal to

| wtar) - wtwn = [ wtara)

(] ao

=H(ap| a1 J) z|az),

using |Observation 5.1.7]

So suppose the result holds for depth n — 1. Then for depth n we have the following. We can sum over
I'c{1,...,n} by first taking I with 1 € I, and then taking I with 1 ¢ I. So

Y D)* H(aglar,.. o an [ y | anr)l,, -, =
I

Z (_1)#1 H(aO | A1y.-.,0n // Y ‘ an+1)|(11:z +

I such that
lerl

+ Z (-1)* H(ao | a1,...,an [ y | A1)y = -

I such that
1¢1

In the first sum we know 1 € I, so we can remove 1 from I, replace a; with x and insert one minus
sign already. Then the sum is over I’ C {2,...,n }. In the second sum, 1 ¢ I, so the sum is over

I'c{2,...,n} already, giving

= — Z(—l)#l’ H(ag | z,a9,...,an J| y | an+1)|a}:$+
I/
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+ > (=)*" H(ag | a1, a2, an [/ y | 1)l = -
Il

Now recall from [Remark 1.1.12|that the iterated integral H(ag | a1,...,an // @ | an+1) can be expanded

as follows
An 41
H(ag | a1,... an [/ x| apnt1) :/ H(ag | a1,...,an-1 | x| )w(an,x).
aop

If we do this with the integrals in the sum above, we obtain
An+1 I
:/ Z(_l)# H(ao ‘ Ay ...,Ap—1 //y |t)|a’1=xow(x,y)+
ao I’

YV H(ao | arsean-1 [y | )]y =, 0 w(an,y)
I/

Using the induction assumption, this can be written as

An+1
:/ H(ao|a1,...,an,1//a:|t)0—w(x,y)+

0

+ H(ag | a1,...;an—1 Jf x| t)ow(an,y)

— /a"+1 Hag | ay,...;an—1 ) @ [t) o (w(an,y) —w(z,y))

ao

An+1
:/ H(ap | a1,...,an-1 J/ x|t) ow(an,)

0

using |Observation 5.1.7]

= H(ap | a1,a2,...,an, )/ T | any1)-

This completes the proof. O

5.1.4 Operators A and B

Here we will introduce the operators A and B which will give us tools to systematically reduce the

hyperlogarithms.

Definition 5.1.9 (A operator). Let 1 < i < n and let I be a subset of {1,2,...,n} containing .
Define
A(lag | a1y ... an J) | Any1],4,1)

to be the symbol

[ap | a1, an | | any1]

where the positions j € I are replaced by the variable a; from position i.

Example 5.1.10. We have

A(lao | a1,a2,a3,a4,a5,a6 /| x| a7],3,{2,3,5}) = [ao | a1, as3,as,a4,a3,as /| x| a7)

A(la,| b,e,dye, f,9 ) x| h],4,{2,3,4,6}) =[a]|b,e,e,e, fie )/ x| h].
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Definition 5.1.11 (B operator). Now define

B(lag | a1,..-,an [| T | ansa],i) = Z(—l)#IA([aO, |a1,....an /| | anya]s i, 1),
I

where the sum is taken over all subsets I of the set {1,2,...,n } containing ¢ and having cardinality

#1 > 2.

Example 5.1.12. With i = 2 and n = 3, we would have to sum over the sets { 1,2 },{2,3},{1,2,3}.

So we get

B([ao | a1, az,a3 [ = | as),2) = (=172 Y A([ag | a1,a2,a3 /| x| ag),2,{1,2})
+ (=1)#123} A((ag | a1, 09,03 /| = | as],2,{2,3})
+ (=) Y23 A([ag | a,a2,a3 [/ x| ag),2,{1,2,3})
= lao | ag, az,a3 /| @ | a4
+[ao | a1, az,as /| x| a4

- [ao | a2, a2, a2 // x | 114]

Dan now says that the considerations from [Proposition 5.1.8] applied when y = a;, suggest a relation

in H,(F). Indeed, setting y = a; in [Proposition 5.1.8| gives

H(ag | a1,...,an J| T | apny1) = Z(fl)#l H(ao | a1,...,an J/ @i | ans1)ly,—p -
I

Notice that whenever i ¢ I, so that a; is not replaced by x, we obtain an integral like H(ag | ..., a;,... //
a; | an41) which contains the differential form w(a;,a;) = 0. The resulting integral is therefore 0, and
does not contribute to the total. It makes sense, then, to reduce the sum to I C {1,2,...,n }, such
that ¢ € I. Moreover, there is only one possible I’ with #I’ = 1, so we can deal with term separately.

We obtain

:_H(ao | a’lﬂ"'7ai717x7ai7-"7an//ai | an+1)+

+> (=D)* H(ag [ a1, an [ ai | ani1)ly, = »
I/
where the sum is taken over all I’ C {1,2,...,n } such that i € I and #I > 2.
Rearranging this gives

H(aO|a17"'7an//$|an+1)+H(a0‘alv"waiflaxaaiv"‘van//ai|a‘n+1)

— Z(*l)#I H(ao | AlyeveyQp // a; | an+1)|a1:w
I/

=Y (-1)* H(ag | a1, an [/ = | ans1)ly,—q, -
Il

The last equality comes from the symmetry under a; <+ = in the first line. From this we obtain the

following result.
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Lemma 5.1.13. In H,(FE) the following the following relation holds

[ap | a1, .. an J/ T | any1] + a0 | a1y s @im1, @ 041,y Qn [ G; | Q]

= B([ag | a1,...,an | x| ant1),1)) .

Proof. We have the result
H(ag | ay,...,an [/ ® | ans1) + H(ag | a1,...,ai-1,2,0i401,..,an /] a; | ans1) +
— B(H(ag | a1,...,an J| © | apy1),i) =0
on the level of integrals. Taking a,11 ~ ag + t(an+1 — ap), we get
a(t)=H(ag | a1,...,an J/ | ap + t(ant1 — ao)) +

+H(ao | a1,...,ai-1,%,@iy1,. -, an J ai | ao +t(ant1 —ao)) +

— B(H(ao | a1y---,an J/ | ao+t(ant1 — ao)),9) -

Now «a(t) = 0 on the level of integrals means «(t) € K,(E(t)). So we find the following relation
a(1) — a(0) € R*(F). But this evaluates to

a(l)—a(0)=H(ag | a1, .. an [/ © | apny1) + H(ag | a1, ..., 0i—1, 2,041, -, an /] @i | ans1) +

—B(H(ap | a1, an J| © | any1),1).
So we get the result claimed. O

Lemma 5.1.14. In H,(E) we have for 0 < s < n, that

[aO | {y}sabs+1abs+2a ooy bn // x ‘ an+1] = (*1)S[a0 | bsi1, ({y}s Wbsyo-- bn) // x ‘ an+1]

(-1)°> Cy,
J

where C; denotes the symbol [ag | bsy1, — /| © | any1] with the positions J occupied by y, and the

remaining positions by bsi1,...,by, in that order. In the sum, J runs through subsets of size s of the

set {2,3,...,n}.

Proof. First we see this is trivially true for s = 0, since we have
[Cl() | {y}07b0+17b0+27 .. ;bn // X | an-‘rl] - [aO | b17an .. -abn // X | an-{-l] )
and

(=1)°[ao | bos1, {y}° Wbora---bn) /@ | ant1] = [ao | bos1, (D Wboya - bn) /2 | any1]

= [ao|b17b2,...,bn//x|an+1].



5.1. Dan’s reduction method 170

Now comes the inductive step. Recall the inductive definition of LU from [Definition 1.1.15] It says that

az Wby = a(x W by) + blaz Wy) .
So we have that

) Whaa b = y({5)° Wiz ba) +boia ({0} Whais-b) . (B.11)

We therefore compute that

[ao | {y}* ™, bst, bsiz, + ybn ) @ | Gng1]
= [ao | {y}say»bs+27bs+37' e abn // X | an+1}

= (=1)ao [ y({y}* Whsyo---bn) [/ 2 | ansa],

using the induction assumption for s with bsy1 = y. Now use the relation in to say

(=1)%[ao | {y}s+1 LW (b2 <+ by) — bs+2({y}s+1 Whsizbn) [/ | an1]

= (_1)S+1[a0 | b8+1({y}s+1 L (bs+3 s bn) /| an+1] )
since we work modulo products in H,,(E).

The equality with ), C; just comes from writing out the terms of the shuffle product. Each term
in the shuffle product bsy1({y}® Wbsys---by,) is uniquely determined by which positions contain y.
Since we prepend the result with bs 1, these positions are in the range { 2,3,...,n }, and any subset

of these occurs. O

Observation 5.1.15. We can apply this to each term A(S,i,I) in B(S,1) from with
y = a; and s as large as possible. Firstly, each term in B(S,7) has at least one variable a; replaced
with a;, so we have reduced the number of variables per term to n — 1, at most. Then by shuffling
out a;, we can guarantee that it does not appear in the first position. This means B(s, ) is a sum of
hyperlogs [ag | — // | an+1], where each contains < n — 1 variables, and such that a; never appears

in the first position.

Lemma 5.1.16. In H,(E), the following relation holds for any generic ¢, specifically ¢ such that
a1 # ¢, and ¢ # x,

[ap | a1y yan JJ x| ans1) =[c| a1, yan [ | any1] —[c| a1, . an /) x| ao].
Proof. This follows from the [composition of paths| property from Given two paths
a, 3, it states that
n
/ wlo...ownzz/wlo...owi/wi+1o...own'
af i—0 /@ B

Recall that the empty integral fa = 1. If we work modulo products, only the integrals coming from
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1 =0, and i = n survive. Therefore we have

/ wlo...own:/wlo...own_i_/wlo...own’
ap a B

modulo products.

By choosing such a generic ¢, all the integrals involved will converge. Then take « to be a path ¢ — ag
and 8 a path ag = any1. Choosing w; = w(a;, x) to be our special differential form, we obtain from

the above that
H(clay,...,an JJ x| ao)+ H(ag | a1,y...,an J/ | any1) = H(c|ar,...,an | | ang1),
modulo products. Now view this in H,,(E), and rearrange to obtain the above identity. O

Since a; does not appear in the first slot, we may use the above to rewrite the terms of the above sum

lao [~ Jalanp) =Tlai |- [ o anpa] =lai| - ] =] a]

This breaks the single term with < n — 1 variables into two terms each with < n — 2 variables, since ag
is avoided in favour of the variable a; in the first summand, and the variable a,,1 is avoided in the

second summand.
Example 5.1.17. We have
A(lao | a1,a2,a3,a4,a5 J| x| as],2,{1,2})

= [ag | a2, a2,a3,a4,a5 /| © | ag

= (—1)%[ao | a3, (a3 Wasas) J/ x| ag]
= [ag | a3, a2,a9,a4,a5 /| x| ag]l + [ag | a3, az,a4,a2,as5 /| x | ag) +
+ [ao | as,a4,a2,a2,a5 /| x| ag] + a0 | as, a2, aq,as5,a2 J/ x| ag] +
+lao | as, as,a2,a5,a2 j| x| ag] + lao | a3, a4, as,a2,az2 /| x| ag]
And then each term can be split as indicated above. So the first term would become

[02 | ag, az, agz, a4, as // x | aﬁ] - [a2 | ag, a2, az,0a4,as // xz | ao],

and similarly for the rest.

This proves the following proposition
Proposition 5.1.18. We may express
[ao ‘ A1y, On // z | an+1] + [aO | A1y Qi—1,T,Ajt1, -+ -5 0n // a; | an+1}
= B([ao ‘ ag,...,0n // z | an-i-l]ai);

as an explicit sum of hyperlogs in < n — 2 variables.
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5.1.5 Operator D

Definition 5.1.19. The sum in the above [Proposition 5.1.18| will be denoted

D(lag | a1,...,an J| | any1),1).

Proposition 5.1.20. A transposition of two variables can be expressed in terms of three D operations

as follows

lao | aiya; [/ @ | ans1] + lao | aj,ai /) @ | ani]
= D([ao | as,a; /| x| any1),i) — D(lao | z, a5 / ai | ansal, J) +

+ D(lao | w,a; /| aj | ant1],i).

Proof. This is just a case of writing out the result of the three applications of D. Namely

Dlao [ aisa; [ @ | anyal @) = D(lao | 2, a5 [ @i | antal,5) +

+ D([ao | z,a; /| aj | an1],1)

= (lao | ai,a; /| @ | ans1] + [ao | 7,05 )/ ai | ani1]) +
— ([ao | z,a; /] a;i | ang1] + a0 | z,a; J aj | anga]) +

+(lao | z,ai [/ aj | any1] + a0 | aj,ai ) @ | any1])

=lao | as,a; /) « | any1] + a0 | aj,a; ) | anga]. O

Corollary 5.1.21. The combination
lao | as,a; /] @ | ans1] + a0 | aj,ai [/ @ | anid]
is an explicit sum of hyperlogs in < n — 2 variables. More generally, for any permutation o € Sy,
[ag | o - (a1,...,an) | © | ant1] —sgn(o)ag | a1,...,an [ | ant1]

is an explicit sum of hyperlogs in < n — 2 variables.
Proof. The first claim comes because we know/defined D to be such an explicit sum of hyperlogs in

< n — 2 variables. Then by decomposing a permutation as a product of transpositions, we get by

induction the result for any permutation o, as follows. Suppose the claim holds for o. Let 7 € S;, be a

transposition. Then sgn(7) = —1, and for 7o we have
[ap | To - (a1,...,an) J| | any1] —sgn(ro)ag | a1,...,an /| | ani1]
=lag |70 (a1,...,an) | © | ans1] —sgn(r)[ao | o - (a1,...,an) [/ | ans1]) +
—(fao |0 (@15 n) % | Gnsa] — sg0(0)[ao | a1, -ran [ | ansa])-

Both of these summands is a sum in < n — 2 variables, so the claim holds. O
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5.1.6 Reducing a single hyperlog

The above considerations all apply to writing a combination of two hyperlogarithms as a sum of
hyperlogs in < n — 2 variables. By carefully considering these combinations, it is possible to write a

single hyperlogarithm [ag | a1,...,an // @ | aps1] in such a manner.

Proposition 5.1.22. Let S be the set of (2,n — 2) shuffles, which can be considered the as the words
from {1,2}w{3,...,n}. Then

o - [}

Proof. Observe that every permutation in the set of (2,n — 2)-shuffles, is uniquely determined by the
position of 1 and the position of 2. Moreover, 2 must appear after 1 since this is the ordering in the
original multiplicand. So each term is described by

Siti={34,.., 1 ..., 2 5 ),

I~

position ¢ position j
where 1 <i < j <n.
What is sgn(S7;)? To put 2 into position j from its original position 2 requires j — 2 swaps. Then to
put 1 into position ¢ from its original position 1 requires a further ¢ — 1 swaps. So the total number of
swaps is 1 + j — 3. We find

. —1 if i+ jis even
Sgn(Si,j) =

1 if ¢ 4+ 7 is odd.

If we sum all the signs, we obtain

n

Y osen(o) =) > sen(sh)

oes i=1 j=i+1
Observe that in the inner sum, consecutive terms have opposite signs. At term j, the value ¢ + j has
one parity, which means at term j + 1, the parity of ¢ + (j 4+ 1) is different. If there are an even number
of terms in the inner sum, then they all cancel in pairs to 0. Otherwise the terms after the first cancel,
and we are left with sgn(S7;, ;) = 1 since i + (i + 1) is odd. The number of terms in the inner sum is

n—(i+1)+1=mn—i,so this is odd if and only if n and ¢ have different parities.

If n = 2m is even, we obtain:

1j=i+1

sen(S7;) = Y l=m=|n/2] .

i odd

And if n =2m + 1 is odd, we obtain:
n n 2m+1
DTN sen(S) = > 1=m=[n/2].
i=1 j=i+1 i=1

i even

This proves the result. O
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There is enough here now to prove that a depth n hyperlog in n > 3 variables can be reduced to a sum

of hyperlogs in < n — 2 variables. We obtain the following.

Theorem 5.1.23. For n > 3, the hyperlog
[ap | a1y an | | ani1]
can be expressed as a sum of hyperlogs in < n — 2 variables.
Proof. For each o € S, we have that
[ag | o (a1,...,an) [ x| ant1] —sgn(o)[ao | a1,...,an [ | ant1]

can be expressed as a sum in < n — 2 variables. Now sum over all such ¢ € S. The left hand
terms sum over { 1,2 } w{3,...,n }. The right hand terms are all the same, so sum to the multiple

Y ocssen(o) = [n/2]. Therefore we get that

[ao | {a1,a2 }wid{as,...,an } J x| ans1] — [n/2] a0 | a1, .., an J| T | any1)

is a sum of hyperlogarithms in < n — 2 variables.

As we work modulo products the first term here is actually 0 if n > 3, so this shows that
[ap | a1, an | @ | any1]
is mtimes a sum of hyperlogs in < n — 2 variables. O

It should be noted, however, that the reduction in this theorem is really only intended as a proof-of-
concept. The number of terms generated by relating every permutation in { a1, as }W{ as,...,a, } back

to the permutation { a1, as, as, ..., a, } is excessive. Dan provided a more structured approach, working

only with transpositions. Some of these ideas are already hinted at in the proof of [Proposition 5.1.22

5.1.7 More structured approach
5.1.7.1 Sructured approach for any n

While the previous section does indeed illustrate a general reduction procedure which can be applied
to give correct results, the number of terms generated by decomposing all such shuffles as a sum in

< n — 2 variables is large. Dan provides a more structured approach, which we will now explain.
Definition 5.1.24. Define the symbol A7, to be the following
A?;j = [CLO | az,a4y..., A1 ,..., A2 ,//JZ ‘ CLn+1],
position ¢ position j

where position i is filled with a1, and position j is filled with as. The remaining positions are filled with

as,...,a, in this order. (Notice the similarity to Si; from the proof of [Proposition 5.1.22] essentially

AZJ’ = lao | SiT,Lj J x| ans].)
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In the original article, Dan uses the notation A; ;, leaving the dependence on n implicit only. For clarity

7,79
here, and later, I write A7, in order to make the dependence on n as explicit as possible. Similarly we

will write R™ where Dan later write R, and ¢” where Dan writes c.

Example 5.1.25. Withn =7, and i = 2,j = 5, we have

AZ,E, = [ao | a3, a1 ,a4,as, az ,a6,a7 /| | as]

position 2 position 5

Lemma 5.1.26. Consider now the expression Al + A . This can be expressed as an explicit

1—1,7
sum of hyperlogs in < n — 2 variables. Similarly A} ; + A}, can be expressed as an explicit sum of

hyperlogs in < n — 2 variables.

Proof. Going from A7, ; to A}, requires a single transposition swapping positions ¢ — 1 and .

Similarly, going from A7, to A';,; requires a single transposition swapping positions j and j + 1. So

by [Corollary 5.1.21] the result follows. O

Definition 5.1.27. Write R"(i — 1, | i, j) for the relation above expressing A} ; ; + A7'; as a sum

1—1,7
in <n — 2 variables. And write R"(i,j | 4,7 + 1) for the relation expressing Al + A7 1 as asum in

< n — 2 variables.

At this point Dan considers some remarkable sum of R™’s with certain coefficients ¢™(—), and claims
(without proof) that from this one deduces a reduction formula. I want to motivate this sum in a

step-by-step manner, and fill in the missing proofs.

Consider the shuffle product { 1,2 } lw{3,4,...,n }. Each term of this is a word of length n where
1 and 2 occupy certain positions, and the string 3,4,...,n covers the remaining positions in order.
Therefore each term of the shuffle product is A7, for some 4, j. Moreover, since 1 always occurs at a
position before 2, we have ¢ < j. Otherwise there is complete freedom to choose i and j between 1 and

n. Therefore

[a0|{1,2}LLJ{3,4, n}//x|an+1 Z A

1<i<j<n
Now sum in the following order to get
n j—1
D, A=) Al
1<i<j<n j=2i=1
When j is odd, the inner sum Zf;ll A7 can be written
Jj—1 Jj—1
Z( i— 1,j+An :ZRn(Zflaija])
i even i even
When j is even, the inner sum Zf;ll A}, can be written
j—1
A17j+z(21]+A JrZR'Lfl]M])
=3 =3

4 odd 4 odd
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For convenience we want to sum over the full range i = 2,...,j — 1, including all even and odd
indices, but this will introduce spurious extra terms. To fix this, introduce coefficients ¢"(i — 1, j, | 4, j)
corresponding to the relation R™(¢ — 1,5 | ¢,5). When j is odd we need the even terms to live, so
impose ¢"(i — 1, | 4,7) = 1 when 4 even and j odd, and ¢"(i — 1, | 4,5) = 0 when 7 odd and j odd.
When j is even, we need the odd terms to live, so impose ¢"(i — 1,5 | 4,5) = 1 when ¢ odd and j even,
and ¢"(i — 1,7 | 4,7) = 0 when 7 even and j even. This can be summarised by saying

1 ifi—j odd

*(i—1,74,j) =

0 otherwise,

in accordance with Dan’s definition. (We write ¢™ rather than just ¢ because a later extension of ¢ will

explicitly depend on n.)

Plugging these into the sum above, we find that

lao | {ai,a2 }w{asz,a4,...;an } ) 2| anya] =

> cli—1i )R- 1,145+ >, Al
2<i<j<n j=2
j even

Now consider the leftover terms »"j—2 AT ;. Observe that we can write the following equality
J even

Al = (AT + Arjn) — (AT + AT o) + AT o
=R"(1,j-1[1,j)-R*(1,j—-2|1,j 1)+ AT, ,
and by iterating,
=R"(1,j-1[1j)-R"(1,j—-2|1,j-1)+

+R"(1,j=3]1,j-2) - R"1,j—4[1,j-3)+ A7, ;.

This means we can eliminate A7 . in favour of A% ., and some relations R"™. By iterating this, we can
1,5 1,5-2 y )

push this as far as we want, as follows.

Lemma 5.1.28. For any even 2 < m < j — 2, we have

j—2
Aty = > (R*(LE+1|1Lk+2)— R*(Lk|1,k+1))+ A}, .

k=m
k even

Proof. Certainly the result is true for m = j — 2, by the observation preceding this lemma.

Now suppose the result holds for m. Then for m — 2 we have

j—2
> R k+1]1L,k+2) - R"(1,k|1k+1))
k=m—2
j—2
= > (R"(Lk+1[1L,k+2)-R"(1,k|1Lk+1)+
k=m

m even
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+(R"(1,m—-1]1,m)—-R"(I,m—-2]1,m—-1)),
which by the induction assumption equals

=A7, - AT, +(R"(L,m—1]1,m) - R"(1,m—2|1,m—1))
= A?,j - A?,m + ((A?,m—l + A?,m) - (A?,m—Q + A?,m—l))

_An n
- Al,j - Al,m—Q .

So the result holds for m — 2 also. O

In particular, for m = 2, we obtain

=
At = > (R"(Lk+1|Lk+2)— R"(Lk|Lk+1))+A},,
k=2

k even

and we can use this to establish the following result.

Lemma 5.1.29. The sum of the leftover terms is given by

Z AT, = [n/2] AT 5+
=2

+ ([n/2] =3/2)(R"(1,j +1|1,j+2) = R"(1,j [ 1,7+ 1))

j=
j even

SN

n

Proof. We may use the above result to give an expression for A} ., and sum as follows

1,50
n n j—2
S A= > A+ Y (R Lk LE+2) — RY(1Lk| 1k —1)
=2 =2 kk::2
J even J even even

n j—2
=[n/2) AT+ > > (R E+1[1k+2) - R"(Lk|1k+1)).

j=2 k=2
j even k even

Now swap the order of summation, to obtain

n—2 n
=[n/2] ATy + > > (R"(Lk+1|Lk+2)—R"(Lk|Lk+1)).
k=2 j=k+2

k even j even

Since the summand does not depend on the index of the inner sum, we just obtain a multiple of it

based on the number of terms summed. In this case we have [n/2] — k/2 terms, so we get

n—2
= [n/2] AT, + Z (In/2] — k/2)(R™(1L,E+1|1,k+2)—R"(1,k]| 1,k+1))
kk;gn
Finally, change the summation index from & to j to obtain the result. O

Here Dan also wishes to sum over the full range 7 = 2,...,n — 2. This is more straightforward to do,
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since we can break the sum up and reindex it as follows.

Z [n/2] = /2)(R™(1,j +1]1,5+2) — R"(1,5 | 1,j +1))

2 (In/2] —3/2)R*(1,7+1|1,j+2) — Z_: (In/2] —3/2)R™(1,5 | 1,j+1).

Now put j +— j — 1 in the first sum. The range chances to j = 3 to n — 1, j odd, giving

(In/2) — (G — 1)/2)R" 14 | 1,5+ 1) i (In/2) — /2R (1.5 | 1.5 +1).

d J even

n

™

Il
w

J
J

o

Observe that when j is odd, (j —1)/2 = |j/2]. And when j is even, j/2 = |j/2]. Both sums can be
combined to give

n—1
== (- (In/2] = 3/2)R (L7 [ 1,5 +1).
j=2
We can then set
(Lj 115 +1) = (=1 (ln/2] = 13/2]),
in accordance with Dan. (Writing ¢" rather than just ¢ to emphasis the dependence on n.)

Overall, we have

lao [ {a1,a2 } W{as,as,...;an } ) T | ani1]
= > =L L)RE~1,j1i.5)+ [n/2] AT, +
2<i<j<n
n—1

—Z (Lj|L,j+ DR 1,5 |1, +1).

By rearranging this, we therefore obtain the following theorem

Theorem 5.1.30. The following equality holds

[n/2|[aop | ary...,an [/ © | apny1] =
= > M- 1,5 10 )RE—1,5],5) +
2<i<j<n
+ > ML+ DRML [ L+ 1)+
2<j<n—1
+lao | {a1,a2 }w{as,....;an} J 2| ans1] -

And in particular for n > 3,
[ap | a1, an [/ 2| ant1) ,

is explicitly given as a sum of hyperlogs in < n — 2 variables, modulo products.

Corollary 5.1.31. By setting x = oo, we get an expression for [ag | a1,...,an | ant1] as a sum of
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hyperlogs in < n — 2 variables.

5.1.7.2 Structured approach for n odd

Dan remarks that when n is odd, one can obtain an even simpler expression for this reduction. This is

done as follows.

Lemma 5.1.32. Let S be the set of (1,n — 1) shuffles, which can be identified with the terms in the

shuffle product a1 W (az . ..a,). Then

Z sgn(o) =1.

Proof. Each term in S is completely determined by the position of a;. If a; is in position j, then it

takes j — 1 swaps to put the permutation into the original order. Hence

n

D sgn(o) =Y (1)1

oeS j=1

Since n = 2k + 1 is odd, we can break this up into

=1.
This completes the proof. O
Definition 5.1.33. Write
A? = [ao | agz,...,Q;, A1 ,Qi471,...,0n // T ‘ an+1],
position %
where position ¢ is filled with a1, and the remaining positions are filled with as, ..., a, in this order.

Lemma 5.1.34. Consider the expression A} + A7, . This can be expressed as an explicit sum of

hyperlogs in < n — 2 variables.

Proof. Observe that A7 + A7, is a transposition, obtained by swapping positions ¢ and i + 1. Since it

is a transposition, it can be expressed as a sum in < n — 2 variables using the [Corollary 5.1.21|and the
D operator. So the result holds. O

Definition 5.1.35. Denote by R} the relation expressing A7 + A7, ; as a sum in < n — 2 variables.
Since each term in [ag | {a1 } W{ag,...,an } J/ © | any1] is determined by the position of a;, we

obtain

a0 | {ar b {az,van} /@ ansa] = 3 AT
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Since n is odd, we may write this as

= AV + > AP+ AT, =AT+ > RP
=2

=2

7 even 1 even
[n/2]
= AT+ > Ry;.
7j=1

By rearranging this, we obtain the following theorem.

Theorem 5.1.36. For odd n, the following equality holds

[ap | a1, an [/ 2| any1] =
[n/2]
lao | {a1 }w {az,....an } ) | ans1] — Z Ry; .
j=1

And in particular for odd n > 3,

[a0|a17"-aan//x|an+1};

is explicitly given as a sum of hyperlogs in < n — 2 variables, modulo products.

5.1.8 Reduction of generalised hyperlog to [

When we apply this procedure, we will obtain a number of terms of the form

[CLO | al,...,an//x | a,H_ﬂ.
Ultimately we want to convert these back to the usual iterated integrals I,,, .. ,,. Doing this will give

arguments involving cross-ratios as follows.

Firstly, convert this to an ordinary hyperlogarithm, with x ~» oo, by writing

[ao | ai,...,an | x| ani1] = [(ao —2) 7 | (a1 — )™ (an —2) 7 ) 0o | (angr —2)7Y].

This ordinary hyperlogarithm is invariant under affine transformation, so apply the translation

t >t — (ap — x)~*. This sets the lower bound of integral to 0. The other arguments change as follows

1 1 1 —a;
s Qo a

ai—r a;—x ag—x (a;—x)(lag—2x)’

lant1=)(ao—x)
ag—Aan+41

Now apply the scaling ¢ , which sets the upper bound of the integral to 1. The other

arguments change to

ag — a; ag — a; (an+1 — x)(ag — x)
(a; — z)(ag — ) ~ (a; — z)(ap — x) ap — An41
_ (a0 — ai)(ant1 — @)
(a; — z)(ao — an+1)

= cr(@py1, a4, x,a0)
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Overall, we find that

[a0|a17~~~7an //x|an+1]

=10 cr(ant1,a1,,a0),...,cr(ant1, an, x,a0) | 1.

In the Dan reduction procedure, the number of variables is reduced from n to n — 2 in each integral.
This means that at least 2 a;’s will equal a¢ in the terms we apply this to. In this situation the
cross-ratio reduces to 0 (or indeed the argument will be identically 0 after the translation step), which

has the effect of reducing the depth of the iterated integral by 2 to n — 2.

5.2 Reduction of 1,

5.2.1 Procedure when n = 4, correcting Dan’s reduction of I,

In this section we will run this method for n = 4, in order to correct the expression Dan gives for

I 11,1(w, z,y, z), or more precisely for I(a; b, c,d, e; f). We can obtain the reduction for I1 1 1 1(w, y, z, 2)

IR

by setting a =0 and f = 1.
Firstly, apply with n = 4 to obtain

2lag | a1,az,a3,a4 /| T | as]

= (R*1,2]1,3) — R*(1,3,|1,4)) — (R*(1,3,] 2,3) — R*(2,4 | 3,4)).

Let us focus on the term R*(1,2 | 1,3) now. This is supposed to be the expression for

Al o+ Al g =ao | a1,a2,a3,a4 /) x| as] + [ao | a1,a3,a2,a4 /| = | as)],

as a sum in < n — 2 variables, using the D operator and [Proposition 5.1.20} By this, we have

A%,z + Ail,3 = D([ao | a1,a2,a3,a4 /| x| as],2) + (5.2.1)
- D([ao | ai,T,as,a4 // az | a5]73) +

+ D([ao | a1, x,a2,a4 // as | as),2).

Now each D is an explicit sum in < n — 2 variables, using [Proposition 5.1.18| and the operator B.

Doing this for the first term gives

D([ao | a1,a2,a3,04 // x | (15},2) - B([ao | ai,az,as, a4 // x | a5]72)

=Y (—1)* A(lao | a1, 0,03, a4 [ x| a5}, 2, 1),
I

where the sum runs over all I C {1,2,...,n } containing 2 and having #I > 2. In this case the I
ranges over the subsets {1,2}, {2,3}, {2,4}, {1,2,3}, {1,2,4},{2,3,4} and {1,2,3,4}. We
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obtain

= [ao | az,a2,a3,a4 /| © | as] + [ao | a1,a2,a2,a4 J/ x | as] + [ao | a1, a2,a3,a2 /| © | as] +
—[ao | a2, a2,a2,a4 /| x| as] — [ag | a2, az2,as,a2 /| x| as] — [ao | a1,a2,a2,a2 /| x| a5] +
+ [ao | az,a2,az2,as )/ © | as].
From here a; must be shuffled out of the first position of each term using[Cemma 5.1.14] This will let us
express each term as the difference of an integral from as to ap and from as to as, as in
Doing so gives

= ¢(ao) — #(as),

where

(b(c) = [G/Q | ai, az, dz, az //'r | C] _[a2 | a1,a2,a2,a4//.’13 | C] - [a2 | ai, az, as, az //x ‘ C]+
+3[a2 \ as, az, az, a2 //!E | C]— [az | ag,ag,ag,a4//x | C]— [az | az, a2, a4, a2 //33 | C]+

—las | as,as,a2,as [/ x| ¢] — [az | as,a2,a2,a2 J) x| c].

Now this must be repeated for the other two occurrences of D in |[Equation 5.2.1] in order to get an
expression for R*(1,2 | 1,3). Then the whole procedure must be repeated for the remaining 3 relations
R*.

After doing this, we may use the following identities to convert between I 3, and I35 and I3 ;

L

Lya(z,y) = —Lis(z,y) — Iis(y,x) — I31(z,y)

Iis(a,y = In(x) — Isa(x, ik
By converting all terms of the result to I3; and Iy we obtain the following theorem.

Theorem 5.2.1 (Correction to Théoréme 2 in [Danll]). As shorthand, write abed = cr(a,b,c,d),
and abe = cr(a, b, c,00). Moreover, write [x,y] == [z,y]s1 = [0 | 2,0,0,y | 1] and [z] == [z]s = [0 |

x,0,0,0,| 1]. Then modulo products

[a|b,c,d,e | f] zqﬁ(a;b,c,d,e)—(b(f;b,c,d,e),

where

2¢(a;b,c,d,e) =
[abed, aecd) — [abed, deb] + [abee, bdec] + [abee, cea] — [abee, ecb] +
+ 2[abd, acd] — 2[abd, aed] — [abd, ebd] + [abe, ace] — [acbd, dbc] +
+ [acbe, ebc] — 2[acd, bed] + [ace, bee] — [ace, dee] — [adbe, acbe] +
+ [adbe, ebd] — [adce, cea] — [adce, ecd] — [ade, abe] + [ade, bde] +
— [ade, cde] — [aebd, bdce] — [aecd, dce] — [aed, bed] — 2[bac, bdc] + (5.2.2)

+ [bac, dac] + [bda, acbd] — [bda, aebd] — [bda, bdc] + [bea, acbe] +
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+ [bea, bec| — [cab, cdb] + [cab, ceb] — [cda, aecd] — [cda, cde] +
— [cea, ceb] + [cea, ced] + 2[dab, cab] + [dab, dcb] — 2[dab, eab] +
— [dac, dbe] — [dac, dec] — [dac, eac] + [eab, ecb] — 2[eac, edc] +

+7y(a;b,¢,d,€) .
And

~v(a; b, ¢, d, e) == [abce] + 5[abd] — 4[abe] + 4[acbd] — 2[acbe] + 2[acd] + 2[ace] +
— 2[adce] + 2[ade] 4 2[aecd] + [aed] + 2[bac] + 2[bda] — 4[bea] +

— 2[cab] + 4[cda] + 3[cea] + [dab] + 8[dac] — 3[ead] + 2[eac]

is an explicit sum of I14’s of rational functions.

Remark 5.2.2. In the original paper, Dan does not give the Iy terms explicitly, but says only that

such an explicit linear combination exists. Here it is given explicitly for completeness.

This expression has been obtained by implementing Dan’s reduction method in Mathematica [MA], and
converting to I3, via the above identities. The final result has been checked using Duhr’s PolylogTools
package |[PT]| to confirm the symbol vanishes modulo products. Lastly the TeXutilities package [TU]J

for Mathematica was used to automatically ITEX the resulting expression to ensure no typos occured.

Remark 5.2.3. All of the terms in [Equation 5.2.2| can in fact be written in the ‘coupled cross-ratio’
form from [Section 4.1.2] For example, in the first term [abced, aecd] = [abed, aecd]s 1, of [Equation 5.2.2]
the cross-ratios can be re-written to show that [abed, aecd]s 1 = [cdab, cdae]s 1. But now this term can

be written using the ‘couple cross-ratio’ shorthand to give
[abed, aecd)s 1 = I3 1(cdabe) .

By reintroducing oo’s if necessary, the same thing works for all the remaining terms. For example, the
second term gives

l[abed, deb)s = I31(dcbaco) .

On the level of symbols, this result holds modulo products. Working modulo ¢, the terms in v(a; b, ¢, d, €)

go to 0, giving the remaining terms of ¢(a;b,c,d, e) as the leading terms in the expression.

Potentially more interesting is the reduction to I, and I3 2 in light of the folklore conjecture that

indices 1 can always be eliminated from MPL’s. For that, we can make use of the following identity

w

I31(7,y) (I2,2(y, 7) — I22(z,y)),

N | —

to obtain

Corollary 5.2.4 (Dan with I5 ). As shorthand, write abed == cr(a, b, c,d), and abc = cr(a,b, ¢, c0).
Also write [x,yl22 =1[0],0,y,0 | 1] and [z] == [z]4 = [0 ] 2,0,0,0,| 1]. Then modulo products

[a|b,c,d,e| f]=dd(a;b,e,d,e) —od(f;b,c,d,e),



5.2. Reduction of I ;1 184

where ¢(a; b, c,d, e) is exactly as given in|FEquation 5.2.2, and we understand that the shorthand [z, y]

is mow as follows

2,0 = 3 ([>7122 — [2312)

5.2.2 Relation to Dan’s previous reduction, and I3; functional equations

Recall that in Théoreme 3 of [Dan08§|, Dan gives a different reduction for I; 11,1 to Is 1 and I terms.

sdydy

This version is specific to the weight 4 case 17 111, and produces a more symmetrical and structured

IEEEE)

identity. Nevertheless, there is a typo in the expression Dan gives, but fortunately one can take
advantage of the extra structure to easily correct the result. The correction below was provided by

Gangl.

Theorem 5.2.5 (Théoréme 3 in [Dan08|, corrected by Gangl). As shorthand, write abed = cr(a,b, ¢, d),
and abe = cr(a, b, c,00). Moreover, write [x,y] == [z,y]s1 = [0 | ,0,0,y | 1] and [z] == [z]s = [0 |

x,0,0,0,| 1]. Then modulo products

[a|b,c,d,e|f]:f(a;b,c,d,e)—f(f;b,c,d,e),
where

20f(a;b,c,d,e) = g(a,b,c,d,e) +
—g(oo,b,¢,d,e) — g(a,00,c¢,d,e) — g(a,b,00,d, e) +
—g(a,b,c,00,€) — gla,b,c,d,o00) +
+ 10h(a, b, c,d, e) .

And g and h are defined by

ga,b,c,d,e) = Cycy oy . .1 ([abed, abeels 1 — [edeb, edeals 1 — 3[abdc, abde]s 1 + 3[edbe, edbals 1)

h(a,b,c,d,e) = Cycy 4 ¢ 4.1 ([cabls + [bda]s + [adb]y + [bad]s) .

Remark 5.2.6. The mistakes in Dan’s expression occur in the first summand of g, where he write
[abed, bede]s 1 rather than [abed, abee]s 1. This is easily corrected upon noticing that for the remaining
summands, the first 3 cross-ratio slots agree in each pair — that is, each is a ‘coupled cross-ratio’. There
is also a mistake in (his equivalent of) h, where the sign of the third term [adb]4 is flipped. Moreover

there appears to be a global sign error, so —20 in the definition of f is replaced with 20 above.

Once Dan has these two reductions, he wonders how the combinations ¢ and f relate. By setting the
two expressions equal, one obtains a functional equation reducing a certain combination of I3 1’s to I4’s.
Specifically there is the question of whether ¢ and f are exactly equal, and whether this functional

equation, a prior of 4 variables, splits into two functional equations of 3 variables.

Using the symbol, we can answer this question as follows.
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Claim 5.2.7. The combinations f(a;b,c,d,e) and ¢(a;b,c,d,e) are not equal.

Proof. If f and ¢ were equal, then their symbols modulo § would also have to be equal. One can
explicitly check using Mathematica [MA] that these symbols are different. Moreover, checking the
symbol shows that ¢(a;b,c,d,e) is not even cyclically symmetric, so there is no hope that f and ¢

agree. O

L

Nevertheless, by comparing the two expansions ¢(a;b,c,d,e) — ¢(f;b,c,d,e) = [a | b,c,d,e | f] =
fla;b,e,d,e) — f(f;b,c,d,e), we obtain a functional equation relating a certain combination of I ;’s
to I’s, modulo products . Unfortunately, the functional equation which results is not as interesting
as one might hope. It reduces to a (complicated) combination of the following four basic functional
equations, already given by Gangl in [Ganl6]. (It is the sum of approximately 630 instances of these

basic functional equations. The leftover I, terms cancel pairwise using Iy(z) = —I4(1).)

Identity 5.2.8 (Gangl). Using the notation of |Chapter 4} the following identities hold modulo LU.

I3 1((ab)ede) — I3.1((ba)cde) +

— Iy(abed) + I4(abee) + 314(abde) = 0 (I3,1 ab)

I 1(a(bc)de) — I3 1 (a(chb)de) +

+ Iy(cbad) — I4(chae) + 21, (abde) + 214 (cade) + I4(cbde) = 0 (I3,1 be)
I3 1 (abe(de)) + Is 1 (abe(ed)) = 0 (I3 de)
Is1((abed)e) + Is 1((beda)e) + Is.1((edab)e) + I3 1 ((dabe)e) + (Is,1 cyc)

+ Iy(acbe) + I4(bdce) + I4(cade) + I4(dbae) +

+ 214 (abde) + 214(bcae) + 214(cdbe) + 21,4 (dace) = 0

In fact, this was to be expected. Gangl has found that these functional equations provide a basis for
the space of all relations between I3 1 (abcde) terms. Moreover, we know from [Remark 5.2.3| that every

term of the weight 4 reduction can be written in this form.

5.3 Reduction of 1,11,

We shall now apply Dan’s reduction procedure to the quintuple-log I111,1,1(v,w,z,y, z) to obtain
expressions for it in terms of lower depth multiple polylogarithms. Or rather we shall apply it to
H(a|b,c,d,e, f|g), like above. Firstly we will examine the ‘raw’ output of the reduction procedure
which reduces I; 11,11 to the 11 depth < 3 integral Is, Is1,132,151,1,12.2,1,.... Then using some
identities from we will be able to reduce this expression to explicit I5, I3 2, [3,1,1 terms only,

modulo LLI.
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In order to explicitly confirm the folklore conjecture that indices 1 can always be eliminated from
MPL’s, we need to reduce I3 1,1 to I3 terms and I5 terms. Like the reduction of I35 to I4; modulo
§ given in we can give a brute force reduction of I3 in terms of I35, modulo 4.
Currently I am unable to find the missing Lis terms to give an reduction of I3, to I32 and I5,
modulo L. Nevertheless, this allows us to reduce I 1,1,1,1 to only I3 2 terms, modulo d, and reduces
the problem of a full reduction to dealing only with the case I3 1,1 in terms of I3 2 and Is. Moreover, an
expression for I3 in terms of Iy, and very complicated Lis terms does exist, as given in
We therefore have cause for optimism in trying to find a similar expression for I3 ; in terms of I3

terms and Lis terms.

5.3.1 ‘Raw’ output of [, reduction

When attempting to reduce I; 1,1,1,1 with Dan’s reduction method, there are two choices. We can
either use the structured approach from which works for all n. Or we can use the
structured approach from which works only for n odd. The n odd approach has the
advantage of producing significantly shorter reductions. We will compare the two initial results to see

how much better the n odd approach works.

All n approach: Apply the all n approach to [a | b,¢,d,e, f | g]. The result can be written as
@' (a;b,c,d,e, f) — &' (g;b,¢,d, e, f), where ¢ consists of this terms which contain the variable a. We

obtain the following distribution of terms in ¢'.

Integral Number of such terms in ¢’

I 37

I 4 29
I>3 39
I3 41
141 34
I3 14
Lo 22
Ii31 21
Iz 12 22
Iz 1 26
I310 22
Total number 307

Odd n approach: Apply the odd n approach to [a | b,¢,d, e, f | g]. The result can be written as
Y(a;b, e d,e, f) —1(g;b,¢,d, e, f), where ¢ consists of those terms which contain the variable a. We

obtain the following distribution of terms in .
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Integral Number of such terms in v

I 20

I 4 11
Ins 17
I3 17
Iyq 11
Ii13 6
Ii292 5
Iz 6
Iy 7
121 7
I311 6

Total number 113

Already one can see that the n odd approach is significantly better as it involves only about one-third

the number of terms, compared to the all n approach. This reduction of 17 1 111 to depth < 3 integrals

sLydyds

is (just) short enough to give explicitly.

Identity 5.3.1. As shorthand recall the ‘coupled cross-ratio’ notation from which
has I, n.(abedy ...dg) = I, . n.(cr(a,be di),... cr(a,b,c,dy)). Then modulo products, Dan’s

reduction procedure the following reduction

[a | b7c’d’e7f|g] :w(a;b7cﬁd’e7nf)—w(g;b7c7d7e7f)7

where

Y(asb,c,dye, f) =
I5(—[bdac| + 4[bdae] — [bdaf] + 4[bdacc] — [bfac] + 4[bfad] — 6[bfae] + 4[bfacc] +
+ 6[dooab] 4 [dooac] — 4[docae] + [dooa f] + [fooab] + [fooac] — 4] fooad] +

+ 6] fooae] + 2[oobac] + 2[oobad] + 2[cobae] + 2[cobaf]) +

+ I 4([bdacoc] — [bdaef] + [bfacd] — 3[bfade] + 3[bfaecc] — 3[dooabe] +
+ [docae f] — [fooacd) + 3] fooade] — [cobacd] + [cobaef]) +

+ Ip.3(—[bdaef] — 2[bdacce] + [bface] — [bfade] — 2[bfadoo] + 2[bfaecc] +
— 2[docabe] — [docabf] — [docach] + [docac f] — [focace] + [ fooade] +
— [fooaeb] — [oobacd] — [cobace] — [cobade] — [oobadf]) +

+ I 5 ([bdace] — [bdae f] — 2[bdacce] — [bdacof] + [bfacoo] — 2[bfadoo] +
+ [bf aecc] — [docabe] — 2[docabf] — [docace] + [docaef] + [fooadb] +
— 2[fooaeb] — [cobace] — [cobade] — [cobadf] — [cobaef]) +

+ Iy1([bdacf] — [bdae f] — 3[bdaoco f] — 3[docabf] — [docacf] + [docae f] +
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— [fooach] + 3[fooadb] — 3[fooaed] — 2[cobacf] — 2[ocbaef]) +

+ I 1 3(—[bfacde] + 2[bfadecc] + [docabe f] + [ fooacde] + [cobacde] + [oobadef]) +

(—
+ I 2,2(—[bdacooe] — [bfacdoc] + [bfadecc] + [doocabe f] — [ fooadeb] )+
+ I 31 (—[bdacoo f] + [dooabe f] + [focacdb] — 2[fooadeb] + [oobacdf] — [ocobadef]) +

+ I 1 2([bdacce f] — [bfaceoo] + [bfadeoo] 4 [docabe f] 4 [dooacbe] + [cobacde] + [cobade f1) +
+ I 2 1([bdacce f] + [docabe f| + [dooach f] + [ fooaceb] — [fooadeb] + [oobacdf] + [cobace f1) +
(—

+ I3 1 1(—[bdacef] + 2[bdacce f] + [dooabe f] + [docace f] + [oobace f]| + [oobadef]) .

5.3.2 Reduction of I, to I311, I32 and I5 modulo products

From we have a number of identities which relate depth 2 and depth 3 iterated integrals. In
particular, [Proposition 4.2.22|allows us to write I1 4 as I1, and write I2 3 as I3 5. Then[Equation 4.2.75]
in allows us to write 4 1 as a sum of I3 terms.

Moreover, tells us that all depth 3 interated integrals are somehow ‘equivalent’ modulo
I3 5. In particular, every such integral can be written as I3 ;. We can use and
to explicitly reduce I 31 and Iz to I3, modulo products. We can also use
but we first need to add in the missing Lis, or rather I5, terms. We have

Identity 5.3.2. We can find I5 terms for to give the following identity relating I 13
to Is1.1, modulo products, with explicit Is 2 and I terms.
1
Is11(abedef) — I 1 3(abdefe) = 513,2(—[abdfe] — [abfce] — [abfde] — [abfed] +
— [baefd] + [bafec] + [bafed]) +

+ ék(—l(ﬁ[abed] + dlabfd] — Tlabfe] — 6labee] + 4abe])

To complete the reduction to I5; 1, I3 2 and I5, we need to give a reduction for I ; 5 and I 22 to I31 1,

I3 and I5. shows that this can certainly be done, modulo I3 2, then we could attempt

to find the missing I5 terms. Alternatively, one can more directly find the the following identities.

Identity 5.3.3. The following identity expresses Iy 12 in terms of Is 11 terms, I3 o terms, and I

terms, modulo products.

I1 2(abedef) =
I3 1.1([abedf e] + [abefde] + [abefed] + [abdeef] + [abdecf] + [abedcf]) +
+ I3 2([abedf| + 2[abeef] — [abefd] — [abefe] + [abdef] + [abde f] +

+ 2[abecf] + [abedf] — [abefc]) + Is(12[abef] + 6[abdf] + 12[abef])

Identity 5.3.4. The following identity expresses 1122 in terms of Is1,1 terms, I3 o terms, and I
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terms, modulo products.

I 2.0(abedef) =

Is1.1(—[abcfed] — [abdce f] — [abdefe] — [abdecf]) +

+ I3 o(—2[abeef] + [abefe] — 2[abecf] — [abefd] — [abfed]) +
+ Is(—12[abef] — 6labde] — 6[abdf] — 6[abe f])

Applying the above identities to ¢ from [[dentity 5.3.1| produces ¥’ (a; b, ¢, d, e, f) with the following
distribution of terms. The explicit expression for 1’ is given in the appendix, in [Section B.3

Integral Number of such terms in v’
I 50
I35 125
I311 69
Total number 244

5.3.3 Reduction of [, to I35, modulo §

Ideally, the final step would be to give some way to write I3 ;1 in terms of I3 2 and /5 modulo products.

syl

That way we can completely reduce I3 1,1,1,1 to I3 2 and I5, and explicitly confirm that the index 1 can
always be eliminated. Unfortunately the I5 terms in this step have remained elusive. Nevertheless, we

have the following identity which expresses I3 ;; in terms of I3 2 modulo 4.

Identity 5.3.5. The following identity expresses I3 1 1(abedef) <> Is11(x,y, z) in terms of I3 o terms,

modulo §.

31511 (abedef) <

+ I3 2([abede] + [abedf] + [abeed] + [abefd] — [acbdf] — [acbfd] — [adbef] +

— [adbfe] + [bafce] + [bafec] — [bface] — [bfaec]) +

+ I3 5([abee, acbd) + [abee, adbc] + [abef, adcb] — [abdf, acbf] — [abef, adeb] +
— [abef, 