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1. Introduction

The dilogarithm function—a generalisation of the logarithm—is one of the simplest special functions, and is
defined by the power series

Li2(z) :=
∞∑
k=1

zk

k2 .

Having been first mentioned in correspondence between Bernoulli and Leibniz, this function has been actively
studied by many prominent mathematicians since. Spence, Abel and Kummer discovered and rediscovered its
remarkable five-term functional equation

Li2(x) + Li2(y)− Li2
( x

1− y

)
− Li2

( y

1− x

)
+ Li2

( xy

(1− x)(1− y)

)
= − log(1− x) log(1− y) .

Lobachevsky showed that volumes of hyperbolic orthoschemes can be computed by the dilogarithm. Remarkably
the dilogarithm also found important applications in the computation of scattering amplitudes.

My interest in these functions stems from a conjecture due to Zagier, the rough form of which is as follows.

Conjecture 1 (Zagier, [44]). The value of the Dedekind zeta function ζF (n) of number field F , at an integer
n ≥ 2, can be expressed via (a single-valued version of) the polylogarithm Lin.

Bĕılinson and Deligne [1] have put this conjecture into the context of the theory of mixed Tate motives. Zagier’s
conjecture has since spawned a vast programme by Goncharov (see the recent Bourbaki talk [25]; therein some
of my work is discussed in the context of this programme), towards understanding the structure of mixed Tate
motives over a field F , in particular through understanding the properties of the multiple polylogarithm functions

Lin1,...,nd
(x1, . . . , xd) :=

∑
1≤k1<k2<···<kd

xk1
1 · · ·x

kd

d

kn1
1 · · · k

nd

d

, |xi| < 1 .

Here d is called the depth, and w = n1 + · · · + nd the weight; these quantities give a useful benchmark for
how complicated the function is. I am therefore mainly interested in the properties of these functions from the
viewpoint mixed Tate motives over F and Goncharov’s programme (broadly number theory, with connections to
algebraic and arithmetic geometry). I am also interested in mixed Tate motives over rings such as Z or Z[ 1

2 ],
whose periods essentially give the multiple zeta values (multiple polylogarithms at xi = 1), or respectively the
alternating multiple zeta values (multiple polylogarithms at xi = ±1, also related to multiple t values).

As I explain more fully in §2, computational experiments have been the major instrument of all of my work.
It is well-known that the (multiple) polylogarithms satisfy many increasingly-complicated functional equations,
of which the five-term relation is one of the simplest; in order to conceptually understand these identities and
properties, it becomes important to explicitly find them first, which requires (because of the vast scope) computer
experimentation. I have developed many refined routines for computing with multiple polylogarithms and
multiple zeta values, which have been useful in many projects, such as a recent project of a very computational
nature [15] wherein we (myself, with Gangl, Lai, Xu, and Zhao) proved some conjectural identities of Z.-W. Sun,
that were equivalent to certain explicit identities amongst special values of polylogarithms.

Although computer experiments have been the major instrument in all of my work, in what follows however I
will concentrate on the conceptual meaning of my results. I will also sketch some further research project based
on them, that I intend to carry out. In §2, I discuss my work ([11], and with various of Gangl, Radchenko [18]
and Rudenko [19]) around Goncharov’s depth conjecture, which predicts the existence of certain depth-reduction
identities on multiple polylogarithms. In §3 I explain my work (with Gangl and Radchenko [16]) on explicit
formulas for the Grassmannian and Aomoto polylogarithms (which play a role in the story around Zagier’s
conjecture) in terms of multiple polylogarithms. In §4 I explain some of my earlier work [11, 14, 10] on multiple
zeta values, i.e. the special values ζ(n1, . . . , nd) := Lin1,...,nd

(1, . . . , 1) of multiple polylogarithms. In particular, I
discuss the block decomposition which I used to unify some previously unconnected conjectures; I also indicate
where and how the block decomposition has inspired work of other mathematicians. This lead to a recent project
(with Keilthy [21]), where we were able to connect the period polynomial relations of double zeta values, to the
block degree 2 part of the motivic Lie algebra. Finally in §5 I explain my motivic linear independence results
[12] on multiple t values (an ‘odd’ variant of multiple zeta values), and its use in some joint work with Hoffman
[20] on a symmetry result for multiple t values.
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2. Depth reductions, and Goncharov’s motivic Lie algebra

Goncharov [31, §7.3] has described a beautiful conjectural picture for understanding the structure of higher
depth multiple polylogarithms. In Goncharov’s picture, the multiple polylogarithms are lifted to motivic versions
using their iterated integral representation

Lin1,...,nd
(x1, . . . , xd) = (−1)dIn1,...,nd

( 1
x1 · · ·xd

,
1

x2 · · ·xd
, . . . ,

1
xd

)
:= (−1)d

∫ 1

0

dt
t− (x1 · · ·xd)−1 ◦

dt
t
◦ · · · ◦ dt

t︸ ︷︷ ︸
n1−1

◦ · · · ◦ dt
t− (xd)−1 ◦

dt
t
◦ · · · ◦ dt

t︸ ︷︷ ︸
nd−1

.

The motivic multiple polylogarithms then form a Hopf algebra graded by weight (recall: the weight of Lin1,...,nd

is n1 + · · · + nd), with a coproduct ∆ given by an explicit combinatorial formula (often depicted as a semi-
circular polygon). For simplicity, we consider this modulo products and can obtain a Lie coalgebra L•(F )
of multiple polylogarithms with values in some field F , generated by (formal) symbols Lin1,...,nd

(x1, . . . , xd),
xi ∈ F subject to the (implicit) functional equations of multiple polylogarithms, with a coproduct (cobracket)
∆: L•(F ) →

∧2 L•(F ). The depth d of Lin1,...,nd
(x1, . . . , xd) defines a filtration on L•(F ), with associated

graded gr• L•(F ); we have the following.
Conjecture 2 (Goncharov, [31], §7). A linear combination of multiple polylogarithms has depth ≤ d if and
only if the d-th iterated truncated coproduct ∆[d] vanishes. More, gr• L•(F ) is cofree, cogenerated by depth 1
polylogarithms.

The weight 2 and 3 part of this conjecture has been long known: it explains the surprising fact that the a
priori more complicated 2-variable function Li1,1(x, y) can be expressed via Li2 alone

Li1,1(x, y) = Li2
(y(x− 1)

1− y

)
− Li2

( y

y − 1

)
− Li2(xy) , |xy| < 1, |y| < 1 ,

similar results are known for Li1,1,1,Li2,1 and Li1,2 in terms of Li3.
In general Conjecture 2 is very difficult to investigate, because it makes no claims on the form or complexity

of the depth ≤ d terms. It might very well happen that Conjecture 2 has a non-explicit proof, but even if that is
so, finding the explicit reduction formulae would be highly desirable for applications. One has no real option
then except—for a fixed combination—to experimentally test many candidate depth ≤ d terms, generated by
a combination of intuition, insight, brute force and hope for a reduction. Importantly, one needs to match
the singularities of the original combination, which forces certain factorisation properties upon zi − zj in any
potential terms Lin1,...,nd

(z1, . . . , zj), however since one can (or even must) introduce spurious singularities which
eventually cancel, generating such candidates is extremely open ended.

The weight 4 case was proven by Gangl [27], after many years of such computer experimentation, wherein he
found a 122-term expression for I3,1(—, z) applied to the five-term relation for Li2 in terms of Li4 only. Since
∆I3,1(x, y) = Li2(x) ∧ Li2(y), Gangl’s result can be used to rewrite any combination with vanishing coproduct
via Li4. It was only many years later that Goncharov and Rudenko [30] were able to understand and conceptually
(re)drive Gangl’s result, after introducing a fundamental new type of functional equation for weight 4 multiple
polylogarithms.

A surprising consequence of Conjecture 2 is that every depth d multiple polylogarithm in weight n should be
expressible via a single function Lin−d+1,1,...,1. In my thesis [11], I had already found indication of this in weight
5, by trying to match the coproduct of I3,2(x, y) directly with I4,1 terms. As the depth 2 terms were designed
to be very simple, all of the complexity of the reduction was forced into the Li5 terms. With some routines
made available by Radchenko for generating candidate Li5 terms, and my own improvements to various ‘symbol’
(⊗-invariant) routines, allowing much faster calculations with greater scope, I was able to show the following.
Theorem 3 (Appendix B, [11]). The function I3,2(x, y) can be expressed via six I4,1 terms and 141 Li5 terms.
(A typical Li5 argument in this expression is of the form − (1−x)(x−y)3

x(1−y)2y .)

I had also found, later, some expressions for I4,2 in terms of I5,1, but surprisingly with the arguments of I4,2
being (x2, y2), and other terms involving x or y in an impossible to eliminate way. Originally only a curiosity,
with Gangl, Radchenko and Rudenko [19], we were able to understand the underlying structure and generalise it.
In particular, we proved the d = 2 case of the previously mentioned surprising consequence of Conjecture 2.
Theorem 4 (Theorem 2, [19]). Every depth 2 multiple polylogarithm Lia,b can be expressed via Lia+b−1,1 with
arguments being Laurent monomials in N

√
x, N
√
y , for some N .

(This leads to a much shorter reduction for I3,2 to I4,1, but involves 12-th roots of unity. In weight 5, other
expressions with no roots of unity follow from the geometric identities [17] we found with Gangl and Radchenko,
the more general quadrangular identities [38] found independently by Matveiakin and Rudenko.)
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In the same work as our depth 2 reduction, we showed the surjectivity part of Conjecture 2. Write Bn(F ) for
the subspace of L•(F ) spanned by depth 1 polylogarithms Lin(x), then we have the following.

Theorem 5 (Theorem 5, [19]). If F is quadratically closed, then the following map is surjective,

∆[d−1] : grd L•(F )→ coLie
(⊕
n≥2
Bn(F )

)
.

Strikingly (as pointed out to us by Goncharov), this result is enough to iteratively reduce Conjecture 2 to the
case d = 1, as we showed in Corollary 6 [19].
Project. We want to generalise Theorem 4 to higher depth. We still expect some expression involving only
Laurent monomials; as a starting point we have some depth 3 reductions to Lia,b,1. These reductions in general
seem to be related to the geometry of modular varieties [32].

In another direction, Gangl, Radchenko and I investigated the implications of Conjecture 2 for so-called
Nielsen polylogarithms Sn,p(x) := Li

p−1︷︸︸︷
1,...,1,n+1(1, . . . , 1, x). These functions represent somehow the simplest

higher depth polylogarithms (appearing non-trivially first in weight 5), and provide a good starting point for
investigating Goncharov’s depth conjecture.

We showed the Nielsen polylogarithm S3,2(x), which has coproduct Li2(x)∧ζ(3), satisfies the five-term relation
modulo explicit Li5 terms, giving a one-variable weight 5 analogue of Gangl’s I3,1 reduction. The following is an
equivalent, symmetrised form.

Theorem 6 (Theorem 16, [18]). The Nielsen polylogarithm S3,2 satisfies the following identity
Alt5 11S3,2(cr(x1, x2, x3, x4)) =

Alt5

(
15 Li5(r1(x1, . . . , x5))− 9 Li5(r2(x1, . . . , x5)) + Li5(r3(x1, . . . , x5))

)
(mod products) ,

where cr(a, b, c, d) = (a−c)(b−d)
(a−d)(b−c) is the classical cross-ratio, and r1, r2, r3 are certain explicit ‘higher-ratios’, the

most complicated of which is r3(x1, . . . , x5) := − (x1−x2)3(x1−x5)(x3−x4)2(x3−x5)
(x1−x3)3(x1−x4)(x2−x4)(x2−x5)2 .

We also investigated weight 6, where the function S4,2(x), whose coproduct is Li3(x) ∧ ζ(3), should satisfy
trilogarithm identities modulo explicit Li6 terms. So far, anything beyond the three-term relation and a certain
1-variable infinite algebraic family (already given by me in [11, Propositions 7.6.10, and 7.6.12]) seems to be out
of reach. Nevertheless, we could directly show some non-trivial consequences of “S4,2(x) satisfies trilogarithm
identities” do indeed hold. We gave a evaluations in terms of Li6 for S4,2(−1) and S4,2(φ−2), φ = 1+

√
5

2 , which
would otherwise follow from the three-term reduction and a hypothetical (so-called) duplication reduction.

Theorem 7 (§7.3, [18]). The special value S4,2(−1) = Li1,5(1,−1) has the following expression,
S4,2(−1) = 1

13
( 1

3 Li6(− 1
8 )− 162 Li6(− 1

2 )− 126 Li6( 1
2 )
)

(mod products) ,
where the products are of the form ζ(n)i log(2)j.

Whilst we could understand and derive most of the structure of this evaluation via Brown’s extension [6, 7, 8]
of the motivic framework, to fix the coefficient of ζ(6) we needed a numerical identity. This entailed finding a
complicated expression for the related Li5,1(−x,−1) via 9 Nielsen and 117 Li6 terms, modulo products, lifting
this to an analytic identity verifiable by differentiation, and analytically continuing to the region x = 1.

Together these results are some of the best evidence so far for Goncharov’s depth conjecture, but also indicate
how complicated the generic reductions are likely to be.
Project. Extend the identity in Theorem 6 to the 2-variable function I4,1(x, y)+I4,1(x, y−1), whose coproduct is
Li2(x) ∧ Li3(y). This would be the key part of the depth conjecture in weight 5. We already have some progress,
via simpler combinations (two-term symmetries I previously found [11, §7.4]), certain interesting degenerations,
and syzygies between combinations we expect to reduce individually.
Project. Further investigations into weight 6 reductions. As a starting point, S4,2(x) under trilogarithm
identities should reduce to depth 1. Likewise I5,1(x, y)±I5,1(x, y−1) should reduce to depth 1 under Li4 identities
(with +), or Li3 identities (with −). Already Matveiakin and Rudenko [38] have reduced I4,1,1(x, y, z) under
dilogarithm identities to depth 2, modulo some still missing symmetry result which we will investigate.

3. Explicit formulas for Aomoto and Grassmannian polylogarithms

Grassmannian polylogarithms—analytic functions on configurations of 2k points in k space—have been studied
since [28] as a type of geometric generalisation of the dilogarithm. Another geometric generalisation, expressing
the dilogarithm via Chen’s iterated integral construction [22] occurs in the work of Aomoto. Here a polylogarithm
function An−1(L;M) on pairs of n-simplices L,M is defined, by integrating a differential form ωM with
log-singularities on M over the simplex ∆L with boundary L.



4 STEVEN CHARLTON

Goncharov [29] has defined a Grassmannian m-logarithm Grm(v1, . . . , v2m) as a the skew-symmetrisation
under permutations of v1, . . . , v2m of a primitive of the 1-form

Ω(v1, . . . , v2m) = Alt2mAm−1(v1, . . . , vm; vn+1, . . . , v2m) d log ∆(vm+1, . . . , v2m) .
In [29, Theorem 1.1], Goncharov shows that Ω(v1, . . . , v2m) is closed, hence Grm(v1, . . . , v2m) is well-defined. He
[29, §4, Theorem 4.2] then computes the symbol (⊗m-invariant) of the Grassmannian polylogarithm to be

2(−1)m(m!)2 Alt2m ∆(v1, . . . , vm)⊗∆(v2, . . . , vm+1)⊗ · · · ⊗∆(vm, . . . , v2m−1) ,
and shows [29, Theorem 4.3] that this symbol is integrable (i.e. that it should be expressible via a Chen iterated
integral).

On a rational variety one can—in principle—integrate any integrable symbol to multiple polylogarithm
function, however an algorithmic approach is so far only known when the symbol alphabet satisfies certain
conditions (c.f. ‘linear reducibility’ in [9, §3],[24, §8.5]). Even if an algorithmic approach is possible, one would
have little control over the structure of the final result; symmetries present in the original symbol might be
neglected, or unnecessarily complicated combinations of high depth functions with many product terms are
easily generated. The question of integrating the symbol of Grm(v1, . . . , v2m), and expressing the Grassmannian
polylogarithm via classical iterated integrals I(a;x1, . . . , xn; b) is decidedly non-trivial. The (implicit) expression
of Gr4(v1, . . . , v8) via weight 4 iterated integrals (i.e. ultimately I3,1 and I4) was an important step in the recent
proof [30] of Zagier’s conjecture on ζF (4).

With Gangl and Radchenko [16], we were able to find a surprisingly simple expression for both the Grassmannian
polylogarithm, and the Aomoto polylogarithm, of generic configurations. Each of them is expressed as a single-
term under their natural symmetry. First, it is convenient to introduce some notation for certain ratios of
Plücker coordinates (determinants of collections of m points), namely define

ρi := ∆(vi, vi+1, . . . , vi+m−2, v1)
∆(vi, vi+1, . . . , vi+m−2, v2m)

Then we showed the following.

Theorem 8 (Theorems 4, and 5, [16]). i) The symbol of the Grassmannian polylogarithm Gr(v1, . . . , v2m) is
equal to the symbol of

(−1)mm!(m− 1)!
2m− 1 Alt2m I(0; 0, ρm+1, ρm, . . . , ρ3; ρ2) .

ii) The symbol of the Aomoto polylogarithm Am−1(v1, . . . , vm; vm+1, . . . , v2m) is equal to the symbol of
(−1)m−1

m2 Altm,m I(0; ρm+1, ρm, . . . , ρ3, ρ2) .

These results, particularly our formula for the Grassmannian polylogarithm, directly inspired Matveiakin
and Rudenko [38] to define the notion of a cluster Grassmannian polylogarithm, and investigate its properties.
In particular, as more conceptual construction that the quadrangular polylogarithms introduced earlier [40].
Already they have used these functions to construct a part of a bi-Grassmannian n-logarithm cocycle, whose
existence was conjectured by Goncharov [29, Conjecture 4.4]. They have also made some significant progress
towards the depth 3 part of Goncharov’s depth conjecture in weight 6 [38, Theorem 1.4].

For the Aomoto polylogarithm, we even obtain a refined expression, by needing to symmetrise over only
Altm−1,m−1, i.e. permuting v2, . . . , vm and permuting vm+1, . . . , v2m−1. This has led us to introduce the following
weight n function defined on configurations of 2m vectors in Cm,

An,m(v1, . . . , vm; vm+1, . . . , v2m) := Altm−1,m−1 I(0; 0, . . . , 0︸ ︷︷ ︸
n−m+1

, ρm+1, . . . , ρ3; ρ2)

which simultaneously generalises the Grassmannian and the Aomoto polylogarithm. More precisely, we have
Grm is a rational multiple of Alt2mAm,m and Am−1 is (−1)m−1 times Am−1,m. We calculated the symbol of
this function, and showed it is of a particularly simple type, consisting only of Plücker coordinates.

Theorem 9 (Remark 8, [16]). The symbol of An,m(v1, . . . , vm; vm+1, . . . , v2m) is Plücker.

4. The block decomposition of multiple zeta values

Multiple zeta values (MZV’s) are the special values of multiple polylogarithms at xi = 1, namely

ζ(n1, . . . , nd) := Lin1,...,nd
(1, . . . , 1) =

∑
1≤k1<k2<···<kd

1
kn1

1 · · · k
nd

d

.

They arise as periods of mixed Tate motives over Z, and have a surprisingly intricate structure all of their own,
with many disparate identities (proven or conjectural), and surprising connections to other fields.
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I introduced [11, 14] the block decomposition bl(k1, . . . , kd) of a multiple zeta value ζ(k1, . . . , kd), in order to
understand, unify and generalise a number of disparate conjectural MZV identities. Write w = yxk1−1 · · · yxkd−1

as the word describing the Hopf algebra [35] or iterated integral representation [31] of the MZV (with x↔ 0, y ↔ 1).
Then factor xwy (where x and y correspond to the bounds of the integral) into alternating words of maximal
length, by deconcatenating at a repeated letter xx or yy, and record the lengths of these words,

(2, 3, 4, 5) xwy =
5︷ ︸︸ ︷

xyxyx | xyx | x | xyx | x | x | xy , so
bl(2, 3, 4, 5) = (5, 3, 1, 3, 1, 1, 2)

From the block decomposition, one can recover the original MZV, so this map is invertible (with some parity
condition on the domain). Based on numerical and symbolic experiments, I posed the following conjecture, which
generalises and unifies the Cyclic Insertion Conjecture in [3] with a conjecture by Hoffman [2, Eqns. 9.1–9.5].
These a priori unrelated conjectures are both shadows of the same deeper structure.

Conjecture 10 (Conjecture 6.3 [14]; Hirose and Sato Theorem 11 [33] if bi ≥ 2). For any block decomposition
(b1, . . . , br) with bl−1(b1, . . . , br) = (k1, . . . , kd), define ζbl(b1, . . . , br) = (−1)dζ(k1, . . . , kd). Then

r∑
i=1

ζbl(bi, . . . , br, b1, . . . , bi−1) = ζbl(b1 + · · ·+ br + 2) + explicit products .

Moreover, if (bi, bi+1) 6= (1, 1), then no products occur.

With Brown’s motivic framework [6], I was able to show a symmetrisation holds

Theorem 11 (Corollary 5.13 [14]). Summing over all permutations gives∑
σ∈Sr

ζbl(bσ(1), . . . , bσ(i)) ∈ ζbl(b1 + · · ·+ br + 2)Q .

This theorem is enough to show Hoffman’s identity up to a rational, and improve the results of [3, 4] towards
the Cyclic Insertion Conjecture, as well as to generate a number of surprisingly structured new MZV identities.

I [10] have also used the block decomposition structure to reinterpret a result of Zhao [45], by giving a direct
construction of his iteratively argument string which relates multiple zeta star values (with ≤ instead of <),
and so-called alternating multiple zeta-half values (with characters (−1)ni weighting with 1

2 when ni = ni+1).
For example ζ?(2, 3, 4, 5) = −27ζ

1/2(3, 3, 1, 3, 1, 1, 2), based on bl(2, 3, 4, 5) above, where the first argument of the
block decomposition must always be decreased by 2.

Already the idea of the block decomposition has spawned further work by other mathematicians in many
directions. In one direction: these conjectures and this new structure inspired work by Hirose and Sato [33].
They defined a new block shuffle product structure on MZV’s, �bl between block decompositions, and showed
the beautifully simple identity ζbl(b1�bl b2) = 0. Moreover, they were able to show that for bi ≥ 2 my conjecture
(hence Hoffman’s conjecture, and the Cyclic Insertion Conjecture) follows from this identity.

In another direction: Brown [5] observed that the block decomposition actually gives rise to a so-called block
filtration, which is motivic, and which coincides with the well-known coradical filtration on motivic MZV’s.
Therefore, the block decomposition gives a simple to calculate combinatorial description of the coradical degree.
Moreover, this also gives the level filtration (i.e. number of 3’s) used in Brown’s proof [6] that the Hoffman
elements ζ(k1, . . . , kd), ki ∈ {2, 3} are a motivic basis.

Finally: Keilthy [37, 36] further developed this viewpoint, by lifting Brown’s filtration to Q〈e0, e1〉 in such a
way as to retain a non-trivial associated graded. Keilthy constructed a block-graded Lie algebra bg encoding
relations between block-graded MZV’s modulo products, and showed bg ∼= Lie[σ3, σ5, . . .] is free, and therefore
(non-canonically) isomorphic to the motivic Lie algebra gm. This is in stark contrast to the depth-graded Lie
algebra dg, which is not free, and has quadratic relations and extra generators in depth 4, encoding the period
polynomial relations of cusp forms. Keilthy also represented this Lie algebra (hence relations among block-graded
MZV’s) through a subspace of commutative polynomials, satisfying certain block relations coming from the
shuffle regularisation, a dihedral symmetry, and a differential equation. Keilthy also proved a version of the
above conjecture in the block-graded, i.e. modulo terms of lower block degree.

At this point, I re-enter the picture. We want to understand the motivic Lie algebra gm, and by Keilthy’s
work we can do this by understanding the block graded Lie algebra bg, with degree 2 being the next non-trivial
case. The depth filtration is a subfiltration of the block filtration, so one expects the double zeta values and their
famous period polynomial relations [26] to manifest somehow in the world of block degree 2 MZV’s. Keilthy
and I gave an evaluation for ζ({2}a, 4, {2}b) (with block decomposition (2a+ 3, 1, 2b+ 2) of degree 2, and {2}a
denoting a repetitions of 2, . . . , 2) via double zeta values. At the outset, it is not at all obvious such a result
exists, and on the way we had to deal with a number of non-trivial steps, including the discovery of an explicit
Galois descent for alternating MZV’s of the form ζ(ev, ev) from the plethora of MZV relations. Nevertheless, we
obtained the full version the following explicit identity by analytic means, and then gave a direct motivic proof.
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Theorem 12 (Lemma 4.1, and Theorem A.7, [21]). The following evaluation holds

ζ({2}a, 4, {2}b) = 4(−1)n
[
−ζ(2a+ 2, 2b+ 2)− ζ(2a+ 3, 2b+ 1)

+
2n+3∑
j=1

2j−4−2n
((

2n+ 3− j
2b+ 1

)
−
(

2n+ 3− j
2a+ 1

))
ζ(j, 2n+ 4− j)

]
(mod explicit products) .

From this we obtained [21, Corollary 1.3] a surprisingly simple expression for the double zeta values of weight
2n+ 4 in terms of block degree 2

ζ(2a+ 1, 2n− 2a+ 3) = (−1)n

4

n−a∑
i=a

ζ({2}i, 4, {2}n−i) (mod products) ,

and could finally connect the period polynomial relations to the block relations. More generally we obtained the
following.

Theorem 13 (Proposition 3.5, [21]). All relations among even weight double zeta values modulo products arise
from the block relations.

In particular, the period polynomial relations on double zeta values are a consequence of the block relations;
moreover we showed how arise in very explicit way [21, Proposition 3.6].

Project. We expect a similar story to play out in higher block degree, once we understand how to express values
ζ(2, . . . , 2, 2k, 2, . . . , 2) via depth 2k − 2 MZV’s. The explicit identity for ζ(2, . . . , 2, 4, 2, . . . , 2) in Theorem 12
already gives us a much better idea about the possible structure of such evaluations; we aim to a direct motivic
proof of the key identities for ζ(2, . . . , 2, 2k, 2, . . . , 2) as it seems much less feasible to give an analytic identity in
the higher cases.

5. The structure of multiple t values

Multiple t values (MtV’s) are a recently (re)-introduced ‘odd variant’ [34] of multiple zeta values, given by
summing over only odd denominators

t(k1, . . . , kd) =
∑

0<n1<···<nd

1
(2n1 − 1)k1 · · · (2nd − 1)kd

.

They are both very similar, and markedly different to MZV’s. They can be expressed via alternating multiple
zeta values (i.e. multiple polylogarithms at xi = ±1), so arise as periods of mixed Tate motives over Z[ 1

2 ]. The
function version of these objects, so-called alternating polylogarithms [40, §6.5] already play an important role in
the computation of volumes of orthoschemes [40, Theorem 6.22].

5.1. Motivic MtV’s
Murakami [39] calculated the motivic derivations D2r+1 on motivic versions tm(k1, . . . , kd) in the case when all
ki > 1, in order to prove the surprising result that tm(k1, . . . , kd), ki ∈ {2, 3} form a basis for motivic multiple
zeta values. I extended this computation to all motivic multiple t values; a very pleasing result of this is that D1
acts by deconcatenation, and hence conceptually explains Hoffman’s empirically observed [34, Conjecture 2.1]
‘derivation with respect to log(2)’

Proposition 14 (Proposition 5.8, [12]). D1 acts by deconcatenation of leading/trailing 1’s

D1t
m(k1, . . . , kd) = δk1=12 logl(2)⊗ tm(k2, . . . , kd)− δkd=1 logl(2)⊗ tm(k1, . . . , kd−1) .

I established an evaluation for the stuffle-regularised t(2, . . . , 2, 1, 2, . . . , 2) in terms of Riemann zeta values
and log(2), following ideas from Zagier [43] and Murakami [39]. In contrast with these previous results, I
had to overcome some difficulties caused by regularisation, i.e. since t(2, . . . , 2, 1) is divergent the natural
generating series

∑∞
a,b=0 t({2}a, 1, {2}b)x2ay2b does not initially make sense, but this can be handled using the

Evans-Stanton/Ramanujan asymptotic of hypergeometric series.
With the motivic derivations, I could lift this analytic evaluation to a motivic evaluation, holding for notions

of shuffle regularised and stuffle regularised motivic MtV’s. By understanding the arithmetic of the coefficients
in my evaluation of tm(2, . . . , 2, 1, 2, . . . , 2), together with Murakami’s evaluation of tm(2, . . . , 2, 3, 2, . . . , 2), I
established some motivic linear independence results on motivic MtV’s.

Theorem 15 (Corollaries 7.15, 8.19, and 8.26, [12]). The following hold
i) The so-called Saha elements {tm(k1, . . . , kd−1, kd + 1) | ki ∈ {1, 2}} are linearly independent.
ii) The shuffle regularised Hoffman-type elements {tm(k1, . . . , kd) | ki ∈ {1, 2}} are linearly independent.
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iii) The stuffle regularised Hoffman-type elements {t∗,m(k1, . . . , kd) | ki ∈ {1, 2}}, with t∗,m(1) = 1
2 logm(2)

or with t∗,m(1) = logm(2), are linearly independent.

Some comments on this are in order. Firstly, motivic multiple t values are contained in motivic alternating
multiple zeta values, and it is know [23] that alternating motivic MZV’s have dimension FN+1 in weight N ,
where Fk = Fk−1 + Fk−2, F0 = F1 = 1 are the Fibonacci numbers. Hence for dimensional reasons the results in
ii) and iii) show that the shuffle/stuffle regularised Hoffman elements t(∗),m(k1, . . . , kd), ki ∈ {1, 2}× are a basis
for both regularised MtV’s and alternating MZV’s, and hence regularised MtV’s have dimension FN+1.

Second, Saha [41] conjectured that the elements t(k1, . . . , kd−1, kd+1), ki ∈ {1, 2} are a basis for the convergent
multiple t values, i.e. those with last argument > 1. The result in i) above gives the (motivic) linear independence
part of this conjecture; at the moment it is not clear how to show Saha’s elements actually span the space of
convergent MtV’s. We do not have a good enough upper bound yet (i.e. FN ) on the dimension of convergent
MtV’s; the upper bounds in the case of MZV’s and alternating MZV’s were obtained by some very deep arithmetic
geometry [42], [23], that would be highly non-trivial to extend.
Project. It is an on-going idea with A. Keilthy to utilise the deconcatenation property of D1 to try to characterise
motivically the convergent MtV’s, in order to obtain the necessary upper bound by more elementary means.
By tensoring with F2, the kernel of D1 ⊗ F2 contains the convergent MtV’s. We therefore expect that by
understanding the relations “modulo 2”, we can make progress towards the dimension of convergent MtV’s.

Project. I have already given an evaluation [13] for the alternating MtV t(1, . . . , 1, 1, 1, . . . , 1), which should
be the key identity for showing a similar motivic linear independence of the alternating MtV’s tm(k1, . . . , kd),
ki ∈ {1, 1}. However, we need to regularise with t(1) = 1

2 log(2) to get a basis, as with t(1) = log(2) already
t(1, 1) = t(1, 1). Since alternating MtV’s are Q(i)-linear combinations of level N = 4 MZV’s, much of the motivic
framework must be reworked to allow Q(i)-coefficients, before being able to tackle linear independence.

5.2. Symmetries of MtV’s
Hoffman conjectured that MtV’s satisfy a extra symmetry unlike MZV’s, namely

t(k1, . . . , kd) + (−1)k1+···+kdt(kd, . . . , k1) ≡ 0 (mod products of t’s) .
A similar identity for MZV’s typically involves many lower depth irreducible terms, which seemingly and
mysterious are not present in the MtV identity.

With Hoffman, [20], we found a generalisation and proof of this. The first main ingredient is a(n underappre-
ciated) proof Goncharov’s gave of a multiple polylogarithm inversion theorem [31], which could be modified to
multiple t values. However this identity only allowed us to give an explicit generating series identity expressing
the alternating MtV’s (ki with or without bars, denoting an extra sign (−1)ni in numerator of an MtV) via
products of alternating t’s and products of alternating ζ’s:

t(
(_)

k1 , . . . ,
(_)

kd ) + (−1)k1+···+kd(−1)#{bars}t(
(_)

kd , . . . ,
(_)

k1 ) = products of alternating t’s and ζ’s.
Unexpectedly, the motivic results from Murakami [39] and my motivic results in Theorem 15 above come to the
rescue. We can always re-write alternating MZV’s via multiple t values of the form t(k1, . . . , kd), ki ∈ {1, 2},
and so all products of MZV’s are actually products of MtV’s. Hence Hoffman’s form of the symmetry conjecture
holds and we have the following.

Theorem 16 (Theorem 2.21, Corollary 2.25, [20]). The following symmetry result holds for alternating multiple
t values, for any choice of barred entries

t(
(_)

k1 , . . . ,
(_)

kd ) + (−1)k1+···+kd(−1)#{bars}t(
(_)

kd , . . . ,
(_)

k1 ) ≡ 0 (mod products of (alternating) t’s)

It is rather surprising and disconcerting that one needs to appeal to deep motivic basis results in order to convert
MZV’s to MtV’s for this theorem. Our proof actually works with any root of unity (i.e. MtV’s of level N),
modulo products of MtV’s level N and products of level N MZV’s. Presumably the decomposability actually
always holds modulo products of level N MtV’s only, but how can one show this without appealing to a motivic
basis result to rewrite level N MZV’s via MtV’s?
Project. It would be interesting to find a more direct proof of this symmetry result, without appealing to an
abstract motivic result to rewrite zeta values via t values. This might be a reflection of some distinguished
new structure in the Hopf algebra of multiple t values. In the opposite direction, at least, Hoffman and I are
investigating a conjectural identity relating MtV’s to certain interpolated zeta-half values; we have some partial
results. If proven in general we would already obtain an explicit expression for MtV’s in terms of MZV’s.
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