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The title is quite ambitious. I’m probably going to spend a lot of time talking first about the
background, giving an introduction to MZVs and some of the standard results.

1 Introduction / recap of Multiple Zeta Values

1.1 Definition/Motivation

Firstly the definition

Definition 1.1. For si ∈ Z>0, the multiple zeta value is defined as

ζ(s1, s2, . . . , sk) :=
∑

0<n1<n2<...<nk

1

ns11 n
s2
2 · · ·nskk

For this sum to converge, we require sk > 1. (Some conventions use n1 > n2 > · · · > nk > 0,
but this just reverses the order of the arguments.)

We call k the depth, and
∑k
i=0 si the weight.

View this as a multivariable generalisation of the Rieman zeta function. These are the sort
of sums one gets if you look at products of RZV, and try to break them up into their basic
blocks. . .

So why is it worth studying these things? We’ll firstly, there they have a huge amount
of structure hidden behind this definition. For example, at weight k = 10 there are a priori
210−2 = 256 different MZVs. But it turns out that there are, at most, 7 linearly independent
ones. This means there is a huge number of relations. For example

ζ(1, 2) = ζ(3)

(2n+ 1)ζ({1, 3}n) = ζ({2}2n) =
π2n

(2n+ 1)!

28ζ(3, 9) + 150ζ(5, 7) + 168ζ(7, 5) =
5197

691
ζ(12)

First is Euler, Second was a conjecture of Zagier which Broadhusrt proved, and the last is
Gangl-Kaneko-Zagier with a connection to non-trivial cusp forms of weight 2k.

So how to find and understand these?
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Secondly, studying them could be motivated by what we don’t know about them, despite the
apparent simplicity of the definition. Easy-sounding questions about MZVs can be incredibly
difficult. Recall, Euler showed that

ζ(2k) =
(−1)k+1B2k(2π)2k

2(2k)!
,

in particularly all ζ(2k) are irrational (transcendental), and linearly independent. But the anal-
ogous equation for ζ(2k + 1) is firmly unanswered. Arèry showed that ζ(3) is irrational, and
it has been prove there are infinitely irrational ζ(odd), but we still don’t know if ζ(5) is one
of them. Similarly the three relations above are homogeneous in the weight. Are all relations
weight graded? No one can prove this yet.

Difficult transcendentality questions:

• What are all relations on MZVs?

• Are all relations homogeneous (graded by weight)?

• Is a particular class of relations (so called double shuffle) sufficient?

• Is ζ(5)/ζ(3) irrational?

• Any case where dim weight k MZV’s > 1?

Part of my work has been in trying to understand and generalise a particular (conjectural)
family of relations on MZV’s. The first instance of which is:

Conjecture 1.2 (Borwein, Bradley, Broadhurst, Lisoněk cyclic insertion).∑
cycleai

ζ(2a0 , 1, 2a1 , 3, . . . , 1, 2a2n−1 , 3, 2a2n)
?
=

πwt

(wt + 1)!

We now have

Theorem 1.3 (C). ∑
permuteai

ζ(2a0 , 1, 2a1 , 3, . . . , 1, 2a2n−1 , 3, 2a2n) ∈ πwt

(wt + 1)!

Giving

Corollary 1.4. The following family is evaluable

ζ({2n, 1, 2n, 3}m, 2n) ∈ πwtQ

Also

Conjecture 1.5 (Hoffman).

2ζ(3, 3, 2n)− ζ(3, 2n, 1, 2)
?
= − πwt

(wt + 1)!
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Now

Theorem 1.6 (C).
2ζ(3, 3, 2n)− ζ(3, 2n, 1, 2) ∈ πwtQ

Moreover both BBBL cyclic insertion, and Hoffman are part of the same generalised family
of identities. (Need some notation to set this up, so will try to give precise statements later.)

2 Standard results about MZVs

So let’s now recall some facts about MZVs.

Integral Representation Kontsevich shows/observed that every multiple zeta value can be
written as particular Chen iterated integrals. We have

ζ(a1, . . . , ak) = (−1)k
∫ 1

0

dt

t− 1

(
dt

t− 0

)a1−1

· · · dt

t− 1

(
dt

t− 0

)ak−1

.

Where this iterated integral notation∫ 1

0

ω1(t) ◦ ω2(t) ◦ · · · ◦ ωn(t) :=

∫
0<t1<t2<...<tn<1

ω1(t1)ω2(t2) · · ·ωn(tn) .

It is convenient to write this iterated integral using the following notation

(−1)kI(0; 1, 0a1−1, . . . , 1, 0ak−1; 1)

where 0; and ; 1 are endpoints of the integration, and the middle arguments encode the differential
forms appearing in the integral

a↔ dt

t− a
This gives an association between MZVs of weight k, and binary words of length k+2 starting

01, and ending 01. Can also write this as xya1−1 · · ·xyak−1, as an argument to ζ.

Duality: It was observed early on in the study of MZVs, that they shows a duality - pairs
of unrelated MZVs have the same numerical value. For example, Euler showed ζ(3) = ζ(2, 1),
but we also have things like ζ(3, 4) = ζ(1, 1, 2, 1, 2). The integral representation provides a very
convenient way to describe, and prove, the duality of MZVs, which is otherwise very difficult to
even formulate.

Change variables in the integral, so t 7→ 1 − t. Then dt/(t − 1) ↔ dt/t, and the end points
swap. So

I(0; 10a1−1 · · · 10ak−1; 1) = ±I(1; 01a1−1 · · · 01ak−1; 0)

But then reversing the path of integration gives

= I(0; 1ak−10 · · · 1a1−10; 1)

And this is the integral for another MZV. On the binary words: reverse and interchange 0 7→ 1.
So

ζ(1, 2) = I(0; 110; 1) = I(0; 100; 1) = ζ(3)
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Shuffle product: There is a well known way to multiply Chen iterated integrals. By splitting
up the product of simplex over which we integrate, one can show it is to take the shuffle product
of the words defining the differential forms.

I(a; v; b)I(a;w; b) = I(a; v� w; b)

Here w� v can be defined recursively by

• For any word w, �w = w� = w,

• For words v, w, and letters x, y, (xv)� (yw) = x(v� yw) + y(xv� w).

Idea: riffle shuffle the letters of the two words.
So

ζ(2)ζ(2) = I(0; 10� 10; 1) = I(0; 4 · 1100 + 2 · 1010; 1) = 4ζ(1, 3) + 2ζ(2, 2)

Stuffle product Instead of multiplying the integrals. Let’s multiply the series representing
the MZV. This leads to the stuffle product of MZVs, ζ(v)ζ(w) = ζ(v ∗ w), where ∗ is defined
recursively via:

• For any word w, 1 ∗ w = w ∗ 1 = w,

• For any word w, and any integer n ≥ 1:

xn ∗ w = w ∗ xn = wxn

• For any words w1, w2, and integers p, q ≥ 0:

yxpw1 ∗ yxqw2 = yxp(w1 ∗ yxqw2) + yxq(yxpw1 ∗ w2) + yxp+q+1(w1 ∗ w2)

This has a much better interpretation as shuffling the arguments of the MZVs, and possibly
stuffing two into one split.

ζ(a)ζ(b) = ζ(a, b) + ζ(b, a) + ζ(a+ b)

ζ(2)ζ(2) = 2ζ(2, 2) + ζ(4)

Double Shuffle With the two different ways of multiplying MZVs, we can compare the ex-
pressions and get linear relations between MZVs. This even works if we allow the divergent ζ(1)
to appear formally, the divergences cancel out in a way which gives correct results.

2ζ(2, 2) + ζ(4) = 4ζ(1, 3) + 2ζ(2, 2) =⇒ ζ(4) = 4ζ(1, 3)

Conjecturally regularised doubles shuffle gives all relations, which in turn would imply they
are weight graded.

3 Motivic MZVs and the Coproduct / coaction

Many of the difficulties in proving results about MZVs is due to transcendence problems. If there
were some way to replace the messy analytic object with some purely algebraic object, things
would be easier.
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Goncharov’s motivic iterated integrals Goncharov (in Galois symmetries of fundamental
groupoids and non-commutative geometry) showed how the ordinary iterated integrals I(a0; a1, . . . , an; an+1)
can be upgraded to framed mixed Tate motives, so give the motivic iterated integrals Ia(a0; a1, . . . ; an, an+1).
Unfortunately, since ζa(2) vanishes (for whatever reason), we don’t have a period map back down
to C, so we can’t compare with real numbers (this is unfortunate).

These form a graded Hopf algebra structure A. (Restrict to ai = 0, 1. Goncharov works
more generally, but we’re interested in MZVs, so this is fine.) The grading is n. He deduces the
following expression for the coproduct:

∆Ia(a0; a1, . . . ; an, an+1) =∑
0=i0<i1<···<ik<ik+1=n+1

Ia(a0; ai1 , . . . , aik ; an+1)⊗
k∏
p=0

Ia(aip ; aip+1, . . . ; aip+1−1, aip+1
)

The way to remember this using the semicircle polygon pictorial representation

a0

a1

a2

a3
a4 a5

a6

a7

a8

a9

This is the term

Ia(a0; a1, a3, a6; a9)⊗ Ia(a0; a1)Ia(a1; a2; a3)Ia(a3; a4, a5; a6)Ia(a6; a7, a8; a9)

So this for all possible polygons.
By using the Kontsevich integral representation of MZVs, we get their motivic version.

ζa(a1, . . . , an) = (−1)nIa(0; 10a1 · · · 10an ; 1) .

For free this gives us some results that have so far been impossible to prove for usual MZVs. The
elements ζm(2k + 1) lie in different componenets A2k+1, so must be Q-linearly independent! (In
fact, it is almost as easy to prove they are Q-algebraically independent.) Goncharov has proved
that any relations between the motivic DZVs follows from the motivic double shuffle relations.
Similarly Goncharov has shown that ζa(3, 5) is irreducible, i.e. not a product of classical motivic
ζ’s.

Sketch. If ∆′(x) = ∆′(y) = 0, then ∆′(xy) = x⊗y+y⊗x, so vanishes under antisymmetrisation
⊗ → ∧. However ∆′(ζ(3, 5)) = −5ζ(3)⊗ ζ(5) which does not vanish under antisymmetrisation.

Brown’s motivic MZVs Goncharov’s motivic MZVs aren’t quite good enough. For him,
ζa(2) = 0. Francis Brown (Mixed Tate motives over Z and On the decomposition of motivic
multiple zeta values) shows how to lift these even further in such a way that ζm(2) 6= 0. This is
done with a graded algebra comodule H ∼= A ⊗Q Q[ζm(2)] over A, and Goncharov’s coproduct
lifts to a coaction ∆: H → A ⊗Q H, defined by the same formula as before (up to swapping
factors)

∆Im(a0; a1, . . . ; an, an+1) =∑
0=i0<i1<···<ik<ik+1=n+1

k∏
p=0

Ia(aip ; aip+1, . . . ; aip+1−1, aip+1
)⊗ Im(a0; ai1 , . . . , aik ; an+1)
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.
This time, we do get a period map back down to C, so all motivic relations hold numerically

as well. We can compare with numbers.
To make this coaction easier to work with, Brown introduces an infinitesimal version of it via

the operators he calls Dr, as follows. Take L = A>0/A>0A>0, and π is the projection. Then

Dr : HN
∆r,N−r−−−−−→ Ar ⊗Q HN−r π⊗id−−−→ Lr ⊗Q HN−r

The action of this on a motivic iterated integral can be explicitly computed as

DrI
m(a0; a1, . . . , an; an+1) =

n−r∑
p=0

IL(ap; ap+1, . . . , ap+r; ap+r+1)⊗ Im(a0; a1, . . . , ap, ap+1, . . . , an; an+1)

So in the picture from before, we’re just cutting off one segment with r interior points each
time.

a0

a1

ap−1

ap
ap+1

ap+k
ap+k+1

ap+r+2

an
an+1

· · ·

· · ·· ·
·

The real upshot of this comes from the following Theorem of Brown

Theorem 3.1. The kernel of D<N :=
⊕

3≤2k+1<N D2k+1 is ζm(N)Q in weight N .

Brown uses this and theDr operators to provide an exactly-numerical algorithm to decompose
motivic multiple zeta values into a chosen basis. This provides a combinatorial method to
find/prove certain identities on the level of real MZVs using the period map.

Some simple examples of this include

Example 3.2.
t = ζ(2, 2, . . . , 2︸ ︷︷ ︸

n

) ∈ π2nQ

because if we compute DrI
m(0; (10)n; 1), then (draw picture) cut off segment always starts and

ends with the same symbol. So D<N t
m = 0, which implies tm ∈ ζm(2n)Q, and gives the above

result on taking the period map.
Sadly, Brown’s decomposition method cannot find the coefficient exactly in this case, so we’d

have to resort to numerical evaluation write an explicit version of the ‘almost’ identity

ζ(2, 2, . . . , 2︸ ︷︷ ︸
n

) = απ2n .

4 The block decomposition of motivic iterated integrals

In order to prove the various theorems I mentioned in the introduction, an to state the generalised
version, I need to set up a framework.
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Given a motivic MZV (more generally an motivic iterated integral), we locate in the argument
string positions where 00 or 11 occurs, and break the integral into ‘blocks’ of alternating 0’s and
1’s, at these points.

ζ(1, 4, 2, 2, 1, 2) = I(0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1)

7→ I(0, 1 | 1, 0 | 0 | 0, 1, 0, 1, 0, 1 | 1, 0, 1)

7→ Ibl(2, 2, 1, 6, 3)

Definition 4.1. The (alternating) block decomposition of the iterate integral is formed by record-
ing the lengths of the resulting blocks.

This encodes all of the information about the original integral, since we can assume by reversal
of paths that the integral starts with a 0.

Using Brown’s D2k+1 operators, we can prove the following theorem.

Theorem 4.2 (C).

S =
∑

permuteli

Ibl(l1, . . . , lk) ∈ ζ(wt)Q

(Note, this is only interesting in even weight, since in odd weight duality means Ibl(l1, . . . , lk) =
−Ibl(lk, . . . , l1).

Main idea of proof. Recall that the D2k+1 operation marks out a subsequence of length 2k + 3
on the integral.

I(010 | 0101 010 | 0101 | 10101 | 1︸ ︷︷ ︸ 01) 7→ Ibl(3, 7, 4, 5, 3) .

We show that the D2k+1 cancel pairwise when applied to S. Do this by defining a reflection
operation on the subsequences and block integrals.

I(010 | 01 0 | 01010 | 0101 | 101︸ ︷︷ ︸ 0101) 7→ Ibl(3, 3, 5, 4, 7) .

We get a subsequence defined on an integral with some permutation of the block lengths.
When we work out contributions to D2k+1, we get

ILbl(1; 3, 4, 5, 1)⊗ Imbl (3, 8 = 7 + 4 + 5 + 3− (2k + 1))

from the first, and

ILbl(0; 1, 5, 4, 3)⊗ Imbl (3, 8 = 7 + 4 + 5 + 3− (2k + 1)) .

The second factors are equal. The first factors are negatives, since reversal of paths turns
first into second with sign (−1)2k+1 = −1.

Conclusion: all terms in D2k+1 cancel pairwise, therefore S ∈ kerD<N = Qζ(wt), by Brown.

Example 4.3 (BBBL). We have

ζ(2a0 , 1, 2a1 , 3, . . . , 1, 2a2n−1 , 3, 2a2n) = (−1)depthIbl(2a0 + 2, 2a1 + 2, . . . , 2a2n + 2) ,

so permuting blocks, means permuting ai. Hence∑
permuteai

ζ(2a0 , 1, 2a1 , 3, . . . , 1, 2a2n−1 , 3, 2a2n) ∈ πwtQ .
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Example 4.4 (Hoffman). We have

ζ(3, 3, 2n) = Ibl(3, 3, 2n+ 1) ,

so summing all permutations leads to

2Ibl(3, 3, 2n+ 1) + 2Ibl(3, 2n+ 1, 3) + 2Ibl(2n+ 1, 3, 3)

2ζ(3, 3, 2n)− 2ζ(3, 2n, 1, 2) + 2ζ(2n, 1, 2, 1, 2) ∈ πwtQ .

Combining term 1 and term 3 by duality gives Hoffman.
Generalisation to Ibl(2a+ 3, 2b+ 3, 2c+ 2) gives

ζ(2a, 3, 2b, 3, 2c) + ζ(2b, 3, 2a, 3, 2c)

− ζ(2b, 3, 2c, 1, 2, 2a)− ζ(2a, 3, 2c, 1, 2, 2b)

+ ζ(2c, 1, 2, 2a, 1, 2, 2b) + ζ(2c, 1, 2, 2b, 1, 2, 2a) ∈ πwtQ .

Can combine terms by duality to get

ζ(2a, 3, 2b, 3, 2c)− ζ(2b, 3, 2c, 1, 2, 2a)− ζ(2a, 3, 2c, 1, 2, 2b) ∈ πwtQ .

Easy to generate provable new identities now. Also have a few ‘odd’ cases like

ζ(1, 3, 3, (1, 2) | 0, 0, 0, 0, n) + ζ(3, (1, 2), 1, 3, | 0, 0, n, 0, 0) +

− ζ((1, 2), 1, 3, (1, 2) | 0, n, 0, 0, 0) + ζ((1, 2), 1, 3, 3 | 0, 0, 0, n, 0) +

− ζ(3, 1, 3, 3 | n, 0, 0, 0, 0)
?
=

πwt

(wt + 1)!

also can be proven motivically, but it doesn’t fit into the theorem. (Notice that as blocks, this
is just cyclic permutations.)

Lots and lots of numerical expermentations trying to find other relations between these block
decompositions suggests that the sum in Theorem over all permutations in fact breaks up in to
the sum of cyclic shifts. With a very precise factor.

Conjecture 4.5 (Generalised cyclic insertion, C). Suppose that no pairs of blocks (li, li+1) =
(1, 1), then ∑

cycleli

Ibl(l1, . . . , lk) =

{
Ibl(
∑
li) even weight

0 odd weight
.

Notice that this is a direct generalisation of BBBL. If li = 2ai + 2, then get the same result
since

Ibl(
∑

li) = (−1)wt/2=depthζ(2wt/2) .

It should be possible to partially tackle some version of this generalise cyclic insertion conjec-
ture using Brown’s motivic framework. These identities appear somewhat stable under D2k+1,
in the sense that computing D2k+1 leads to lower weight versions of the identities. We can then
cancel using the exact values of the identities, and conclude motivically an up to Q version at
the next weight.

Some problems: we need to know the exactly values, and this can’t be done motivically (yet).
So proof at each weight would be conditional on lower weight exact proof. Moreover, not entirely
yet which lower weight versions arise under D2k+1. Finally, some cases where products in IL

factor have to be killed directly. Not clear how to do this generally.
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Would also like to try to generalise to case where (li, li+1) = (1, 1) is allowed. Seems like this
conjecture is just the leading term in some more general result when we allow (li, li+1) = (1, 1).
But don’t have results yet.

5 Outline of Goncharov’s construction

It is known that the category M = MTM(F ) of mixed Tate motives over a number field F
exists. This is a Tannakian category

• An abelian, k-linear, tensor ridig category, with an exact failthful fibre functor compatible
with ⊗ structure

with an invertible object Q(1).
Being a mixed Tate category means that the objects Q(n) := Q(1)⊗n, with Q(−1) = Q(1)∨,

are mutually non-isomorphic. And any simple object in M is isomorphic to one of them. The
extensions Ext1

M(Q(0),Q(n)) = 0 if n ≤ 0.
Any object M of M has a weight filtration indexed by 2Z. The graded pieces grW2nM :=

W2nM/W2n−2M are a direct sum of copies of Q(−n). Morphisms are compatible with the
weight filtration.

The functor to the category of graded Q-vector spaces

ωM = ω : M→ Vect•

M 7→
⊕
n

HomM(Q(−n), grW2nM)

is a fibre functor (faithful Q-linear tensor functor to a category of finite dimensional Q vector
spaces). After forgetting the grading, get ω̃.

Then Aut⊗ ω̃ =: GMT is a pro-algebraic group scheme over Q. This is the motivic Galois group
of the category MT (F ). It decomposes as GMT = Gm n UMT , where UMT is a pro-unipotent
gorup scheme defined over Q.

By the usual Tannakian formalism the categoryMT (F ) is equivalent to RepFGMT , and also
to CoModO(GMT ).

Denote by u the completition of the pro-nilpotent grded Lie aglebra of UMT . Then

A•(M) = AMT := O(UMT ) ∼= U(u)∨

is called the fundamental Hopf algebra of MT (F ).
[Goncharov also shows how to obtain AMT from the Hopf algebra of framed objects. An

object M in M is n-framed, denoted (M,v0, fn) if it is supposed with non-zero morphisms
v0 : Q(0) → grW0 M , and fn : grW−2nM → Q(n). There is a notion of equivalence given by
morphisms M1 → M2 respecting framings. Taking An(M) to be the set of all equivalence
classes of n-framed objects leads to the Hopf algebra A•(F). ]

Now let S be any subset of F = A1(F ), possibly S = F with a cannonical choice vs = dt of
tangent vector at every point s ∈ F . Consider the fundamental groupoid of paths PM(A1−S, S).
This is a pro-object in M (This is defined by Deligne-Goncharov for the mixed Tate motives
over F case.)

This fundamental groupoid of paths has a number of algebra structures. The space Hom(Q(0), grW0 PM(A1−
S, S)) is one dimensionaln, with a natural generator pa,b. There is a composition of paths ∗ lead-
ing to pa,s1,...,sm,b = pa,s1 ∗ ps1,s2 ∗ · · · ∗ psm,b. Goncharov establishes an isomorphism between
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the object PM(S), defined by PM(S)a,b = PM(A1 − S, a, b), and an explicitly constructed
path-algebra (given by generators, relations, etc).

Goncharov then defines the motivic iterated integral IM(a0; a1, . . . , am; am+1) ∈ Am(M) as
the linear functional on End(ω) given by the matrix element

End(ω)→ End(ω)

F 7→ 〈F (pa0,am+1), pa0,a1,...,am+1〉 .

[And offers a description in terms of the framed object

(PM(A1 − S, a,am+1), pa0,am+1 , p
∗
a0,a1,...,am+1

)

]
Goncharov relates this Hopf algebra, and the fundamental groupoid to his more explicitly

defined Hopf algebra of (formal) iterated integrals, and his path algebra. This is by relating the
automorphism group of the path algebra and the Galois group of M. From here he extracts all
that IM(a0, . . . , am+1) satisfies the various properties of iterated integral, and establishes the
coproduct formula.

6 Brown’s motivic iterated integrals

Goncharov’s motivic MZV’s are not good enough since they lack a period map, ζM(2) = 0.
Brown refines the construction to produce motivic MZV’s in which ζm(2) 6= 0.

Working over the category of mixed Tate motives over Z.
Consider the motivic torsor of paths 0Π1 of paths on P1 \ {0, 1,∞} between 0 and 1 with

tangent vectors 1,−1 . (Is this just some version of PM(A1 − {0, 1}, 0, 1)?)
Its ring of affine functions over Q is

O(0Π1) ∼= Q〈e0, e1〉 .

The image of the straight line path 0→ 1 defines dch ∈0 Π1(R) (a formal power series with MZV
coefficients, the Drinfel’d associator). It defines a function

dch : O(0Π1)→ R .

The full Tannakian subcategory MT ′(Z) generated by the motivic fundamental group of
P1 \ {0, 1,∞} has motivic Galois group GMT ′ = GU ′ n Gm. Take A = O(GU ′). This would be
the fundamental Hopf algebra of M(Z) as considered by Gonchaov.

The graded coalgebra of motivic multiple zeta values is

H = O(0Π1)/JMT ,

where JMT is the largest graded ideal contained in the kernel of dch. The image of a word
w ∈ Q〈e0, e1〉 gives the motivic iterated integral Im(0;w; 1) ∈ H. The coaction O(0Π1) →
A⊗ O(0Π1) indices a coaction H → A ⊗H. The map dch factors through H to give a period
map per : H → R.

Brown shows that the isomorphism

GU ′ × A1 ∼= GMT dch

gives rise to an isomorphism
H = A⊗Q Q[ζm(2)] .
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With the graded ring of affine functions on GU denoted AMT , and HMT+ = AMT ⊗ Q[f2],
we get an injective morphism H → HMT+ dual to the quotient GU → GU ′ . It is then shown that
(non-cannonically)

HMT+ ∼= Q〈f3, f5, . . .〉 ⊗Q[f2] ,

where Q〈f3, f5, . . .〉 is the graded dual of the universal envoloping algebra of the lie algebra of
GU and is non-caononicaly isomorphic to AMT .

It is in U first that Brown establishes a result on kerD<N = QfN , where the elements can
be explicitly dealt with. Via the isomorphism HMT+ → U normalised so that ζm(2n+ 1) ∈ H ⊂
HMT+ goes to f2n+1, the same result is for kerD<N = Qζm(N) is established on the motivic
MZV’s.
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