
COMPUTING COHOMOLOGY OF ARITHMETIC GROUPS

STEVEN

The goal is to (give an overview of) how to explicitly compute some automorphic forms via
arithmetic groups. As a starting point, we review modular symbols and how they can be used
compute with holomorphic modular forms.

1. Cohomology and holomorphic modular forms

Let Γ0(N) = { ( ∗ ∗0 ∗ ) (mod N) } ⊂ SL2(Z). This acts on upper half plane h = { x+ iy | y > 0 }
by fractional linear transformations (

a b
c d

)
· z =

ax+ b

cz + d
.

The quotient Y0(N) = Γ0(N)\h is a smooth algebraic curve defined over Q called an (open)
modular curve. It is not compact.

The action of Γ0(N) extends to the cusps P1(Q) = Q ∪∞, viewing Q ⊂ C and ∞ being far
up the imaginary axis. This forms the boundary of h∗ = h ∪ P1(Q). The quotient Γ0(N)\h∗ is a
smooth projective curve, called a modular curve.

Eichler-Haberland-Shimura shows a connection of cohomology of X,Y with modular forms:
holomorphic f : h→ C satisfying

f

(
az + b

cz + d

)
= (cz + d)kf(z) ,

(
a b
c d

)
∈ Γ0(N) ,

(and some growth conditions...) for fixed k ≥ 1 an integer.
The space of modular forms Mk(N) is a finite-dimensional complex vector space. There is

a subspace of cusp forms Sk(N) which decay exponentially as z approaches any cusp. The
complement of this is Eisenstein series Eisk(N).

We have the following

H1(Y0(N),C)
∼=−→ S2(N)⊕ S2(N)⊕ Eis2(N)

H1(X0(N),C)
∼=−→ S2(N)⊕ S2(N)

When N = 11, we have the explicit facts. X0(11) has genus 1, i.e. it is a torus so the first
(co)homology has 2 generators the meridians. And indeed S2(11) has dimension 1. Good!

The fundamental domain for X0(11) has 2 cusps (modulo Γ0(11)). So the complement of
Y0(11) in X0(11) consists of 2 points. So Y0(11) deformation retracts onto a graph with one point,
and 3 loops. Each loop gives a generator of cohomology, so Y0(11) cohomology is 3 dimensional.
Since M2(11) is 2 dimensional (meaning Eisenstein series is 1 dimensional), the isomorphism
above works!

This generalises: we can use any congruence subgroup, Γ1(N), or Γ(N). We see higher weigh
modular forms by taking cohomology with ‘twisted coefficients’. SL2(Z) acts on complex vector
space Pk of homogeneous polynomials of degree k via(

a b
c d

)
P (x, y) = P (ax+ cy, bx+ dy) .
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This induces a local system Mk on X0(N), Y0(N). We have

H1(Y0(N),Mk−2)
∼=−→ Sk(N)⊕ Sk(N)⊕ Eisk(N)

H1(X0(N),Mk−2)
∼=−→ Sk(N)⊕ Sk(N) .

Hecke operators preserve the decomposition cusp + Eisenstein, so we get operators acting on
cohomology and isomorphisms of Hecke modules above.

We can use topological tools to study modular forms. One can explicitly compute with certian
automorphic forms of arithmetic interest by generalising the left hand sides of the above.

2. Modular symbols

We review modular symbols briefly, as they form the basis/inspiration for higher dimensional
calculations later.

Let Γ ⊂ SL2(Z) be a torsionfree subgorup, e.g Γ(N), N ≥ 3. Put YΓ = Γ\h, and XΓ = Γ\h∗.
We want to study the cohomology H1(YΓ,C) and H1(XΓ,C).

By Lefschetz duality we have

H1(YΓ,C)
∼=−→ H1(XΓ, ∂XΓ,C) ,

where the right hand side is homology of XΓ relative to the cusps. We can compute this homology
using standard techniques from algebraic topology: take a triangulation of XΓ with vertices at
the cusps. THis gives a chain complex C∗(XΓ) with subcomplex C∗(∂XΓ). The relative homology
groups are those of the quotient C∗(XΓ)/C∗(∂XΓ).

Strategy to give triangulations: use the Farey tessellation of h∗. This triangulation is given by
SL2(Z) translates of the triangle ∆ = 01∞. This triangulation is explicitly given by view cusp
α = a/b in lowest terms. Join two cusps α = a/b, β = c/d by an edge iff

det

(
a c
b d

)
= ±1 .

(∆ is a union of 3 fundamental domains for SL2(Z). The fundamental domain for any torsionfree
Γ is a union of finitely many copies of ∆, Why?)

We can do the computation before for Y0(11) explicitly with this point of view. . .

Generally, in order to use isomorphism
∼=−→ H1(XΓ, ∂XΓ,C) we need to understand generators

and relations for the relative homology group. The modular symbols help us to do this.

To define a modular symbol we consider the set ∆0 of all degree 0 divisors on P1(Q). Think of
the divisor {s} − {r} as the path from r to s.

(Sticking to weight 2 for simplicity) We have a map ψf : ∆0 → C via the period integral

{s} − {r} → 2πi

∫ s

r

f(z) dz .

Here f is a cusp form, of weight 2 for some congruence subgroup. Since ∆0 is generated by
elements of the form {s} − {r}, this defines ψf generally.

Modularity of f gives the following relation on periods∫ γs

γr

f(z)dz =

∫ s

r

f(z)dz .

To capture this symmetry of period integrals, endow ∆0 with the structure of a left SL2(Z)-module
via linear fractional transformations. Then

ψf ∈ HomΓ(∆0,C) ,



COMPUTING COHOMOLOGY OF ARITHMETIC GROUPS 3

meaning ψ(γD) = ψ(D) for all γinΓ and D ∈ ∆0. Then HomΓ(∆0,C) is the space of C-valued
modular symbols of level Γ.

Then ∆0 is generated as a Z-module via paths {s} − {r} between cusps in P1(Q). But by
Manin’s contunied fraction trick the set {a/b} − {c/d} with a c

b d ∈ SL2(Z) suffices. But these are
just the curves in the Farey tessellation!

Taking right coset representatives α1, . . . , αd of Γ\ SL2(Z) is sufficient to give a list of generators
of ∆0 as a Z[Γ]-module because γ · [x] = [γ · x] and we view [( a cb d )] = {a/b} − {c/d}.

We can get these coset representatives from a tessellation of the fundamental domain of Γ via
the idea triangle 01∞. (This comes from the Farey triangulation!) Only the boundary divisors
are relevant since internal edges are homologous to some boundary segment. Moreover, gluing
some edges together reduces generators too!

Over Z[Γ0(11)] the edges ∞→ 0, 0→ 1/3 1/3→ 1/2 of the fundamental domain generate ∆0.
Also they are independent, which means the space of C-valued modular symbols is 3 dimensional.
This matches up with an explicit computation of the (co)homology being C3.

We see this explicitly by writing down the relevant chain complex, and working out

H1(XΓ, ∂XΓ,C) =
〈0→ 2/3, 2/3→ 1/2,∞→ 0, 0→ 1/2, 1/2→ 1, 1→ 0〉〈

1→ 0, 0→ 1/2 + 1/2→ 1 + 1→ 0, 0→ 1/2− 1/2→ 1/3

− 1/3→ 0, 1/2→ 1− 1→ 2/3− 2/3→ 1/2

〉 = C3

We can express the setup more algebriacally, as follows.
Let’s recall from earlier the modular symbols, and how they give a model for H1(XΓ, ∂XΓ,C).

We have objects [a, b] = {a} − {b}, to be thought of as geodesics from a to b. This gives some
natural relations

[a, b] = −[b, a]

[a, a] = 0

[a, b] + [b, c] + [c, a] = 0

The space U of all such symbols, modulo the given relations is the space of modular symbols.
We quotient out further by u− γu, going to the coinvariants UΓ. Makes sense since Γ acts on

the cusps.
We get

UΓ
∼= H1(XΓ, ∂XΓ,C) .

(There is also the Hecke action.)
In fact, using Manin’s continued fraction trick, we reduce to looking at the unimodular symbols

U ′, those with det ±1. (These are equivalent to the edges of the FArey tessellation). Then U ′Γ is
finite(ly) generated, making computations easier.

Upshot: we can compute H1(XΓ, ∂XΓ,C) (and by extension H1(YΓ,C)) as the C-vector space
of pairs of cusps modulo Γ (modular symbols-ish!). (With some relations coming from finite
subgroups of SL2(Z). . . )

Let’s try to generalise this!

3. Setting: Algebraic groups and symmetric spaces, Arithmetic groups and
cohomology

To begin this generalisation, we need to see how the to get analogues of the upper half plane
from group theory. If G = SL2(R) Lie group, and K = SO(2) is the maximal compact. Then G
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acts on h. The stabiliser of i is K. So we obtain

G/K
∼=−→ h .

This exhibits h as a Riemannian globally symmetric space.
So the analogue in our setting is going to be the locally symmetric space Γ\G/K. This is the

replacement for Y0(N), and the compactification is the replacement for X0(N).

We focus on general linear agroups defined over number fields.
First we briefly talk about reductive or even semi-simple algebraic groups. Particularly

G = GLn, or = SLn.
For semisimpmle groups, the space we want to look at is G/K, where G = G(R), and K ⊂ G

is the maximal compact. If G is reductive only, then we need to divide by AG, the connected
component of the identity of the group of real points of the maximal Q-split torus in the centre
of G.

[For example, G = SLn, leads to G = SLn(R), and K = SO(n). This recovers D = G/K = h,
when n = 2.]

If G is a group defined over a number field F , we can restrict the scalars to get a group RF/QG
defined over Q. Messy definition, but intuitive familiar idea

[ Familiar example of this is G = GL1 defined over C. Using the representation

a+ bi 7→
(
a −b
b a

)
we can see the left hand side as the complex points of G = GL1, which is defined over C. The
right hand side is defined over R, and this i sthe group of real points of (some) RC/RG. ]

As an example of this setup, take F/Q to be real quadratic, and G = RF/Q SL2. Then
G = G(R) ∼= SL2(R) × SL2(R), view the two real embeddings F ↪→ R. Then SL2(Q) ↪→ G(R)
view the two two real embeddings The maximal compact K is SO(2) × SO(2), with AG = 1.
Then G/K = h× h, giving the familiar setting for Hilbert modular forms!

In general for RF/Q SL2 where F has r real, s pairs of complex embeddings, we get

G ∼= SL2(R)r × SL2(C)s

K ∼= SO(2)r × SU(2)s

AG = 1

G/K ∼= hr × hs3

where h3 is the 3-dimensional hyperbolic space.
For RF/Q GL2 we get

G ∼= GL2(R)r ×GL2(C)s

K ∼= O(2)r × U(2)s

Ag ∼= R>0

G/(AGK) ∼= hr × hs3 × Rr+s−1

We want to study quotients of D = G/K by arithmetic groups. If G is a linear algebraic
group, a subgroup Γ ⊂ G is arithmetic if it is commensurable with G(Z), i.e. the intersection
has finite index in both.
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For G = RF/Q GLn, then G(Z) = GLn(OF ), where OF is the ring of integers. Further examples
of arithmetic groups arise by taking quotients. For an ideal I, the kernel of GLn(OF )→ GLn(OF /I
is a congruence subgroup.

Then YΓ = Γ\(G/AGK) is our analogue for the open modular curve. We ant to study
H∗(YΓ,C). Classes here are anaogues of holoorphic modular forms of weight 2.

For higher weight, we can take a finite dimensioal complex representation (ρ,M) of G. This
gives a representation of Γ in M . For torsionfree Γ, the fundamental gorup of YΓ is Γ. The
representation ρ : Γ → GL(M) indices a local coefficient system M on YΓ, and we form the
cohomology spaces H∗(YΓ,M).

4. Voroni’s reduction theory: rationals and number fields

This gives an alternative way to recovery the Farey tessellation in the case of Q, which can
then be generalised to all number fields.

Let V = Sym2(R) be the 3-d space of 2× 2 real symmetric matrices. Inside V there is a subset
C of positive-definition matrices. This C is a convex cone: x, y ∈ C implies ρx, x + y ∈ C for
ρ ∈ R>0.
V has an inner product 〈x, y〉 = Tr(xy), and C is self-adjoint with repect to this. So

C = C∗ = { y ∈ V | 〈x, y〉 > 0,∀x ∈ C } .

The group G = SL2(R) acts on V by (g, x) 7→ gxg>, this action preserves C. The stabiliser
of any point is a conjugate of K = SO(2). Moding out by scalings (homotheties) lead sto a
transitive action, and so we get an idenfitication

C/R>0

∼=−→ h = G/K .

In coordinates ( x zz y ), the cone is given by yx− z2 > 0, x > 0. We can consider the closure C of
C, which of certain rank 1 matrices, and the rank 0 matrix. (See diagram!)

The map Z2 → C, x = (a, b)> 7→ xx> gives a collection of non-zero points ξ on ∂C when
restricted to Z2 \ 0. The image is discrete. SL2(Z) acts on these points, via V . The points Ξ are
(almost) the vertices of the Farey tessellation.

C gives a linear model for h. From C and Ξ the next step is ‘natural’ take the convex hull Π
of Ξ.

Π is a huge polyhedron, equipped with an SL2(Z) action. But Π has nice combinatorial
structure. Unfortunately it is not locally finite (vertices meet infinitely many edges), but top
dimensional faces are triangles! Modding ou by homotheties means the faces of Π become the
vertices, edges, triangles of the Farey tesselation.

Why? If a, b)> and (c, d)> are primitive vectors giving cups at the ends of an arc. The this
arc is the image of the edge between q(a, b) and q(c, d).

From this we see that modulo SL2(Z) there are only finiely many vertices, edges and triangles
in Π. We also see that every edge meets finitely many triangles (two), but every vertex meets
infiintely many edges (at infinity in h).

This setup generalises to higher rank SLn(R). Set V = Symn(R, the real vector space of n× n
symmetric matrices. Let C be the convex cone of positive definite matrices. G = SLn(R) acts
on C by (g, x) 7→ gxg>. The quotient of c by homotheties is isomorphic to D = SLn(R)/SO(n),
where G acts on D by left translation.
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The map q : Zn \ 0→ C determines a point set Ξ ⊂ ∂C. The convex hull of Ξ is the Voronoi
polyhedron Π. By construction SLn(Z) acts on Π. The the cones on the faces of Π descend to
form cells in D, a compactification of D.

[ The original reason for defining Π was to understand the reducion theory of positive definite
quadratic forms. This essentially boils down to finding a nice fundamental domain of SLn(Z)
acting on C.

Modulo SLn(Z) the polygon Π has finitely many faces, and the facets of Π are in bijection
with homothety classes of perfect quadratic forms. IF F is a facet of Π with vertices ξ1, . . . , ξk,
then q−1)(ξi) ∈ Zn are the minimal vectors of the corresponding class.

Moreover, Voroni gave an algorithm that (starting with an initial perfect form) produces a
list of perfect forms modulo SLn(Z). List given for n ≤ 5. n = 8 is more difficult to understand
because of the E8 root lattice, which gives a fact in Π which contains 2.5× 1014 maximal faces.

Perfect means the form QA(x) = x>Ax can be reconstructed from knowledge of its minimum
as x ranges over Zn \ 0. The minimal vectors are the x for which the minimum occurs. E.g.
x2 + xy + y2 is perfect, but x2 + y2 is not.

The minimum of x2 + y2 is 1 at (±1, 0), (0,±1). But this is the same as for x2 + 1/2xy + y2!
Whereas we can recover x2 + xy + y2 from the minimal vectors and minimum: it must be a form
ax” + bxy + cy2. The minima occur at (±1, 0), (0,±1) and ±(1,−1), with minimum 1. Plugging
these in lets us solve for a, b, c. ]

The collection of cones Σ in C is obtained by taking the cones on the faces of Π. Modulo
SLn(Z) there are only finitely many cones in Σ, if a cone meets C then its stabiliser in SLn(Z)
is finite. The top dimensional cones in Σ are close to fundamental domains of SLn(Z). (When
n = 2, such a Farey triangle is a union of three fundamental domains for SL2(Z).) Any point
x ∈ C lies in a unique cone σ(x) ∈ Σ. Voronoi’s algorithm leads to an algorithm to find σ(x).

This setup also generalise to number field. If F is a number field with signature (r, s), we
can compute the cohomology of GLn(OF ) by building cell decompositions of the corresponding
locally symmetric space. I’ll sketch the only the differences.

Fix arbitrarily one of each pair of complex embeddings. Identify the infinite places of F with
the real and our choice of complex embeddings.

For each real place v, Vv = Symn(R). FOr complex place v, Vv = Hermn(C). Set Cv to be
the corresponding cones of positive definite (Hermitian) forms. Set V =

∏
v Vv, C =

∏
v Cv.

V has an inner product

〈x, y〉 =
∑
v

cv Tr(xvyv) ,

where cv = 1 for real v, cv = 2 for complex. C is self-adjoint wrt this. View this as the cone of
real-valued positive quadratic forms over F in n-variables. More precisely for each a = (Av)ıC,
we get

QA(x) =
∑

cvx
∗
vAvxv

Note that (Av) does not necessarily arise from a matrix with entries in F via an embedding
F → F ⊗ R. Each Av is an independent matrix.

The group G = GLn(R)r ×GLn(C)s acts on V by

(g · y)v =

{
qV yV g

>
v v real

qvyvg
>
v v complex
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This action preserves C. We can identify the quotient

C/R>0

∼=−→ D = G/(KAG)

where K = O(n)r × U(n)s is the maximal compact.
We construct Ξ ⊂ ∂C using the different embeddings of F . Non-zero vecors in Pn \0 determine

points in V via

q : x 7→ (xvxcv
∗) .

The image of this defines Ξ. For a form A, we define the minimum m(A) and minimal vectors
M(A) by using points in Ξ. A form is perfect if it can be recovered from knowledge of the
minimum and minimal vectors.

Given a perfect form, the perfect pyramid

σ(A) =
{∑

ρξξ
∣∣∣ ξ ∈M(A), ξ ≥ 0

}
behaves like Voronoi’s perfect cones, having nice combinatorial properties.

Since GLn(O) acts on C, and takes Ξ to itself. It acts on the perfect pyramids, and so on the
cones in Σ.

There are finitely many GLn(O) orbits in Σ. Each σ ∈ Σ that meets C has a finite stabiliser.
Quotienting by homotheties we get a decomposition of D, analagous to Farey tessellation, which
we can use to compute cohomology of finite index subgroups of GLn(O).

We can define the cohomological dimension of Γ to be the smallest i such that Hi(YΓ,M) = 0,
for all M. For non-torsionfree Γ, we can extend this to the virtual cohomological dimension
gcd(Γ) as the cohomological dimension of any finite index torsion free subgroup. By Borel-Serre,
we have

vcd(Γ) = dim(D)− rQ(G/R(G)) ,

where R is the radical.
This leads to stuff on spines, and computing cohomology via certain other isomorphisms. . .

5. From modular symbols to sharblies

The very explicit construction of modular symbols above gets generalised to the Sharbly
complex which S∗ which computes H∗(YΓ,C). We work with G = RF/Q GLn, to compute
H∗(YΓ,C).

Let Ak be he set of formal C-linear ocmbinations of symbols u = [x1, . . . , xk+1], each xiıOn \ 0.
Let Ck be the submodule generated by

[xσ(1), . . . , xσ(k+n)]− sgn(σ)[x1, . . . , xk+n], σ ∈ Symk+n

[x, x2, . . . , xk+n]− [y, y2, . . . , yk+n] if x ∼ y
[x1, . . . , xk+n] if xi are contained in a hyerplane, so this is degenerate

Here x ∼ y means q(x) = λq(y), λ ∈ R>0, so that x, y determine the ram say in C.
The quotient Sk = Ak/Ck is the space of k-sharblies. The boundary map ∂ : Sk+1 → Sk is

defined in the usual way

∂[x1, . . . , xk+n] =

k+n∑
i=1

(−1)i[x1, . . . , x̂i, . . . , xk+n] .

[When G = SL2 /Q, this reduces to the modular symbols setup.]
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The complex S∗ is homological (boundary decreases degree). The complex has a left Γ-action
for any Γ ⊂ GLn(O) by putting

g · u = [gx1, . . . , gxk+n]

The Γ action commutes with ∂, so form the complex (S∗)Γ of coinvariants. Then

Hvcd(Γ)−k(YΓ,C)
∼=−→ Hk((S∗)Γ) .

This follows from Borel-Serre duality, as I can try to explain.
[ Just an outline. If V = Fn is an n-d vecto space over F , we build a simplicial complex called

the Tits building: vertices are proper non-zero subspaces of V . Subspaces V1, . . . , Vk+1 form a
k-simplex if they can be arranged into a flag

{0} ( V1 ( V2 · · · ( Vk+1 ( V .

olomon-Tits theorem shows T has homotopy type of ∨n−2Ss1, so reduced homology groups

H̃∗(T ) are nonzero only in degree n− 2.

Classes in H̃∗(T ) can be constructed by taking fudamental classes of apartments: take a basis
E = v1, . . . , vn of V , and consider all possible flags constructed by taking spans of permutations

of subsets. One gets 〈v1, . . . , vn〉 ∈ H̃n−2(T ). Such classes are known to span the homology. G(Q)

acts, and this makes H̃n−2(T ) into the Steinberg module Stn.
Borel-Serre duality states now that for any arithmetic group Γ ⊂ G(Q), one has

Hvcd(Γ)−k(YΓ,M)
∼=−→ Hk(Γ, Stn ⊗M)

We compute this by taking a resolution of the Steinberg module. But the sharbly complex
does this:

ε : S0 → Stn

[x1, . . . , xn] 7→ 〈x1, . . . , xn〉

And ∂ ◦ ε : S1 → Stn vanishes, giving a map of complexes S∗ → Stn. (This is a resolution because
S∗ is acyclic.) ]

So we have a complex (S∗)Γ which computes the cohomology of YΓ, like the modular symbols.
UNfortunately, each (Sk)Γ is not finite. If U = [x1, . . . , xn] is a 0-sharbly, we can compute a ‘size’
using determinants. Take x′ ∼ x with q(x′) the closest point to the origin in the ray through q(x).

size(u) =
∣∣NF/Q det(x′1, . . . , x

′
n)
∣∣ ∈ Z>0 .

The size is constant on GLn(P orbits in S0, but size is unbounded on S0. SO we want an analogue
of the unimodular symbols.

• determinant 1 modular symbols,
• modular symbols whose support is an edge in the Farey tessellation

These are the same for SL2(Z), but the second condition is the right one to generalise.
One can try to build a subcomplex using Koecher cones (cf the unidmodular subspace is the

subspace of Voronoi 2-cones). But there are technical problems here, since the Keocher cones
might not be simplicial. Instead one can look at reduced k-sharblies (those where there is a
top-dimensional koecher cone containing rays through q(x1), . . . , q(xk+n)).

Reduced sharblies are the analogue to modular symbols. INdeed he complex R∗ is finite
modulo Γ since there are only finitely many Koecher cones. Unfortunately (R∗)Γ doesn’t work,
since the Koecher fan isn’t simplicial and so the complex can be midding some relatoins necessary
to capture the cohomology.

Three approaches

(1) Restrict to torsion free Γ, and use subdivisions. But main groups of interest have torsion!
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(2) Work with R∗ and manually identify extra relations.
(3) Only compute cohomology where the Koecher fan is simplicial!

The author takes the approach that iii) works well in practice.
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