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Multiple zeta values

Definition (MZV)

Multiple zeta value ζ(s1, s2, . . . , sk) is defined by

ζ(s1, s2, . . . , sk) :=
∑

0<n1<n2<···<nk

1
ns1

1 n
s2
2 · · ·n

sk
k

‘Interesting’ multi-variable version of ζ(s)

Want to restrict to si ∈ Z>0

For convergence need sk ≥ 2

Also define
Weight: sum of s1 + · · ·+ sk of arguments

Depth: number k of arguments
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Reasons for interest

Arise naturally in physics calculations

Have surprising amount of structure
At weight 8, 28−2 = 64 MZV’s

Spanned by { ζ(8), ζ(5, 3), ζ(3, 5), ζ(3, 3, 2) }

Generally: suggests lots of Q-linear relations!

Leads to difficult open questions

Euler: ζ(2) = π2

6 , ζ(4) = π4

90 , generally ζ(2k) ∈ π2kQ

What about ζ(3)? Or ζ(5)?

Understand all Q-linear relations.
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MZV Relations

ζ(3) = ζ(1, 2)

ζ({1, 3}n) = 1
2n+ 1

π4n

(4n+ 1)! = 1
2n+ 1ζ(

Repeat 2, 2, . . . , 2
total of 2n times︷ ︸︸ ︷
{2}2n)

28ζ(3, 9) + 150ζ(5, 7) + 168ζ(7, 5) = 5197
691 ζ(12)

ζ({2}m, 1, 3, 3, 1, 2) + ζ(3, 1, 2, 1, {2}m, 3)− ζ(1, 2, 1, {2}m, 3, 1, 2) +

+ ζ(1, 2, 1, 3, 3, {2}m)− ζ(3, {2}m, 1, 3, 3)

?= π2m+10

(2m+ 11)!

∈ π2m+10Q

Conjecture (Weight grading)

Any Q-linear relation between MZV’s is weight graded.
“There are no relations between MZV’s of different weights.”
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Integral representation; shuffle product

Definition (Iterated integral)

I(a0; a1, . . . , aN ; aN+1) :=
∫

a0<t1<t2<···
<tN <aN+1

dt1
t1 − a1

∧ · · · ∧ dtN
tN − aN

Multiplication of iterated integrals gives shuffle product
Arrange a0 < ti < aN+1 and a0 < sj < aN+1 in all compatible
ways ti < sj or ti > sj .

I(a;w1; b)I(a;w2; b) = I(a;w1 � w2; b) where
(xw1)� (yw2) := x(w1 � yw2) + y(xw1 � w2)

Proposition (MZV as iterated integral, Kontsevich)

ζ(s1, . . . , sk) = (−1)kI(0; 1, {0}s1−1, . . . , 1, {0}sk−1; 1)
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Properties of iterated integrals

(Unit) I(a; b) = 1

(Equal boundaries) I(x, a1, . . . , aN ;x) = 0

(Reversal of paths)

I(a0; a1, . . . , aN ; aN+1) = (−1)NI(aN+1; aN , . . . , a1; a0)

(Path composition)

I(a0, a1, . . . , aN ; aN+1) =
N∑

i=0
I(a0, a1, . . . , ai;x)I(x, ai+1, . . . , aN ; aN+1)

(Functoriality, under t 7→ αt+ β, with α 6= 0 and β ∈ C)

I(a0; a1, . . . , aN ; aN+1) = I(αa0+β;αa1+β, . . . , αaN +β;αaN+1+β)

(MZV Duality)

I(0; a1, . . . , aN ; 1) = (−1)NI(0; 1− aN , . . . , 1− a1; 1)
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Series representation; stuffle product
Multiply series gives stuffle product ∗

Arrange ni, and mj in all compatible ways ni < mj , or
ni = mj or ni > mj .

Simplest case ζ(s) ∗ ζ(t) = ζ(s, t) + ζ(t, s) + ζ(s+ t).

Example (Comparing � and ∗)

2ζ(2, 2) + 4ζ(1, 3) �= ζ(2)ζ(2) ∗= 2ζ(2, 2) + ζ(4)

=⇒ ζ(1, 3) = 1
4ζ(4) = 1

3
π4

5!

Conjecture (Extended double shuffle)

All Q-linear relations on MZV’s arise by comparing �− ∗.
(Must allow divergent ζ(1); formally cancels using regularisation.)
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Construction of motivic iterated integrals - Goncharov

Goal: fix transcendentality problems by using algebraic objects

Category of Mixed Tate MotivesMT (F ) over a number field F
exists. It is Tannakian; equivalent to some RepF GMT

Recover pro-algebraic group scheme GMT from automorphisms of
the fibre functor ω̃ : MT (F )→ Vect, GMT ∼= Gm n UMT

Ring of regular functions O(UMT ) on the pro-unipotent part of
GMT defines the fundamental Hopf algebra A•(F ) ofMT (F )

Isomorphism A•(F ) to ‘path algebra’ and algebra of ‘formal
iterated integrals’. A•(F ) contains objects Ia(a0; a1, . . . , an; an+1).

Admits a coproduct ∆: A•(F )→ A•(F )⊗Q A•(F )
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Coproduct on A•(F )

∆Ia(a0; a1, . . . , an; an+1) =∑
0=i0<i1<···

<ik<ik+1=n+1

k=0,1,...,N

(
Ia(a0; ai1 , . . . , aik

; an+1)⊗
k∏

p=0
Ia(aip ; aip+1, . . . , aip+1−1; aip+1)

)
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Coproduct on A•(F ) mnemonic

Mnemonic.

∆Ia(a;w; b) =
∑

S subset awb
a, b in S

(
Ia(S)⊗

∏
u subword awb,
starts/ends at

consecutive si ∈ S

Ia(u)
)

a9

a8

a7

a6
a5a4

a3

a2

a1

a0

 I(a0; a1, a3, a6; a9)⊗ I(a0; a1)I(a1; a2; a3) ·
I(a3; a4, a5; a6)I(a6; a7, a8, a9)
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Results from motivic MZV’s

ζa(2k + 1) are linearly independent
ζa(2k + 1) 6= 0 ∈ A2k+1(Q)

So have different gradings

ζa(2k + 1) are algebraically independent
Suppose some ζa(2k + 1) satisfy a polynomial

Use coproduct ∆ to show all coefficients are 0

ζa(3, 5) is irreducible (i.e. not in Q[ζ(n)])
(∆−∆op)ζa(3, 5) = −5ζa(3) ∧ ζa(5)

(∆−∆op)ζa(n1) · · · ζa(nk) = 0
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Construction of motivic MZV’s - Brown

Problem: Ia(0; 1, 0; 1)↔ −ζa(2) vanishes.

Consider ‘motivic torsor’ of paths 0Π1 between 0 and 1 in
P1 \ { 0, 1,∞}. O(0Π1) ∼= Q〈e0, e1〉.

Straight line gives function O(0Π1)→ R, evaluating MZV.

Coalgebra of motivic MZV’s is H := O(0Π1)/JMT , JMT the
largest graded ideal in the kernel of above.

H ∼= A⊗Q Q[ζm(2)], A := A•(Z)

Period map per : H → R, ζm(s1, . . . , sk) 7→ ζ(s1, . . . , sk),
ring homomorphism

Coaction by lifting Gonchrov’s coproduct to H → A⊗Q H.
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Infinitesimal coproduct

Definition (Derivations Dk)

Let L := A/(A>0 · A>0), which kills products and ζm(2). For k
odd define

Dk : H → Lk ⊗Q H
Im(w) 7→ (π ⊗ id) ◦ (∆− 1⊗ id) Im(w)

DkI
m(a0; a1, . . . , aN ; aN+1) =
N−k∑
p=0

IL(ap; ap+1, . . . , ap+k; ap+k+1)⊗

Im(a0; a1, . . . , ap, ap+k+1, . . . , aN ; aN + 1)
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Derivations Dk mnemonic

Mnemonic.

DkI
m( w︸︷︷︸

(a;w′;b)

) =
∑

S subword w,
of length k + 2

IL(S)⊗ Im(w − interiorS)

aN+1a0

a1

ap−1

ap

ap+1
ap+k

ap+k+1
ap+k+2

aN

. .
.

. . .
. . .

 IL(ap; ap+1, . . . , ap+k; ap+k+1)⊗
Im(a0; a1, . . . , ap, ap+k+1, . . . , aN ; aN + 1)
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Transcendental Galois Theory

Theorem (Brown, 2012)

In weight N , kerD<N = ζm(N)Q.

Example
Can show ζm({2}n) ∈ ζm(2n)Q

As an integral = ±Im(0; 1, 0, 1, 0, . . . , 1, 0︸ ︷︷ ︸
n times

; 1)

Alternates 0 and 1

Odd length subword has same start and end letter

Integral vanishes because boundaries are equal

All D2r+1 vanish

So ζm({2}n) ∈ kerD<2n = ζm(2n)Q.
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Conjectural identities

The following identities appear to hold.

Conjecture (Hoffman)

For m ∈ Z≥0

2ζ(3, 3, {2}m)− ζ(3, {2}m, 1, 2) ?=− π2m+6

(2m+ 7)! = − πwt

(wt + 1)!

Conjecture (Cyclic insertion - Borwein, Bradley, Broadhurst, Lisoněk)

For n ∈ Z≥0, and a0, . . . , a2n ∈ Z≥0,∑
cycle ai

ζ({2}a0 , 1, {2}a1 , 3, . . . , 1, {2}a2n−1 , 3, {2}a2n) ?= πwt

(wt + 1)!

“Insert all cyclic permutations of some blocks {2}ai of two’s.”
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Structure of identities - Hoffman

Write Hoffman’s identity as iterated integrals

2ζ(3, 3, {2}n) − ζ(3, {2}n, 1, 2)
= ζ(3, 3, {2}n) − ζ(3, {2}n, 1, 2) + ζ({2}n, 1, 2, 1, 2)
 I(0100100(10)n1) + I(0100(10)n1101) + I(0(10)n1101101)

Split into ‘alternating blocks’ at 00→ 0 | 0 or 11→ 1 | 1

= I(010 | 010 | 0(10)n1) + I(010 | 0(10)n1 | 101)
+ I(0(10)n1 | 101 | 101)

Record lengths of the blocks

= Ibl(3, 3, 2n+ 2) + Ibl(3, 2n+ 2, 3) + Ibl(2n+ 2, 3, 3)

Right hand side is Ibl(wt + 2)
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Structure of identities - BBBL

Write the BBBL identity as iterated integrals∑
cycle ai

ζ({2}a0 , 1, {2}a1 , 3, . . . , 1, {2}a2n−1 , 3, {2}a2n)

 
∑

cycle ai

I(0(10)a01(10)a1100 · · · 01(10)a2n−1100(10)a2n1)

Split into ‘alternating blocks’ at 00→ 0 | 0 or 11→ 1 | 1

=
∑

cycle ai

I(0(10)a01 | (10)a110 | 0 · · · 01 | (10)a2n−110 | 0(10)a2n1)

Record lengths of the blocks

=
∑

cycle ai

Ibl(2a0 + 2, 2a1 + 2, . . . , 2a2n + 2)

Right hand side is Ibl(wt + 2).
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Common sructure
Both conjectures have the form∑

cycle `i

Ibl(`1, . . . , `n) ?= Ibl(wt + 2)

Generally:
Conjecture (Generalised cyclic insertion, C., arXiv 1703.03784)

For any [`1, . . . , `n] with all `i > 1,∑
cycle `i

Ibl(`1, . . . , `n) ?= Ibl(wt + 2)

(Extra correction terms needed if some `i = 1.)

Numerically tested all cases weight ≤ 18, to 500 decimal places

Can prove a symmetrised version, up to Q

Can prove some special cases, up to Q
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Progress

Theorem (Symmetric insertion, C., arXiv 1703.03784)

For any [`1, . . . , `n], with even weight,∑
permute `i

Ibl(`1, . . . , `n) ∈ Ibl(wt + 2)Q

Proof (Sketch).

Lift to motivic version Im.

Define a reflection R on subsequences

Set up a pairwise cancellation in D<N .

Conclude ∈ ζm(wt)Q = Imbl (wt + 2)Q using Brown.
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