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Motives and Multiple Zeta Values

Motives and multiple zeta values
Abstract: In this talk I will introduce multiple zeta values (MZV’s), a
rather mysterious class of real numbers about which many things are
conjectured, but relatively little is known.
As we shall see, their analytic definition frequenty causes transcendenality
problems and makes understanding the structure of MZV’s difficult. To
circumvent these problems, we must introduce a purely algebraic lifting –
the so-called motivic MZV’s of Goncharov, and of Brown. Motivic MZV’s
form a graded Hopf algebra, giving them a much more rigid structure,
which we can exploit.
I will aim to discuss some conjectural families of relations on MZV’s that
I have been able to better understand, and to generalise, thanks to this
motivic point of view.
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Motives and Multiple Zeta Values

Outline

1. Talk first about definitions and motivations. What are MZV’s and
why do we care?

2. Then some of the standard results on their algebraic structure.
What we do know, and what we don’t know. Transcendentality
problems!

3. A more algebraic way to study MZV’s which deals automatically
with the transcendentality problem.

4. Hopefully I do have time to talk about the identities I have
understood with this framework, but if not, you can ask me at the
end.
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Multiple zeta values

Definition (MZV)

Multiple zeta value ζ(s1, s2, . . . , sk) is defined by

ζ(s1, s2, . . . , sk) :=
∑

0<n1<n2<···<nk

1
ns1

1 n
s2
2 · · ·n

sk
k

‘Interesting’ multi-variable version of ζ(s)

Want to restrict to si ∈ Z>0

For convergence need sk ≥ 2

Also define
Weight: sum of s1 + · · ·+ sk of arguments

Depth: number k of arguments
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Motives and Multiple Zeta Values
Definitions and motivations

Multiple zeta values

1. What do I mean by interesting? If instead of n1 < n2 < . . ., we just
summed over independent variables n1, n2, . . ., then this would
reduce to the product ζ(s1)ζ(s2) . . ., which is nothing new. Forcing
n1 < n2 < . . . gives us a genuinely new function.

2. This is perhaps some what arbitrary. Certainly it is possible to study
this as a meromorphic function of multiple complex variables. But
the structure of the poles is much more complicated than for the
Riemann zeta function. We are more motivated by things like
Euler’s evlauation ζ(2) = π2

6 , etc, and want to restriction to integer
arguments.

3. Allowing si ∈ C leads to sk > 1 like for the Riemann zeta function,
so we get sk ≥ 2 if it is an integer.

4. These are useful auxilliary notions. Pay attention later, when I give
some examples of MZV relations. See if you can spot something
curious.
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Reasons for interest

Arise naturally in physics calculations

Have surprising amount of structure
At weight 8, 28−2 = 64 MZV’s

Spanned by { ζ(8), ζ(5, 3), ζ(3, 5), ζ(3, 3, 2) }

Generally: suggests lots of Q-linear relations!

Leads to difficult open questions

Euler: ζ(2) = π2

6 , ζ(4) = π4

90 , generally ζ(2k) ∈ π2kQ

What about ζ(3)? Or ζ(5)?

Understand all Q-linear relations.
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Motives and Multiple Zeta Values
Definitions and motivations

Reasons for interest

1. They occur in the computation of scattering amplitudes. If we
understand their structure well, perhaps various calculations can be
simplified? It also gives us pure mathematicians something to write
on grant applications. . .

2. These objects have a surprising amount of structure. What do I
mean by this? At weight 8, say, their are 26 = 64 different possible
MZV’s. It turns out that they are all a Q-linear combination of the
following 4 ζ(2, 2, 2, 2) ∼ ζ(8), ζ(3, 3, 2), ζ(3, 2, 3), ζ(2, 3, 3) (Other
choices are possible) This implies that MZV’s satisfy a lot of
Q-linear relations.

3. We all know that ζ(2) = |pi2
6 . More generally Euler evaluated even

zetas; ζ(2k) is an explicit rational multiple of π2k. What do we
know about ζ(3)? In 1978 Apèry showed it is irrational, but that’s
all we know. We don’t even know this about ζ(5), and we certianly
don’t have an evaluation for ζ(2k + 1).
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MZV Relations

ζ(3) = ζ(1, 2)

ζ({1, 3}n) = 1
2n+ 1

π4n

(4n+ 1)! = 1
2n+ 1ζ(

Repeat 2, 2, . . . , 2
total of 2n times︷ ︸︸ ︷
{2}2n)

28ζ(3, 9) + 150ζ(5, 7) + 168ζ(7, 5) = 5197
691 ζ(12)

ζ({2}m, 1, 3, 3, 1, 2) + ζ(3, 1, 2, 1, {2}m, 3)− ζ(1, 2, 1, {2}m, 3, 1, 2) +

+ ζ(1, 2, 1, 3, 3, {2}m)− ζ(3, {2}m, 1, 3, 3)

?= π2m+10

(2m+ 11)!

∈ π2m+10Q

Conjecture (Weight grading)

Any Q-linear relation between MZV’s is weight graded.
“There are no relations between MZV’s of different weights.”
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Motives and Multiple Zeta Values
Definitions and motivations

MZV Relations

We already know that MZV’s should satisfy a lot of relations. What is
perhaps not as clear, is that the relations themselves can be highly
structured and pretty.

1. This is perhaps one of the first relations between MZV’s after Euler
first defined them. Euler hoped that all double zeta value could be
reducd to values of Riemann zeta. This is an example of duality.

2. The left hand side of this was conjectured by Zagier on the basis of
numerical evidence. The proof was givey by Broadhurst using
generating series methods, and hypergeometric functions.

3. This one perhaps does’t look as pretty, but it is a very important
relation. Firstly it has a connection to modular forms. At weight 12,
we obtain the first non-trivial cusp form for SL2(Z), namely the
discriminant ∆. This MZV relation is a consequence. (Gangl,
Kaneko, Zagier) Secondly, it gives an exceptional relation between
ζ(odd, odd), which ruins a conjectural candidate for a basis. This is
the ‘depth defect phenomenon’.
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MZV Relations
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Motives and Multiple Zeta Values
Definitions and motivations

MZV Relations

1. This last relation, I just included for fun. It is related to things I will
introduce at the end of the talk. So far, the identity is conjectural,
but I can prove it is a rational multiple of the right hand side.

2. Did you notice anything curious about these 3 relations? Maybe it
is a coincidence because of the small sample size, maybe not? But
every relation has the same weight on the left hand side, and the
right hand side. Generally this is conjectured to hold.
Currently, this conjecture is impossible to resolve: it we knew that
all MZV relations were weight graded, then we would know
automatically that ζ(5) is irrational. It has weight 5, but a rational
number has weight 0. So currently there is no hope. This is the
transcendentality problem which plagues MZV!
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Integral representation; shuffle product

Definition (Iterated integral)

I(a0; a1, . . . , aN ; aN+1) :=
∫

a0<t1<t2<···
<tN <aN+1

dt1
t1 − a1

∧ · · · ∧ dtN
tN − aN

Multiplication of iterated integrals gives shuffle product
Arrange a0 < ti < aN+1 and a0 < sj < aN+1 in all compatible
ways ti < sj or ti > sj .

I(a;w1; b)I(a;w2; b) = I(a;w1 � w2; b) where
(xw1)� (yw2) := x(w1 � yw2) + y(xw1 � w2)

Proposition (MZV as iterated integral, Kontsevich)

ζ(s1, . . . , sk) = (−1)kI(0; 1, {0}s1−1, . . . , 1, {0}sk−1; 1)
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Motives and Multiple Zeta Values
Algebraic structure of MZV’s

Integral representation; shuffle product

We introduce a new object here, seemingly unmotivated. The way it
interacts with MZV’s makes it important. Later it is used extensively to
create motivic MZV’s.

1. When multiplying two such integrals, the domains are independent,
so the ti and sj do not interact. We are free to decompose into
subdomains where ti < sj , ti > sj , etc. We don’t need to include
ti = sj since this set has measure 0.

2. This was first observed by Kontsevich. The proof is not
complicated, one simply expands out the the fractions 1

t1−a1
as a

geometric series. The result can be recognised as the series
definition of the MZV.
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Properties of iterated integrals

(Unit) I(a; b) = 1

(Equal boundaries) I(x, a1, . . . , aN ;x) = 0

(Reversal of paths)

I(a0; a1, . . . , aN ; aN+1) = (−1)NI(aN+1; aN , . . . , a1; a0)

(Path composition)

I(a0, a1, . . . , aN ; aN+1) =
N∑

i=0
I(a0, a1, . . . , ai;x)I(x, ai+1, . . . , aN ; aN+1)

(Functoriality, under t 7→ αt+ β, with α 6= 0 and β ∈ C)

I(a0; a1, . . . , aN ; aN+1) = I(αa0+β;αa1+β, . . . , αaN +β;αaN+1+β)

(MZV Duality)

I(0; a1, . . . , aN ; 1) = (−1)NI(0; 1− aN , . . . , 1− a1; 1)
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Motives and Multiple Zeta Values
Algebraic structure of MZV’s

Properties of iterated integrals

1. The reversal of paths property, and the functoriality under t 7→ 1− t
combine to give the duality property of MZV’s. Interchange 0↔ 1
and reverse the integral shows two different MZV’s are equal.
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Series representation; stuffle product
Multiply series gives stuffle product ∗

Arrange ni, and mj in all compatible ways ni < mj , or
ni = mj or ni > mj .

Simplest case ζ(s) ∗ ζ(t) = ζ(s, t) + ζ(t, s) + ζ(s+ t).

Example (Comparing � and ∗)

2ζ(2, 2) + 4ζ(1, 3) �= ζ(2)ζ(2) ∗= 2ζ(2, 2) + ζ(4)

=⇒ ζ(1, 3) = 1
4ζ(4) = 1

3
π4

5!

Conjecture (Extended double shuffle)

All Q-linear relations on MZV’s arise by comparing �− ∗.
(Must allow divergent ζ(1); formally cancels using regularisation.)
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Motives and Multiple Zeta Values
Algebraic structure of MZV’s

Series representation; stuffle product

1. In terms of words in iterated integrals, a recursive definition is more
complicated. But the idea is is simple: Shuffle the arguments
s1, . . . , sk and s′1, . . . , s′`. Also stuff two into one slot si + s′j . This
arises by arranging the independent summation indices ni and mj in
all possible ways. Here we do need to include ni = mj since this
does not have measure 0.

2. We have two different ways to multiply MZV’s now, so we should
compare them.

3. This conjecture is even more hopeless than the previous one: it
implies all relations are weight graded. The shuffle product of
integrals write weight k times weight l as a sum of weight k + `
integrals. Similarly the series gives weight k + `, so the linear
relation relation which results has weight k + `. This conjecture
does pass extensive numerical testing: any numerically true relation
on MZV’s can (so far) be written as �− ∗.
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Construction of motivic iterated integrals - Goncharov

Goal: fix transcendentality problems by using algebraic objects

Category of Mixed Tate MotivesMT (F ) over a number field F
exists. It is Tannakian; equivalent to some RepF GMT

Recover pro-algebraic group scheme GMT from automorphisms of
the fibre functor ω̃ : MT (F )→ Vect, GMT ∼= Gm n UMT

Ring of regular functions O(UMT ) on the pro-unipotent part of
GMT defines the fundamental Hopf algebra A•(F ) ofMT (F )

Isomorphism A•(F ) to ‘path algebra’ and algebra of ‘formal
iterated integrals’. A•(F ) contains objects Ia(a0; a1, . . . , an; an+1).

Admits a coproduct ∆: A•(F )→ A•(F )⊗Q A•(F )
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Motives and Multiple Zeta Values
Motivic iterated integrals, and motivic MZV’s

Construction of motivic iterated integrals -
Goncharov

The construction of motivic MZV’s is quite difficult, and very technical. I
cannot do justice to all the details here. I will try to sketch the ideas.
Goncharov contructs a formal algebra of paths, and a formal algebra of
iterated integrals (which satisfy all of the properties listed earlier). He
then relates algebras to each other and to functions on (the
pro-unipotent part of) some pro-algebraic group scheme, to extract from
it the motivic iterated integrals. Since the formal integrals satsify the
various properties, so to do the motivic ones.
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Coproduct on A•(F )

∆Ia(a0; a1, . . . , an; an+1) =∑
0=i0<i1<···

<ik<ik+1=n+1

k=0,1,...,N

(
Ia(a0; ai1 , . . . , aik

; an+1)⊗
k∏

p=0
Ia(aip ; aip+1, . . . , aip+1−1; aip+1)

)
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Motives and Multiple Zeta Values
Motivic iterated integrals, and motivic MZV’s

Coproduct on A•(F )

This is a rather complicated and ugly formula. Fortunately I won’t
display it for very long, I will instead give a mnemonic/pictorial
interpretation of the formula.
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Coproduct on A•(F ) mnemonic

Mnemonic.

∆Ia(a;w; b) =
∑

S subset awb
a, b in S

(
Ia(S)⊗

∏
u subword awb,
starts/ends at

consecutive si ∈ S

Ia(u)
)

a9

a8

a7

a6
a5a4

a3

a2

a1

a0

 I(a0; a1, a3, a6; a9)⊗ I(a0; a1)I(a1; a2; a3) ·
I(a3; a4, a5; a6)I(a6; a7, a8, a9)
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Motives and Multiple Zeta Values
Motivic iterated integrals, and motivic MZV’s

Coproduct on A•(F ) mnemonic

We view the arguments ai fo teh integral arranged into a semicircular
polygon as follows. The coproduct is then obtained by selecting any
subset of vertices. These vertices define a big ‘main polygon’ coloured
green. This gives the left hand factor of the coproduct. In between these
vertices we obtian a number of smaller ‘cut-off’ polygons, coloured red.
We take the product of all of these and obtain the right hand term in the
coproduct.
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Results from motivic MZV’s

ζa(2k + 1) are linearly independent
ζa(2k + 1) 6= 0 ∈ A2k+1(Q)

So have different gradings

ζa(2k + 1) are algebraically independent
Suppose some ζa(2k + 1) satisfy a polynomial

Use coproduct ∆ to show all coefficients are 0

ζa(3, 5) is irreducible (i.e. not in Q[ζ(n)])
(∆−∆op)ζa(3, 5) = −5ζa(3) ∧ ζa(5)

(∆−∆op)ζa(n1) · · · ζa(nk) = 0
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Motives and Multiple Zeta Values
Motivic iterated integrals, and motivic MZV’s

Results from motivic MZV’s

1. This follows trivially from the fact that H• is an object grade by the
weight weight. So each ζm(n) is in a component of different weight
n, therefore must be linearly independent.

2. This also follows reasonably easily. One can take set of such
Riemann zeta values, and support they satisfy a only polynomail of
some minimal degree. Applying the coproduct allows us to extract a
polynomial of lower degree that they satisfy. Hence conclude the
lower degree polynomial vanishes, and this tells us about the
coefficients of our polynomial. This is enough to establish our
starting polynomial also vanishes.

3. The proof of this is rather cute. The reduced coproduct of ζm(3, 5)
is (a mulitple of) ζm(3)⊗ ζm(5), which gives ζm(3) ∧ ζm(5) under
antisymmetrisation ∆−∆op.
On the other hand, the reduced coproduct of ζ(n) is 0. In such a
case ∆(xy) = x⊗ y + y ⊗ x, so a ζ(n)’s vanishes under
antisymmetrisation.
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Construction of motivic MZV’s - Brown

Problem: Ia(0; 1, 0; 1)↔ −ζa(2) vanishes.

Consider ‘motivic torsor’ of paths 0Π1 between 0 and 1 in
P1 \ { 0, 1,∞}. O(0Π1) ∼= Q〈e0, e1〉.

Straight line gives function O(0Π1)→ R, evaluating MZV.

Coalgebra of motivic MZV’s is H := O(0Π1)/JMT , JMT the
largest graded ideal in the kernel of above.

H ∼= A⊗Q Q[ζm(2)], A := A•(Z)

Period map per : H → R, ζm(s1, . . . , sk) 7→ ζ(s1, . . . , sk),
ring homomorphism

Coaction by lifting Gonchrov’s coproduct to H → A⊗Q H.
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Construction of motivic MZV’s - Brown

The main problem with Goncharov’s motivic iterated integrals is that the
ζa(2) element vanishes. This means there is no period map back down to
real numbers, because ζ(2) 6= 0. We do have a map to the associated
graded of a certain filtered algebr of periods.
Brown fixes the problem by further lifting Goncharov’s iterated integrals
with ai ∈ {0, 1}, in such a way as Im(0; 1, 0; 1) = −ζm(2) is non-zero.
We then do obtain a period map meaning motivic relations descend
exactly to real number relations.
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Infinitesimal coproduct

Definition (Derivations Dk)

Let L := A/(A>0 · A>0), which kills products and ζm(2). For k
odd define

Dk : H → Lk ⊗Q H
Im(w) 7→ (π ⊗ id) ◦ (∆− 1⊗ id) Im(w)

DkI
m(a0; a1, . . . , aN ; aN+1) =
N−k∑
p=0

IL(ap; ap+1, . . . , ap+k; ap+k+1)⊗

Im(a0; a1, . . . , ap, ap+k+1, . . . , aN ; aN + 1)
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Infinitesimal coproduct

The full coproduct on motivic MZV’s obviously reflects a lot of the
structure and properties of the motivic MZV’s. But the number of terms
that the coproduct contains (order 2n) grows rapidly, and make this
object difficult to work with in general.
Francis Brown introducse an infinitesimal version of the coproduct, and
shows it factors through a certian fmaily of operators D2r+1. The
derivations D2r+1 are defined as this composition, and can be explicitly
described by the following formula.
Already this is much better, it only has n terms. We have to consider the
entire family D3, D5, . . ., but still we only get n2 terms.
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Derivations Dk mnemonic

Mnemonic.

DkI
m( w︸︷︷︸

(a;w′;b)

) =
∑

S subword w,
of length k + 2

IL(S)⊗ Im(w − interiorS)

aN+1a0

a1

ap−1

ap

ap+1
ap+k

ap+k+1
ap+k+2

aN

. .
.

. . .

. . .

 IL(ap; ap+1, . . . , ap+k; ap+k+1)⊗
Im(a0; a1, . . . , ap, ap+k+1, . . . , aN ; aN + 1)
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Derivations Dk mnemonic

A mnemonic for remembering/computing this object is again given by
this semicircular polygon. We cut out segments of length k + 2.
This is a very combinatorial object: at some level we are essentially
playing with binary words, and subwords.
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Transcendental Galois Theory

Theorem (Brown, 2012)

In weight N , kerD<N = ζm(N)Q.

Example
Can show ζm({2}n) ∈ ζm(2n)Q

As an integral = ±Im(0; 1, 0, 1, 0, . . . , 1, 0︸ ︷︷ ︸
n times

; 1)

Alternates 0 and 1

Odd length subword has same start and end letter

Integral vanishes because boundaries are equal

All D2r+1 vanish

So ζm({2}n) ∈ kerD<2n = ζm(2n)Q.
16 / 21

Transcendental Galois Theory

Theorem (Brown, 2012)

In weight N , kerD<N = ζm(N)Q.

Example
Can show ζm({2}n) ∈ ζm(2n)Q

As an integral = ±Im(0; 1, 0, 1, 0, . . . , 1, 0︸ ︷︷ ︸
n times

; 1)

Alternates 0 and 1

Odd length subword has same start and end letter

Integral vanishes because boundaries are equal

All D2r+1 vanish

So ζm({2}n) ∈ kerD<2n = ζm(2n)Q.

20
17

-0
7-

05

Motives and Multiple Zeta Values
Motivic iterated integrals, and motivic MZV’s

Transcendental Galois Theory

This upshot of defining these operators comes with an important theorem
of Brown, which describes the simultaneously kernel of D3, D5, . . .. If all
of the Dodd vanish on a weight N combination of motivic MZV’s, then
the result is a rational multiple of ζm(N).
As an example, we can give a quick proof, up to Q of the ζ(2, 2, . . . , 2)
identity from the start.
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Conjectural identities

The following identities appear to hold.

Conjecture (Hoffman)

For m ∈ Z≥0

2ζ(3, 3, {2}m)− ζ(3, {2}m, 1, 2) ?=− π2m+6

(2m+ 7)! = − πwt

(wt + 1)!

Conjecture (Cyclic insertion - Borwein, Bradley, Broadhurst, Lisoněk)

For n ∈ Z≥0, and a0, . . . , a2n ∈ Z≥0,∑
cycle ai

ζ({2}a0 , 1, {2}a1 , 3, . . . , 1, {2}a2n−1 , 3, {2}a2n) ?= πwt

(wt + 1)!

“Insert all cyclic permutations of some blocks {2}ai of two’s.”
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Conjectural identities

This conjecture seems to be relatively unknown. It is just listed on
Hoffman’s website as an example, with little fanfare. This has been
checked up to weight 22, where n = 8, by using explicit tables of MZV
relations. Still unproven in general.
This conjecture is presented by BBBL as a generalisation of the
Zagier-Broadhurst identity. When all the ai = 0, we reduce to it. When
n = 0, we get the ζ(2, . . . , 2) evauation. The only case of this conjecture
which has been proven is a0 = 1, a>0 = 0. This direction has been
generalised to the Bowman-Bradley theorem where all compositions
a0 + . . .+ a2n = M are taken.
I want to show now how to unify these two conjectures, into a much
more general conjecture, by identifying the important underlying
structue. With this we can make a little progress towards a proof (via a
symmetrisation result). Hopefully with this insight, and more work, an
exact proof can be given.
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Structure of identities - Hoffman

Write Hoffman’s identity as iterated integrals

2ζ(3, 3, {2}n) − ζ(3, {2}n, 1, 2)
= ζ(3, 3, {2}n) − ζ(3, {2}n, 1, 2) + ζ({2}n, 1, 2, 1, 2)
 I(0100100(10)n1) + I(0100(10)n1101) + I(0(10)n1101101)

Split into ‘alternating blocks’ at 00→ 0 | 0 or 11→ 1 | 1

= I(010 | 010 | 0(10)n1) + I(010 | 0(10)n1 | 101)
+ I(0(10)n1 | 101 | 101)

Record lengths of the blocks

= Ibl(3, 3, 2n+ 2) + Ibl(3, 2n+ 2, 3) + Ibl(2n+ 2, 3, 3)

Right hand side is Ibl(wt + 2)
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Structure of identities - Hoffman

1. First I want to split up the term with coefficient 2 using duality.
This is just for convenience. There is also an overall sign coming
from the depth that I’m ignoring for simplicity. I only bother with
relative differences in depth, which is why the sign of the middle
term change swhen goign to the integrals.
If you work out the overalll sign carefully, everything is okay with
the final result on this slide.

2. The right hand side of the identity is πwt

(wt+1)! = ζ({2}wt/2). Writing
this as an iterated integral gives I(0(10)wt/21) = Ibl(wt + 2).
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Structure of identities - BBBL

Write the BBBL identity as iterated integrals∑
cycle ai

ζ({2}a0 , 1, {2}a1 , 3, . . . , 1, {2}a2n−1 , 3, {2}a2n)

 
∑

cycle ai

I(0(10)a01(10)a1100 · · · 01(10)a2n−1100(10)a2n1)

Split into ‘alternating blocks’ at 00→ 0 | 0 or 11→ 1 | 1

=
∑

cycle ai

I(0(10)a01 | (10)a110 | 0 · · · 01 | (10)a2n−110 | 0(10)a2n1)

Record lengths of the blocks

=
∑

cycle ai

Ibl(2a0 + 2, 2a1 + 2, . . . , 2a2n + 2)

Right hand side is Ibl(wt + 2).
19 / 21

Structure of identities - BBBL

Write the BBBL identity as iterated integrals∑
cycle ai

ζ({2}a0 , 1, {2}a1 , 3, . . . , 1, {2}a2n−1 , 3, {2}a2n)

 
∑

cycle ai

I(0(10)a01(10)a1100 · · · 01(10)a2n−1100(10)a2n1)

Split into ‘alternating blocks’ at 00→ 0 | 0 or 11→ 1 | 1

=
∑

cycle ai

I(0(10)a01 | (10)a110 | 0 · · · 01 | (10)a2n−110 | 0(10)a2n1)

Record lengths of the blocks

=
∑

cycle ai

Ibl(2a0 + 2, 2a1 + 2, . . . , 2a2n + 2)

Right hand side is Ibl(wt + 2).

20
17

-0
7-

05

Motives and Multiple Zeta Values
Alternating block decomposition and cyclic insertion

Structure of identities - BBBL

1. I’m again ignoring a sign coming from the depth, but the final result
is right if you work out this sign carefully.
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Common sructure
Both conjectures have the form∑

cycle `i

Ibl(`1, . . . , `n) ?= Ibl(wt + 2)

Generally:
Conjecture (Generalised cyclic insertion, C., arXiv 1703.03784)

For any [`1, . . . , `n] with all `i > 1,∑
cycle `i

Ibl(`1, . . . , `n) ?= Ibl(wt + 2)

(Extra correction terms needed if some `i = 1.)

Numerically tested all cases weight ≤ 18, to 500 decimal places

Can prove a symmetrised version, up to Q

Can prove some special cases, up to Q
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Common sructure

The correction terms have the from ζ(wt− 2k) times block integrals
starting with [{1}k, . . .] where the divergent {1}k string is removed.

1. The fourth identity on an earlier slide is an example of such a
motivically provable special case. It arises from
I(0(10)m1 | 10 | 010 | 01 | 101) = Ibl(2m+ 2, 2, 3, 2, 3).



Definitions and motivations Algebraic structure Motivic MZV’s Cyclic insertion

Progress

Theorem (Symmetric insertion, C., arXiv 1703.03784)

For any [`1, . . . , `n], with even weight,∑
permute `i

Ibl(`1, . . . , `n) ∈ Ibl(wt + 2)Q

Proof (Sketch).

Lift to motivic version Im.

Define a reflection R on subsequences

Set up a pairwise cancellation in D<N .

Conclude ∈ ζm(wt)Q = Imbl (wt + 2)Q using Brown.

21 / 21

Progress

Theorem (Symmetric insertion, C., arXiv 1703.03784)

For any [`1, . . . , `n], with even weight,∑
permute `i

Ibl(`1, . . . , `n) ∈ Ibl(wt + 2)Q

Proof (Sketch).

Lift to motivic version Im.

Define a reflection R on subsequences

Set up a pairwise cancellation in D<N .

Conclude ∈ ζm(wt)Q = Imbl (wt + 2)Q using Brown.

20
17

-0
7-

05

Motives and Multiple Zeta Values
Alternating block decomposition and cyclic insertion

Progress

Since the period map preserves motivic relations, it is sufficient ot show
this on hte level of motivic MZV’s
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