
The block decomposition of iterated integrals, and cyclic
insertion on MZV’s

Steven

Abstract. As some background, I will first discuss two (conjectural) families of MZV identities – the cyclic
insertion conjecture of Borwein et al, and an identity of a similar flavour, presented by Hoffman. Using
the motivic framework due to Goncharov and Brown, I will explain how one can gain some insight into
the structure of these identities. I will then present a (conjectural) unification of these identities described
using the so-called alternating block decomposition of iterated integrals, and prove a certain symmetrised
version always holds for motivic MZV’s.

1. Background/motivating identities

Firstly, we state our convention on the definition of MZV’s just for clarify

ζ(s1, . . . , sr) =
∑

0<n1<...<nr

1

sn1
1 · · · s

nr
r

,

so that convergence requires sr ≥ 2.

I will start with some identities (proven, or conjectural) which give the background for this
talk. The simplest such identity is due to Zagier-Broadhurst, which evaluates a certain MZV as a
rational multipel of πwt:

Identity 1 (Broadhurst-Zagier, [BBBL01]). For n ∈ Z≥0, we have

ζ({1, 3}n) =
1

2n+ 1
ζ({2}2n) =

1

2n+ 1

π4n

(4n+ 1)!
. (Proven)

This was found numerically by Zagier, on the basis of much computer experimentation. Broad-
hurst provided a proof using generating functions, hypergeometric series and their differential equa-
tions.

A slight generalisation of this leads to a (conjectural) 2-parameter family of evaluable MZV’s

Identity 2 ([BBB97]). For n,m ∈ Z≥0, we have

ζ({{2}m, 1, {2}m, 3}n, {2}m)
?
=

1

2n+ 1

π(4m+4)n+2m

((4m+ 4)n+ 2m+ 1)!

=
1

2n+ 1

πwt

(wt + 1)!︸ ︷︷ ︸
Write the LHS weight as wt for simplicity

(C: Up to Q)

Generalising in another direction, leads to a version of Zagier’s identity “dressed with 2’s”.

Identity 3 (Zagier “dressed with 2’s” - [BBBL98]). For any n ∈ Z≥0, the following identity holds

2n∑
i=0

ζ(
↑
1,
↑
3,
↑
. . . ,
↑
1,
↑
3, 2︸︷︷︸

position i

, 1,
↑
3,
↑
. . . , 1,

↑
3
↑
) =

πwt

(wt + 1)!
. (Proven)

The most general identity of this type seems to be given by the following ‘cyclic insertion
conjecture’.
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Identity 4 (Cyclic insertion conjecture - [BBBL98]). Let n ∈ Z≥0 and a0, . . . , a2n ∈ Z≥0. Then∑
σ∈Cn

ζ({2}a0 , 1, {2}a1 , 3, . . . , 1, {2}a2n−1 , 3, {2}a2n)
?
=

πwt

(wt + 1)!
.

“Sum over all cyclic shifts is a known rational multiple of πwt.”

Indeed, it implies all of the previous ones by appropriately specialising. Namely a0 = · · · =
a2n = 0 gives Zagier-Broadhurst. a0 = 1, a1 = · · · = a2n = 0 gives Zagier dressed with 2’s.
a0 = · · · = a2n = m gives the evaluable family.

What is known in this direction, so far?

Theorem 5 (Bowman-Bradley [BB02]). Fix n,m ∈ Z≥0 and then∑
σ∈C2n+!1

ζ({2}a0 , 1, {2}a1 , 3, . . . , 1, {2}a2n−1 , 3, {2}a2n) =
1

2n+ 1

(
m+ 2n

m

)
πwt

(wt + 1)!
.

“The sum over all compositions of m into 2n+ 1 parts is a known rational multiple of πwt.”

Idea. This is a (somewhat) intricate inductive combinatorial argument, using the Zagier-Broadhurst
as the base case. �

This is certainly compatible with cyclic insertion, since cyclic permutations of a composition
are still a composition. There are

(
m+2n
m

)
compositions of m into 2n+ 1 parts. Each term in the

sum above should contribute 1
2n+1

πwt

(wt+1)! . So the coefficient matches.

I proved, using the motivic framework of Brown that only permutations of some fixed ai are
necessary to obtain a rational multiple of πwt. Though the motivic framework is not sufficient to
fix the ratoinal

Theorem 6 (C, [Cha15]). Let n ∈ Z≥0 and a0, . . . , a2n ∈ Z≥0. Then∑
σ∈C2n+1

ζ({2}a0 , 1, {2}a1 , 3, . . . , 1, {2}a2n−1 , 3, {2}a2n)
Q
=

πwt

(wt + 1)!
. (C: Up to Q)

“Sum over all permutations is an (unknown) rational multiple of πwt.”

Idea. The goal of this talk is really to explain/generalise this proof, so I won’t say much now.
But basically one knows that if certain derivation operators Dr all vanish on this combination, by
Brown’s characterisation of kerD<N it must be a rational multiple of ζm(N). One shows that Dr

vanishes by setting up a very explicit cancellation. �

In particular, taking a0 = · · · = a2n = m shows that the 2-parameter family above holds up to
Q. But beyond this, no further progress has been made (publicly).

And now for something completely different. An identity with a similar flavour (but a priori
unrelated) to the cyclic insertion conjecture is given by Hoffman on his MZV info page. (It is not
widely known, and is only otherwise mentioned in a set of lecture notes for an MZV course given
at University of Newcastle, Australia.)

Identity 7 (Hoffman, [BZ]). For n ∈ Z>0, we have

2ζ(3, 3, {2}n)− ζ(3, {2}n, 1, 2)
?
= − πwt

(wt + 1)!
. (C: Up to Q. HS: exact)

Recently this identity was proven by Hirose-san and Sato-san, using their work with Tasaka and
Iwaki [HIST17] on iterated integrals over P1 \ {∞, 0, 1, z}.

In fact they proved my conjectural generalisation of this, namely

Identity 8 (C, [HS17]). For a, b, c ∈ Z>0, we have

ζ({2}a, 3, {2}b, 3, {2}c)− ζ(3, {2}b, {2}c, 1, 2, {2}a) +

+ ζ({2}c, 1, 2, {2}a, 1, 2, {2}b) ?
= − πwt

(wt + 1)!
(C: Up to Q. HS: exact)
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We recover Hoffman’s identity by taking a = b = 0, c = n. Then by duality ζ({2}n, 1, 2, 1, 2) =
ζ(3, 3, {2}n), giving the coefficient 2 above.

I claim that there is a common structure among both this (generalised) Hoffman identity and the
cyclic insertion identity, so that one can unify these into a more general identity. I want to explain
how to do this. But first, we need to talk about iterated integrals and the motivic viewpoint, so
we have all of the tools ready.

2. Iterated integrals and motivic MZV’s

Recall that Kontesevich gave the following integral representation for MZV’s (modulo con-
ventions!)

ζ(s1, . . . , sr) = (−1)r
∫
0≤t1≤···≤tk≤1

ω1 ∧ (ω0 ∧ · · ·ω0︸ ︷︷ ︸
s1−1

) ∧ · · · ∧ (ω1 ∧ ω0 ∧ · · ·ω0︸ ︷︷ ︸
sk−1

) ,

where

ωi =
dt

t− i
We use the following notation for this iterated integral

I(a0; a1, . . . , an; an+1) =

∫
a0≤t1≤···≤tn≤an+1

ωa1 ∧ · · · ∧ ωan ,

so that
ζ(s1, . . . , sr) = (−1)rI(0; 1, {0}s1−1, · · · , 1, {0}sr−1; 1)

These integrals satisfy various standard properties:

• (Unit) I(a; b) = 1
• (Equal boundaries) I(x, a1, . . . , aN ;x) = 0
• (Reversal of paths)

I(a0; a1, . . . , aN ; aN+1) = (−1)NI(aN+1; aN , . . . , a1; a0)

• (Path composition)

I(a0, a1, . . . , aN ; aN+1) =

N∑
i=0

I(a0, a1, . . . , ai;x)I(x, ai+1, . . . , aN ; aN+1)

• (Functoriality, under t 7→ αt+ β, with α 6= 0 and β ∈ C)

I(a0; a1, . . . , aN ; aN+1) = I(αa0 + β;αa1 + β, . . . , αaN + β;αaN+1 + β)

• (MZV Duality)

I(0; a1, . . . , aN ; 1) = (−1)NI(0; 1− aN , . . . , 1− a1; 1)

is implied by functoriality t 7→ 1− t, and reversal of paths.

Goncharov [Gon05] was able to lift these iterated integrals (for ai algebraic numbers) to framed
Mixed Tate motives over Q, endowing them with more rigid structure. (Indeed to mixed Tate
motive over F , F a number field.) The actual construction is rather technical, so I will just outline
the main steps.

• Category of Mixed Tate Motives MT (F ) over a number field F exists. It is Tannakian;
equivalent to some RepF GMT
• Recover pro-algebraic group scheme GMT from automorphisms of the fibre functor ω̃ : MT (F )→
Vect, GMT ∼= Gm n UMT
• Ring of regular functions O(UMT ) on the pro-unipotent part of GMT defines the funda-

mental Hopf algebra A•(F ) of MT (F )
• Isomorphism A•(F ) to ‘path algebra’ and algebra of ‘formal iterated integrals’. A•(F )

contains objects Ia(a0; a1, . . . , an; an+1).
• Admits a coproduct ∆: A•(F )→ A•(F )⊗Q A•(F )
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The coproduct on Ia(a0, . . . , an+1) is given as follows.

∆Ia(a0; a1, . . . , an; an+1) =∑
0=i0<i1<···

<ik<ik+1=n+1

k=0,1,...,N

(
Ia(a0; ai1 , . . . , aik ; an+1)⊗

k∏
p=0

Ia(aip ; aip+1, . . . , aip+1−1; aip+1)

)

This coproduct lends itself to a nice mnemonic interpretation by means of semicircular polygons.

Mnemonic

∆Ia(a;w; b) =
∑

S subset awb
a, b in S

(
Ia(S)⊗

∏
u subword awb,
starts/ends at

consecutive si ∈ S

Ia(u)

)

a9

a8

a7

a6

a5a4
a3

a2

a1

a0

 I(a0; a1, a3, a6; a9)⊗ I(a0; a1)I(a1; a2; a3) ·
I(a3; a4, a5; a6)I(a6; a7, a8, a9)

“Draw all possible semicircular polygons connecting these vertices.”

We can then define Goncharov’s motivic MZV’s ζa(s1, . . . , sk) := (−1)kIa(0; 1, {0}s1−1, . . . , 1, {0}sk−1; 1)
by direct analogy with the Kontsevich integral representation.

Goncharov’s motivic MZV’s already shed much light on hard open MZV questions.

• ζa(2k + 1) are linearly independent
– ζa(2k + 1) 6= 0 ∈ A2k+1(Q)
– So have different gradings

• ζa(2k + 1) are algebraically independent
– Suppose some ζa(2k + 1) satisfy a polynomial
– Use coproduct ∆ to show all coefficients are 0

• ζa(3, 5) is irreducible (i.e. not in Q[ζ(n)]
– (∆−∆op)ζa(3, 5) = −5ζa(3) ∧ ζa(5)
– (∆−∆op)ζa(n1) · · · ζa(nk) = 0

Unfortunately, Goncharov’s motivic MZV’s have a small, but significant defect. ζa(2) = 0, since
ζ(2) ∈ π2Q. This means that there can be no period map down from Goncharov’s motivic MZV’s
back to real numbers (only to the associated graded of some filtered algebra Pσ(F ), for σ : F ↪→ C
an embedding.)

Brown [Bro12a] is able to further lift Goncharov’s motivic iterated integrals (when defined over
0, 1, in such a way that ζm(2) 6= 0.

• Consider ‘motivic torsor’ of paths 0Π1 between 0 and 1 in P1 \ { 0, 1,∞}. O(0Π1) ∼=
Q〈e0, e1〉.
• Straight line gives function O(0Π1)→ R, evaluating MZV.
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• Coalgebra of motivic MZV’s is H := O(0Π1)/JMT , JMT the largest graded ideal in the
kernel of above.
• H ∼= A⊗Q Q[ζm(2)], A := A•(Z)
• Period map per : H → R, ζm(s1, . . . , sk) 7→ ζ(s1, . . . , sk), ring homomorphism
• Coaction by lifting Gonchrov’s coproduct to H → A⊗Q H.

The full coproduct on motivic MZV’s obviously reflects a lot of the structure and properties of
the motivic MZV’s. But the number of terms that the coproduct contains (order 2n) grows rapidly,
and make this object difficult to work with in general. Francis Brown introducse an infinitesimal
version of the coproduct, and shows it factors through a certian fmaily of operators D2r+1, defined
below.

Definition 9 (Derivations Dk). Let L := A/(A>0 · A>0), which kills products and ζm(2). For k
odd define

Dk : H → Lk ⊗Q H
Im(w) 7→ (π ⊗ id) ◦ (∆− 1⊗ id) Im(w)

DkI
m(a0; a1, . . . , aN ; aN+1) =

N−k∑
p=0

IL(ap; ap+1, . . . , ap+k; ap+k+1)⊗

Im(a0; a1, . . . , ap, ap+k+1, . . . , aN ; aN + 1)

Again, a pictorial mnemonic is more helpful.

Mnemonic

DkI
m( w︸︷︷︸
(a;w′;b)

) =
∑

S subword w,
of length k + 2

IL(S)⊗ Im(w − interiorS)

aN+1a0

a1

ap−1

ap

ap+1

ap+k
ap+k+1

ap+k+2

aN

. .
.

. . .

. . .

 IL(ap; ap+1, . . . , ap+k; ap+k+1)⊗
Im(a0; a1, . . . , ap, ap+k+1, . . . , aN ; aN + 1)

“Cut out all possible segments of length k = 2r+1 odd from the vertices of the semicircular
polygon”.

These derivations (when taken together) also contain a lot of information about the structure of
motivic MZV’s. In particular, we have the following important theorem characterising kerD<N :=⊕

3≤2r+1≤N D2r+1

Theorem 10 (Brown, [Bro12b]). In weight N ,

kerD<N :=
⊕

3≤2r+1≤N

D2r+1 = ζm(N)Q .

“If all D2r+1 vanish on a combiantion of weight N motivic MZV’s, then it is a rational multiple
of ζm(N)”.

As a toy example of this, we can see ζ({2}n) ∈ Qζ(2n) = Qπ2n.
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Exmaple 11. We can show ζm({2}n) ∈ ζm(2n)Q. As an integral

ζm({2}n) = (−1)nIm(0; 1, 0, 1, 0, . . . , 1, 0︸ ︷︷ ︸
n times

; 1) .

Now observe that the digits alternate 0101 · · ·. Any subword of odd length necessarily starts and
ends with the same letter, and so vanishes since the boundaries of integration are equal. This
means all D2r+1 vanish, giving ζm({2}n) ∈ kerD<2n = ζm(2n)Q.

Now we have enough background to investigate the similarities between the above identities,
and to give some proofs.

3. Block decomposition and cyclic insertion

The block decomposition used to describe the structural similarities in the cyclic insertion conjec-
ture and Hoffman’s identity, so let us do that.

Exmaple 12 (Hoffman’s identity). Write Hoffman’s identity as iterated integrals

ζ({2}a, 3, {2}b, 3, {2}c)− ζ(3, {2}b, {2}c, 1, 2, {2}a) +

+ ζ({2}c, 1, 2, {2}a, 1, 2, {2}b) = − πwt

(wt + 1)!

I(0; (10)a100(10)b100(10)c; 1) + I(0; (10)b100(10)c110(10)a; 1) +

+ I(0; (10)c110(10)a110(10)c; 1) = I(0; (10)(wt/2))

Now split these integrals into ‘blocks of alternating 0’s and 1’s’. I.e. break at 00 → 0|0 or at
11→ 1 | 1, to obtain the block decomposition.

I(0; (10)a10 | 0(10)b10 | 0(10)c; 1) + I(0; (10)b10 | 0(10)c1 | 10(10)a; 1)+

I(0; (10)c1 | 10(10)a1 | 10(10)c; 1) = I(0; (10)(wt/2); 1) .

We record the length of the blocks to obtain a block integral (to clearly distinguish it notationally
from the regular iterated integral).

Ibl(2a+ 3, 2b+ 3, 2c+ 2) + Ibl(2b+ 3, 2c+ 2, 2a+ 3) + Ibl(2c+ 2, 2a+ 3, 2b+ 3) = I(wt + 2)

Notice that the lengths on the left hand side are just cyclically permuted.

Doing the same for the cyclic insertion identity leads to

Exmaple 13 (Cyclic insertion). Write cyclic insertion as iterated integrals∑
σ∈C2n+1

ζ({2}a0 , 1, {2}a1 , 3, . . . , 1, {2}a2n−1 , 3, {2}a2n)
?
=

πwt

(wt + 1)!∑
σ∈C2n+1

I(0; (10)a01 | (10)a110 | 0 · · · 10 | 0(10)a2n+1 ; 1)
?
= I(0; (10)(wt/2))

∑
σ∈C2n+1

Ibl(2a0 + 2, 2a1 + 2, · · · , 2a2n + 2)
?
= I(wt + 2)

Again the lengths are just cyclically permuted.

Both identities have the form ∑
cycle `i

Ibl(`1, . . . , `n)
?
= Ibl(wt + 2) .

Perhaps it is not too much to hope for that we can choose any lengths? Indeed, after some numerical
experimentation with various other choices of lengths, I am lead to the following conjecture. (I
still call it cyclic insertion because of the cyclic shifting involved in the block integrals.)
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Conjecture 14 (Generalised cyclic insertion, C, arXiv 1703.03784). For any [`1, . . . , `n] with all
`i > 1, ∑

cycle `i

Ibl(`1, . . . , `n)
?
= Ibl(wt + 2)

Moreover, if some `i = 1, we can give an identity involving lower order correction terms in
the form of products. Let

Lk = { [mk+1, . . . ,mn] | [1, . . . , 1︸ ︷︷ ︸
k times

,mk+1, . . . ,mn] is a cyclic permutation of [`1, . . . , `n] }

“Take all cyclic permutations of [`1, . . . , `n] which start with k consecutive 1’s. Then drop
the ones”

Then ∑
σ∈Cn

Ibl(`σ(1), . . . , `σ(n))
?
= Ibl(N + 2)−

bn/2c∑
k=1

(−1)k
2(2π)2k

(2k + 2)!

∑
~m∈L2k

Ibl(~m) .

Evidence/outlook

What evidence do we have for this conjecture?

• Numerical validation in all cases with weight ≤ 18, to 500 decimal places.
• Proofs of a symmetrised version, up to Q
• Proofs of some special cases,up to Q
• Proofs of other special cases exactly (HS for Hoffman’s identity)

I had at some point better state a theorem, rather than just various conjectures. That theorem
is alluded to above, in the proof of a symmetrised version of cyclic insertion

Theorem 15 (Symmetric insertion, C, arXiv 1703.03784). For any [`1, . . . , `n] with all `i > 1,
and even weight (odd holds trivially!)∑

permute `i

I
(m)
bl (`1, . . . , `n) ∈ I(m)

bl (wt + 2)Q .

Proof. The goal of the proof is simple: compute D<N for the LHS and show it vanishes. Then we
can conclude by Brown’s theorem that the LHS is a rational multiple of ζ(m)(wt). (Which is equal
to the the above RHS using standard identities.

To show that D<N vanishes, we exploit the block decomposition structure to setup a pairwise
cancellation in the terms. Namely given the following substring on some Ibl(`1, . . . , `n)

Ibl(`1, . . . ,

start at position α︷︸︸︷
`s , . . . ,

end at position β︷︸︸︷
`t , . . . , `n)

we match this with the subsequence

Ibl(`1, . . . ,

start at position β︷︸︸︷
`t , . . . ,

end at position α︷︸︸︷
`s , . . . , `n)

obtained by reflecting/reversing the blocks containing the subsequence.
The resulting subsequence is the dual or the reverse of the original. Since it has odd length,

we pick up a sign (−1)length = −1 from the reversal step. The quotient sequences agree because
the blocks match exactly outside of the subsequence. Since reversing the blocks just gives a
permutation, the second term will appear in D2r+1, and therefore cancel with the first term as
they have opposite signs.

This shows that all terms in D2r+1 cancel, and the result follows. (One does need to do some
work to set up the notation and make this completely rigorous.) �
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Hirose-san and Sato-san have done much work towards proving this conjecture fully. We still
need to discuss exactly how the work relates. They propose a more general conjecture which
implies the first part of my cyclic insertion conjecture. (The case `i > 1. As I understand it,
they have a proof of this conjecture in certain special cases (or it is now in all cases?) However,
they do not yet understand how the `i = 1 with products case fits into their framework?
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