Relating MPL's in weight ≥ 5

Steven Charlton Tübingen (テュービンゲン) & Kyushu (九州大学)

11 November 2017

Outline

1 Introduction and previous work

- 2 Algebraic tools
- 3 Relating Weight ≥ 5 MPL's
- 4 Polylog functional equations from MPL's

Multiple polylogarithms

- Classical polylogarithms well-studied
- Too special; conceals algebraic structure
- Introduce multiple-variable version

Definition (MPL)

$$\mathrm{Li}_{s_1,\ldots,s_k}(z_1,\ldots,z_k) \coloneqq \sum_{0 < n_1 < \cdots < n_k} \frac{z_1^{n_1} \cdots z_k^{n_k}}{n_1^{s_1} \cdots n_k^{s_k}}$$

- $\blacksquare s_1 + \cdots + s_k$ is the weight
- \blacksquare k is the depth

Iterated integrals

Prefer to work with iterated integrals

Definition (Iterated Integral)

$$I(x_0; x_1, \dots, x_n; x_{n+1}) := \int_{\substack{x_0 < t_1 < \dots < t_n < x_{n+1} \\ I_{s_1, \dots, s_k}(x_1, \dots, x_k)}} \frac{\mathrm{d}t_1}{t_1 - x_1} \circ \dots \circ \frac{\mathrm{d}t_n}{t_n - x_n}$$

Related to MPL's by a change of variables

$$I_{s_1,\ldots,s_k}(x_1,\ldots,x_k) = (-1)^k \operatorname{Li}_{s_1,\ldots,s_k}(\frac{1}{z_1\cdots z_k},\frac{1}{z_2\cdots z_k},\ldots,\frac{1}{z_k})$$

Weight ≤ 3

■ All weight ≤ 3 MPL's are polylogs

Theorem (Well-known)

$$\operatorname{Li}_{1,1,1}(x,y,z) = -\operatorname{Li}_{3}(\frac{1-xyz}{1-x}) - \operatorname{Li}_{3}(-\frac{(1-x)y}{1-y}) + \operatorname{Li}_{3}(xy) + \\ + \operatorname{Li}_{3}(-\frac{(1-x)y(1-z)}{(1-y)(1-xyz)}) - \operatorname{Li}_{3}(\frac{xy(1-z)}{1-xyz}) + \\ + \operatorname{Li}_{3}(\frac{1}{1-x}) + \operatorname{Li}_{3}(\frac{y}{y-1}) - \operatorname{Li}_{3}(\frac{y(z-1)}{1-y}) + \\ + \operatorname{products}$$

Weight 4 - overview

■ New phenomenon at weight 4

Observation

Under 8-fold symmetrisation δ :

$$\operatorname{Li}_4(x) \xrightarrow{\delta} 0$$
 $I_{3,1}(x,y) \xrightarrow{\delta} \operatorname{Li}_2(x) \wedge \operatorname{Li}_2(y)$

- Cannot write $I_{3,1}$ as Li_4 's.
 - Alternatively use $Li_{3,1}, I_{2,2}, Li_{2,2}, \ldots$
- Question: how do weight 4 MPL's relate?

Weight 4 - Gangl

Geometry of $\mathfrak{M}_{0,n}$ gives 'coupled' cross-ratio arguments

Definition ('Coupled' cross-ratios)

$$\operatorname{cr}(a, b, c, d_1, \dots, d_{n-3}) = [\operatorname{cr}(a, b, c, d_1), \dots, \operatorname{cr}(a, b, c, d_{n-3})]$$

Shorthand: $abcd_1 \cdots d_{n-3} := cr(a, b, c, d_1, \dots, d_{n-3})$

Results include

- Functional equations for $I_{3,1}, I_{2,1,1}, I_{1,1,1,1}$...
- Express $I_{3,1}$, $I_{2,2}$ and $I_{1,3}$ in terms of any others, modulo Li_4 .
- Express $I_{2,1,1}$ in terms of $I_{3,1}$

Our goal: extend this to weight ≥ 5 .

Algebraic tools

Iterated integrals - algebraic structure

Hopf algebra, with Goncharov's coproduct

$$\leadsto I^{\mathfrak{a}}(x_{0}; x_{1}, x_{3}, x_{6}; x_{9}) \otimes I^{\mathfrak{a}}(x_{0}; x_{1})I^{\mathfrak{a}}(x_{1}; x_{2}; x_{3}) \cdot I^{\mathfrak{a}}(x_{3}; x_{4}, x_{5}; x_{6})I^{\mathfrak{a}}(x_{6}; x_{7}, x_{8}, x_{9})$$

Definition

$$\Delta I^{\mathfrak{a}}(x_{0}; x_{1}, \dots, x_{n}; x_{n+1}) = \sum_{\substack{S \text{ subset} \\ x_{1} \text{ of } x_{1} \text{ of } x_{2} \text{ of } x_{2} \text{ of } x_{3} \text{ of } x_{4} \text{ of } x_{2} \text{ of } x_{3} \text{ of } x_{4} \text{ of } x_{4$$

Iterated integrals - symbol

Algebraic invariant which captures the differential properties

Definition

$$\mathcal{S}\left(\int_{w} \mathrm{d}F_{1} \circ \cdots \circ \mathrm{d}F_{n}\right) := F_{1} \otimes \cdots \otimes F_{n}$$

Obtained by maximally iterated coproduct

$$S(I(x_0; x_1, \dots, x_n; x_{n+1})) \leftrightarrow \Delta^{[n]} I^{\mathfrak{a}}(x_0; x_1, \dots, x_n; x_{n+1})$$

$$\Delta^{[m]} \colon \mathcal{A}_m \xrightarrow{\Delta} \mathcal{A}_{m-1} \otimes \mathcal{A}_1$$

$$\xrightarrow{\Delta \otimes \mathrm{id}} \mathcal{A}_{m-2} \otimes \mathcal{A}_1 \otimes \mathcal{A}_1$$

$$\cdots \xrightarrow{\Delta \otimes \mathrm{id}^{\otimes (m-1)}} \bigotimes_{m} \mathcal{A}_1$$

Symbol of $I_{3,1}$

Example

$$S(I_{3,1}(x,y)) = (1 - \frac{1}{x}) \otimes x \otimes x \otimes (1 - \frac{1}{y}) +$$

$$+ (1 - \frac{1}{x}) \otimes x \otimes (1 - \frac{1}{y}) \otimes x +$$

$$- (1 - \frac{1}{x}) \otimes x \otimes (1 - \frac{1}{y}) \otimes y +$$

$$+ (1 - \frac{1}{x}) \otimes \frac{1 - y}{x - y} \otimes \frac{x}{y} \otimes x +$$

$$- (1 - \frac{1}{x}) \otimes \frac{1 - y}{x - y} \otimes \frac{x}{y} \otimes y +$$

$$+ (1 - \frac{1}{y}) \otimes (1 - \frac{y}{x}) \otimes \frac{x}{y} \otimes x +$$

$$+ (1 - \frac{1}{y}) \otimes (1 - \frac{y}{x}) \otimes \frac{y}{x} \otimes y$$

$$\in \mathbb{Q}(x, y)^{\otimes 4}$$

- Very concrete/explicit object.
- Computation reduced to multilinear algebra

Symbol modulo products, modulo δ

- Can work with iterated integrals modulo products
 - Pass to Lie coalgebra of irreducibles $\mathcal{L}_{\bullet} = \mathcal{A}_{\bullet}/\mathcal{A}_{>0}^2$.
 - lacksquare Obtain: cobracket $\delta = (\pi \otimes \pi) \circ (\Delta \Delta^{\operatorname{op}})$ killing Li_n
- Analogue of these construction on the symbol

Strategy to study relations

- **1** Work modulo δ , to find 'top' slice (depth ≥ 2 part): $\stackrel{\delta}{=}$
- **2** Find Li_n terms, to get identity modulo products: $\stackrel{\square}{=}$ For more precision
 - 3 Find product terms to get symbol level identity: $\stackrel{\mathcal{S}}{=}$
 - 4 Compute slices of Δ to find constant \times lower-weight corrections

Relating Weight ≥ 5 MPL's

Weight 5, depth 2 - symmetries

■ Depth 2 integrals: $I_{4,1}, I_{3,2}$ (and also $I_{2,3}, I_{1,4}$)

Theorem

Integrals $I_{4,1}$, $I_{3,2}$ satisfy the following anti-symmetry

$$I_{4,1}(x,y) + I_{4,1}(\frac{1}{x}, \frac{1}{y}) \stackrel{\sqcup}{=} \operatorname{Li}_{5}(-[x] - [y] - 4[\frac{x}{y}])$$
$$I_{3,2}(x,y) + I_{3,2}(\frac{1}{x}, \frac{1}{y}) \stackrel{\sqcup}{=} \operatorname{Li}_{5}(-[x] + 4[y] + 6[\frac{x}{y}])$$

Compare with

Theorem (Gangl)

$$I_{3,1}(x,y) - I_{3,1}(\frac{1}{x}, \frac{1}{y}) \stackrel{\sqcup}{=} \text{Li}_4([x] - [y] + 3[\frac{x}{y}])$$

Weight n, depth 2 - symmetries

 \blacksquare These (anti-)symmetries generalise to weight n

Theorem

For $a, b \in \mathbb{Z}_{>1}$, the following holds modulo products

$$I_{a,b}(x,y) - (-1)^{a+b} I_{a,b}(\frac{1}{x}, \frac{1}{y}) \stackrel{\sqcup}{=} (-1)^{a+b} \operatorname{Li}_{a+b}(x) + (-1)^b \binom{a+b-1}{a} \operatorname{Li}_{a+b}(y) - (-1)^a \binom{a+b-1}{b} \operatorname{Li}_{a+b}(\frac{x}{y})$$

Example

Can give explicit product term for the above identities. Example:

$$I_{4,1}(x,y) + I_{4,1}(\frac{1}{x}, \frac{1}{y}) \stackrel{\mathcal{S}}{=} \operatorname{Li}_{5}(-[x] - [y] - 4[\frac{x}{y}]) +$$

$$\operatorname{Li}_{4}(y) \log(x) + \operatorname{Li}_{4}(\frac{x}{y}) \log(\frac{x}{y}) + \frac{1}{5!} (\log^{5}(\frac{x}{y}) - \log^{5}(x)) +$$

$$- \frac{1}{2!} \operatorname{Li}_{3}(y) \log^{2}(x) + \frac{1}{3!} \operatorname{Li}_{2}(y) \log^{3}(x) - \frac{1}{4!} \operatorname{Li}_{1}(y) \log^{4}(x)$$

Numerically testable identity

- By computing 'slices' $\Delta_{1,...,1,n}$, can find constant × lower-weight terms.
- Get numerically testable identity (for $I_{n,1}$)
- Already generalised via analytic techniques to the parity theorem for MPL's

Theorem (MPL Parity Theorem – Panzer, 2015)

$$\operatorname{Li}_{s_1,\ldots,s_k}(x_1,\ldots,x_k) - (-1)^{x_1+\cdots+x_k} \operatorname{Li}_{s_1,\ldots,s_k}(\frac{1}{x_1},\ldots,\frac{1}{x_k})$$

= explicit lower depth and products

$I_{4,1}$ symmetry

Proposition

$$I_{4,1}(x,y) - I_{4,1}(y,x) \stackrel{\delta}{=} 0$$

Instance of following exact identity

Theorem

$$I_{n,1}(x,y) - (-1)^n I_{n,1}(y,x) = \sum_{i=1}^n (-1)^{n-i} I_i(x) I_{n+1-i}(y)$$

Corollary (Gangl)

$$I_{3,1}(x,y) + I_{3,1}(x,y) \stackrel{\sqcup}{=} 0$$

$I_{4.1}$ 3-term relation

Proposition

$$I_{4,1}(x,y) + I_{4,1}(\frac{1}{1-x}, \frac{1}{1-y}) + I_{4,1}(1 - \frac{1}{x}, 1 - \frac{1}{y}) \stackrel{\delta}{=} 0$$

■ New phenomenon: Nielsen polylogarithms

Definition

$$S_{p,q}(x) := (-1)^p I(0; \{1\}^p, \{0\}^q; x)$$

Nielsen vanishes under coboundary δ .

- Goncharov's 'reduction' conjecture ↔ Nielsen equals classical
- Not clear how to write $S_{3,2}(x)$ as Li_5

$I_{4,1}$ 3-term - Li_5 and Nielsen terms

Theorem

$$I_{4,1}(x,y) + I_{4,1}(\frac{1}{1-x}, \frac{1}{1-y}) + I_{4,1}(1 - \frac{1}{x}, 1 - \frac{1}{y}) \stackrel{\square}{=}$$

$$- 2\operatorname{Li}_{5}(\frac{x}{y}) - 2\operatorname{Li}_{5}(\frac{1-y}{1-x}) - 2\operatorname{Li}_{5}(\frac{y(1-x)}{x(1-y)}) +$$

$$- 2\operatorname{Li}_{5}(x) - \operatorname{Li}_{5}(1 - \frac{1}{x}) + S_{3,2}(x) +$$

$$- 2\operatorname{Li}_{5}(y) - \operatorname{Li}_{5}(1 - \frac{1}{y}) + S_{3,2}(y)$$

Remark

Symmetry broken on RHS, to reduce number of Nielsen's

$$S_{3,2}([x] + [\frac{1}{1-x}] + [1 - \frac{1}{x}]) \stackrel{\sqcup}{=} 3S_{3,2}(x) - 3\operatorname{Li}_5([\frac{1}{1-x}] + [x])$$

Can find explicit product terms, to get symbol level identity

$I_{3,2}$ relations

Relations are more complicated

■ Simplest is 4-term relation

Proposition

$$\operatorname{Alt}_{d,e} \operatorname{Cyc}_{c,d} I_{3,2}(ab(\mathbf{c}(\mathbf{d})\mathbf{e})) \stackrel{\delta}{=} 0$$

'Anti-symmetrisation' of the 2-term $I_{4,1}$ identity swapping $x \leftrightarrow y$.

Next is 6-term relation

Proposition

$$\operatorname{Alt}_{d.e} \operatorname{Cyc}_{a.b.c} I_{3.2}((\operatorname{abc})(\operatorname{de})) \stackrel{\delta}{=} 0$$

'Anti-symmetrisation' of the 3-term $I_{4,1}$ identity

'Exceptional' $I_{3,2}$ relation

- 2-, 4-, 6-term describe 90 out of 91 relations
- Last relation has 30-terms

Proposition

$$\operatorname{Cyc}_{a,b,c,d,e} \operatorname{Cyc}_{a,b,c} I_{3,2}(abcde) \stackrel{\delta}{=} \operatorname{Cyc}_{a,c,e,b,d} \operatorname{Cyc}_{a,c,e} I_{3,2}(acebd)$$

Remark

Better description with 60-terms:

$$\sum_{\sigma \in A_5} I_{3,2}(\sigma \cdot abcde) \stackrel{\delta}{=} 0$$

Conceptually explained with representation theory

Relating $I_{3,2}$ and $I_{4,1}$

• Structure of $I_{3,2}$ simplifies, modulo $I_{4,1}$.

Proposition

$$\operatorname{Cyc}_{d,e} I_{3,2}(abc(\mathbf{de})) \stackrel{\sqcup}{=} -3I_{4,1}(abcde)$$
$$\operatorname{Cyc}_{c,d} I_{3,2}(ab(\mathbf{cd})e) \stackrel{\delta}{=} -\operatorname{Cyc}_{c,d,e} I_{4,1}(ab(\mathbf{cde}))$$

Anti-symmetric in **ab** and cde, modulo $I_{4,1}$ and depth 1.

One further 10-term relation

Remark

Expect that index 1 can always be eliminated. Can eliminate $I_{4,1}$, using above.

$I_{3,2}$ in terms of $I_{4,1}$?

Can express $I_{4,1}$ in terms of $I_{3,2}$. Converse?

- 'Coupled' cross-ratios are not sufficient
- Modulo δ , see $I_{3,2}$ is dim 29, $I_{4,1}$ is dim 20 subspace.

Observation

$$I_{4,1}(x,y) \xrightarrow{\delta} I_{2}(x) \wedge I_{3}(y) - I_{3}(x) \wedge I_{2}(y)$$

$$\frac{1}{2}I_{4,1}(x,[y] - [\frac{1}{y}]) \xrightarrow{\delta} I_{3}(x) \wedge I_{2}(y)$$

$$I_{3,2}(x,y) \xrightarrow{\delta} -I_{2}(x) \wedge I_{3}(\frac{x}{y}) + I_{2}(y) \wedge I_{3}(\frac{x}{y}) + 2I_{2}(x) \wedge I_{3}(y) - I_{2}(y) \wedge I_{3}(x)$$

Leads to 'brute force' way to write $I_{3,2}$ as $I_{4,1}$'s

$I_{3,2}$ in terms of $I_{4,1}$

Theorem

 $I_{3,2}$ can be expressed in terms of $I_{4,1}$, and explicit Li_5 's modulo products

$$I_{3,2}(x,y) \stackrel{\square}{=} -\frac{1}{2}I_{4,1}([x,\frac{1}{y}] + [x,\frac{y}{x}] + 3[x,y] - [y,\frac{x}{y}] - [y,\frac{y}{x}]) + + \operatorname{Li}_5(\dots + \frac{15}{22}[-\frac{x(1-y)(x-y)}{(1-x)^2y}] + \dots)$$

Remark

- Involves 141 Li₅ terms
- Found with heavy computer assistance: Radchenko has procedure to find 'good arguments'

Weight > 5

Depth 2 summary - modulo products

Observation

Stuffle:
$$I_{a,b}(x,y) + I_{b,a}(x,\frac{x}{y}) = I_{a+b}(x) + I_b(y) * I_a(\frac{x}{y})$$

■ No indeed to analyse $I_{1,4}$, $I_{2,3}$

$$\begin{array}{c} \text{antisymmetry} \\ \text{symmetry} \\ \text{3-term relation} \end{array} \left\{ \begin{array}{c} I_{4,1} \xrightarrow{\text{easy sum} \atop \leftarrow -------} I_{3,2} \\ I_{1-1} \\ \text{equiv} \end{array} \right\} \begin{array}{c} \text{antisymmetry} \\ \text{4-term relation} \\ \text{6-term relation} \\ I_{1,4} \xrightarrow{\leftarrow ------------} I_{2,3} \end{array} \right\} \begin{array}{c} \text{antisymmetry} \\ \text{4-term relation} \\ \text{6-term relation} \\ \text{30 -term relation} \end{array}$$

30 -term relation

Simpler modulo $I_{4,1}$

Weight 5, depth 3

- Integrals $I_{3,1,1}$, $I_{1,3,1}$, $I_{1,1,3}$, $I_{2,2,1}$, $I_{2,1,2}$, $I_{1,2,2}$.
- Typically relations (modulo δ) are very complicated; (almost) no straight forward symmetries

Proposition

Only symmetry modulo δ is

$$I_{2,2,1}(x,y,z) \stackrel{\sqcup\!\sqcup}{=} I_{2,2,1}(z,y,x)$$

Theorem

$$I_{a,b,1}(x,y,z) + (-1)^{a+b} I_{b,a,1}(z,y,x) = \sum_{i=1}^{b} (-1)^{i} I_{i}(z) I_{a,b+1-i}(x,y) - (-1)^{a+b} \sum_{i=1}^{a} (-1)^{i} I_{i}(x) I_{b,a+1-i}(z,y)$$

Depth 3, modulo depth 2

- Idea: search modulo depth 2
- lacksquare Only need to search modulo $I_{3,2}$
- Warning: use only 'coupled' cross ratios
 - (Expect: everything in weight 5 is depth ≤ 2 .)

Proposition

Obtain many new symmetries

$$I_{3,1,1}((\mathbf{ba})cdef) \stackrel{I_{3,2}}{=} I_{3,1,1}(abcdef) \stackrel{I_{3,2}}{=} I_{3,1,1}(ab(\mathbf{fedc}))$$

$$I_{2,1,2}((\mathbf{ba})cdef) \stackrel{I_{3,2}}{=} I_{2,1,2}(abcdef) \stackrel{I_{3,2}}{=} I_{2,1,2}(\mathbf{fedc})$$

$$\parallel_{\wp}^{\wp}$$

$$I_{2,1,2}(ab(\mathbf{dc})(\mathbf{fe}))$$

Relating depth 3 integrals

Theorem

Weight 5 depth 3 integrals span the same space, modulo $I_{3,2}$.

Example

$$I_{1,3,1}(abc(\mathbf{f})e(\mathbf{d})) \stackrel{\sqcup}{=} I_{3,1,1}(abcdef) \stackrel{I_{3,2}}{=} I_{1,1,3}(ab(\mathbf{dc})(\mathbf{fe}))$$

$$I_{2,2,1}(abcdef) \stackrel{\sqcup}{=}$$

$$-I_{3,1,1}([abc(\mathbf{def})] + [abc(\mathbf{dfe})] + [abc(\mathbf{fde})] + [abc(\mathbf{fed})])$$

$$I_{3,1,1}(abcdef) \stackrel{I_{3,2}}{=} \sum 197I_{2,1,2}\text{'s}$$

$$\vdots$$

Depth 3 summary – modulo $I_{3,2}$

- Each integral has 2 symmetries
- \blacksquare $I_{2,1,2}$ has 3 symmetries

Polylog functional equations from MPL's

Goncharov's 'depth-reduction' idea

Element $\kappa(x,y)$, essentially $I_{3,1}(x,y)$, has coboundary $\mathrm{Li}_2(x) \wedge \mathrm{Li}_2(y)$

- lacksquare Substituting $x={
 m Li}_2$ functional equations gives coboundary 0
- Expect $I_{3,1}(\text{Li}_2 \text{ FE}, y) \stackrel{\sqcup}{=} \sum \text{Li}_4$'s
- Get Li₄ functional equation by expanding in two ways

$$I_{3,1}(\operatorname{Li}_2 \mathsf{FE}, \operatorname{Li}_2 \mathsf{FE}) \stackrel{\sqcup}{=} \sum \operatorname{Li}_4$$
's

Similar strategy for $\Phi_5(x,y)$, essentially $I_{4,1}(x,[y]-[\frac{1}{y}])$

• Li₅ FE from $x = \text{Li}_3$ FE, $y = \text{Li}_2$ FE.

Remark

Such functional equations should play a key role in a proof of Zagier's polylogarithm conjecture

Li_4 functional equations

Definition (Algebraic Li₂ FE)

Let $p_i(t)$ be roots of $x^a(1-x)^b=t$, $a\neq b\in\mathbb{Z}_{>0}$. Set a+b+c=0. Then

$$\sum_{j} \operatorname{Li}_{2}(p_{j}(t)) \stackrel{\sqcup}{=} 0$$

Theorem (Gangl, 2000)

$$I_{3,1}(\sum_{j} [p_{j}], y) \stackrel{\sqcup}{=} \operatorname{Li}_{4}(\frac{1}{abc} [\frac{t}{y^{a}(1-y)^{b}}] - b[1 - \frac{1}{y}] - c[y] + \\ - \sum_{j} \frac{b}{a} [\frac{1-p_{j}}{1-y}] - \frac{b}{c} [\frac{1-1/y}{1-1/p_{j}}] - \frac{a}{b} [\frac{y}{p_{j}}] - \frac{b}{a} [1 - p_{j}])$$

Corollary

2-variable of family of Li₄ functional equations

Li₄ functional equations

■ Want to do this for the 5-term equation for Li₂, to obtain 'generic' Li₄ functional equation

Theorem (Gangl, 2016)

$$I_{3,1}(\mathrm{Li}_2 \; \textit{five term}, y) = \sum 122 \; \mathrm{Li}_4$$
 's

Corollary

931-term functional equation for Li_4 .

Remark

Goncharov-Rudenko: announced a proof of Zagier's conjecture for n=4. Geometric interpretation of 122 term relation.

Li₅ functional equations

Approach in weight 5 uses $I_{4.1}$

Observation

$$I_{4,1}^-(x,y) = I_{4,1}(x,[y] - [\frac{1}{y}]) \xrightarrow{\delta} \text{Li}_3(x) \wedge \text{Li}_2(y)$$

• I_{41}^- coboundary 0 for $x = \text{Li}_3$ FE or $y = \text{Li}_2$ FE.

Definition (Algebraic Li₃ FE)

$$\sum_{j} a \operatorname{Li}_{3}(p_{j}) - b \operatorname{Li}_{3}(1 - p_{j}) \stackrel{\sqcup}{=} 0$$

Li_5 functional equations

Theorem.

$$I_{4,1}^+(\operatorname{Li}_3 \ \textit{algebraic}, y) = \sum \operatorname{Li}_5$$
 's $I_{4,1}^+(x, \operatorname{Li}_2 \ \textit{algebraic}) = \sum \operatorname{Li}_5$'s $I_{4,1}^+([x] + [\frac{1}{1-x}] + [1 - \frac{1}{x}], y) = \textit{Nielsen} + \sum \operatorname{Li}_5$'s

Corollary

Two different families of 2-variable Li₅ functional equations

roduction Algebraic tools Weight ≥ 5 Polylog FE's

Li₅ functional equations

Example

$$\begin{split} I_{4,1}(x,\sum_{i}[p_{i}]) - I_{4,1}(x,\sum_{i}[\frac{1}{p_{i}}]) &\stackrel{\sqcup}{=} \\ -c\operatorname{Li}_{5}(x) + 2b\operatorname{Li}_{5}(1-x) + 2b\operatorname{Li}_{5}(1-\frac{1}{x}) + \\ + \frac{2}{abc(c-a)}\operatorname{Li}_{5}\left(\left[\frac{t}{x^{a}(1-x)^{b}}\right] + \left[\frac{t}{x^{c}(x-1)^{b}}\right]\right) + \\ + \sum_{i} \left\{-\frac{b}{2(c-a)}\operatorname{Li}_{5}\left(\frac{(1-x)^{2}}{x}\frac{p_{i}}{(1-p_{i})^{2}}\right) + \\ + \left(\frac{c-a}{2b} + 2\right)\operatorname{Li}_{5}\left(xp_{i}\right) + \left(\frac{c-a}{2b} - 2\right)\operatorname{Li}_{5}\left(\frac{x}{p_{i}}\right) + \\ + \frac{2b}{a}\operatorname{Li}_{5}\left(\left[\frac{1}{1-p_{i}}\right] - \left[\frac{1-x}{1-p_{i}}\right] - \left[\frac{1-1/x}{1-p_{i}}\right]\right) + \\ - \frac{2b}{c}\operatorname{Li}_{5}\left(\left[\frac{1}{1-1/p_{i}}\right] - \left[\frac{1-x}{1-1/p_{i}}\right] - \left[\frac{1-1/x}{1-1/p_{i}}\right]\right) \right\} \end{split}$$

troduction Algebraic tools Weight ≥ 5 Polylog FE's

Li_5 functional equations

Task

Use the 5-term ${\rm Li}_2$ relation, and 22-term ${\rm Li}_3$ relation to get a 'generic' ${\rm Li}_5$ functional equation

- Not much progress so far. Difficult to find enough good arguments to get identities.
- Deadline: sometime in 2032...?

roduction Algebraic tools Weight ≥ 5 Polylog FE's

Li₆ functional equations

Have extended a pproach to weight 6 using $I_{5,1}$

Observation

$$I_{5,1}^{+}(x,y) = I_{5,1}(x,[y] + [\frac{1}{y}]) \xrightarrow{\delta} \text{Li}_{3}(x) \wedge \text{Li}_{3}(y)$$

$$I_{5,1}^{-}(x,y) = I_{5,1}(x,[y] - [\frac{1}{y}]) \xrightarrow{\delta} - \text{Li}_{2}(x) \wedge \text{Li}_{4}(y) - \text{Li}_{4}(x) \wedge \text{Li}_{2}(y)$$

- $I_{5,1}^-$: coboundary 0 for Li₃ FE's
- $I_{5,1}^+$: getting coboundary 0 is not so clear

Definition (Algebraic Li₄ FE)

$$\sum_{j} bc \operatorname{Li}_{4}(p_{j}) + ac \operatorname{Li}_{4}(\frac{1}{1-p_{j}}) + ab \operatorname{Li}_{4}(1 - \frac{1}{p_{j}}) \stackrel{\sqcup}{=} 0$$

■ Algebraic Li_4 is a sum of Li_2 FE's \leadsto coboundary 0

troduction Algebraic tools Weight ≥ 5 Polylog FE's

Li_6 functional equations

Theorem

$$\begin{split} I^+_{5,1}(\mathrm{Li}_3 \ \textit{algebraic}, y) &= \sum \mathrm{Li}_6 \text{'s} \\ I^-_{5,1}(\mathrm{Li}_4 \ \textit{algebraic}, y) &= \sum \mathrm{Li}_6 \text{'s} \\ I^+_{5,1}([x] + [\frac{1}{1-x}] + [1 - \frac{1}{x}], y) &= \textit{Nielsen} + \sum \mathrm{Li}_6 \text{'s} \end{split}$$

Corollary

Three new families of 2-variable Li₆ functional equations

Remark

- lacksquare Partial results for $I_{6,1}$, $I_{7,1}$ in weight 7 and weight 8
- lacksquare Possible depth 2 functional equations using $I_{4,1,1}$ in weight 6

roduction Algebraic tools Weight ≥ 5 **Polylog FE's**

Summary

- Relations between weight 5 MPL's
 - \blacksquare Depth 2: symmetries and functional equations and relations modulo δ and modulo products
 - Depth 3: symmetries and relations modulo $I_{3,2}$
- Goncharov's 'depth reduction' strategy
 - Gives polylog functional equations from MPL's
 - Results in weight 5 and 6
 - Ideas for higher weight and depth

Representation theory approach

Integrals as \mathfrak{S}_n representation

- lacksquare \mathfrak{S}_n acts on $\mathfrak{M}_{0,n}$
- Descends to $\operatorname{cr}(a, b, c, d_1, \dots, d_{n-3})$
- So \mathfrak{S}_n acts on weight k iterated integrals

Remark

Some earlier investigations by Brown, unfinished/unpublished draft

Goal

Reduce the amount of brute force computation, conceptually understand previous identities

Rep theory in weight 4

■ 2-variable, weight 4 integrals, modulo products

2-variable, weight 4 Nielsen polylogs, modulo products

Theorem (Brown)

For 'coupled' cross-ratio arguments, Nielsen = $\ker \delta$

ullet So quotient gives: 2-variable, weight 4 integrals, modulo δ

Rep theory identities for $I_{3.1}$

- $I_{3,1}(x,y) \xrightarrow{\delta} I_2(x) \wedge I_2(y)$, non-trivial.
- lacksquare 2-variable, $I_{3,1}$, modulo δ

$$\cong_{\mathfrak{S}_5}$$
 $\stackrel{\dim 6}{=}$

- See a symmetry $a \leftrightarrow b \leftrightarrow c$ and $d \leftrightarrow e$
- At most $\frac{4!}{3!} = 4$ integrals $I_{3,1}((\mathbf{abcd})^{\sigma}e)$, e fixed
- \blacksquare Restricting to \mathfrak{S}_4

$$\cong_{\mathfrak{S}_4} \stackrel{\dim 3}{\longmapsto} \oplus \stackrel{\dim 3}{\longmapsto}$$

- lacktriangle Fixing some position a,b,c,d or e gives a subrep of this
- Implies only 3 dimensional: 2-variable, $I_{3,1}$, modulo δ , fixing e

Rep theory identities for $I_{3,1}$

Must exist a relation

$$\{I_{3,1}(abc(\mathbf{d})e), I_{3,1}(abd(\mathbf{c})e), I_{3,1}(acd(\mathbf{b})e), I_{3,1}(bcd(\mathbf{a})e)\}$$

- Can show 2-variable, $I_{3,1}$, modulo δ , fixing e $\cong_{\mathfrak{S}_4}$ $\stackrel{\dim 3}{\bigsqcup}$ (Compute trace of $\sigma=(1,2)$.)
- Restrict to C_4 : $\operatorname{Res}_{C_4}^{\mathfrak{S}_4} \stackrel{\dim 3}{=} \cong_{C_4} \zeta_4 \oplus (-1) \oplus \zeta_4^3$
- Trivial representation doesn't appear, but

$$I_{3,1}((\mathbf{abcd})^{\mathrm{cyc}}e)$$

is a copy of the trivial representation

Theorem (Gangl)

$$I_{3,1}((\mathbf{abcd})^{\mathrm{cyc}}e) \stackrel{\delta}{=} 0$$

Rep theory in weight 5

- More complicated!
- 2-variable, weight 5, mod Ш

■ 2-variable, weight 5, Nielsen

lacksquare Conclude 2-variable, weight 5, mod δ

Rep theory in weight 5, Depth 2

lacksquare 2-variable, weight 5, mod δ

 \blacksquare 2-variable, $I_{4,1}$, δ

■ Sub-rep of 2-variable, $I_{3,2}$, δ

 \blacksquare 2-variable, $I_{3,2} \mod I_{4,1}$

Rep theory for $I_{3,2}$ mod $I_{4,1}$

Proposition

There is a relation between the following 10 elements which span $I_{3,2}$ modulo $I_{4,1}$

$$\{\,I_{3,2}((\mathbf{a_1a_2})\,(\mathbf{b_1b_2b_3}))\,\}$$

■ Restrict to $GA(1,5) = \langle (12345), (2354) \rangle < \mathfrak{S}_5$

shape	[1]	[4]	[2, 2]	[5]	[4]
#ccl	1	5	5	4	5
triv	1	1	1	1	1
sgn	1	-1	1	1	-1
χ_i	1	i	-1	1	-i
χ_{-i}	1	-i	-1	1	i
4d	4	0	0	-1	0

GA(5,1)-identity for $I_{3,2}$

$$\operatorname{Res}_{\mathrm{GA}(1,5)}^{\mathfrak{S}_5} \overset{\dim 5}{ } \oplus \overset{\dim 4}{ } \cong_{\mathrm{GA}(1,5)} \operatorname{\mathsf{triv}} \oplus 2 \cdot \overset{\dim 4}{\mathsf{4d}}$$

Theorem

The following $\mathrm{GA}(1,5)$ -symmetric identity holds for $I_{3,2}$ modulo $I_{4,1}$

$$\sum_{g \in GA(1,5)} \operatorname{sgn}(g) I_{3,2}(g \cdot abcde) \stackrel{I_{4,1}}{=} 0$$

Remark

- The 20-terms in this identity combine into 10 pairs, using the anti-symmetries of $I_{3,2}$ mod $I_{4,1}$.
- Identities from χ_i , χ_{-i} are equivalent to the above.

GA(5,1)-identity for $I_{3,2}$

Can refine the identity so that there is no duplication of terms

$$\begin{split} G \coloneqq \mathrm{GA}(5,1) &= \mathrm{ccl}_G(e) \cup \mathrm{ccl}_G((1\,2\,3\,4\,5)) \cup \mathrm{ccl}_G((2\,3\,5\,4)) \\ &\quad \cup \mathrm{ccl}_G((1\,2)(3\,5)) \cup \mathrm{ccl}_G((1\,2\,5\,4)) \\ &\quad \text{size 5} \end{split}$$

Theorem

$$\sum_{\substack{g \in \operatorname{ccl}(\operatorname{id}) \\ \cup \operatorname{ccl}((1\,2\,3\,4\,5)) \\ \cup \operatorname{ccl}((2\,3\,5\,4))}} \operatorname{sgn}(g) I_{3,2}(g \cdot abcde) \stackrel{I_{4,1}}{=} 0$$