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Introduction and previous work



Introduction

Multiple polylogarithms

m Classical polylogarithms well-studied
m Too special; conceals algebraic structure

m Introduce multiple-variable version

Definition (MPL)

| g
Llsl,...,sk (Z].a sty Zk) = Z nSl nsk
0<ny<--<np 1 k

B S;+ .-+ S is the weight

m k is the depth



Introduction

Iterated integrals

m Prefer to work with iterated integrals

Definition (Iterated Integral)
dty dt,
I($0§$17~--7$n;$n+1) o= ©eece@
t1—x1 tn — xn
2o<t1<-<tn<Tpi1

1517~-~,8k (iU]_, 000 ,"Ek) = I(O’ 1, {0}51—1, T {O}Sk_l; 1)

m Related to MPL's by a change of variables

Isl,...,sk (l‘la e ,ZEk) = (_1)k Li&,...,%(ﬁ? 22}.% geeey i)



Introduction

Weight < 3

m All weight < 3 MPL's are polylogs

Theorem (Well-known)

Lir1a(z,y,2) = — Lis(1f22) — Lis(—U72Y) + Lig(ay) +
. 1—x)y(l—=z . T 1 —z
+ Lis(— {ostiogy) — Lis(L52) +
-|-L13( )_|_L13(L1) Li (y(z 1))
+ products



Introduction

Weight 4 - overview

m New phenomenon at weight 4

Under 8-fold symmetrisation 9:

Lis(z) 5 0
[ . .
I31(z,y) — Lis(x) A Liz(y)
m Cannot write I3 1 as Liy's.
m Alternatively use Liz 1, [2 2, Lig 2, . . ..

m Question: how do weight 4 MPL's relate?



Introduction

Weight 4 - Gangl

Geometry of My ,, gives ‘coupled’ cross-ratio arguments

Definition (‘Coupled’ cross-ratios)

cr(a,b,e,dy, ... dy_3) = [cr(a,b,c,dy), ..., cr(a,b,c, d,_3)]
Shorthand: abed; - - - dy,—3 == cr(a, b, c,dy, ..., dn—3)

Results include

m Functional equations for 1371, 12’1’1, 1171’171 e
m Express 31, I22 and I 3 in terms of any others, modulo Liy.
m Express 51,1 in terms of I3

Our goal: extend this to weight > 5.



Algebraic tools



Algebraic tools

lterated integrals - algebraic structure

m Hopf algebra, with Goncharov's coproduct
Ty  Tp

~ I (2o 1, @3, 65 09) @ I (wo; 1) 1% (215 223 23) -
I%(x3; x4, 53 26) " (65 27, T8, T9)

Definition
a . . _ main a/ cut-off
Al (an Tl -5 Tn; xn-‘rl) = Z ( polygon ® H I polygon )
S subset
T1,...,Tn



Algebraic tools

lterated integrals - symbol

m Algebraic invariant which captures the differential properties

m Obtained by maximally iterated coproduct
S(I(xo; 21,y Tp; Tpt1)) < A[”]I“(xg;xl, ey T Tpg1)
A[m]: A A> Am—1® Ay
Asid, A2 ® A1 @ Ay

A®id®(m—1)
m



Algebraic tools

Symbol of I3,

SI(z,y)=01-)ezrzere(1- l)+
+1-3)®ze(l-1) et

—(1——)®x®(1——)®y+

+(1-DHeo ezt

—(1-1)® eyt

+1l-3)01-Heteat

+1l-,)e(l-Heley
€ Q(z,y)®*

m Very concrete/explicit object.

m Computation reduced to multilinear algebra



Algebraic tools

Symbol modulo products, modulo

m Can work with iterated integrals modulo products

m Pass to Lie coalgebra of irreducibles £, = A,/ A2.
m Obtain: cobracket § = (7 ® 7) o (A — A°P) killing Li,
m Analogue of these construction on the symbol
Strategy to study relations
Work modulo 6, to find ‘top’ slice (depth > 2 part): 2
Find Li,, terms, to get identity modulo products: =
For more precision

Find product terms to get symbol level identity: S

Compute slices of A to find constant x lower-weight
corrections



Relating Weight > 5 MPL's



Weight 5, depth 2 - symmetries

m Depth 2 integrals: 141,32 (and also I3, 11 4)

Integrals 141, I3 satisfy the following anti-symmetry

Lia(z,y) + Lia(3, 3) = Lis(—[z] — [y] — 4[2])
Iyo(z,y) + I32(3 5) = Lis(—[a] +4[y] + 6[%])

m Compare with

Theorem (Gangl)

13,1(1',1/) - 13,1(%7 %) = Li4([.’L‘] _ [y] + 3[5])

10/35



Weight n, depth 2 - symmetries

m These (anti-)symmetries generalise to weight n

For a,b € Z~1, the following holds modulo products

Lop(z,y) = (=1)***Lap(3, 3) = (~1)*** Liays(2) +

+ (=1 ("7 Liaws(y) — (~1)*(**3 ") Liats(2)

Can give explicit product term for the above identities. Example:

Iia(z,y) + Iaa (3, ) = 2 Lis(~[z] - [y] —A[Z])+
Lia(y) log(z) + Lia(2) log(2) + 4 (log”(%) — log®(2))+
— 5 Liz(y) log®() + 5 Lia(y) log®(x) — 4 Li1(y) log*(x)

11/35



Weight > 5

Numerically testable identity

m By computing ‘slices’ Ay 1, can find
constant x lower-weight terms.

m Get numerically testable identity (for I,, 1)

m Already generalised via analytic techniques to the parity
theorem for MPL's

Theorem (MPL Parity Theorem — Panzer, 2015)

Lisl:"wgk (:Blv °00 vxk) - (_1)z1+-~~+xk Lislwwsk(%’ ) é)

= explicit lower depth and products

12/35



Iy 1 symmetry

Proposition

)
Lip(z,y) — Ini(y,2) =0

Instance of following exact identity

Theorem
n

Ialhin = (GDIE Al el = D (G A @)
=

Corollary (Gangl)
Iii(z,y) + Ia(z,y) =0

13 /35



Weight > 5

I, 3-term relation

5
Iia(z,y) + I (1, ﬁ) +Ig1(1-2,1-2)=0

T Yy

m New phenomenon: Nielsen polylogarithms

Spq(x) = (=1)P1(0; {1}*,{0}% z)

Nielsen vanishes under coboundary §.

m Goncharov's ‘reduction’ conjecture <> Nielsen equals classical

m Not clear how to write S32(x) as Lis

14 /35



I, 3-term - Lis and Nielsen terms

Iyq(x, y)+I41(% )+ La(1-1 —g)
2L

— 2Ll5( ) o
— 2Lis(x) — L15(1 1)+ S50() +
< :

—2Li5(y) — Lis(1 — ) + S3,2(y)

m Symmetry broken on RHS, to reduce number of Nielsen's

Ss2([z] + [125] + [1 — 1]) = 3S852(2) — 3Lis([:L5] + [2])

m Can find explicit product terms, to get symbol level identity

15/35



Weight > 5

I5 5 relations

Relations are more complicated

m Simplest is 4-term relation

0
Altd’e Cyccyd Ing(CLb(C (d)e)) =0
‘Anti-symmetrisation’ of the 2-term 1,1 identity swapping x <+ y.

m Next is 6-term relation

)
Altge Cycyp,e I3 2((abc)(de)) =0
‘Anti-symmetrisation’ of the 3-term 1, identity

16 /35



Weight > 5

‘Exceptional’ I35 relation

m 2-, 4-, 6-term describe 90 out of 91 relations

m Last relation has 30-terms

[
Cyca,b,c,d,e Cyca,b,c I372(ab0de) = Cyca,c,e,b,d Cyca,c,e 1372 (acebd)

Better description with 60-terms:

Z I3 5(0 - abede) 20
og€As5

m Conceptually explained with representation theory

17/35



Relating I35 and I

m Structure of I3 simplifies, modulo Iy ;.

Cycg . I3,2(abc(de)) = 314, (abede)
Cyc,q I3 5(ab(cd)e) S Cyc, g I41(ab(cde))

Anti-symmetric in ab and cde, modulo 1,1 and depth 1.
m One further 10-term relation

RENEILS

Expect that index 1 can always be eliminated. Can eliminate Iy 1,
using above.

18/35



I35 in terms of 1,7

Can express 141 in terms of I35. Converse?

m 'Coupled’ cross-ratios are not sufficient

m Modulo d, see I3 is dim 29, I, ; is dim 20 subspace.

I4,1(a:,y) i) I IL’) A Ig(y) — 13(.’1,‘) A\ Ig(y)
Laa(e, [y - [2) 5 Is

Leads to ‘brute force’ way to write [32 as I41's

19/35



I35 in terms of I,

I3 9 can be expressed in terms of 141, and explicit Lis's modulo
products

w

Isa(ey) % = 3lar(w 3]+ [ 2+ 3[e,0) = [, 2]~ [, 2) +

m Involves 141 Lis terms

m Found with heavy computer assistance: Radchenko has
procedure to find ‘good arguments’

20 /35



Weight > 5

Depth 2 summary - modulo products

Stuffle: Ia,b(x7 y) + Ib,a(w7 %) = a-i-b(x) + Ib(y) * Ia(%)

m No indeed to analyse Iy 4, I2 3

€asy sum

—> .
_ VP — I3 antisymmetry
antisymmetry hard sum ,
4-term relation
symmetry -1 1-1
equiv equiv 6-term relation

3-term relation _
30 -term relation

Simpler modulo Iy 1

21/35



Weight 5, depth 3

m Integrals 1311, 11,31, 11,13, [221, [21,2, [122.

m Typically relations (modulo d) are very complicated; (almost)
no straight forward symmetries

Only symmetry modulo § is

12,2,1(1'7 Y, Z) g 12,2,1(Z7 Y, ‘T)

Theorem

Ia,b,1(~r7 Y, Z) + (_1)a+bIb a 1(2 Y, SIT) =
b

Z(_l)ljl( )Iab+1 l(x y a-l—bz Iba—l—l 1(2 y)
=1

22 /35



Depth 3, modulo depth 2

m Idea: search modulo depth 2

m Only need to search modulo I3 2

m Warning: use only ‘coupled’ cross ratios
m (Expect: everything in weight 5 is depth < 2.)

Obtain many new symmetries

Is11((ba)edef) 22 Iy 11 (abedef) 22 Iy 1 1 (ab(fedc))

In1a((ba)edef) %2 In1 o(abedef) 22 I o(fedc)
3
127172 (ab(dc) (fe))

23 /35



Relating depth 3 integrals

Weight 5 depth 3 integrals span the same space, modulo I3 .

11’3’1(abc(f)e(d)) = I3 1 1(abcdef) = Il 1 3(CLb(dC) (fe))

I5 21 (abedef) =
—1I31,1([abe(def)] + [abc(dfe)] + [abe(fde)] + [abe(fed)])

131 1(abcdef 21971212 S

24 /35



Weight > 5

Depth 3 summary — modulo I3

m Each integral has 2 symmetries

m /512 has 3 symmetries

1-1 equiv 1-1 equiv
I 31 ¢ I311 I3
|
[ i :
02”35 shorti long . long
- REDY L
Iono o oy <oy g
—— g g
3 symmetries Z Z

25 /35



Polylog functional equations from MPL's



Polylog FE's

Goncharov's ‘depth-reduction’ idea

Element x(x,y), essentially I31(z,y), has coboundary Liz(z) A Lia(y)

m Substituting z = Lis functional equations gives coboundary 0
m Expect I3 (Liz FE,y) = Y Liy's
m Get Liy functional equation by expanding in two ways

IgJ(Lig FE,Lig FE) g ZLM'S

Similar strategy for ®5(z,y), essentially Iy (x, [y] — [%])
= Lis FE from = = Liz FE, y = Li, FE.

Remark

Such functional equations should play a key role in a proof of
Zagier's polylogarithm conjecture

26 /35



Polylog FE's

Lis functional equations

Definition (Algebraic Liy FE)

Let p;(t) be roots of z%(1 — 2)® =t, a # b € Z~. Set
a+b+c=0. Then

Theorem (Gangl, 2000)

I3 1(2-[193‘] ) L14(abc[ﬁ] — b1 — y] —clyl +
-2l - e (i) = 813 = 2l =)

Corollary

2-variable of family of Li4 functional equations
27 /35



Polylog

Lis functional equations

m Want to do this for the 5-term equation for Liy, to obtain
‘generic’ Liy functional equation

Theorem (Gangl, 2016)

I31(Liy five term,y) = > 122 Liy's

Corollary

931-term functional equation for Liy.

Goncharov-Rudenko: announced a proof of Zagier's conjecture for
n = 4. Geometric interpretation of 122 term relation.

FE's

28 /35



Polylog FE's

Lis functional equations

Approach in weight 5 uses 141

I3y (z,y) = Ina (=, [y] — [1]) % Lis(x) A Lia(y)

m I, coboundary 0 for x = Liz FE or y = Lis FE.

Definition (Algebraic Liz FE)

> aLis(p;) — bLiz(1 —p;) =0
j

29 /35



Polylog FE's

Lis functional equations

Izl (Lis algebraic,y) = Z Lis’s
III (x,Liy algebraic) = Z Lis's
III([{E] + 2]+ [1 — L], y) = Nielsen + ZLi5 5

Corollary

Two different families of 2-variable Lis functional equations

30/35



Polylog FE's

Lis functional equations

Isn (@, ilpi]) = Laa (e, Til5]) =
_ cL15( )+ 2bL15(1 —x)+ 2bL15(1 — _) +

+  +
@|I
+
o
=
&
s
=
+ =F
||
Q
|
o
o
&
~—
|&
_|_ N _
_|_
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Polylog FE's

Lis functional equations

Use the b-term Liy relation, and 22-term Lis relation to get a
‘generic’ Lis functional equation

m Not much progress so far. Difficult to find enough good
arguments to get identities.

m Deadline: sometime in 2032...7

32/35



Polylog FE's

Lig functional equations

Have extended a pproach to weight 6 using I5 1

I (2,9) = Isa (e, o] + [§]) = Lis(x) A Lis(y)

I () = Isa (2, [y) — [L]) % — Lis(2) A Lia(y) — Lia(x) A Lia(y)
m [;,: coboundary 0 for Liz FE's
] Igfl: getting coboundary 0 is not so clear

Definition (Algebraic Liy FE)

Z beLis(pj) + acLL;(l%pj) + abLig(1 — pij) 2o
J

m Algebraic Lig is a sum of Liy FE's ~» coboundary 0

33/35



Polylog FE's

Lig functional equations

I;l (Lis algebraic,y) = Z Lig's
Is, (Liy algebraic,y) = Z Lig's
Ing([x] + [ﬁ] +[1- %],y) = Nielsen + ZLi@- 's

Corollary

Three new families of 2-variable Lig functional equations

m Partial results for I 1, I7,1 in weight 7 and weight 8

m Possible depth 2 functional equations using /41,1 in weight 6

34 /35



Polylog FE's

Summary

m Relations between weight 5 MPL's

m Depth 2: symmetries and functional equations and relations
modulo ¢ and modulo products

m Depth 3: symmetries and relations modulo I3 5

m Goncharov's ‘depth reduction’ strategy
m Gives polylog functional equations from MPL's

m Results in weight 5 and 6

m |deas for higher weight and depth

35/35



Representation theory approach



Rep Theory

Integrals as &,, representation

m G, acts on My,
m Descends to cr(a,b,c,dy,...,dy—3)

m So G, acts on weight k iterated integrals

Some earlier investigations by Brown, unfinished /unpublished draft

Reduce the amount of brute force computation, conceptually
understand previous identities

36 /35



Rep Theory

Rep theory in weight 4

m 2-variable, weight 4 integrals, modulo products
dim1
0 dmd o ogme 5 dim5

=y @ ® Ej el oHHe @3 « dim21

m 2-variable, weight 4 Nielsen polylogs, modulo products
diml gy g

dims ~ dim5
>, @ ® Ej sHHe [ «dim15

Theorem (Brown)
For ‘coupled’ cross-ratio arguments, Nielsen = ker &
m So quotient gives: 2-variable, weight 4 integrals, modulo §

dim 6
[ ]

>~ [

37/35



Rep Theory

Rep theory identities for I3 ;

m [3(x,y) LN I(x) A I2(y), non-trivial.

m 2-variable, 31, modulo ¢

dim 6
[ ]

=65

See a symmetry a <> b<>cand d < e

m At most % = 4 integrals I3;((abcd)?e¢), e fixed

Restricting to G4 dim3 g
11m

= Ej @Hﬂj

Fixing some position a, b, ¢, d or e gives a subrep of this

Implies only 3 dimensional: 2-variable, I3 1, modulo J, fixing e
dim 3 dim 3

e, Ej OR =g, HM

38/35



Rep Theory

Rep theory identities for I3 ;

m Must exist a relation

{ Iz.1(abe(d)e), I31 (abd(c)e), I3 1 (acd(b)e), I31(bed(a)e) }

dim 3
m Can show 2-variable, I3 1, modulo 4, fixing e =g, Hjj
(Compute trace of o = (1,2).)

dim 3
m Restrict to Cy: Resgf HY~, e (- o
m Trivial representation doesn’t appear, but

I3 1((abed)“e)

is a copy of the trivial representation

Theorem (Gangl)

Is1((abed)™e) £ 0

39/35



Rep Theory

Rep theory in weight 5

m More complicated!

m 2-variable, weight 5, mod LU
4 dim 1

i 3 dim
dim 1 dim 5 dim 4 dim5 dim6

e, (T TB3HO2H B3 @3 o2 Ej o @ + dim 54

m 2-variable, weight 5, Nielsen

: dim 1
Gy dim5  dima  dm5 PR

e, TITOOHHoH He @3 @ Ej B E + dim 20

m Conclude 2-variable, weight 5, mod ¢
i ~ dim 4
dim 5 dim 4 dim5 dim6 im

=65 2533@5333@2@ o @ Ej + dim 34

40 /35



Rep Theory

Rep theory in weight 5, Depth 2

m 2-variable, weight 5, mod ¢
dim5  dim4 dim 5

~s, HHeH De2H @

m 2-variable, 141, §
dim5  dim4  dim?

~s, HHoH e @3

m Sub-rep of 2-variable, I3 9, ¢

dim5  dim4 dim5

g65533@5333@2ﬁ3 I

m 2-variable, I3 9 mod I4 1
dim5 dim4

o [

< dim9

41/35



Rep Theory

Rep theory for I35 mod I,

There is a relation between the following 10 elements which span
13,2 modulo 1471

{ I32((a1a2) (b1b2bs)) }

m Restrict to GA(1,5) = ((12345),(2354)) < &5

shape ] [4]

#ccl
triv
sgn

Xi

X—i

4d

4] [2,2]

N e e
—

— =] ot

[T U 1
—_
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Rep Theory

GA(5, 1)-identity for I35

dim 4
GAOﬁ)E?J@ =GA(ls) tive 2 4d

The following GA(1, 5)-symmetric identity holds for I3 5 modulo
Iy

S sgn(g)lzalg - abede) 20
geGA(L,5)

m The 20-terms in this identity combine into 10 pairs, using the
anti-symmetries of /32 mod Iy .

m Identities from y;, x_; are equivalent to the above.
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Rep Theory

GA(5, 1)-identity for I35

m Can refine the identity so that there is no duplication of terms

size 1 size 4 size b

G = GA(5,1) = cclg(e) Ucclg((12345)) Ucclg((2354))
Ucclg((12)(35)) Ucclg((1254))

size 5 size 5

S sen(g)Iza(g - abede) = 0
g€eccl(id)
Uccl((12345))
Uccl((2354))

4435
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