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Relating MPL’s in weight ≥ 5

Outline

1. Firstly, we will set this work in context: why do we want to relate
weight 5 MPL’s and what is already know.

2. Then we talk about the tools used: the coproduct, and various
versions of the symbol (coarser versions, which ignore products or
depth 1 terms).

3. Then we present a sample/overview of out weight 5 identities, and
how they fit into the broader context of weight 5 MPL’s

4. There might only be time to cover one of hte last two sections.
Either I will discuss some work that I have currently engaged in:
trying to conceptually understand these identities using
representation theory. Or I will talk about Goncharov’s depth
reduction strategy to obtain polylog functonal equations from MPL’s
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Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Multiple polylogarithms

Classical polylogarithms well-studied

Too special; conceals algebraic structure

Introduce multiple-variable version

Definition (MPL)

Lis1,...,sk
(z1, . . . , zk) :=

∑
0<n1<···<nk

zn1
1 · · · z

nk
k

ns1
1 · · ·n

sk
k

s1 + · · ·+ sk is the weight

k is the depth
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Introduction and previous work

Multiple polylogarithms

1. Classical polylogarithms are well-studied objects, relating to many
area of mathematics: K-theory, hyperbolic geometry, number
theory. Also connections with particle-physics, cluster algebras, . . .

2. However, classical polylogarithms are somehow too special. By
restricting to them, we loose much of the useful/interesting stucture

3. Introduce a multiple-variable version, defined by the following series.
Generalises the definition of polylogs to a sum over a cone (compare
with MZV’s, etc).

4. As usual, we call the sum of the indices teh weight of the MPL, and
we call the number of indices the depth.



Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Iterated integrals

Prefer to work with iterated integrals

Definition (Iterated Integral)

I(x0;x1, . . . , xn;xn+1) :=
∫

x0<t1<···<tn<xn+1

dt1
t1 − x1

◦ · · · ◦ dtn
tn − xn

Is1,...,sk
(x1, . . . , xk) = I(0;x1, {0}s1−1, . . . , xk, {0}sk−1; 1)

Related to MPL’s by a change of variables

Is1,...,sk
(x1, . . . , xk) = (−1)k Lis1,...,sk

( 1
z1···zk

, 1
z2···zk

, . . . , 1
zk

)
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Iterated integrals

1. We prefer to work with iterated integrals, defined by the following
integral over a simplex of differential forms 1/(t− x). As shorthand,
we will collapse the 0’s down and write them as indices to the
integral.

2. These objects are related to the MPL’s on the previous slide by a
simple change of variables, so we lose nothing by working here.

3. In fact, in some sense we gain: there are some very explicitly defined
algebraic structures on these integrals. We’ll return to them
momentarily. . .



Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Weight ≤ 3

All weight ≤ 3 MPL’s are polylogs

Theorem (Well-known)

Li1,1,1(x, y, z) = − Li3(1−xyz
1−x )− Li3(− (1−x)y

1−y ) + Li3(xy) +

+ Li3(− (1−x)y(1−z)
(1−y)(1−xyz))− Li3(xy(1−z)

1−xyz ) +

+ Li3( 1
1−x) + Li3( y

y−1)− Li3(y(z−1)
1−y ) +

+ products
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Introduction and previous work

Weight ≤ 3

1. All weight ≤ 3 MPL’s are classical polylogs. We can reduce any
weight 2, or 3 MPL to classical polylogarithms by explicit formulae.

2. So the first case to consider really is the behaviour at weight 4.



Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Weight 4 - overview

New phenomenon at weight 4

Observation
Under 8-fold symmetrisation δ:

Li4(x) δ−→ 0

I3,1(x, y) δ−→ Li2(x) ∧ Li2(y)

Cannot write I3,1 as Li4’s.
Alternatively use Li3,1, I2,2,Li2,2, . . ..

Question: how do weight 4 MPL’s relate?
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Introduction and previous work

Weight 4 - overview

1. At weight 4 we encounter for the first time a new phenomoenon.
The classical polylogarithm Li4 no longer suffices to write every
multiple polylogarithm, modulo products.

2. We can see this using the Lie coalgebra structure. Computing the
coboundary map of I3,1 gives Li2(x) ∧ Li2(y), whereas the
coboundary of Li4(x) is 0 (and so by extension) the coboundary of
any combination of Li4’s with any arguments.

3. Since Li2(x) ∧ Li2(y) 6= 0, we have no chance of writing I3,1 in
terms of Li4. So it is a genuinely new function.

4. So this naturally leads to the question of how MPL’s in weight 4
relate to each other. Which ones can be expressed in terms of
others? Do certian combinations of ‘new’ MPL’s reduce to classical
polylogarithms? These questions have already been investigated by
Gangl...



Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Weight 4 - Gangl

Geometry of M0,n gives ‘coupled’ cross-ratio arguments

Definition (‘Coupled’ cross-ratios)

cr(a, b, c, d1, . . . , dn−3) = [cr(a, b, c, d1), . . . , cr(a, b, c, dn−3)]

Shorthand: abcd1 · · · dn−3 := cr(a, b, c, d1, . . . , dn−3)

Results include
Functional equations for I3,1, I2,1,1, I1,1,1,1 . . .

Express I3,1, I2,2 and I1,3 in terms of any others, modulo Li4.

Express I2,1,1 in terms of I3,1

Our goal: extend this to weight ≥ 5.
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Weight 4 - Gangl

1. Small taste of Gangl’s results: to whet the appetite for further
investigation in weight ≥ 5.

2. How were these found? Computer assisted multilinear algebra to
find null vectors of the symbol map, for this above ‘coupled’
cross-ratio arguments.
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Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Iterated integrals - algebraic structure

Hopf algebra, with Goncharov’s coproduct

x9

x8

x7

x6
x5x4

x3

x2

x1

x0

 Ia(x0;x1, x3, x6;x9)⊗ Ia(x0;x1)Ia(x1;x2;x3) ·
Ia(x3;x4, x5;x6)Ia(x6;x7, x8, x9)

Definition

∆Ia(x0;x1, . . . , xn;xn+1) =
∑

S subset
x1, . . . , xn

(
Ia( main

polygon)⊗
∏

Ia( cut-off
polygon)

)
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Algebraic tools

Iterated integrals - algebraic structure

1. (Motivic) iterated integrals have a Hopf algebra structure, given by
Gonchrov’s coproduct. (Very explicitly defined on the integrals).
Arrange the arguments of the integral around a semicircular
polygon. For every subset of the points, we can draw in a ‘main
polygon’ and obtain various cut-off polygons. These give the left
and right terms in the coproduct.

2. This Hopf algebra structure can be used (as one way) to define the
symbol, and the further ‘slices’ of coproduct will provide refinements
to the symbol in later calculations.



Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Iterated integrals - symbol

Algebraic invariant which captures the differential properties

Definition

S
(∫

w
dF1 ◦ · · · ◦ dFn

)
:= F1 ⊗ · · · ⊗ Fn

Obtained by maximally iterated coproduct

S(I(x0;x1, . . . , xn;xn+1))↔ ∆[n]Ia(x0;x1, . . . , xn;xn+1)

∆[m] : Am
∆−→ Am−1 ⊗A1
∆⊗id−−−→ Am−2 ⊗A1 ⊗A1

· · · ∆⊗id⊗(m−1)
−−−−−−−−→

⊗
m

A1
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Relating MPL’s in weight ≥ 5
Algebraic tools

Iterated integrals - symbol

1. The symbol is an algebraic invariant which captures the differential
structure of multiple polylogarithms.

2. The first definition of the symbol given by Goncharov as the ⊗m
invariant was descdribed in terms of certian rooted binary trees
constucted from the integral. An alternative description comes from
writing the iterated integral as a total derivative. Each term in the
integrand then gives a corresponding term in the symbol.

3. Alternatively, it can be described as maximally iterated version of
the previous coproduct. Some kind of ‘top slice’ of the coproduct,
containing the most important information.

4. Expect that every relation between MPL’s lies in the kernel of the
symbol map. Conversely, the symbol should capture the ‘main
terms’ of all relations. That is, modulo constant× lower-depth.

5. Can supplement this with ‘slices’ of the full coproduct (related to
the total derivative), to obtain identities up to a final numerical
constant



Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Symbol of I3,1

Example

S(I3,1(x, y)) = (1− 1
x)⊗ x⊗ x⊗ (1− 1

y )+
+ (1− 1

x)⊗ x⊗ (1− 1
y )⊗ x+

− (1− 1
x)⊗ x⊗ (1− 1

y )⊗ y+

+ (1− 1
x)⊗ 1−y

x−y ⊗
x
y ⊗ x+

− (1− 1
x)⊗ 1−y

x−y ⊗
x
y ⊗ y+

+ (1− 1
y )⊗ (1− y

x)⊗ x
y ⊗ x+

+ (1− 1
y )⊗ (1− y

x)⊗ y
x ⊗ y

∈ Q(x, y)⊗4

Very concrete/explicit object.

Computation reduced to multilinear algebra
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Algebraic tools

Symbol of I3,1

1. One can compute the symbol of I3,1 to be the following. The exact
form of it is rather unimportant at the moment. The point is that
this is a very concrete object living in some tensor algebra.

2. Can easily do explicit computations; they are reduced to multilinear
algebra, which can be implemented with computer programs.
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Symbol modulo products, modulo δ

Can work with iterated integrals modulo products
Pass to Lie coalgebra of irreducibles L• = A•/A2

>0.

Obtain: cobracket δ = (π ⊗ π) ◦ (∆−∆op) killing Lin

Analogue of these construction on the symbol

Strategy to study relations
1 Work modulo δ, to find ‘top’ slice (depth ≥ 2 part): δ=

2 Find Lin terms, to get identity modulo products: �=
For more precision

3 Find product terms to get symbol level identity: S=

4 Compute slices of ∆ to find constant× lower-weight
corrections
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Algebraic tools

Symbol modulo products, modulo δ

1. We can explict the Hopf algebra structure to simplify/guide the
search for identities. We can kill products to obtain a Lie coalgebra,
with a cobracket/coboundary δ.

2. This coboundary kills depth 1 terms: Lin, so acting with it gives us
only the the depth ≥ 2 slice of identities. We can use this to fin the
‘main terms’ in identities, and then try to supplement them with
Lin and product terms to get more ‘accurate identities’

3. I said that these constructions were available on the Hopf algebra
level, but they have an analogue on the level of the symbol, via
explicit formulae.

4. This gives us the following strategy to study relations.
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Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Weight 5, depth 2 - symmetries

Depth 2 integrals: I4,1, I3,2 (and also I2,3, I1,4)

Theorem
Integrals I4,1, I3,2 satisfy the following anti-symmetry

I4,1(x, y) + I4,1( 1
x ,

1
y ) �= Li5(−[x]− [y]− 4[xy ])

I3,2(x, y) + I3,2( 1
x ,

1
y ) �= Li5(−[x] + 4[y] + 6[xy ])

Compare with

Theorem (Gangl)

I3,1(x, y)− I3,1( 1
x ,

1
y ) �= Li4([x]− [y] + 3[xy ])
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Weight 5, depth 2 - symmetries

1. The depth 2 integrals all satisfy an antisymmetry under a↔ b. In
terms of x, y) variables, this is (x, y) 7→ ( 1

x ,
1
y ). The antisymmetry

says that the sum vanishes under the coboundary map, i.e. can be
written as depth 1 terms. I write δ= for this.

2. In both of these cases, we can find the Li5 terms to get versions of
the identity modulo products. (I write �= for this).

3. The I4,1 identity should be compared with Gangl’s identity in
weight 4. One can see similarities in the coefficients. The signs
perhaps depend on the weight? Indeed can give a general result.
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Weight n, depth 2 - symmetries

These (anti-)symmetries generalise to weight n

Theorem
For a, b ∈ Z>1, the following holds modulo products

Ia,b(x, y)− (−1)a+bIa,b( 1
x ,

1
y ) �= (−1)a+b Lia+b(x) +

+ (−1)b
(a+b−1

a

)
Lia+b(y)− (−1)a

(a+b−1
b

)
Lia+b(xy )

Example
Can give explicit product term for the above identities. Example:

I4,1(x, y) + I4,1( 1
x ,

1
y ) S= Li5(−[x]− [y]− 4[xy ])+

Li4(y) log(x) + Li4(xy ) log(xy ) + 1
5!(log5(xy )− log5(x))+

− 1
2! Li3(y) log2(x) + 1

3! Li2(y) log3(x)− 1
4! Li1(y) log4(x)
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Weight n, depth 2 - symmetries

1. On the level of the symbol modulo products, we can always find
these Lin terms for the (x, y) 7→ (1/x, 1/y) (anti-)symmetry.

2. In fact we can go one better, and find explicit product terms for this
(anti-)symemtry. For I4,1, we have the following product terms,
hich is structurally similar to the expression Gangl finds for I3,1 in
weight 4. Comparing with this was helpfl to find the generalisation
to weight n.

3. The proof of this theorem goes via explicit computation of the
symbol using Rhode’s formula for Ia,b using the R-deco polygon
algebra.
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Numerically testable identity

By computing ‘slices’ ∆1,...,1,n, can find
constant× lower-weight terms.

Get numerically testable identity (for In,1)

Already generalised via analytic techniques to the parity
theorem for MPL’s

Theorem (MPL Parity Theorem – Panzer, 2015)

Lis1,...,sk
(x1, . . . , xk)− (−1)x1+···+xk Lis1,...,sk

( 1
x1
, . . . , 1

xk
)

= explicit lower depth and products
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Numerically testable identity

1. The last step would be to find a numerically testable verison of the
identity by adding in the constant times lower-weight terms.

2. One can do this by computing further slices of the coproduct.
Taking ∆1,1,1,2 lets us find weight 4 times iπ terms. Then ∆1,1,3
gives us weight 3 times ζ(3) terms, and so on...

3. This gives an identity for I4,1. By using Gangl/Duhr’s weight 4
case, and finding similar results in weight 6 leads to a candidate
numerically testable identity in weight n.

4. Already these identities have been proven exactly using analytic
techniques, and are contained within the MPL parity theorem of
Erik Panzer. The version for iterated integrals is obtained by the
usual change of variables.
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I4,1 symmetry

Proposition

I4,1(x, y)− I4,1(y, x) δ= 0

Instance of following exact identity

Theorem

In,1(x, y)− (−1)nIn,1(y, x) =
n∑
i=1

(−1)n−iIi(x)In+1−i(y)

Corollary (Gangl)

I3,1(x, y) + I3,1(x, y) �= 0
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I4,1 symmetry

1. We already have a good understanding of 1 class of symmetries on
depth 2 integrals. Are there any others? What other relations does
I4,1 satisfy?

2. Indeed I4,1 satisfies another symmetry, interchanging x↔ y. I3,2
does not satisfy this symmetry.

3. This symmetry is much easier to prove exactly; it holds on any In,1
by expanding out these products using the shuffle product of
iterated integrals. So the identity holds exactly.
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I4,1 3-term relation

Proposition

I4,1(x, y) + I4,1( 1
1−x ,

1
1−y ) + I4,1(1− 1

x , 1−
1
y ) δ= 0

New phenomenon: Nielsen polylogarithms

Definition

Sp,q(x) := (−1)pI(0; {1}p, {0}q;x)

Nielsen vanishes under coboundary δ.
Goncharov’s ‘reduction’ conjecture ↔ Nielsen equals classical

Not clear how to write S3,2(x) as Li5
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I4,1 3-term relation

1. The last type of identity that I4,1 satisfies is this 3-term
symmetrisation under (x, y) 7→ (1/(1− x), 1/(1− y)).

2. If we try to find Li5 terms for this identity, we encounter a new
phenomenon: some kind of obstruction in the form of Nielsen
polylogarithms. The (p, q)-Nielsen polylogarithm is defined by the
following iterated integral, so that Lin is S1,n−1.

3. All of these Nielsen polylogarithms vanish under the coboundary.
Zagier’s polylogarithm conjecture (in some version) says that such
objects shoudl be expressible in terms of classical polylogarithms.
Unfortunately, it is not clear to me how to do this for S3,2. Perhaps
one needs rather complicated arguments? Or perhaps it is not
possible, and the conjecture needs to be rewritten in weight ≥ 5 to
take this into account?
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I4,1 3-term - Li5 and Nielsen terms

Theorem

I4,1(x, y) + I4,1( 1
1−x ,

1
1−y ) + I4,1(1− 1

x , 1−
1
y ) �=

− 2 Li5(xy )− 2 Li5( 1−y
1−x)− 2 Li5(y(1−x)

x(1−y)) +

− 2 Li5(x)− Li5(1− 1
x) + S3,2(x) +

− 2 Li5(y)− Li5(1− 1
y ) + S3,2(y)

Remark

Symmetry broken on RHS, to reduce number of Nielsen’s

S3,2([x] + [ 1
1−x ] + [1− 1

x ]) �= 3S3,2(x)− 3 Li5([ 1
1−x ] + [x])

Can find explicit product terms, to get symbol level identity
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I4,1 3-term - Li5 and Nielsen terms

1. We can find the following Li5 and NIelsen terms to get an identity
modulo products.

2. There is a clear symmetry on the left hand side. On the right hand
side this has been deliberately broken so we can use as few Nielsen
polylogas as possible. One could symmetrise under
(x, y) 7→ (1/(1− x), 1/(1− y) to make the symmetry manifest on
the right hand side.

3. One can also find explicit product terms to get an identity holding
on the level of the symbol, altough they are more complicated than
the previous identities.
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I3,2 relations

Relations are more complicated
Simplest is 4-term relation

Proposition

Altd,e Cycc,d I3,2(ab(c (dd)e)) δ= 0
‘Anti-symmetrisation’ of the 2-term I4,1 identity swapping x↔ y.

Next is 6-term relation

Proposition

Altd,e Cyca,b,c I3,2((abc)(de)) δ= 0
‘Anti-symmetrisation’ of the 3-term I4,1 identity
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I3,2 relations

1. Now we have a good understanding of I4,1, so we can start to study
other depth 2 integrals like I3,2. Immediately w find that the
relations for I3,2 are more complicated: there is only 1 symmetry.

2. The next simplest functional equation is a 4-term relatoin, which
can be viewed somehow as a symmetrisation of the I4,1 relation.
After that, we have a 6 term relatoin, which again is a kind of
symmetrisatoin of the 3-term I4,1 relation.



Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

‘Exceptional’ I3,2 relation

2-, 4-, 6-term describe 90 out of 91 relations

Last relation has 30-terms

Proposition

Cyca,b,c,d,e Cyca,b,c I3,2(abcde) δ= Cyca,c,e,b,d Cyca,c,e I3,2(acebd)

Remark
Better description with 60-terms:∑

σ∈A5

I3,2(σ · abcde) δ= 0

Conceptually explained with representation theory
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‘Exceptional’ I3,2 relation

1. This reduces the number of independent I3,2(abcde) to 30 terms.
But it turns out that there is 1 more relation between these terms.
The 2-, 4-, and 6- term identities only describe 90 out of 91
relations.

2. When the computer first spat out this relatoin, I tried to describe it
using exactly the terms which appeared in it. I was able to give the
above describe as some kind of 15-fold symmetrisation of the I4,1
3-term relation. The left and right hand side have the same
structure, but are applied to different permutations of abcde:
viewing them in cycle notation it is (abcde) and (abcde)2.

3. I have since started to revisit some of these identities from a more
conceptual point of view using repesentation theory. Perhaps I have
time later to explain. But one finds that summing over A5 gives the
extra relation on I3,2. This is probaby the more pleasant
description, though it involves more terms.
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Relating I3,2 and I4,1

Structure of I3,2 simplifies, modulo I4,1.

Proposition

Cycd,e I3,2(abc(de)) �= −3I4,1(abcde)

Cycc,d I3,2(ab(cd)e) δ= −Cycc,d,e I4,1(ab(cde))

Anti-symmetric in ab and cde, modulo I4,1 and depth 1.

One further 10-term relation

Remark
Expect that index 1 can always be eliminated. Can eliminate I4,1,
using above.
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Relating I3,2 and I4,1

1. We see somehow that the structure of I3,2 is more complicated, but
somehow there is a hint that I4,1 is connected. Some of the
identities are symmetrisations of I4,1 identities.

2. If we try to relate I3,2 and I4,1, we find the folowing results. The
first one shows how to write I4,1 in term of I3,2 and explains why
some of the I3,2 identities look like symmetrisations of I4,1
identities. They actually are.

3. We see that the structure of I3,2 somehow simplifies greatly modulo
I4,1. We have genunine symmetries now. I3,2 is antisymmetric in ab
(from the inversion/parity relation), and is antisymmetric in cde)
from the above.

4. With the first identity above, we can even eliminate I4,1 terms
completely. It is expected that index 1 can always be eliminated
from MPL’s, and I do use this in other work to give an explicit
reduction of I1,1,1,1,1 to I3,2 terms, modulo products and Li5 on the
level of the symbol modulo δ.
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I3,2 in terms of I4,1?

Can express I4,1 in terms of I3,2. Converse?
‘Coupled’ cross-ratios are not sufficient

Modulo δ, see I3,2 is dim 29, I4,1 is dim 20 subspace.

Observation

I4,1(x, y) δ−→ I2(x) ∧ I3(y)− I3(x) ∧ I2(y)
1
2I4,1(x, [y]− [ 1

y ]) δ−→ I3(x) ∧ I2(y)

I3,2(x, y) δ−→ −I2(x) ∧ I3(xy ) + I2(y) ∧ I3(xy ) +
− 2I2(x) ∧ I3(y)− I2(y) ∧ I3(x)

Leads to ‘brute force’ way to write I3,2 as I4,1’s
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I3,2 in terms of I4,1?

1. We already now that we can express I4,1 in terms of I3,2. But for
completeness, we ask whether it can be done the other way around.

2. Compare this with the weight 4 situation. Gangl was able to express
each of I3,1, I2,2 and I1,3 in terms of the others. Surprisingly this
does not work, with cross ratio arguments, at weight 5.

3. To see this is a simple linear algebra problem, really. One knows
that I3,2 is a 29 dimensional vector space, modulo δ. Whereas I4,1
is seen to form a 20 dimensoinal subspace.

4. So we can try to approach this in a more brute force way. It we
compute the coboundary of I4,1 and I3,2, we obtian the following
results.
In particular, this symmetrised version I4,1(x, y)− I4,1(x, 1/y) has
only a single term as its coboundary. So we can build all of the
terms in the coboundary of I3,2 by choosing the arguments of I4,1
carefully.
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I3,2 in terms of I4,1

Theorem
I3,2 can be expressed in terms of I4,1, and explicit Li5’s modulo
products

I3,2(x, y) �= − 1
2I4,1([x, 1

y ] + [x, yx ] + 3[x, y]− [y, xy ]− [y, yx ]) +

+ Li5(· · ·+ 15
22 [−x(1−y)(x−y)

(1−x)2y ] + · · · )

Remark

Involves 141 Li5 terms

Found with heavy computer assistance: Radchenko has
procedure to find ‘good arguments’
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I3,2 in terms of I4,1

1. This leads to the following expression for I3,2 in terms of I4,1’s and
Li5’s. The Li5 terms are much more complicated than any we had
before: they are not just simple cross ratios. I have an expression
involving 141 such terms, and this was found with heavy computer
assistance using programs/routines/ideas developed by Danylo
Radchenko.



Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Depth 2 summary - modulo products

Observation
Stuffle: Ia,b(x, y) + Ib,a(x, xy ) = Ia+b(x) + Ib(y) ∗ Ia(xy )

No indeed to analyse I1,4, I2,3

antisymmetry
symmetry

3-term relation


I4,1 I3,2

I1,4 I2,3

easy sum

hard sum

1-1
equiv

1-1
equiv


antisymmetry
4-term relation
6-term relation
30 -term relation︸ ︷︷ ︸
Simpler modulo I4,1
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Depth 2 summary - modulo products



Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Weight 5, depth 3

Integrals I3,1,1, I1,3,1, I1,1,3, I2,2,1, I2,1,2, I1,2,2.

Typically relations (modulo δ) are very complicated; (almost)
no straight forward symmetries

Proposition
Only symmetry modulo δ is

I2,2,1(x, y, z) �= I2,2,1(z, y, x)

Theorem

Ia,b,1(x, y, z) + (−1)a+bIb,a,1(z, y, x) =
b∑
i=1

(−1)iIi(z)Ia,b+1−i(x, y)− (−1)a+b
a∑
i=1

(−1)iIi(x)Ib,a+1−i(z, y)
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Weight 5, depth 3

1. So, of course, we now shoudl move on to stud the depth 3 integrals.
The situation here, even modulo δ, is significantly more
complicated. Typically the integrals do not satisfy any straight
forward symmetries. The only such symmetry occurs for I2,2,1, and
comes about by swapping x↔ z.

2. This symmetry is actually explained by the following exact identiy
whic holds at arbitrary weight. We can switch the indices and
arguments to Ia,b,1 in the following way modulo products. The
proof of this propositoin is directly by multiplying the integrals using
the shuffle product.
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Depth 3, modulo depth 2

Idea: search modulo depth 2

Only need to search modulo I3,2

Warning: use only ‘coupled’ cross ratios
(Expect: everything in weight 5 is depth ≤ 2.)

Proposition
Obtain many new symmetries

I3,1,1((ba)cdef)
I3,2= I3,1,1(abcdef)

I3,2= I3,1,1(ab(fedc))

I2,1,2((ba)cdef)
I3,2= I2,1,2(abcdef)

I3,2= I2,1,2(fedc)

I3
,2

=

I2,1,2(ab(dc)(fe))
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Depth 3, modulo depth 2

1. Since the situation for I3,2 simplified rather dramatically moudlo
I4,1, we might consider doing something similar here. Rather than
searching for identities modulo depth 1, search modulo depth 2.

2. Since I4,1 can be expressed in terms of I3,2, we only need to work
modulo I3,2. But a word of warning: we do this with a very
restricted choice of arguments. It is expected that everything in
weight 5 is depth ≤ 2. Indeed I can express I1,1,1,1,1 as a sum of
I3,2’s modulo depth 1, but the arguments are complicated, which
verifies this.

3. No, here we only work with cross ratio arguments. Nevertheless, the
structure does simplify drastically. We obtain several new
symmetries. All of the integrals gain an
(ab) (x, y, z)↔ (1/x, 1/y, 1/z) symmetry from the parity
theorem. But we also have other symmetries.

4. I2,1,2 and I3,1,1 gain a symmetry by reversnig cdef to fedc. But
I2,1,2 has another symmetry: simultaneously switching (cd)(ef).
This shows that there is no straightforward relation between I3,1,1
and I2,1,2 modulo I3,2, so they are still interesting functions in their
own right.
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Relating depth 3 integrals

Theorem
Weight 5 depth 3 integrals span the same space, modulo I3,2.

Example

I1,3,1(abc(f)e(d)) �= I3,1,1(abcdef)
I3,2= I1,1,3(ab(dc)(fe))

I2,2,1(abcdef) �=
−I3,1,1([abc(def)] + [abc(dfe)] + [abc(fde)] + [abc(fed)])

I3,1,1(abcdef)
I3,2=

∑
197I2,1,2’s

...
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Relating depth 3 integrals

1. However, all depth 3 integrals do span the same space modulo I3,2.
Like in the weight 4 case where Gangl could relate I3,1, I2,2 etc.
Here we can write every depth 3 integral as a sum of any other
depth 3 integral.

2. Some of the relations are relatively nice: single terms are equal
modulo I3,2. Or the sum only involves a few terms. (Un)fortunately
some of the othe relations seem much longer and more compliated:
I can write I3,1,1 as a sum of 197 I2,1,2 terms modulo I3,2.
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Depth 3 summary – modulo I3,2

Each integral has 2 symmetries

I2,1,2 has 3 symmetries

I1,3,1 I3,1,1 I1,1,3

I2,1,2︸ ︷︷ ︸
3 symmetries

I2,2,1 I1,2,2

1-1 equiv

long∑
1-1 equiv

long∑long∑

long∑

short∑

long∑
25 / 35

Depth 3 summary – modulo I3,2

Each integral has 2 symmetries

I2,1,2 has 3 symmetries

I1,3,1 I3,1,1 I1,1,3

I2,1,2︸ ︷︷ ︸
3 symmetries

I2,2,1 I1,2,2

1-1 equiv

long∑
1-1 equiv

long∑long∑

long∑

short∑

long∑20
17

-1
1-

14

Relating MPL’s in weight ≥ 5
Relating Weight ≥ 5 MPL’s

Depth 3 summary – modulo I3,2
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Goncharov’s ‘depth-reduction’ idea

Element κ(x, y), essentially I3,1(x, y), has coboundary Li2(x) ∧ Li2(y).
Substituting x = Li2 functional equations gives coboundary 0

Expect I3,1(Li2 FE, y) �=
∑

Li4’s

Get Li4 functional equation by expanding in two ways

I3,1(Li2 FE,Li2 FE) �=
∑

Li4’s

Similar strategy for Φ5(x, y), essentially I4,1(x, [y]− [ 1
y ])

Li5 FE from x = Li3 FE, y = Li2 FE.

Remark
Such functional equations should play a key role in a proof of
Zagier’s polylogarithm conjecture
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Goncharov’s ‘depth-reduction’ idea

1. Goncharov’s deph reductoin strategy is a way to use our knowlege
of MPL’s in depth 2 to find non-trivial functional equations for Lin.
Goncharov defined an element κ(x, y) in the Hopf algebra of iterated
integrals (which is essentially I3,1(x, y). This element is constructed
so that the coboundary is very simple: only Li2(x) ∧ Li2(y).

2. This makes is very simple to find combinations which then have 0
coboundary. e can just plug in any Li2 functional equation. We
should then be able to write the result as a sum of Li4’s.

3. From this we can derive a Li4 functional equation by expanding out
I3,1(Li2,Li2) in two different ways. Hopefully othe arguments used
in the different sets of Li4 terms are different/independent enough
that little cancellation occurs after expanding out. One then have
two combinations of Li4’s who diffrence is 0 modulo products. This
gives us our Li4 functional equation.

4. Goncharov also outlines a simlar strategy for weight 5, using an
element Φ5, which is essentially I4,1(x, y)− I4,1(x, 1/y). In this
case, one obtains functional equaion by using a Li3 equation for x,
and a Li2 equation for y.

5. The actual goal of this progress is not so muh to obtain the
functional equations themselves, but rather to use these functional
equatoins to define certain maps in the polylogarithm complex, and
work towars a proof of Zagier’s polylogarihtm conjecture. The
functional equations for above, for certain Li2 and Li3 combinations
should play this key role.



Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Li4 functional equations

Definition (Algebraic Li2 FE)

Let pi(t) be roots of xa(1− x)b = t, a 6= b ∈ Z>0. Set
a+ b+ c = 0. Then ∑

j

Li2(pj(t))
�= 0

Theorem (Gangl, 2000)

I3,1(
∑
j [pj ], y) �= Li4( 1

abc [
t

ya(1−y)b ]− b[1− 1
y ]− c[y] +

−
∑
j

b
a [1−pj

1−y ]− b
c [

1−1/y
1−1/pj

]− a
b [ ypj

]− b
a [1− pj ])

Corollary
2-variable of family of Li4 functional equations
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Li4 functional equations

1. So what has been done with this already? Well in weight 4, we have
had for many years a result for a certain infinite family of Li2
functional equations. This is the so-called algebraic Li2 equation,
defined by taking the roots of the polynomial xa(1− x)b = t, as a
function of t.

2. In 2000, Gangl was able to find the Li4 combintaoin, when this was
plugged into I3,1, and from there derive an 2-variable infinite family
of Li4 Functional equations.



Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Li4 functional equations

Want to do this for the 5-term equation for Li2, to obtain
‘generic’ Li4 functional equation

Theorem (Gangl, 2016)

I3,1(Li2 five term, y) =
∑

122 Li4’s

Corollary
931-term functional equation for Li4.

Remark
Goncharov-Rudenko: announced a proof of Zagier’s conjecture for
n = 4. Geometric interpretation of 122 term relation.
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Li4 functional equations

1. The real aim is to do this for the 5-term Li2 functional equatoin,
which is though to be the basic functional equatoin for Li2, from
which all others can be derived.

2. After the advent of the symbol, Gangl was able to complete this
task to write I3,1 of the 5-term as a sum of 122 Li4’s, and hence
derive a 931-term functional equatoin for Li4.

3. Recently it was announced by Goncharov-Rudenko a proof of
Zagier’s conjecture for n = 4, which uses this 122-term relation as a
key ingredient.



Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Li5 functional equations

Approach in weight 5 uses I4,1

Observation

I−4,1(x, y) = I4,1(x, [y]− [ 1
y ]) δ−→ Li3(x) ∧ Li2(y)

I−4,1 coboundary 0 for x = Li3 FE or y = Li2 FE.

Definition (Algebraic Li3 FE)∑
j

aLi3(pj)− bLi3(1− pj)
�= 0
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Li5 functional equations

1. The approach in weight 5 is somewhat similar. The symmetrised
version of I4,1 has very simple coboundary Li3(x) ∧ Li2(y), so one
makes it vanish by subsituting a Li3 equaton for x or a Li2 equation
for y.

2. The is a version of the algebraic Li2 equation for Li3, which involves
summing up over another S3-orbit. So we can try to find Li5 terms
for these.
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Li5 functional equations

Theorem

I+
4,1(Li3 algebraic, y) =

∑
Li5’s

I+
4,1(x,Li2 algebraic) =

∑
Li5’s

I+
4,1([x] + [ 1

1−x ] + [1− 1
x ], y) = Nielsen +

∑
Li5’s

Corollary
Two different families of 2-variable Li5 functional equations
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Li5 functional equations

1. Indeed, I was able to find Li5 terms for both the algebraic Li2 and
Li3 equations. I can also give Li5 and Nielsen terms for the 3-term
Li3 equation.

2. This means we can derive 2 different 2-variable infinite families of
functional equations for Li5. (The resulting combination of Nielsen
terms necessarily can be writen as Li5’s, and it can be done very
simply in this case.)
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Li5 functional equations

Example

I4,1(x,
∑
i[pi])− I4,1(x,

∑
i[ 1
pi

]) �=
− cLi5(x) + 2bLi5(1− x) + 2bLi5(1− 1

x) +

+ 2
abc(c−a)) Li5

([
t

xa(1−x)b

]
+
[

t
xc(x−1)b

])
+

+
∑
i

{− b
2(c−a)Li5

(
(1−x)2

x
pi

(1−pi)2

)
+

+
(
c−a
2b + 2

)
Li5 (xpi) +

(
c−a
2b − 2

)
Li5

(
x
pi

)
+

+ 2b
a Li5

([
1

1−pi

]
−
[ 1− x

1− pi

]
−
[

1−1/x
1−pi

])
+

− 2b
c Li5

([
1

1−1/pi

]
−
[

1−x
1−1/pi

]
−
[

1−1/x
1−1/pi

])
}
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Li5 functional equations

1. As an example, we have the following expression for the Li2
algebraic equation. It is rather more complicated than Gangl’s
verson.



Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Li5 functional equations

Task
Use the 5-term Li2 relation, and 22-term Li3 relation to get a
‘generic’ Li5 functional equation

Not much progress so far. Difficult to find enough good
arguments to get identities.

Deadline: sometime in 2032. . . ?

32 / 35

Li5 functional equations

Task
Use the 5-term Li2 relation, and 22-term Li3 relation to get a
‘generic’ Li5 functional equation

Not much progress so far. Difficult to find enough good
arguments to get identities.

Deadline: sometime in 2032. . . ?

20
17

-1
1-

14

Relating MPL’s in weight ≥ 5
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Li5 functional equations

1. As in the weight 4 case, we want to do this for the basic functional
equations of Li2 and Li3 namely the 5-term and the 22-term
respectively.

2. Unfortunately, progress so far has been rather limited. I have not
been able to find Li5 or Nielsen terms in any cases beyond what I
already listead. It took Gangl 16 years to move from the algebraic
to the 5-term, so I have until 2032 to beat him. So far I have not
been able to find the right arguments: either I have too few and the
calculation returns 0, or I have too many and the calculation
crashes. Probably with a better understanding of the structure of
weight 5 MPL’s, perhaps some rep theory, one is guided to better
choices of arguments.
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Li6 functional equations
Have extended a pproach to weight 6 using I5,1

Observation

I+
5,1(x, y) = I5,1(x, [y] + [ 1

y ]) δ−→ Li3(x) ∧ Li3(y)

I−5,1(x, y) = I5,1(x, [y]− [ 1
y ]) δ−→ −Li2(x) ∧ Li4(y)− Li4(x) ∧ Li2(y)

I−5,1: coboundary 0 for Li3 FE’s

I+
5,1: getting coboundary 0 is not so clear

Definition (Algebraic Li4 FE)

∑
j

bcLi4(pj) + acLi4( 1
1−pj

) + abLi4(1− 1
pj

) �= 0

Algebraic Li4 is a sum of Li2 FE’s  coboundary 0
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Li6 functional equations

1. As yet, we can’t push to the 5-term or 22-term in weight 5. But we
can push to higher weight, and find similar results using the
algebraic equations.

2. The idea at weight 6 is to use the function I5,1, or the symmetrised
versions which have simpler coboundary. With plus, the coboundary
is Li3(x) ∧ Li3(y), so Li3 functional equations will suffice.

3. With the minus symmetrisation, the coboundary has a weight 2 and
weight 4 component, so we have to be clever. Fortunately the
algebraic Li4 equation is already a Li2 equation, so plugging this in
does still kill the coboundary.
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Li6 functional equations

Theorem

I+
5,1(Li3 algebraic, y) =

∑
Li6’s

I−5,1(Li4 algebraic, y) =
∑

Li6’s

I+
5,1([x] + [ 1

1−x ] + [1− 1
x ], y) = Nielsen +

∑
Li6’s

Corollary
Three new families of 2-variable Li6 functional equations

Remark

Partial results for I6,1, I7,1 in weight 7 and weight 8

Possible depth 2 functional equations using I4,1,1 in weight 6
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Li6 functional equations

1. In all of these cases, I can find the Li6 terms. I can also find them
for the 3-term Li3 equation.
This time we get 3 different infinite families of 2-variable Li6
functional equations.

2. Probably the natural question now is whether this can be pushed to
weight 7 (where we only know 3 individual functional equations), or
to weight 8 where we no none. I am investigating some ideas, but
the difficulty now becomes finding good functional equations in
weight 4 or 5 to allow us to make the coboundary of I6,1 vanish.

3. I also have some ideas on how to produce a depth 2 version, by
tryign to write certain depth 3 integrals as a sum of depth 2 stuff.
But this is very much work in progress, with no results yet.



Introduction Algebraic tools Weight ≥ 5 Polylog FE’s

Summary

Relations between weight 5 MPL’s
Depth 2: symmetries and functional equations and relations
modulo δ and modulo products

Depth 3: symmetries and relations modulo I3,2

Goncharov’s ‘depth reduction’ strategy
Gives polylog functional equations from MPL’s

Results in weight 5 and 6

Ideas for higher weight and depth
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Relating MPL’s in weight ≥ 5
Polylog functional equations from MPL’s

Summary

1. In this talk we have seen how to relate MPL’s. We have focused on
relating weight 5 MPL’s, typically in depth 2 and depth 3 where the
calculations are tractable enoguh to be completed.

2. We have also looked at an approach using representation theory to
conceptually understand these identities and guide us to new ones.

3. We have also used our knowlege of depth 2 MPL’s in weight 5 and
6 to derive some new functional equations for Li5 and Li6, using
Goncharov’s depth reduction strategy.



Representation theory approach

Representation theory approach
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Rep Theory

Integrals as Sn representation

Sn acts on M0,n

Descends to cr(a, b, c, d1, . . . , dn−3)

So Sn acts on weight k iterated integrals

Remark
Some earlier investigations by Brown, unfinished/unpublished draft

Goal
Reduce the amount of brute force computation, conceptually
understand previous identities
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Integrals as Sn representation

1. The previous identities were all found via brute force computer
calculation, and lots of staring, tryign to identify patterns in output.
Little use was made of the underlying symmetry of the problem,
namely the Sn action on the marked points in M0,n

2. This gives an action of Sn cross ratios, and thus on iterated
integrals. We should therefore study these spaces as Sn

representations. This is motivated by an unpublished/unfinished
draft of Francis Brown. The goal is to get a better, more
conceptual, understanding of these identities. Try to reduce the
amount of brute force computation, and somehow guide ourselves
to the nice/correct identities in each case.



Rep Theory

Rep theory in weight 4

2-variable, weight 4 integrals, modulo products

∼=S5

dim 1

⊕
dim 4

⊕
dim 6

⊕
dim 5

⊕
dim 5

← dim 21

2-variable, weight 4 Nielsen polylogs, modulo products

∼=S5

dim 1

⊕
dim 4

⊕
dim 5

⊕
dim 5

← dim 15

Theorem (Brown)

For ‘coupled’ cross-ratio arguments, Nielsen = ker δ
So quotient gives: 2-variable, weight 4 integrals, modulo δ

∼=S5

dim 6
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Rep theory in weight 4

1. Perhaps it is good to start with the weight 4 case, where we already
have simple/explicit results from Gangl. We can try to
understand/recover these first, before studying the weight 5 case.

2. One can show that 2-variable weight 4 integrals, modulo products,
form a 21 dimensional representation of S5 which decompoases as
indicated. This decomposition actually has a conceptual proof,
which is explained in Brown’s unpublished work. Similarly, the
2-variable weight 4 Nielsen/Li4 representation is a 15 dimensional
subspace of this, decomposing as indicated.

3. In that work Brown shows that with cross ratio arguments, Nielsen
is exactly the kernel of the coboundary map. So working with
integrals modulo δ is equivalent to taking the quotient of integrals
modulo products by the Nielsen subreprsenation.

4. This shows that 2-variable, weight 4 integrals form a 6 dimensional
space. This turns out to be an irreducible represenation given by
young diagram 311.



Rep Theory

Rep theory identities for I3,1

I3,1(x, y) δ−→ I2(x) ∧ I2(y), non-trivial.

2-variable, I3,1, modulo δ

∼=S5

dim 6

See a symmetry a↔ b↔ c and d↔ e

At most 4!
3! = 4 integrals I3,1((abcd)σe), e fixed

Restricting to S4

∼=S4

dim 3

⊕
dim 3

Fixing some position a, b, c, d or e gives a subrep of this

Implies only 3 dimensional: 2-variable, I3,1, modulo δ, fixing e

∼=S4

dim 3

OR ∼=S4

dim 3
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Rep theory identities for I3,1

1. We then observe that any integral modulo δ must be in this space.
We see that that I3,1(x, y) has non-trivial coboundary, so gives a
non-zero vector in thsi space.

2. In particular, we see that 2-variable I3,1 modulo δ must be the
whole representation (it is irreducible). So there are 6 linearly
independent I3,1’s modulo δ. A simlarly argument shows that I2,2
and I3,1 also span this space, so we must be able to write each in
terms of the other.

3. We can spot (using the above expression for I3,1 coboundary), that
there is a symmetry under abc and de. (Or we refer back to Gangl’s
results...) Either way, this means that there are at most 4 integrals,
when we fix position e.

4. If we restrict the representatoin to S4, the branching rule shows it
decomposes into 2 3-dimensional reprsentations. Since there are
only 4 linearly independent integrals, we do no get the whole space,
therefore fixing e must give only one of the irreducible components.



Rep Theory

Rep theory identities for I3,1

Must exist a relation

{ I3,1(abc(d)e), I3,1(abd(c)e), I3,1(acd(b)e), I3,1(bcd(a)e) }

Can show 2-variable, I3,1, modulo δ, fixing e ∼=S4

dim 3

(Compute trace of σ = (1, 2).)

Restrict to C4: ResS4
C4

dim 3
∼=C4 ζ4 ⊕ (−1)⊕ ζ3

4

Trivial representation doesn’t appear, but

I3,1((abcd)cyce)

is a copy of the trivial representation

Theorem (Gangl)

I3,1((abcd)cyce) δ= 0
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Rep theory identities for I3,1

1. This means that there are only 3 linearly independent integrals upon
fixing e. So there is a relation between the 4 integrals listed.

2. By computing the trace, one can show that the fixing e
representation corresponds to 31. And if we restrict further to C4
inside S4, it decopmoses as ζ4 ⊕ (−1)⊕ ζ3

4 . The trivial
reprsentation does not appear.

3. We can use this to get an identity by manufactuing a copy of the
trivial rep inside this space. Such a copy is given by cycling the first
4 entries. But then this sum must be 0 as the trivial rep is not
present.

4. From this we recover the following theorem from Gangl



Rep Theory

Rep theory in weight 5

More complicated!

2-variable, weight 5, mod �

∼=S5

dim 1
⊕3

dim 5
⊕2

dim 4
⊕3

dim 5

⊕
dim 6

⊕2
dim 4

⊕

dim 1

← dim 54

2-variable, weight 5, Nielsen

∼=S5

dim 1
⊕

dim 5
⊕

dim 4
⊕

dim 5

⊕
dim 4

⊕

dim 1

← dim 20

Conclude 2-variable, weight 5, mod δ

∼=S5 2
dim 5

⊕
dim 4

⊕ 2
dim 5

⊕
dim 6

⊕
dim 4

← dim 34
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Rep theory in weight 5

1. We can start to play the same games at weight 5, but of course the
situation is more compliated. 2-variable integrals, mod products
span a 54 dimensional space. The Nielsens span a 20 dimensional
space. So integral modulo δ span a 34 dimensional space. All of
these decompose as indicated.



Rep Theory

Rep theory in weight 5, Depth 2

2-variable, weight 5, mod δ

∼=S5 2
dim 5

⊕
dim 4

⊕ 2
dim 5

⊕
dim 6

⊕
dim 4

← dim 34

2-variable, I4,1, δ

∼=S5

dim 5
⊕

dim 4
⊕

dim 5

⊕
dim 6

← dim 20

Sub-rep of 2-variable, I3,2, δ

∼=S5

dim 5
⊕

dim 4
⊕ 2

dim 5

⊕
dim 6

⊕
dim 4

← dim 29

2-variable, I3,2 mod I4,1

∼=S5

dim 5

⊕
dim 4

← dim 9
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Rep theory in weight 5, Depth 2

1. Then we can consider the specific depth 2 integrals living inside this
space. We know that I4,1 spans a 20 dimensional subspace. One
can copute it gives the following reprsentation. (I don’t really have
yet a conceptual explanation.)

2. Similarly I3,2 spans the 29 dimensional rep, which decomposes as
indicated.

3. From here, one sees that perhaps I4,1 is a subrep of I3,2. (Perhaps
one has to be careful about the 2 copies of 32 appearing in integrals
modulo δ. . .We could get two different copies of 32 in the I4,1 and
I3,2 reps?)

4. But from our earlier results, we know that indeed I4,1 can be
expressed in terms of I3,2, so it must be a subrep.

5. Taking the quotient gives us a way to study integrals I3,2 modulo
integrals I4,1. We see this decomposes as indicated, meaning it is a
9-dimensional space (as we already know!)



Rep Theory

Rep theory for I3,2 mod I4,1

Proposition
There is a relation between the following 10 elements which span
I3,2 modulo I4,1

{ I3,2((a1a2) (b1b2b3)) }

Restrict to GA(1, 5) = 〈 (1 2 3 4 5), (2 3 5 4) 〉 < S5

shape [1] [4] [2, 2] [5] [4]
#ccl 1 5 5 4 5
triv 1 1 1 1 1
sgn 1 −1 1 1 −1
χi 1 i −1 1 −i
χ−i 1 −i −1 1 i
4d 4 0 0 −1 0
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Rep theory for I3,2 mod I4,1

1. Since the dimension of the space is 9, we know there must be a
relation betwen the above 10 elements. This might suggest looking
for a D5-symmetric relation. (Since Z10 is not a subgroup of S5.)

2. It turns out that D5 does not describe any non-trivial identities. If
one restricts the above character to D5, then one finds the sign
representation is missing, so gets identities like∑

g∈D5

sgn(g)I3,2(g ◦ abcde)
I4,1= 0

, but it turns out this follows trivialy from the anti-symmetries
above.

3. The smallsest subgroupgroup to look at seems to be the general
affine group GA(1, 5) (degree 1 over F5). The character table of
this group is given below.



Rep Theory

GA(5, 1)-identity for I3,2

ResS5
GA(1,5)

dim 5

⊕
dim 4

∼=GA(1,5) triv⊕ 2 ·
dim 4
4d

Theorem
The following GA(1, 5)-symmetric identity holds for I3,2 modulo
I4,1 ∑

g∈GA(1,5)
sgn(g)I3,2(g · abcde)

I4,1= 0

Remark

The 20-terms in this identity combine into 10 pairs, using the
anti-symmetries of I3,2 mod I4,1.

Identities from χi, χ−i are equivalent to the above.
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GA(5, 1)-identity for I3,2

1. If we restrict the S5 charcter to GA(1, 5), we find it decomposes as
the trivial rep, and 2 copies of the 4d rep. So we are missing the
sign rep, and the χ±i reps.

2. By writing down a combination which is invariant under the sign-rep
we guarentee the result vanishes, as no copy of the sign rep appears.
This leads to the following theorem describnig an identity on I3,2
modulo I4,1.

3. A priori this identity consists of 20 terms, but they combine into 10
pairs using the previous antisymmetries. This is exactly the relation
between the 10 elements I3,2(a1a2 b1b2b3) previously
sought/mentioned.
Moreover, the identitie from χ±i turn out to just be scalar multiples
of this. (There can’t be another identity, since the dimension of the
space is known to be 9!)

4. Can also be described as
∑
A5

, where terms combine into 10
6-tuples using symmetries.



Rep Theory

GA(5, 1)-identity for I3,2

Can refine the identity so that there is no duplication of terms

G := GA(5, 1) =
size 1

cclG(e) ∪
size 4

cclG((1 2 3 4 5)) ∪
size 5

cclG((2 3 5 4))
∪ cclG((1 2)(3 5))

size 5
∪ cclG((1 2 5 4))

size 5

Theorem

∑
g∈ccl(id)

∪ ccl((1 2 3 4 5))
∪ ccl((2 3 5 4))

sgn(g)I3,2(g · abcde)
I4,1= 0
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GA(5, 1)-identity for I3,2

1. If we decopmose the group into conjugacy classes, one can check
(conceptual reason?) that the 10 terms from the ccls in the first
row already give the identity. (And so do the 10 terms in the second
row)
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