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Mutiple zeta values

Definition (MZV)

Multiple zeta value ζ(s1, s2, . . . , sk) is defined by

ζ(s1, s2, . . . , sk) B
∑

0<n1<n2<···<nk

1
ns1

1 n
s2
2 · · ·n

sk
k

Where si ≥ 1 ∈ Z

For convergence sk ≥ 2

Also define
Weight is sum s1 + · · ·+ sk of arguments

Depth is number k of arguments
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MZV relations

MZV satisfy lots of relations
Duality relations

Associator relations

Derivation relations

(Extended) Double shuffle relations

. . .

Not always clear how to prove explicit relations from these.

Theme: progress towards and generalisation of some explicit
conjectural families of identities
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Zagier-Broadhurst Identity

Theorem (Zagier-Broadhurst, BBBL 2001)

For n ≥ 0 ∈ Z, have

ζ({1, 3}n) = 1
2n+ 1

π4n

(4n+ 1)!

Proof (Sketch).

Generalise to single variable multiple polylogarithms.

Generating series satisfies a differential equation.

Explicit solution in terms of 2F1. Compare coefficients.

Combinatorial proofs have also been given. �
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“Dressed with 2’s”

Theorem (BBBL, 1998)

Let n ≥ 0 ∈ Z, write

I = { all 2n+ 1 ways of inserting 2 into {1, 3}n } .

Then ∑
s∈I

ζ(s) = π4n+2

(4n+ 3)!

Example
For n = 2, have

ζ(2, 1, 3, 1, 3) + ζ(1, 2, 3, 1, 3) + ζ(1, 3, 2, 1, 3)+

ζ(1, 3, 1, 2, 3) + ζ(1, 3, 1, 3, 2) = π10

11!
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Cyclic insertion conjecture

Numerical experimentation lead to conjectural generalisation.

Notation
Let a1, . . . , a2n+1 ∈ Z≥0. Write

Z(a1, . . . , a2n+1) = ζ({2}a1 , 1, {2}a2 , 3, . . . , 1, {2}a2n , 3, {2}a2n+1)

Conjecture (Cyclic insertion - BBBL, 1998)

∑
σ∈Z/nZ

Z(aσ(1), . . . , aσ(2n+1))
?= πwt

(wt + 1)!

Shorthand: “wt” is weight of MZV’s on the LHS
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Special cases

n = 0
ζ({2}a1) = πwt

(wt + 1)! X

a1 = · · · = a2n+1 = 0

(2n+ 1)ζ({1, 3}n) = πwt

(wt + 1)! X

a1 = 1, a2 = · · · = a2n+1 = 0

Zagier-Broahurst dressed with 2’s X

a1 = · · · = a2n+1 = m

(2n+ 1)ζ({{2}m, 1, {2}m, 3}n, {2}m) ?= πwt

(wt + 1)! ?

Previously conjectured by BBB (1997).
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Bowman-Bradley

Best result so far is

Theorem (Bowman-Bradley, 2002)

Let n, t ≥ 0 ∈ Z, then∑
a1+···+a2n+1=t

ai≥0

Z(a1, . . . , a2n+1) = 1
2n+ 1

(
t+ 2n
t

)
πwt

(wt + 1)!

Remark
Compatible with cyclic insertion: Any permutation of a
composition a1 + · · ·+ a2n+1 = t is still a composition.

Will use the motivic MZV framework to improve on this, up to Q.
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Hoffman’s conjecture

Separate conjecture, with a similar flavour

Conjecture (Hoffman, MZV Infopage, 2000)

For m ≥ 0 ∈ Z,

2 ζ(3, 3, {2}m)− ζ(3, {2}m, 1, 2) ?= −ζ({2}m+3) = − πwt

(wt + 1)!

Remark
Verified up to weight 22, m = 8 using MZV datamine, Vermaseren
(2009).

Will prove this up to Q, using the motivic MZV framework.
.
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Unification and generalisation

Goal
Cyclic insertion and Hoffman are special cases of a more general
(conjectural) family.

Can produce many new (conjectural) identities.

Example

ζ({2}m, 1, 3, 3, 1, 2) + ζ(3, 1, 2, 1, {2}m, 3)− ζ(1, 2, 1, {2}m, 3, 1, 2) +

+ ζ(1, 2, 1, 3, 3, {2}m)− ζ(3, {2}m, 1, 3, 3) ?= πwt

(wt + 1)!

(For above: ∈ πwtQ holds. Generally can use motivic MZV’s to
prove certain symmetrised versions, up to Q.)
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MZV’s as iterated integrals

ζ(s1, . . . , sr) = (−1)rI(0; 1, 0, . . . , 0︸        ︷︷        ︸
s1

, . . . , 1, 0, . . . , 0︸        ︷︷        ︸
sr

; 1)

where

I(a0; a1, . . . , aN ; aN+1) =
∫
a0≤t1<···<tN≤aN+1

dt1
t1 − a1

· · · dtN
tN − aN

Convergent if a1 , a0 and aN , aN+1

Properties

I(0; a1, . . . , aN ; 0) = 0 for N ≥ 1 (Equal boundaries)

I(a0; a1, . . . , aN ; aN+1) = I(1− a0; 1− a1 . . . , 1− aN ; 1− aN+1)
(Functoriality)

I(a0; a1, . . . , aN ; aN+1) = (−1)NI(aN+1; aN , . . . , a1; a0)
(Reversal of paths)

I(a;w; b)I(a; v; b) = I(a;w� v; b) (Shuffle product)
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Brown’s motivic MZV’s (See Winter school)

Algebra H of motivic MZV’s

ζm(s1, . . . , sr) B [O(πun
1 (P1\{ 0, 1,∞} ,−→10,−

−→11)),
straight line︷︸︸︷

dch, Ω︸︷︷︸
integrand

]m .

Contains all motivic iterated integrals

Im(a0; a1, . . . , aN ; aN+1), ai ∈ { 0, 1 }

Projection to algebra A of de Rham motivic MZV’s

ζa(s1, . . . , sr) B [O(πun
1 (P1 \ { 0, 1,∞} ,−→10,−

−→11)), ε︸︷︷︸
augmentation ideal

,Ω]m ,

kernel generated by ζm(2).

Coaction
∆: H → A⊗Q H

lifts Goncharov’s ‘semicircular’ coproduct on A. H Hopf
algebra comodule over A.
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Infinitesimal coproduct

Definition (Derivations Dk)

Let L B A/(A>0 · A>0), which kills products and ζm(2). For k
odd define

Dk : H → Lk ⊗Q H
Im(w) 7→ (π ⊗ id) ◦ (∆− 1⊗ id) Im(w)

DkI
m(a0; a1, . . . , aN ; aN+1) =

N−k∑
p=0

IL(ap; ap+1, . . . , ap+k; ap+k+1)⊗ f Subsequence

Im(a0; a1, . . . , ap, ap+k+1, . . . , aN ; aN + 1) f Quoient sequence
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Derivations Dk mnemonic

Mnemonic.

DkI
m( w︸︷︷︸
(a;w′;b)

) =
∑

S subword w,
of length k + 2

IL(S)⊗ Im(w − interiorS)

aN+1a0

a1

ap−1

ap
ap+1

ap+k
ap+k+1

ap+k+2

aN

. .
.

. . .
. . .

 IL(ap; ap+1, . . . , ap+k; ap+k+1)⊗
Im(a0; a1, . . . , ap, ap+k+1, . . . , aN ; aN + 1)
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Transcendental Galois Theory

Theorem (Brown, 2012)

Let D<N =
⊕

1<2r+1<N D2r+1. In weight N ,

kerD<N = ζm(N)Q .

Example
Can show ζm({2}n) = ±Im(0; 1, 0, 1, 0, . . . , 1, 0︸                   ︷︷                   ︸

n times

; 1) ∈ ζm(2n)Q

Integral word alternates 0 and 1

Odd length subsequence has same boundaries, vanishes

Therefore all D2r+1 vanish

Conclude ζm({2}n) ∈ kerD<2n = ζm(2n)Q.
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ζm({1, 3}n)
More interesting: ζm({1, 3}n) = Im(0; (1100)n; 1) ∈ ζm(4n)Q

Word has period 4, so length 1 (mod 4) subsequence vanish

For length 3 (mod 4), look at starting position

1 (mod 4) : IL(0; (1100)a1; 1)⊗ Im((0110)b0 | 10(0110)c01)
2 (mod 4) : IL(1; 1(0011)a; 0)⊗ Im((0110)b01 | 0(0110)c01)

Cancel using reversal of paths in IL. Similar for position
3, 4 (mod 4)

See cancellation as ‘reversing’ segments. Involution pairs up
subsequences:

Im(01 | 10 | 0 1 | 10 | · · · | 10 | 01 | 1 0 | 01)

Conclude ζm({1, 3}n) ∈ kerD<4n = ζm(4n)Q
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Alternating blocks

Observation
In ζm({1, 3}n) proof, points 00 and 11 in w are ‘somehow’
significant.

Splitting here decomposes a word into alternating blocks
0101 · · · or 1010 · · ·.

Definition (Block decomposition)

Let w be a word starting with ε1 ∈ { 0, 1 }. Write w as alternating
blocks, with lengths `1, . . . , `k. The block decomposition of w is

bl(w) = (ε1; `1, . . . , `k) .

Example

bl( 0︸︷︷︸
1
| 01︸︷︷︸

2
| 10︸︷︷︸

2
| 01010︸   ︷︷   ︸

5
| 0︸︷︷︸

1
| 01︸︷︷︸

2
) = (0; 1, 2, 2, 5, 1, 2)
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Alternating blocks

Can recover w from (ε1; `1, . . . , `k): blocks arise from 00→ 0 | 0
or 11→ 1 | 1.

Notation
Write Ibl(ε1; `1, . . . , `k) = I(bl−1(ε1; `1, . . . , `k)). If ε1 = 0, just
write (`1, . . . , `k).

Weight of Ibl(ε1; `1, . . . , `k) is −2 +
∑
i `i. (Bounds of

integration are counted!)

If wt ≡ k (mod 2) then Ibl = 0. (End points are equal!)

Ibl is divergent iff `1 = 1 or `k = 1.

Example

Ibl(1, 2, 2, 5, 1, 2) = I(0; 01100101000; 1)
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Block structure of BBBL conjecture

Write the BBBL identity as iterated integrals∑
cycle ai

ζ({2}a1 , 1, {2}a2 , 3, . . . , 1, {2}a2n , 3, {2}a2n+1)

 ±
∑

cycle ai
I(0(10)a11(10)a2100 · · · 01(10)a2n100(10)a2n+11)

Split into ‘alternating blocks’ at 00→ 0 | 0 or 11→ 1 | 1

= ±
∑

cycle ai
I(0(10)a11 | (10)a210 | 0 · · · 01 | (10)a2n10 | 0(10)a2n+11)

Record lengths of the blocks

= ±
∑

cycle ai
Ibl(2a1 + 2, 2a2 + 2, . . . , 2a2n+1 + 2)

Right hand side is ζ({2}wt/2) = ±Ibl(wt + 2).
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Block structure of Hoffman’s conjecture

Write Hoffman’s identity as iterated integrals

2ζ(3, 3, {2}n) − ζ(3, {2}n, 1, 2)
= ζ(3, 3, {2}n) − ζ(3, {2}n, 1, 2) + ζ({2}n, 1, 2, 1, 2)

 ±
(
I(0100100(10)n1) + I(0100(10)n1101) + I(0(10)n1101101)

)
Split into ‘alternating blocks’ at 00→ 0 | 0 or 11→ 1 | 1

= ±
(
I(010 | 010 | 0(10)n1) + I(010 | 0(10)n1 | 101)

+ I(0(10)n1 | 101 | 101)
)

Record lengths of the blocks

= ±
(
Ibl(3, 3, 2n+ 2) + Ibl(3, 2n+ 2, 3) + Ibl(2n+ 2, 3, 3)

)
Right hand side is −ζ({2}n+3) = ±Ibl(wt + 2)
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Common structure and generalisation

Both conjectures have same structure: cyclic permutations of
block lengths `i.

Conjecture (Cyclic insertion, C., 2017, arXiv 1703.03784)

For any (`1, . . . , `k) with all `i > 1,

∑
cycle `i

Ibl(`1, . . . , `k)
?= Ibl(wt + 2) =


πwt

(wt+1)! wt even
0 wt odd

Numerically tested all cases weight ≤ 18, to 500 decimal places

Can prove a symmetrised version, up to Q

Can prove some special cases, up to Q
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Examples

Example
Let (`1, . . . , `k) = (2m+ 2, 2, 3, 2, 3), then we obtain

ζ({2}m, 1, 3, 3, 1, 2) + ζ(3, 1, 2, 1, {2}m, 3)− ζ(1, 2, 1, {2}m, 3, 1, 2) +

+ ζ(1, 2, 1, 3, 3, {2}m)− ζ(3, {2}m, 1, 3, 3) ?= πwt

(wt + 1)!

Proposition (C., 2017, arXiv 1703.03784)

The above identity holds up to Q

Proof (Sketch).

Lift the identity to ζm, and compute D<2m+10. A (tedious)
calculation shows D<2m+10 vanishes. �
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Progress and results

Theorem (Symmetric insertion, C., 2017, arXiv 1703.03784)

For any (`1, . . . , `k), with even weight,∑
permute `i

Ibl(`1, . . . , `k) ∈ Ibl(wt + 2)Q

(Odd weight holds trivially, by duality)

Proof (Strategy).

Lift to motivic version Im.

Define a reflection R on non-trivial subsequences

Use R to cancel terms in D<N

Conclude ∈ ζm(wt)Q = Imbl(wt + 2)Q using Brown.
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Progress and results

Proof (Details).

R : Imbl(`1, . . . ,

non-trivial subsequence S

`s︸︷︷︸
start at position α

, . . . , `t︸︷︷︸
end at position β

, . . . , `k)

7→ Imbl(`1, . . . ,

reflection RS

`t︸︷︷︸
start at position β

, . . . , `s︸︷︷︸
end at position α

, . . . , `k)

Get permutation of `i.

Both quotients are ILbl(`1, . . . , `s−1, α+ β, `t+1, . . . , `k)

Subsequences are
Imbl(ε; `s − α, `s+1, . . . , `t−1, `t − β) , and
Imbl(ε′; `t − β, `t−1, . . . , `s+1, `s − α)

Reverses or duals, differ by (−1)length = −1. Cancel in D<N �
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Corollaries of symmetric insertion

Corollary (Generalisation of Hoffman, up to Q)

For (`1, `2, `3) = (2a+ 3, 2b+ 3, 2c+ 2), we obtain

Syma,b

(
ζ({2}a, 3, {2}b, 3, {2}c)− ζ({2}b, 3, {2}c, 1, 2, {2}a)

+ ζ({2}c, 1, 2, {2}a, 1, 2, {2}b)
)
∈ πwtQ

Duality shows cyclic insertion already holds up to Q

ζ({2}a, 3, {2}b, 3, {2}c)− ζ({2}b, 3, {2}c, 1, 2, {2}a)
+ ζ({2}c, 1, 2, {2}a, 1, 2, {2}b)

)
∈ πwtQ

In particular, a = b = 0 is Hoffman’s identity up to Q.
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Corollaries of symmetric insertion

Corollary (Improvement of Bowman-Bradley, up to Q)

For `i = 2ai + 2, obtain∑
permute ai

ζ({2}a1 , 1, {2}a2 , 3, . . . , 1, {2}a2n , 3, {2}a2n+1) ∈ πwtQ

“Only need permutations of a single composition.”

In particular, for a1 = · · · = an = m

Corollary (Evaluable MZV)

The following MZV is evaluable

ζ({{2}m, 1, {2}m, 3}n, {2}m) ∈ πwtQ
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Further progress?
Complete motivic proof of cyclic insertion is not (yet?) possible

Cyclic insertion has a stability under Dk

Odd weight implies D<N (even weight) = 0

Problem: Must fix rational multiple of ζm(wt) somehow
 analytically or numerically. . .

D<N (odd weight) involves IL explicitly

D7
∑

cycle
Imbl(2, 10, 3, 2) =

(ILbl(6, 3) + ILbl(3, 3, 2, 1) + ILbl(2, 3, 2, 3) + ILbl(1, 2, 2, 4)︸                                                                         ︷︷                                                                         ︸
−ζL(2)ζL(2, 3) − 2ζL(2)ζL(3, 2) + 2ζL(3)ζL(2, 2) = 0

)⊗ Imbl(10)

In general only have

odd weight =
∑

k
αkζ(2k + 1)ζ({2}wt/2−k) , αk ∈ Q
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Recent work

Using iterated integrals over P1 \ {∞, 0, 1, z } gives

Theorem (Hirose-Sato, 2017, arXiv 1704.06478)

The generalisation of Hoffman’s identity holds exactly

ζ({2}a, 3, {2}b, 3, {2}c)− ζ({2}b, 3, {2}c, 1, 2, {2}a)
+ ζ({2}c, 1, 2, {2}a, 1, 2, {2}b) = −ζ({2}a+b+c+3)

After the break:
a further generalisation of cyclic insertion, and

exact proofs!
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Full version of cyclic insertion

If some `i = 1, the identity involves product term corrections.

Ld = { (md+1, . . . ,mk) | (
d times︷      ︸︸      ︷

1, . . . , 1,md+1, . . . ,mk) is a
cyclic permutation of (`1, . . . , `k) }

“Take all cyclic permutations of (`1, . . . , `k) which start with d
consecutive 1’s. Then drop the initial 1’s”

Conjecture (Cyclic insertion, C., 2017, arXiv 1703.03784)

For any (`1, . . . , `k) of weight N ,

∑
cycle `i

Ibl(`1, . . . , `k)
?= Ibl(N + 2)−

bk/2c∑
d=1

2(2πi)2d

(2d+ 2)!
∑

m∈L2d

Ibl(m) .
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Full version of cyclic insertion

Example
With (`i) = (1, 1, 2, 3), need only L2 = { (2, 3) }. Get

Ibl(1, 1, 2, 3) + Ibl(1, 2, 3, 1) + Ibl(2, 3, 1, 1) + Ibl(3, 1, 1, 2)
?= Ibl(7)− 2(2πi)2

4! Ibl(2, 3)

Shuffle regularisation gives(
3ζ(1, 1, 3) + 2ζ(1, 2, 2) + ζ(2, 1, 2)

)
+(

ζ(2, 3)− 6ζ(1, 1, 3)− 4ζ(1, 2, 2)− 2ζ(2, 1, 2)
)

+(
6ζ(1, 1, 1, 2)

)
+
(
− ζ(5)

) ?= 0 + ζ(2)ζ(1, 2) X
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Another block decomposition conjecture

Conjecture (BBBL 1998, rewritten)

Let a1, a2, a3, b1, b2 ∈ Z≥0. Then∑
σ∈S3

sgn(σ)ζ({2}aσ(1) , 1, {2}b1 , 3, {2}aσ(2) , 1, {2}b2 , 3, {2}aσ(3)) ?= 0

Generalising the block decomposition structure leads to
Conjecture (Alt-odd, C., 2017, arXiv 1703.03784)

For any (`1, . . . , `2k+1) of even weight, with all `i > 1,

Alt{ `i | i odd } Ibl(`1, . . . , `2k+1) ?= 0

“Alternating sum over odd-position blocks.”

Remark
This conjecture is included in Hirose-Sato’s generalisation too.
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Another block decomposition conjecture

Example
For block lengths `i = 2ai + 2, 1 ≤ i ≤ 7, get

Alta1,a3,a5,a7 ζ({2}a1 , 1, {2}a2 , 3, {2}a3 , 1, {2}a4 , 3,

{2}a5 , 1, {2}a6 , 3, {2}a7) ?= 0

Example
For block lengths (2a1 + 3, 2a2 + 3, 2a3 + 3, 2a4 + 2, 2a5 + 3), get

Alta1,a3,a5 ζ({2}a1 , 3, {2}a2 , 3, {2}a3 , 3, {2}a4 , 1, 2, {2}a5) ?= 0
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Analogue for Multiple Zeta Star Values

Definition (MZSV)

ζ?(s1, s2, . . . , sk) B
∑

0<n1≤n2≤···≤nk

1
ns1

1 n
s2
2 · · ·n

sk
k

Theorem (Yamamoto 2013, Conjectured by ITTW 2013)

∑
σ∈S2n

ζ?(1, {2}aσ(1) , 3, {2}aσ(2) , . . . , 1, {2}aσ(2n−1) , 3, {2}aσ(2n)) ∈ πwtQ

∑
σ∈S2n+1

ζ?({2}aσ(1)+1, 1, {2}aσ(2) , 3, {2}aσ(3) , . . . ,

1, {2}aσ(2n) , 3, {2}aσ(2n+1)) ∈ πwtQ
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Analogue for MZSV’s

Theorem (C., 2018)
For `i > 1,∑
permute `i

ζ?(bl−1(2◦`1, `2, . . . , `n)) =
∑
r ∈

Partodd(n)

2#r
∏
i

(#ri−1)!ζ̂
(∑
j∈ri

`j
)

Where
ζ?(0 10 · · · 0︸    ︷︷    ︸

s1

· · · 10 · · · 0︸    ︷︷    ︸
sk

1) = ζ?(s1, . . . , sk)

◦ =
{

+ wt . k (mod 2)
, wt ≡ k (mod 2)

and ζ̂(s) =
{
ζ(s) s odd
1
2ζ
?({2}s/2) s even

Partodd(n) = { partitions of { 1, . . . , n } into odd size parts }

“A polynomial in Riemann Zeta Values.”
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Analogue for MZSV’s - Proof

Proof (Sketch).

Apply Zhao’s (generalised) 2-1 formula

ζ?(s) = ε(s)
∑

p∈Π(s(1))

2#pζ(p)

Show s(1) = ( ˜̀1, . . . , ˜̀k) where

˜̀
j =

{
`j `j odd
`j `j even f Alternating MZV’s

Apply (Zhao’s generalisation of) the symmetric sum formula

Use Zobilin’s evaluation

ζ(2n) = −1
2ζ
?({2}n) �
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Analogue for MZSV’s - Example

Example (Hoffman analogue)

For (`i) = (2a+ 3, 2b+ 3, 2c+ 2), have ◦ = +, and

Partodd(3) = { {1 | 2 | 3}, {123} } .

Obtain

ζ?({2}a+1, 3, {2}b, 3, {2}c) + ζ?({2}b+1, 3, {2}a, 3, {2}c) +
+ ζ?({2}b+1, 3, {2}c, 1, 2, {2}a) + ζ?({2}a+1, 3, {2}c, 1, 2, {2}b) +
+ ζ?({2}c+1, 1, 2, {2}a, 1, 2, {2}b) + ζ?({2}c+1, 1, 2, {2}a, 1, 2, {2}b)

= 23(1− 1)!3ζ(2a+ 3)ζ(2b+ 3) · 1
2ζ
?({2}c+1) + f r = {1 | 2 | 3}

+ 21(3− 1)! · 1
2ζ
?({2}a+b+c+4) f r = {123}

= 4ζ(2a+ 3)ζ(2b+ 3)ζ?({2}c+1) + 2ζ?({2}a+b+c+4)
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Summary

Defined block decomposition of an iterated integral

Used block decomposition to unify/generalise BBBL and
Hoffman’s conjectures

Used motivic MZV’s to prove a symmetrised version holds

Improved Bowman-Bradley to only permutations, proved
Hoffman, and other identities up to Q
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