Motivic MZV's and the cyclic insertion conjecture

Steven Charlton MPIM

17 January 2018 HIM Periods Trimester, Bonn

- 1 Definitions and conjectures
- 2 Motivic MZV's and algebraic tools
- 3 Alternating block decomposition
- 4 Extra material (time permitting)

Definitions and conjectures

Mutiple zeta values

Definition (MZV)

Multiple zeta value $\zeta(s_1, s_2, \ldots, s_k)$ is defined by

$$\zeta(s_1, s_2, \dots, s_k) \coloneqq \sum_{0 < n_1 < n_2 < \dots < n_k} \frac{1}{n_1^{s_1} n_2^{s_2} \cdots n_k^{s_k}}$$

• Where
$$s_i \geq 1 \in \mathbb{Z}$$

For convergence $s_k \geq 2$

Also define

• Weight is sum $s_1 + \cdots + s_k$ of arguments

Depth is number k of arguments

MZV relations

MZV satisfy *lots* of relations

- Duality relations
- Associator relations
- Derivation relations
- (Extended) Double shuffle relations

...

Not always clear how to prove *explicit* relations from these.

Theme: progress towards and generalisation of some *explicit* conjectural families of identities

Zagier-Broadhurst Identity

Theorem (Zagier-Broadhurst, BBBL 2001)

For $n \ge 0 \in \mathbb{Z}$, have

$$\zeta(\{1,3\}^n) = \frac{1}{2n+1} \frac{\pi^{4n}}{(4n+1)!}$$

Proof (Sketch).

- Generalise to single variable *multiple polylogarithms*.
- Generating series satisfies a differential equation.
- Explicit solution in terms of $_2F_1$. Compare coefficients.

Combinatorial proofs have also been given.

"Dressed with 2's"

Theorem (BBBL, 1998)

Let $n \ge 0 \in \mathbb{Z}$, write

 $I = \{ \text{ all } 2n+1 \text{ ways of inserting 2 into } \{1,3\}^n \ \}$.

Then

$$\sum_{\mathbf{s}\in I}\zeta(\mathbf{s}) = \frac{\pi^{4n+2}}{(4n+3)!}$$

Example

For n = 2, have

$$\zeta(2, 1, 3, 1, 3) + \zeta(1, 2, 3, 1, 3) + \zeta(1, 3, 2, 1, 3) + \zeta(1, 3, 1, 2, 3) + \zeta(1, 3, 1, 3, 2) = \frac{\pi^{10}}{11!}$$

Cyclic insertion conjecture

Numerical experimentation lead to conjectural generalisation.

Notation

Let $a_1, \ldots, a_{2n+1} \in \mathbb{Z}_{\geq 0}$. Write $Z(a_1, \ldots, a_{2n+1}) = \zeta(\{2\}^{a_1}, 1, \{2\}^{a_2}, 3, \ldots, 1, \{2\}^{a_{2n}}, 3, \{2\}^{a_{2n+1}})$

Conjecture (Cyclic insertion - BBBL, 1998)

$$\sum_{\sigma \in \mathbb{Z}/n\mathbb{Z}} Z(a_{\sigma(1)}, \dots, a_{\sigma(2n+1)}) \stackrel{?}{=} \frac{\pi^{\mathrm{wt}}}{(\mathrm{wt}+1)!}$$

Shorthand: "wt" is weight of MZV's on the LHS

Special cases

•
$$n = 0$$

 $\zeta(\{2\}^{a_1}) = \frac{\pi^{\text{wt}}}{(\text{wt}+1)!}$

• $a_1 = \dots = a_{2n+1} = 0$
 $(2n+1)\zeta(\{1,3\}^n) = \frac{\pi^{\text{wt}}}{(\text{wt}+1)!}$

• $a_1 = 1, a_2 = \dots = a_{2n+1} = 0$
Zagier-Broahurst dressed with 2's

• $a_1 = \dots = a_{2n+1} = m$
 $(2n+1)\zeta(\{\{2\}^m, 1, \{2\}^m, 3\}^n, \{2\}^m) \stackrel{?}{=} \frac{\pi^{\text{wt}}}{(\text{wt}+1)!}$

Previously conjectured by BBB (1997).

Bowman-Bradley

Best result so far is

Theorem (Bowman-Bradley, 2002)

Let $n, t \ge 0 \in \mathbb{Z}$, then

$$\sum_{\substack{a_1 + \dots + a_{2n+1} = t \\ a_i \ge 0}} Z(a_1, \dots, a_{2n+1}) = \frac{1}{2n+1} \binom{t+2n}{t} \frac{\pi^{\text{wt}}}{(\text{wt}+1)!}$$

Remark

Compatible with cyclic insertion: Any permutation of a composition $a_1 + \cdots + a_{2n+1} = t$ is still a composition.

Will use the motivic MZV framework to improve on this, up to \mathbb{Q} .

Hoffman's conjecture

Separate conjecture, with a similar flavour

Conjecture (Hoffman, MZV Infopage, 2000)

For $m \ge 0 \in \mathbb{Z}$,

$$2\zeta(3,3,\{2\}^m) - \zeta(3,\{2\}^m,1,2) \stackrel{?}{=} -\zeta(\{2\}^{m+3}) = -\frac{\pi^{\mathrm{wt}}}{(\mathrm{wt}+1)!}$$

Remark

.

Verified up to weight 22, m = 8 using MZV datamine, Vermaseren (2009).

Will prove this up to \mathbb{Q} , using the motivic MZV framework.

Unification and generalisation

Goal

Cyclic insertion and Hoffman are *special cases* of a more general (conjectural) family.

Can produce many new (conjectural) identities.

Example

$$\begin{aligned} \zeta(\{2\}^m, 1, 3, 3, 1, 2) + \zeta(3, 1, 2, 1, \{2\}^m, 3) - \zeta(1, 2, 1, \{2\}^m, 3, 1, 2) + \\ + \zeta(1, 2, 1, 3, 3, \{2\}^m) - \zeta(3, \{2\}^m, 1, 3, 3) \stackrel{?}{=} \frac{\pi^{\text{wt}}}{(\text{wt} + 1)!} \end{aligned}$$

(For above: $\in \pi^{wt}\mathbb{Q}$ holds. Generally can use motivic MZV's to prove certain *symmetrised* versions, up to \mathbb{Q} .)

Motivic MZV's and algebraic tools

Extra materia

MZV's as iterated integrals

$$\zeta(s_1, \dots, s_r) = (-1)^r I(0; \underbrace{1, 0, \dots, 0}_{s_1}, \dots, \underbrace{1, 0, \dots, 0}_{s_r}; 1)$$

where

$$I(a_0; a_1, \dots, a_N; a_{N+1}) = \int_{a_0 \le t_1 < \dots < t_N \le a_{N+1}} \frac{\mathrm{d}t_1}{t_1 - a_1} \cdots \frac{\mathrm{d}t_N}{t_N - a_N}$$

Convergent if $a_1 \neq a_0$ and $a_N \neq a_{N+1}$

Properties

$$I(0; a_1, \dots, a_N; 0) = 0 \text{ for } N \ge 1$$
 (Equal boundaries)

 $I(a_0; a_1, \dots, a_N; a_{N+1}) = I(1 - a_0; 1 - a_1, \dots, 1 - a_N; 1 - a_{N+1})$ (Functoriality)

$$I(a_0; a_1, \dots, a_N; a_{N+1}) = (-1)^N I(a_{N+1}; a_N, \dots, a_1; a_0)$$
(Reversal of paths)

$$I(a; w; b)I(a; v; b) = I(a; w \sqcup v; b)$$
 (Shuffle product)

Brown's motivic MZV's

Algebra
$$\mathcal{H}$$
 of motivic MZV's
 $\zeta^{\mathfrak{m}}(s_1, \ldots, s_r) \coloneqq [\mathcal{O}(\pi_1^{\mathrm{un}}(\mathbb{P}^1 \setminus \{0, 1, \infty\}, \overrightarrow{1_0}, -\overrightarrow{1_1})), \overrightarrow{\mathrm{dch}}, \underbrace{\Omega}_{\mathrm{integrand}}]^{\mathfrak{m}}$

Contains all motivic iterated integrals

$$I^{\mathfrak{m}}(a_0; a_1, \dots, a_N; a_{N+1}), a_i \in \{0, 1\}$$

 \blacksquare Projection to algebra ${\mathcal A}$ of de Rham motivic MZV's

$$\zeta^{\mathfrak{a}}(s_1,\ldots,s_r) \coloneqq [\mathcal{O}(\pi_1^{\mathrm{un}}(\mathbb{P}^1 \setminus \{0,1,\infty\},\overrightarrow{1_0},-\overrightarrow{1_1})), \underbrace{\varepsilon}_{\mathrm{augmentation\ ideal}},\Omega]^{\mathfrak{m}},$$

kernel generated by $\zeta^{\mathfrak{m}}(2)$.

Coaction

$$\Delta\colon \mathcal{H}\to \mathcal{A}\otimes_{\mathbb{Q}}\mathcal{H}$$

lifts Goncharov's 'semicircular' coproduct on \mathcal{A} . \mathcal{H} Hopf algebra comodule over \mathcal{A} .

Infinitesimal coproduct

Definition (Derivations D_k)

Let $\mathcal{L} \coloneqq \mathcal{A}/(\mathcal{A}_{>0} \cdot \mathcal{A}_{>0})$, which kills products and $\zeta^{\mathfrak{m}}(2)$. For k odd define

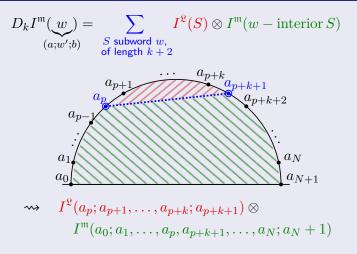
$$D_k: \quad \mathcal{H} \to \mathcal{L}_k \otimes_{\mathbb{Q}} \mathcal{H}$$
$$I^{\mathfrak{m}}(w) \mapsto (\pi \otimes \mathrm{id}) \circ (\Delta - 1 \otimes \mathrm{id}) I^{\mathfrak{m}}(w)$$

$$\begin{split} D_k I^{\mathfrak{m}}(a_0; a_1, \dots, a_N; a_{N+1}) &= \\ \sum_{p=0}^{N-k} I^{\mathfrak{L}}(a_p; a_{p+1}, \dots, a_{p+k}; a_{p+k+1}) \otimes & & \longleftrightarrow & \mathsf{Subsequence} \\ I^{\mathfrak{m}}(a_0; a_1, \dots, a_p, a_{p+k+1}, \dots, a_N; a_N + 1) & & & & \mathsf{Cuoient sequence} \end{split}$$

Extra materia

Derivations D_k mnemonic

Mnemonic.



Extra materia

Transcendental Galois Theory

Theorem (Brown, 2012)

Let
$$D_{. In weight N ,
ker $D_{.$$$

Example

$$\mathsf{Can show}\ \zeta^{\mathfrak{m}}(\{2\}^n) = \pm I^{\mathfrak{m}}(0; \underbrace{1, 0, 1, 0, \dots, 1, 0}_{n \text{ times}}; 1) \in \zeta^{\mathfrak{m}}(2n)\mathbb{Q}$$

Integral word alternates 0 and 1

Odd length subsequence has same boundaries, vanishes

• Therefore all D_{2r+1} vanish

Conclude $\zeta^{\mathfrak{m}}(\{2\}^n) \in \ker D_{\leq 2n} = \zeta^{\mathfrak{m}}(2n)\mathbb{Q}.$

$\zeta^{\mathfrak{m}}(\{1,3\}^n)$

More interesting: $\zeta^{\mathfrak{m}}(\{1,3\}^n) = I^{\mathfrak{m}}(0;(1100)^n;1) \in \zeta^{\mathfrak{m}}(4n)\mathbb{Q}$

- \blacksquare Word has period 4, so length $1 \ (mod \ 4)$ subsequence vanish
- For length $3 \pmod{4}$, look at starting position
- $1 \pmod{4}: \qquad I^{\mathfrak{L}}(0; (1100)^{a}1; 1) \otimes I^{\mathfrak{m}}((0110)^{b}0 \ | \ 10(0110)^{c}01)$
- $2 \pmod{4}: \qquad I^{\mathfrak{L}}(1; 1(0011)^{a}; 0) \otimes I^{\mathfrak{m}}((0110)^{b}01 \ | \ 0(0110)^{c}01)$
 - Cancel using reversal of paths in *I*². Similar for position 3, 4 (mod 4)
 - See cancellation as 'reversing' segments. Involution pairs up subsequences:

$$I^{\mathfrak{m}}(01 \mid 10 \mid 0 \mid 1 \mid 10 \mid \cdots \mid 10 \mid 01 \mid 10 \mid 01)$$

Conclude $\zeta^{\mathfrak{m}}(\{1,3\}^n) \in \ker D_{\leq 4n} = \zeta^{\mathfrak{m}}(4n)\mathbb{Q}$

Alternating block decomposition

Alternating blocks

Observation

In $\zeta^{\mathfrak{m}}(\{1,3\}^n)$ proof, points 00 and 11 in w are 'somehow' significant.

■ Splitting here decomposes a word into *alternating blocks* 0101 · · · · or 1010 · · · .

Definition (Block decomposition)

Let w be a word starting with $\varepsilon_1 \in \{0, 1\}$. Write w as alternating blocks, with lengths ℓ_1, \ldots, ℓ_k . The block decomposition of w is

$$\operatorname{bl}(w) = (\varepsilon_1; \ell_1, \ldots, \ell_k).$$

Example

$$\mathrm{bl}(\underbrace{0}_{1} \mid \underbrace{01}_{2} \mid \underbrace{10}_{2} \mid \underbrace{01010}_{5} \mid \underbrace{0}_{1} \mid \underbrace{01}_{2}) = (0; 1, 2, 2, 5, 1, 2)$$

Alternating blocks

Can recover w from $(\varepsilon_1; \ell_1, \ldots, \ell_k)$: blocks arise from $00 \to 0 \mid 0$ or $11 \to 1 \mid 1$.

Notation

Write $I_{\rm bl}(\varepsilon_1; \ell_1, \ldots, \ell_k) = I({\rm bl}^{-1}(\varepsilon_1; \ell_1, \ldots, \ell_k))$. If $\varepsilon_1 = 0$, just write (ℓ_1, \ldots, ℓ_k) .

- Weight of I_{bl}(ε₁; ℓ₁,..., ℓ_k) is −2 + ∑_i ℓ_i. (Bounds of integration are counted!)
- If $wt \equiv k \pmod{2}$ then $I_{bl} = 0$. (End points are equal!)

•
$$I_{\rm bl}$$
 is divergent iff $\ell_1 = 1$ or $\ell_k = 1$.

Example

 $I_{\rm bl}(1,2,2,5,1,2) = I(0;01100101000;1)$

Block structure of BBBL conjecture

Write the BBBL identity as iterated integrals

$$\sum_{\text{cycle } a_i} \zeta(\{2\}^{a_1}, 1, \{2\}^{a_2}, 3, \dots, 1, \{2\}^{a_{2n}}, 3, \{2\}^{a_{2n+1}})$$
$$\rightsquigarrow \pm \sum_{\text{cycle } a_i} I(0(10)^{a_1} 1(10)^{a_2} 100 \cdots 01(10)^{a_{2n}} 100(10)^{a_{2n+1}} 1)$$

 \blacksquare Split into 'alternating blocks' at $00 \rightarrow 0 \mid 0$ or $11 \rightarrow 1 \mid 1$

$$= \pm \sum_{\text{cycle } a_i} I(0(10)^{a_1}1 \mid (10)^{a_2}10 \mid 0 \cdots 01 \mid (10)^{a_{2n}}10 \mid 0(10)^{a_{2n+1}}1)$$

Record lengths of the blocks

$$= \pm \sum_{\text{cycle } a_i} I_{\text{bl}}(2a_1 + 2, 2a_2 + 2, \dots, 2a_{2n+1} + 2)$$

Right hand side is $\zeta(\{2\}^{\mathrm{wt}/2}) = \pm I_{\mathrm{bl}}(\mathrm{wt}+2).$

Block structure of Hoffman's conjecture

Write Hoffman's identity as iterated integrals

$$\begin{aligned} & 2\zeta(3,3,\{2\}^n) & -\zeta(3,\{2\}^n,1,2) \\ & = \zeta(3,3,\{2\}^n) & -\zeta(3,\{2\}^n,1,2) & +\zeta(\{2\}^n,1,2,1,2) \\ & \nleftrightarrow \pm (I(0100100(10)^n1) + I(0100(10)^n1101) + I(0(10)^n1101101)) \end{aligned}$$

- Split into 'alternating blocks' at $00 \rightarrow 0 \mid 0$ or $11 \rightarrow 1 \mid 1$ = ± ($I(010 \mid 010 \mid 0(10)^n 1) + I(010 \mid 0(10)^n 1 \mid 101)$ + $I(0(10)^n 1 \mid 101 \mid 101)$
 - $+ I(0(10)^n 1 \mid 101 \mid 101))$

Record lengths of the blocks

$$= \pm \left(I_{\rm bl}(3,3,2n+2) + I_{\rm bl}(3,2n+2,3) + I_{\rm bl}(2n+2,3,3) \right)$$

Right hand side is $-\zeta(\{2\}^{n+3}) = \pm I_{bl}(wt+2)$

Common structure and generalisation

Both conjectures have same structure: cyclic permutations of block lengths ℓ_i .

Conjecture (Cyclic insertion, C., 2017, arXiv 1703.03784)

For any (ℓ_1, \ldots, ℓ_k) with all $\ell_i > 1$,

$$\sum_{\text{cycle }\ell_i} I_{\text{bl}}(\ell_1, \dots, \ell_k) \stackrel{?}{=} I_{\text{bl}}(\text{wt}+2) = \begin{cases} \frac{\pi^{\text{wt}}}{(\text{wt}+1)!} & \text{wt even} \\ 0 & \text{wt odd} \end{cases}$$

 \blacksquare Numerically tested all cases weight $\leq 18,$ to 500 decimal places

- lacksquare Can prove a symmetrised version, up to ${\mathbb Q}$
- Can prove some special cases, up to Q

Examples

Example

Let
$$(\ell_1, \ldots, \ell_k) = (2m + 2, 2, 3, 2, 3)$$
, then we obtain

$$\begin{split} \zeta(\{2\}^m, 1, 3, 3, 1, 2) + \zeta(3, 1, 2, 1, \{2\}^m, 3) - \zeta(1, 2, 1, \{2\}^m, 3, 1, 2) + \\ + \zeta(1, 2, 1, 3, 3, \{2\}^m) - \zeta(3, \{2\}^m, 1, 3, 3) \stackrel{?}{=} \frac{\pi^{\text{wt}}}{(\text{wt} + 1)!} \end{split}$$

Proposition (C., 2017, arXiv 1703.03784)

The above identity holds up to ${\mathbb Q}$

Proof (Sketch).

Lift the identity to $\zeta^{\mathfrak{m}}$, and compute $D_{<2m+10}$. A (tedious) calculation shows $D_{<2m+10}$ vanishes.

Progress and results

Theorem (Symmetric insertion, C., 2017, arXiv 1703.03784)

For any (ℓ_1, \ldots, ℓ_k) , with even weight,

$$\sum_{\text{permute } \ell_i} I_{bl}(\ell_1, \dots, \ell_k) \in I_{bl}(wt+2)\mathbb{Q}$$

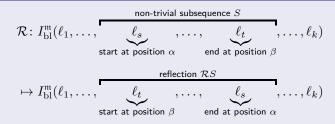
(Odd weight holds trivially, by duality)

Proof (Strategy).

- Lift to motivic version *I*^m.
- \blacksquare Define a reflection ${\mathcal R}$ on non-trivial subsequences
- Use \mathcal{R} to cancel terms in $D_{< N}$
- Conclude $\in \zeta^{\mathfrak{m}}(\mathrm{wt})\mathbb{Q} = I^{\mathfrak{m}}_{\mathrm{bl}}(\mathrm{wt}+2)\mathbb{Q}$ using Brown.

Progress and results

Proof (Details).



- Get permutation of ℓ_i .
- Both quotients are $I_{b1}^{\mathfrak{L}}(\ell_1, \ldots, \ell_{s-1}, \alpha + \beta, \ell_{t+1}, \ldots, \ell_k)$

Subsequences are $I_{\rm bl}^{\rm m}(\varepsilon;\ell_{\rm s}-\alpha,\ell_{\rm s+1},\ldots,\ell_{t-1},\ell_t-\beta)$, and $J_{11}^{\mathfrak{m}}(\varepsilon':\ell_t-\beta,\ell_{t-1},\ldots,\ell_{s+1},\ell_s-\alpha)$

Reverses or duals, differ by $(-1)^{\text{length}} = -1$. Cancel in $D_{\leq N}$

Corollaries of symmetric insertion

Corollary (Generalisation of Hoffman, up to \mathbb{Q})

For $(\ell_1, \ell_2, \ell_3) = (2a + 3, 2b + 3, 2c + 2)$, we obtain

$$\begin{split} &\operatorname{Sym}_{a,b}\left(\zeta(\{2\}^{a},3,\{2\}^{b},3,\{2\}^{c})-\zeta(\{2\}^{b},3,\{2\}^{c},1,2,\{2\}^{a})\right.\\ &+\zeta(\{2\}^{c},1,2,\{2\}^{a},1,2,\{2\}^{b})\right)\in\pi^{\operatorname{wt}}\mathbb{Q} \end{split}$$

Duality shows cyclic insertion already holds up to \mathbb{Q}

$$\begin{split} \zeta(\{2\}^a, 3, \{2\}^b, 3, \{2\}^c) &- \zeta(\{2\}^b, 3, \{2\}^c, 1, 2, \{2\}^a) \\ &+ \zeta(\{2\}^c, 1, 2, \{2\}^a, 1, 2, \{2\}^b)) \in \pi^{\mathrm{wt}} \mathbb{Q} \end{split}$$

In particular, a = b = 0 is Hoffman's identity up to \mathbb{Q} .

Corollaries of symmetric insertion

Corollary (Improvement of Bowman-Bradley, up to \mathbb{Q})

For $\ell_i = 2a_i + 2$, obtain

 $\sum_{\text{permute } a_i} \zeta(\{2\}^{a_1}, 1, \{2\}^{a_2}, 3, \dots, 1, \{2\}^{a_{2n}}, 3, \{2\}^{a_{2n+1}}) \in \pi^{\text{wt}} \mathbb{Q}$

"Only need permutations of a single composition."

In particular, for $a_1 = \cdots = a_n = m$

Corollary (Evaluable MZV)

The following MZV is evaluable

 $\zeta(\{\{2\}^m, 1, \{2\}^m, 3\}^n, \{2\}^m) \in \pi^{\mathrm{wt}}\mathbb{Q}$

Further progress?

Complete motivic proof of cyclic insertion is not (yet?) possible

- Cyclic insertion has a stability under D_k
- Odd weight implies $D_{<N}(\text{even weight}) = 0$
- Problem: Must fix rational multiple of $\zeta^{\mathfrak{m}}(wt)$ somehow \rightsquigarrow analytically or numerically...

$$D_{

$$D_{7} \sum_{\text{cycle}} I^{\mathfrak{m}}_{\mathrm{bl}}(2, 10, 3, 2) =$$

$$\underbrace{(I^{\mathfrak{L}}_{\mathrm{bl}}(6, 3) + I^{\mathfrak{L}}_{\mathrm{bl}}(3, 3, 2, 1) + I^{\mathfrak{L}}_{\mathrm{bl}}(2, 3, 2, 3) + I^{\mathfrak{L}}_{\mathrm{bl}}(1, 2, 2, 4))}_{-\zeta^{\mathfrak{L}}(2)\zeta^{\mathfrak{L}}(2, 3) - 2\zeta^{\mathfrak{L}}(2)\zeta^{\mathfrak{L}}(3, 2) + 2\zeta^{\mathfrak{L}}(3)\zeta^{\mathfrak{L}}(2, 2) = 0 }) \otimes I^{\mathfrak{m}}_{\mathrm{bl}}(10)$$$$

In general only have

odd weight =
$$\sum_k \alpha_k \zeta(2k+1)\zeta(\{2\}^{\operatorname{wt}/2-k}), \quad \alpha_k \in \mathbb{Q}$$

Recent work

Using iterated integrals over $\mathbb{P}^1 \setminus \set{\infty,0,1,z}$ gives

Theorem (Hirose-Sato, 2017, arXiv 1704.06478)

The generalisation of Hoffman's identity holds exactly

$$\begin{split} \zeta(\{2\}^a, 3, \{2\}^b, 3, \{2\}^c) &- \zeta(\{2\}^b, 3, \{2\}^c, 1, 2, \{2\}^a) \\ &+ \zeta(\{2\}^c, 1, 2, \{2\}^a, 1, 2, \{2\}^b) = -\zeta(\{2\}^{a+b+c+3}) \end{split}$$

After the break:

a further generalisation of cyclic insertion, and

exact proofs!

Extra material (time permitting)

Full version of cyclic insertion

If some $\ell_i = 1$, the identity involves product term corrections.

$$\mathcal{L}_d = \{ (m_{d+1}, \dots, m_k) \mid (\overbrace{1, \dots, 1}^{d \text{ times}}, m_{d+1}, \dots, m_k) \text{ is a}$$
cyclic permutation of $(\ell_1, \dots, \ell_k) \}$

"Take all cyclic permutations of (ℓ_1, \ldots, ℓ_k) which start with d consecutive 1's. Then drop the initial 1's"

Conjecture (Cyclic insertion, C., 2017, arXiv 1703.03784)

For any (ℓ_1, \ldots, ℓ_k) of weight N,

$$\sum_{\mathsf{cycle }\ell_i} I_{\mathrm{bl}}(\ell_1,\ldots,\ell_k) \stackrel{?}{=} I_{\mathrm{bl}}(N+2) - \sum_{d=1}^{\lfloor k/2 \rfloor} \frac{2(2\pi \mathrm{i})^{2d}}{(2d+2)!} \sum_{\mathbf{m} \in \mathcal{L}_{2d}} I_{\mathrm{bl}}(\mathbf{m}) \,.$$

Full version of cyclic insertion

Example

With
$$(\ell_i) = (1, 1, 2, 3)$$
, need only $\mathcal{L}_2 = \{ (2, 3) \}$. Get
 $I_{\rm bl}(1, 1, 2, 3) + I_{\rm bl}(1, 2, 3, 1) + I_{\rm bl}(2, 3, 1, 1) + I_{\rm bl}(3, 1, 1, 2)$
 $\stackrel{?}{=} I_{\rm bl}(7) - \frac{2(2\pi i)^2}{4!} I_{\rm bl}(2, 3)$

Shuffle regularisation gives

Extra material

Another block decomposition conjecture

Conjecture (BBBL 1998, rewritten)

Let $a_1, a_2, a_3, b_1, b_2 \in \mathbb{Z}_{\geq 0}$. Then

 $\sum_{\sigma \in S_3} \operatorname{sgn}(\sigma) \zeta(\{2\}^{a_{\sigma(1)}}, 1, \{2\}^{b_1}, 3, \{2\}^{a_{\sigma(2)}}, 1, \{2\}^{b_2}, 3, \{2\}^{a_{\sigma(3)}}) \stackrel{?}{=} 0$

Generalising the block decomposition structure leads to

Conjecture (Alt-odd, C., 2017, arXiv 1703.03784)

For any $(\ell_1, \ldots, \ell_{2k+1})$ of even weight, with all $\ell_i > 1$,

$$\operatorname{Alt}_{\{\ell_i \mid i \text{ odd }\}} I_{\operatorname{bl}}(\ell_1, \dots, \ell_{2k+1}) \stackrel{?}{=} 0$$

"Alternating sum over odd-position blocks."

Remark

This conjecture is included in Hirose-Sato's generalisation too.

Another block decomposition conjecture

Example

For block lengths $\ell_i = 2a_i + 2$, $1 \le i \le 7$, get

Alt_{a1,a3,a5,a7}
$$\zeta(\{2\}^{a_1}, 1, \{2\}^{a_2}, 3, \{2\}^{a_3}, 1, \{2\}^{a_4}, 3, \{2\}^{a_5}, 1, \{2\}^{a_6}, 3, \{2\}^{a_7}) \stackrel{?}{=} 0$$

Example

For block lengths $(2a_1 + 3, 2a_2 + 3, 2a_3 + 3, 2a_4 + 2, 2a_5 + 3)$, get Alt_{a1,a3,a5} $\zeta(\{2\}^{a_1}, 3, \{2\}^{a_2}, 3, \{2\}^{a_3}, 3, \{2\}^{a_4}, 1, 2, \{2\}^{a_5}) \stackrel{?}{=} 0$

Analogue for Multiple Zeta Star Values

Definition (MZSV)

$$\zeta^{\star}(s_1, s_2, \dots, s_k) \coloneqq \sum_{0 < n_1 \le n_2 \le \dots \le n_k} \frac{1}{n_1^{s_1} n_2^{s_2} \cdots n_k^{s_k}}$$

Theorem (Yamamoto 2013, Conjectured by ITTW 2013)

$$\sum_{\sigma \in S_{2n}} \zeta^{\star}(1, \{2\}^{a_{\sigma(1)}}, 3, \{2\}^{a_{\sigma(2)}}, \dots, 1, \{2\}^{a_{\sigma(2n-1)}}, 3, \{2\}^{a_{\sigma(2n)}}) \in \pi^{\mathrm{wt}}\mathbb{Q}$$

$$\sum_{\sigma \in S_{2n+1}} \zeta^{\star}(\{2\}^{a_{\sigma(1)}+1}, 1, \{2\}^{a_{\sigma(2)}}, 3, \{2\}^{a_{\sigma(3)}}, \dots, \\ 1, \{2\}^{a_{\sigma(2n)}}, 3, \{2\}^{a_{\sigma(2n+1)}}) \in \pi^{\mathrm{wt}}\mathbb{Q}$$

Analogue for MZSV's

Theorem (C., 2018)

For $\ell_i > 1$,

$$\sum_{\text{permute }\ell_i} \zeta^{\star}(\mathrm{bl}^{-1}(2 \circ \ell_1, \ell_2, \dots, \ell_n)) = \sum_{\substack{\mathbf{r} \in \\ \mathrm{Part_{odd}}(n)}} 2^{\#\mathbf{r}} \prod_i (\#r_i - 1)! \widehat{\zeta} \Big(\sum_{j \in r_i} \ell_j\Big)$$

Where

•
$$\zeta^*(0 \underbrace{10 \cdots 0}_{s_1} \cdots \underbrace{10 \cdots 0}_{s_k} 1) = \zeta^*(s_1, \dots, s_k)$$

• $\circ = \begin{cases} + & \text{wt} \not\equiv k \pmod{2} \\ , & \text{wt} \equiv k \pmod{2} \end{cases}$ and $\widehat{\zeta}(s) = \begin{cases} \zeta(s) & s \text{ odd} \\ \frac{1}{2}\zeta^*(\{2\}^{s/2}) & s \text{ even} \end{cases}$

• $Part_{odd}(n) = \{ partitions of \{ 1, ..., n \} into odd size parts \}$

"A polynomial in Riemann Zeta Values."

Analogue for MZSV's - Proof

Proof (Sketch).

Apply Zhao's (generalised) 2-1 formula

$$\zeta^{\star}(\mathbf{s}) = \varepsilon(\mathbf{s}) \sum_{\mathbf{p} \in \Pi(\mathbf{s}^{(1)})} 2^{\#\mathbf{p}} \zeta(\mathbf{p})$$

Show
$$\mathbf{s}^{(1)} = (\tilde{\ell}_1, \dots, \tilde{\ell}_k)$$
 where
 $\tilde{\ell}_j = \begin{cases} \ell_j & \ell_j \text{ odd} \\ \hline{\ell_j} & \ell_j \text{ even} \end{cases} \iff \text{Alternating MZV's}$

Apply (Zhao's generalisation of) the symmetric sum formula

Use Zobilin's evaluation

$$\zeta(\overline{2n}) = -\frac{1}{2}\zeta^{\star}(\{2\}^n) \qquad \Box$$

Analogue for MZSV's - Example

Example (Hoffman analogue)

For
$$(\ell_i) = (2a + 3, 2b + 3, 2c + 2)$$
, have $\circ = +$, and

$$Part_{odd}(3) = \{ \{ 1 \mid 2 \mid 3 \}, \{ 123 \} \}.$$

Obtain

$$\begin{split} & \zeta^{\star}(\{2\}^{a+1}, 3, \{2\}^{b}, 3, \{2\}^{c}) & + \zeta^{\star}(\{2\}^{b+1}, 3, \{2\}^{a}, 3, \{2\}^{c}) + \\ & + \zeta^{\star}(\{2\}^{b+1}, 3, \{2\}^{c}, 1, 2, \{2\}^{a}) & + \zeta^{\star}(\{2\}^{a+1}, 3, \{2\}^{c}, 1, 2, \{2\}^{b}) + \\ & + \zeta^{\star}(\{2\}^{c+1}, 1, 2, \{2\}^{a}, 1, 2, \{2\}^{b}) + \zeta^{\star}(\{2\}^{c+1}, 1, 2, \{2\}^{a}, 1, 2, \{2\}^{b}) \end{split}$$

$$= 2^{3}(1-1)!^{3}\zeta(2a+3)\zeta(2b+3) \cdot \frac{1}{2}\zeta^{\star}(\{2\}^{c+1}) + \quad \nleftrightarrow \mathbf{r} = \{1 \mid 2 \mid 3\}$$
$$+ 2^{1}(3-1)! \cdot \frac{1}{2}\zeta^{\star}(\{2\}^{a+b+c+4}) \qquad \bigstar \mathbf{r} = \{123\}$$

 $= 4\zeta(2a+3)\zeta(2b+3)\zeta^{\star}(\{2\}^{c+1}) + 2\zeta^{\star}(\{2\}^{a+b+c+4})$

Summary

- Defined block decomposition of an iterated integral
- Used block decomposition to unify/generalise BBBL and Hoffman's conjectures
- Used motivic MZV's to prove a symmetrised version holds
- Improved Bowman-Bradley to only permutations, proved Hoffman, and other identities up to Q