Bowman-Bradley type identities for symmetrised MZV’s
MZV Days at HIM

Steven Charlton

1. Background: finite MZV’s and symmetrised MZV’s

Finite MZV’s defined by Hoffman, Zhao, and others as follows
1
Cp(k17"'7k7"): Z ﬁ(mod p),

0<my<--<mp<p M4 T

truncating before p in the denominator.
Zagier then considered all ¢}, simultaneously, modulo ‘finite differences’, to define:

Ak, ke) = (Gplkrse o k) (mod p)) € A= HZ/pZ/QBZ/pZ

Since Q — A diagonally, this is a Q-algebra. These MZV’s are defined for all k; € Z, but get
some mixing of weight
1 1 1 1
Q13 = Y m= 3 aln-1)on = 160) - 56()

n3
0<m<n<p 0<n<p

Imposing k; > 1 fixes this, and allows us to define the space of weight k finite MZV’s, write Z 4, .
Experiments suggest

dimQ Ly_A’]C = dk_g
~—~—
weight & — 3 usual MZV’s
Comparing dimensions, via dx_3 = d — di—o suggests maybe
Zarse 2 mZ
Ak /
usual MZV’s

A suggestion for defining this isomorphism is via the symmetrised MZV’s

T

CF (k) = Y (DR R ey K (R Ki)
1=0

for e = LU, *-regularisation.
Proposition 1.1 (Kaneko-Zagier).
¢S _ (S e 2z
50 % = ¢5* (mod 7?) is well defined.
Then conjectural isomorphism Z4 — Z/7?Z is given via
Cs(kiy .oy k)= Calke, ... k)

On the finite side, we have
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Theorem 1.2 (Bowman-Bradley type - [SW16]). Let ai,...,a,,b1,...,b, be odd integers, and
C1,...,Cm be even integers, all > 1. Then

Z CA({aU(1)7 bT(l)? <oy Ao(n), bT(n)}g—l{Cl}g—l e I:D{CM})
(o,7)ES2

= Z ZCA({aU(l)abT(1)7'"7ao(n)7br(n)}g—|{cp(l)a'"acp(m)})

(o,7)ES2 PESm
=0

Remark 1.3. Here (U means shuffle of the MZV arguments (not the iterated integrals), i.e.

{al, ag,y ..., ap}l_T_I{bl, bQ, ey bq} = al({ag, e ,ap}l_T_I{bl, bQ, ey bq})+b1({a1, Ao,y ..., ap}LJ_I{bQ, ey bq}) .

For example,

+ C(B’ 27 27 5) + 4(37 27 5’ 2) + C(37 57 27 2)

Goal: corresponding result for symMZV’s.

Remark 1.4. Some results already by Muneta (Kyushu MZV seminar)

m —|—7’l> (_1)n22m+2n+1

2m—+4n =0 (
(2m + 4n + 2)!

(o = ( mod 2)

n

(Here LU, x-regularisation are equal because there is no consecutive 1,1 in the result.)
Murahara also has some unwritten results.

2. A general Bowman-Bradley ‘type’ identity

Theorem 2.1. Let ay,...,a,,b1,...,b, be odd integers, and cy,...,cn be even integers, all > 1.
Then

> o), brys - oy, beim HH{er }O - - T{em })

(o,7)ES?

= > Y o) brys - Aoy brim FE{Co)s - -5 Coimy })

(o,7)ES2 PESm

= > > D2 B0y + brys s Gon) + broy HD{ep, J0- - T{cp, }) -
(o,7)€S,, B=(B1,..., Byg)
BEHSQ(m)

Here we employ the following notation
I<o(m) = { all partitions (B1,...,Bg) of {1,...,m} with #B; <2} , and

cp; = E Ck -

keB;

Corollary 2.2. The result vanishes modulo 72, which matches the expectation under the (A < ¢°
correspondence.

Proof. For arbitrary odd a;,b;, even c;, we see the result is 0 (mod 72): After summing over
(o,7) € Sy, the ¢ is symmetric in all arguments. Hence by the symmetric sum formula, we can
write the result as a polynomial in

C(ao,rij(ao) + Bri)) + Brcs,)

Since a; + b; and ), ¢; are all even, the result is an even zeta, which vanishes modulo 2. O
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Sketch of Theorem. Purely combinatorial, and by induction. Very similar to the finite case. Case
m = 0 corresponds to the following stuffle-algebra identity

n n
Z Z Ragy """ Rbry ¥ Bbrny T Rao(ipr) Z Ragay " Ragay ¥ Bbrny T Rbr(s)
=1

(o,7)ES2 1=0

p— n

- E (71) Ray1)+br(1) " Rao(n)+br(n)
(o,7)ES?

which is also proven by induction.
Then use the stuffle-product result

¢(L)¢% (1) = ¢P(k=1),

and relate this to (U as follows

CF(kDfe}) = (ko) = 3 (ki oo ki ey hn).

This allows us to shuffle in a single ¢ at a time, to obtain the result. One obtains two level m
versions with variables either a;/b; + ¢my1, Or @;/bi, ¢j + 1. O

3. Corollaries and evaluations
From this can set a; = a, b; = b, to obtain

Corollary 3.1 (Bowman-Bradley).

|m/2]
S {a, P B{ek™ = 3 (—1)"2m 3¢ ({a+ by T} T{2e}) = 0 (mod 72)

i=0
When m = 0, we obtain
¢*({a,0}") = (=1)"¢({a +b}"),

which can be explicitly evaluated in each case using generating series results about (({even}™).
To go to higher m, we need to evaluate combinations like ¢({p}*@L{q}'@{r}™). I'm not aware
of any such results so far, but I can conjecture the following

Observation 3.2. For any a,b, c € Z>(, the following evaluation appears to hold

2142046¢(ph 4 2e)1(1 + a + 2b + 4c)! Za+dbtoe
(14 2¢)!lalb!(1 4+ 2b+ 4¢)1(2 + 2a + 4b + 6¢)!

21+2b+6c2a+4b+6c b+2c\ (1+a+2b+4c
(14+2c)(2+2a+4b+6¢)\ 2c

c({2y m{4} m{6}°) =

a

Corollary 3.3. (Assuming the above is accurate), the following evaluations hold

» m4+n (_1)n22m+2n+1

M t S 1 n 1My — 2m-+4n
(Muneta) L 32k ( n )(2m+4n+2)!

~ 1 2n +m (—1)"22m+6”+1

S n my __ 2m-+6n
3,32 = -
¢ ({3, 33"n{2y") 2n—|—1( m )(2m—|—6n—|—2)!
Proof. The resulting binomial sums can be evaluated using the WZ-method. O

Remark 3.4. Not sure if there is a nice generating series proof of the above observation; the naive
generating series obtained by generalising the ¢({a}") evaluation gives ¢({a}™)¢({b}!) type results
instead.
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Using the symmetric sum theorem, I can recursively reduce a proof of the above to proving the
following Bernoulli identities, neither of which seems particularly easy to prove.

a b
6 + 2a + 4b 1+a+2b—n,—2np\ (g + 1
-1 n522na+2an n n
Z Z( ) 4+2na+dne 4+ 2n, + 4ny a—ng Ng

nge=0n,=0

:—(b+1)<3+a+2b>

2 a
Z‘l: zb: Z n522na+2an 8+ 2a + 4b + 6¢
e 14 2¢c— OF2natdnytne\ ¢ 1 on 1 dny + 6n,
+2b+4c—ng — 2npy —4ne\ (b4 2¢c — ny — 2n, Ng + Np + Ne
a— ng 2c — 2n, Nay Np, Ne

multinomial

24 2c(2+b+2c\ (5+a+2b+4c
T 342 24 2¢ a

(Murahara recently suggested a different recursion, and reduces this to a certain binomial sum
identity. Hopefully this is more accessible.)

Beyond ((2(04(016), one necessarily encounters ((8), and like the evaluation of (({8}"), these
evaluations become more difficult to find and write.

Theorem 3.5. Forn >0, Ry = 64(17 + 12v/2) = 43(1 + v/2)*, and 0: v/2 — —/2 the Galois
automorphism of Q(v/2), we have

) }omGalois symmetrisation

8" m{2)°) = gy { By (12 + 8v2)
CUsY D) = iy { By ((60+42v2) + (30 + 561/2) }U
¢({8}"m{2}*) =

o { R (168 + 118V2) + (440 + 310v/2) + n?(272 + 1923)) }G

Proof. Proven using ¢({8}") as the base case, and summing up the Bernoulli sums using the
generating series of Bernoulli polynomials. O

Observation 3.6. One finds that ¢({8}"L{2}™), m fixed, appears to satisfy a linear recurrence
relation of order 2m + 2, whose characteristic equation factors as

()\ _ R+)7n+1(>\ _ R,)m+1 =0.
So by finding the first 2m + 2 instances, one obtains further candidate results like

CHBII2Y) = gy { R (360 + 122v/2) + n(322% + 2819./9) + 02 (1608 + 1136v/2) + n®(158 + B12v3)) 17

and a general form
D)™ = Rt}

some a; € Q(v/2).
Unfortunately, not clear what the pattern is coefficients is. Moreover, some coefficients have
large prime factors dividing their norm:

Noyz) (352 + 2819/2) = 21372171721,
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3.1. Miscellaneous results

It doesn’t yet appear as if any analogue of cyclic insertion holds in general for symMZV’s. Numer-
ically, I have checked how Bowman-Bradley for ¢({1,3} L {2}) decomposes into m*-pieces, but it
doesn’t seem so well structured yet.

However

Observation 3.7. The following evaluation

ST SR, 3, {20, 5,. . 3, {2} ) =

oc€EL/NL

7.‘.wt

(wt +2)!
appears to hold.

So there might be something interesting here. ..
The proof of ‘generalised Bowman-Bradley’ for ¢ should give directly a different generalisation
when ¢; are arbitrary, and n = 0. Namely
D ¢Ceym-Denh) = 3, JJO+D™) - C({em YD Dien,}),

Bl ..... Bk) ]

(B:BEHSQ(/H’I/)

where cp;, = Zqu ¢;- Note, in particular, that the if any cp; is odd, the term vanishes. So one

could write this as a sum over all partitions B € II<o(m) such that every ¢, = 0 (mod 2).
Moreover, one can probably give a common generalisation (naturally with a more complicated
expression), of these two results, to arbitrary a, b, c.
Nevertheless, one can give results like

CS{1Pmesyn)
= 21 (2n — 1)l (C({2}D{6}") + 4C({4, 4HT{6}" 1))
(1420 o p6n

=222 + n) @16

= 0 (mod 7?)

¢S ({3325} )

= 272 — 1)!tn! (C({6}D{10}") + 4C({8, 8}D{10}"~1)) = 0 (mod 7?)
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