
Bowman-Bradley type identities for symmetrised MZV’s
MZV Days at HIM

Steven Charlton

1. Background: finite MZV’s and symmetrised MZV’s

Finite MZV’s defined by Hoffman, Zhao, and others as follows

ζp(k1, . . . , kr) =
∑

0<m1<···<mr<p

1

mk1
1 · · ·m

kr
r

(mod p) ,

truncating before p in the denominator.
Zagier then considered all ζp simultaneously, modulo ‘finite differences’, to define:

ζA(k1, . . . , kr) :=
(
ζp(k1, . . . , kr) (mod p)

)
p
∈ A :=

∏
p

Z/pZ
/⊕

p

Z/pZ

Since Q ↪→ A diagonally, this is a Q-algebra. These MZV’s are defined for all ki ∈ Z, but get
some mixing of weight

ζp(−1, 3) =
∑

0<m<n<p

m

n3
=

∑
0<n<p

1

2
n(n− 1)

1

n3
=

1

2
ζp(1)− 1

2
ζp(2)

Imposing ki ≥ 1 fixes this, and allows us to define the space of weight k finite MZV’s, write ZAk .
Experiments suggest

dimQZA,k = dk−3︸︷︷︸
weight k − 3 usual MZV’s

Comparing dimensions, via dk−3 = dk − dk−2 suggests maybe

ZA,k ∼= Z︸︷︷︸
usual MZV’s

/π2Z

A suggestion for defining this isomorphism is via the symmetrised MZV’s

ζS,•(k1, . . . , kr) :=

r∑
i=0

(−1)ki+1+···+krζ•(k1, . . . , ki)ζ
•(kr, . . . , ki+1) ,

for • = �, ∗-regularisation.

Proposition 1.1 (Kaneko-Zagier).

ζS,� − ζS,∗ ∈ π2Z ,

so ζS = ζS,• (mod π2) is well defined.

Then conjectural isomorphism ZA → Z/π2Z is given via

ζS(k1, . . . , kr) 7→ ζA(k1, . . . , kr)

On the finite side, we have
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Theorem 1.2 (Bowman-Bradley type - [SW16]). Let a1, . . . , an, b1, . . . , bn be odd integers, and
c1, . . . , cm be even integers, all ≥ 1. Then∑

(σ,τ)∈S2
n

ζA({aσ(1), bτ(1), . . . , aσ(n), bτ(n)}�̃{c1}�̃ · · · �̃{cm})

=
∑

(σ,τ)∈S2
n

∑
ρ∈Sm

ζA({aσ(1), bτ(1), . . . , aσ(n), bτ(n)}�̃{cρ(1), . . . , cρ(m)})

= 0

Remark 1.3. Here �̃ means shuffle of the MZV arguments (not the iterated integrals), i.e.

{a1, a2, . . . , ap}�̃{b1, b2, . . . , bq} = a1({a2, . . . , ap}�̃{b1, b2, . . . , bq})+b1({a1, a2, . . . , ap}�{b2, . . . , bq}) .

For example,

ζ({2, 2}� {3, 5}) = ζ(2, 2, 3, 5) + ζ(2, 3, 2, 5) + ζ(2, 3, 5, 2)

+ ζ(3, 2, 2, 5) + ζ(3, 2, 5, 2) + ζ(3, 5, 2, 2)

Goal: corresponding result for symMZV’s.

Remark 1.4. Some results already by Muneta (Kyushu MZV seminar)

ζS({1, 3}n�̃{2}m) =

(
m+ n

n

)
(−1)n22m+2n+1

(2m+ 4n+ 2)!
π2m+4n ≡ 0 (mod π2)

(Here �, ∗-regularisation are equal because there is no consecutive 1, 1 in the result.)
Murahara also has some unwritten results.

2. A general Bowman-Bradley ‘type’ identity

Theorem 2.1. Let a1, . . . , an, b1, . . . , bn be odd integers, and c1, . . . , cm be even integers, all ≥ 1.
Then ∑

(σ,τ)∈S2
n

ζS({aσ(1), bτ(1), . . . , aσ(n), bτ(n)}�̃{c1}�̃ · · · �̃{cm})

=
∑

(σ,τ)∈S2
n

∑
ρ∈Sm

ζS({aσ(1), bτ(1), . . . , aσ(n), bτ(n)}�̃{cρ(1), . . . , cρ(m)})

=
∑

(σ,τ)∈Sn

∑
B=(B1,...,Bk)
B∈Π≤2(m)

(−1)n2#Bζ({aσ(1) + bτ(1), . . . , aσ(n) + bτ(n)}�̃{cB1
}�̃ · · · �̃{cBk}) .

Here we employ the following notation

Π≤2(m) := { all partitions (B1, . . . , Bk) of { 1, . . . ,m } with #Bi ≤ 2 } , and

cBj :=
∑
k∈Bj

ck .

Corollary 2.2. The result vanishes modulo π2, which matches the expectation under the ζA ↔ ζS

correspondence.

Proof. For arbitrary odd ai, bi, even ci, we see the result is 0 (mod π2): After summing over
(σ, τ) ∈ Sn, the ζ is symmetric in all arguments. Hence by the symmetric sum formula, we can
write the result as a polynomial in

ζ(ασ,τ,i,j(aσ(i) + βτ(j)) + βkcBk)

Since ai + bj and
∑
l cl are all even, the result is an even zeta, which vanishes modulo π2. �
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Sketch of Theorem. Purely combinatorial, and by induction. Very similar to the finite case. Case
m = 0 corresponds to the following stuffle-algebra identity

∑
(σ,τ)∈S2

n

{
n∑
i=0

zaσ(1) · · · zbτ(i) ∗ zbτ(n)
· · · zaσ(i+1)

−
n∑
i=1

zaσ(1) · · · zaσ(i) ∗ zbτ(n)
· · · zbτ(i)

}

=
∑

(σ,τ)∈S2
n

(−1)nzaσ(1)+bτ(1) · · · zaσ(n)+bτ(n)

which is also proven by induction.
Then use the stuffle-product result

ζS(k)ζS(l) = ζS(k ∗ l) ,

and relate this to �̃ as follows

ζS(k�̃{c}) = ζS(k ∗ c)−
∑
i

ζ(k1, . . . , ki + c, . . . , kn) .

This allows us to shuffle in a single c at a time, to obtain the result. One obtains two level m
versions with variables either ai/bi + cm+1, or ai/bi, cj + cm+1. �

3. Corollaries and evaluations

From this can set ai = a, bi = b, to obtain

Corollary 3.1 (Bowman-Bradley).

ζS({a, b}n�̃{c}m) =

bm/2c∑
i=0

(−1)n2m−2iζ({a+ b}n�̃{c}m−2i
�̃{2c}i) = 0 (mod π2) .

When m = 0, we obtain

ζS({a, b}n) = (−1)nζ({a+ b}n) ,

which can be explicitly evaluated in each case using generating series results about ζ({even}n).
To go to higher m, we need to evaluate combinations like ζ({p}k�̃{q}l�̃{r}m). I’m not aware

of any such results so far, but I can conjecture the following

Observation 3.2. For any a, b, c ∈ Z≥0, the following evaluation appears to hold

ζ({2}a�̃{4}b�̃{6}c) =
21+2b+6c(b+ 2c)!(1 + a+ 2b+ 4c)!

(1 + 2c)!a!b!(1 + 2b+ 4c)!(2 + 2a+ 4b+ 6c)!
π2a+4b+6c

=
21+2b+6cπ2a+4b+6c

(1 + 2c)(2 + 2a+ 4b+ 6c)!

(
b+ 2c

2c

)(
1 + a+ 2b+ 4c

a

)
Corollary 3.3. (Assuming the above is accurate), the following evaluations hold

ζS({1, 3}n�̃{2}m) =

(
m+ n

n

)
(−1)n22m+2n+1

(2m+ 4n+ 2)!
π2m+4n(Muneta)

ζS({3, 3}n�̃{2}m) =
1

2n+ 1

(
2n+m

m

)
(−1)n22m+6n+1

(2m+ 6n+ 2)!
π2m+6n

Proof. The resulting binomial sums can be evaluated using the WZ-method. �

Remark 3.4. Not sure if there is a nice generating series proof of the above observation; the näıve
generating series obtained by generalising the ζ({a}n) evaluation gives ζ({a}n)ζ({b}l) type results
instead.
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Using the symmetric sum theorem, I can recursively reduce a proof of the above to proving the
following Bernoulli identities, neither of which seems particularly easy to prove.

a∑
na=0

b∑
nb=0

(−1)nb22na+2nbB4+2na+4nb

(
6 + 2a+ 4b

4 + 2na + 4nb

)(
1 + a+ 2b− na − 2nb

a− na

)(
na + nb
na

)
=
−(b+ 1)

2

(
3 + a+ 2b

a

)

a∑
na=0

b∑
nb=0

c∑
nc=0

(−1)nb22na+2nb

1 + 2c− 2nc
B6+2na+4nb+6nc

(
8 + 2a+ 4b+ 6c

6 + 2na + 4nb + 6nc

)
(

1 + a+ 2b+ 4c− na − 2nb − 4nc
a− na

)(
b+ 2c− nb − 2nc

2c− 2nc

)(
na + nb + nc
na, nb, nc

)
︸ ︷︷ ︸

multinomial

=
2 + 2c

3 + 2c

(
2 + b+ 2c

2 + 2c

)(
5 + a+ 2b+ 4c

a

)
(Murahara recently suggested a different recursion, and reduces this to a certain binomial sum

identity. Hopefully this is more accessible.)

Beyond ζ(2�̃4�̃6), one necessarily encounters ζ(8), and like the evaluation of ζ({8}n), these
evaluations become more difficult to find and write.

Theorem 3.5. For n ≥ 0, R± = 64(17 ± 12
√

2) = 43(1 ±
√

2)4, and σ :
√

2 7→ −
√

2 the Galois

automorphism of Q(
√

2), we have

ζ({8}n�̃{2}0) = πwt

(wt+4)!

{
Rn+

(
(12 + 8

√
2)
)}σ  

Galois symmetrisation

ζ({8}n�̃{2}1) = πwt

(wt+4)!

{
Rn+

(
(60 + 42

√
2) + n(80 + 56

√
2)
)}σ

ζ({8}n�̃{2}2) = πwt

(wt+4)!

{
Rn+

(
(168 + 118

√
2) + n(440 + 310

√
2) + n2(272 + 192

√
2)
)}σ

Proof. Proven using ζ({8}n) as the base case, and summing up the Bernoulli sums using the
generating series of Bernoulli polynomials. �

Observation 3.6. One finds that ζ({8}n�̃{2}m), m fixed, appears to satisfy a linear recurrence
relation of order 2m+ 2, whose characteristic equation factors as

(λ−R+)m+1(λ−R−)m+1 = 0 .

So by finding the first 2m+ 2 instances, one obtains further candidate results like

ζ({8}n�̃{2}3) = πwt

(wt+4)!

{
Rn+

(
(360 + 1015

4

√
2) + n( 3994

3 + 2819
3

√
2) + n2(1608 + 1136

√
2) + n3( 1856

3 + 1312
3

√
2)
)}σ

,

and a general form

ζ({8}n�̃{2}m) = πwt

(wt+4)!

{
Rn+

m∑
j=0

αjn
j

}σ
,

some αj ∈ Q(
√

2).
Unfortunately, not clear what the pattern is coefficients is. Moreover, some coefficients have

large prime factors dividing their norm:

NQ(
√

2)(
3994

3 + 2819
3

√
2) = 21 · 3−2 · 17 · 1721 .
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3.1. Miscellaneous results

It doesn’t yet appear as if any analogue of cyclic insertion holds in general for symMZV’s. Numer-
ically, I have checked how Bowman-Bradley for ζ({1, 3}� {2}) decomposes into π•-pieces, but it
doesn’t seem so well structured yet.

However

Observation 3.7. The following evaluation∑
σ∈Z/nZ

ζS({2}aσ(1) , 3, {2}aσ(2) , 3, . . . , 3, {2}aσ(2n+1)) = 2wt+1 πwt

(wt + 2)!

appears to hold.

So there might be something interesting here. . .
The proof of ‘generalised Bowman-Bradley’ for ζS should give directly a different generalisation

when ci are arbitrary, and n = 0. Namely∑
ζS({c1}�̃ · · · �̃{cm}) =

∑
(B=

B1,...,Bk)
B∈Π≤2(m)

∏
j

(1 + (−1)cBj ) · ζ({cB1
}�̃ · · · �̃{cBk}) ,

where cBj =
∑
iıBj

ci. Note, in particular, that the if any cBj is odd, the term vanishes. So one

could write this as a sum over all partitions B ∈ Π≤2(m) such that every cBi = 0 (mod 2).
Moreover, one can probably give a common generalisation (naturally with a more complicated

expression), of these two results, to arbitrary a, b, c.
Nevertheless, one can give results like

ζS({1}�̃2
�̃{3}�̃2n)

= 2n+1(2n− 1)!!n!
(
ζ({2}�̃{6}n) + 4ζ({4, 4}�̃{6}n−1)

)
= 22+7n(2 + n)

n!(−1 + 2n)!!

(4 + 6n)!
π2+6n

≡ 0 (mod π2)

ζS({3}�̃2
�̃{5}�̃2n)

= 2n+1(2n− 1)!!n!
(
ζ({6}�̃{10}n) + 4ζ({8, 8}�̃{10}n−1)

)
≡ 0 (mod π2)
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