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Introduction to MZV's



Introduction

Mutiple zeta values

Definition (MZV)

Multiple zeta value ((s1, s2, ..., si) is defined by

C(51,82,...,8k) = > TSRS

0<ni<ng<--<ng

“Interesting multi-variable version of ((s)

m Wheres; >1€Z

m For convergence s > 2

Also define

m Weight is sum s1 + - - - + s of arguments

m Depth is number k of arguments



Introduction

Reasons for interest

m Arise naturally in physics calculations
m Connection to modular forms

m Periods of My, are in Q[% MZV's]

77



Introduction

Reasons for interest

More concretely:
m Have a surprising amount of structure
m At weight 8, expect 2872 = 64 MZV's

m At most 4 Q-linearly independent ones, e.g.

{€(8),¢(3,5),¢(5,3),¢(3,3,2)}

m Implies lots of linear relations
((2,1,1,4) = —31¢(3,5) — 3¢(5,3) + 1¢(3,3,2) + 232¢(8)

m Leads to difficult open questions
m Euler ((2) =T, ((4)=15, ((2k) e n®Q

m Apéry (1970): ((3) ¢ Q. What about ((5) & Q7
m Linear independence ((3) /7> é Q?

Goal: Understand all Q-linear relations



Introduction
MZV Relations

u C(3) = C(la 2) Repelatf22,27 2
1 in 1 —~ =
UL = T = ar e
5197
[ | 28((3, 9) + 150§(5, 7) + 168§(7, 5) = MC(IQ)

u C({3}n7 4) = C(lv 3, {S}H) + C(27 {3}717 2)

Conjecture (Weight grading)

Any Q-linear relation between MZV's is weight graded.
“There are no relations between MZV's of different weights.”



Introduction
MZV Relations

u C(3) = C(la 2) Repelatf22,27 2
1 in 1 —~ =
UL = T = ar e
5197
[ | 28((3, 9) + 150§(5, 7) + 168§(7, 5) = MC(IQ)

u C({3}n7 4) = C(lv 3, {S}H) + C(27 {3}717 2)

Conjecture (Weight grading)

Any Q-linear relation between MZV's is weight graded.
“There are no relations between MZV's of different weights.”



Algebraic structure of MZV's



MZV structure

Integral representation; shuffle product

Definition (Iterated integral)

dty dtn
I(ag;aq,...,an;aN+1) = / —— N N—
t1 —ay tN —an
ag<t;<ta<--
<tnN<an41

m Multiplication of iterated integrals gives shuffle product
m Arrange ag <t; < an41 and ag < s; < any+1 in all compatible
ways t; < sj or t; > Sj-

m [(a;wy;b)I(a;wa;b) = I(a; wy W wsy;b) where

(zw1) W (yws) = z(w) W yws) + y(zw; W ws)

Proposition (MZV as iterated integral, Kontsevich)

C(s1s-. -, 86) = (=1)FI(0; 1, {0}, ..., 1, {0} 1; 1)



MZV structure

Properties of iterated integrals

Properties
m [(a;b) =1 for any a,b (Unit)
m [(0;a1,...,an;0) =0 for N > 1 (Equal boundaries)
m [(ag;a1,...,an;ans+1) =I1(1 —ap;l—ay...,1 —an;1 —any1)
(Functoriality)
m I(ag;ay,...,an;ans1) = (=1)NI(ani1;an, ..., a1;0a0)

(Reversal of paths)

Corollary (MZV duality)

I(0;a,...,an; 1) = (=D)NI(0;1 —ap,...,1 —ag;1)
~  ¢(2,1,5) =(¢(1,1,1,3,2)
— N

—I(0;10110000;1)  —I(0;11110010;1)
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MZV structure
Series representation; stuffle product

m Multiply series gives stuffle product x

m Arrange n;, and m; in all compatible ways n; < m;, or
ny = Mmj Oor n; > mj.

m Simplest case ((s) * ((t) = ((s,t) + ((t,s) + (s + t).

Example (Comparing L and x*)

2¢(2,2) +4¢(1,3) = ¢(2)¢(2) = 2¢(2,2) + ¢(4)
1 17t

= ((1,3) = ZC(4) =3

Conjecture (Extended double shuffle)

All Q-linear relations on MZV's arise by comparing LI — .
(Must allow divergent ((1),; formally cancels using regularisation.)
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Cyclic insertion conjecture



Cyclic insertion
Zagier-Broadhurst ldentity

Theorem (Zagier-Broadhurst, BBBL 2001)

Forn >0 € Z, have

n 1 s
CHL3YY) =577 (4n + 1)!

4n

Proof (Sketch).

m Generalise to single variable multiple polylogarithms.
m Generating series satisfies a differential equation.
m Explicit solution in terms of 9 F;. Compare coefficients.

Combinatorial proofs have also been given. |
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Cyclic insertion
“Dressed with 2's"”

Theorem (BBBL, 1998)

Let n > 0 € Z, write
I = {all 2n 4 1 ways of inserting 2 into {1,3}" } .

Then
4n+2

ZC 4n-|-3)

sel

For n = 2, have

C(2a 17 37 17 3) + C(17 27 37 1a 3) + C(]-v 37 27 1’ 3)+
10

110

¢(1,3,1,2,3) +¢(1,3,1,3,2) =

14 /38



Cyclic insertion
Cyclic insertion conjecture

Numerical experimentation lead to conjectural generalisation.

Notation

Let aq, ..., a2n+1 € ZZO. Write

Z(ay,...,am+1) = C({2}91,1,{2}2,3,...,1, {2}, 3, {2}92"+1)

Conjecture (Cyclic insertion - BBBL, 1998)

> Z(ao), -5 o@nt1)) =
0EZ/nZ

Shorthand: “wt" is weight of MZV's on the LHS
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Cyclic insertion

Bowman-Bradley

Best result so far is

Theorem (Bowman-Bradley, 2002)

Let n,t > 0 € Z, then

, 1 (t+2m) ™
Z (al,...,a2n+1) - on +1 t m

ai+-+agnpt1=t
alZO

Remark

Compatible with cyclic insertion: Any permutation of a
composition a; + - -+ + agp 1 =t is still a composition.

Will use the motivic MZV framework to improve on this, up to Q.
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Cyclic insertion
Hoffman's conjecture

Separate conjecture, with a similar flavour

Conjecture (Hoffman, MZV Infopage, 2000)

Form >0 € Z,

2¢(3,3,{2)™) — ¢(3,{2}™,1,2) = —C({2}"*?) = -

7TWt

(wt 4+ 1)!

Remark

Verified up to weight 22, m = 8 using MZV datamine, Vermaseren
(2009).

Will show this up to Q, using the motivic framework
Goal: connect these two conjectures, and work towards proofs.
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Motivic MZV
Brown's motivic MZV's

Solve transcendence problems with algebraic version of MZV's:

m Graded algebra H, of motivic MZV'’s

straight line
=~
C"(s1, ..y 8r) = [O@E™(PN{ 0,1, 00 },ﬁ,—ﬁ)),dch,g/}m.
integrand
Contains all motivic iterated integrals
Im(ao; a1,...,aN; a’N+1)7 a; € { 07 1 }
m Projection to algebra A, of de Rham motivic MZV's

(51, 50) = [O(A (B {0, 1,00}, 15, - T7)), =, O™,

augmentation ideal

kernel generated by (™(2).

m Coaction
A:H—-ARqH
lifts Goncharov's ‘semicircular’ coproduct on A. H Hopf

algebra comodule over A. .



Motivic MZV
Results from motivic MZV's

m (%(2k + 1) are linearly independent
[ | ga(Qk + 1) +#0e A2k+1(Q)

m So have different gradings

m (“(2k + 1) are algebraically independent
m Suppose some (*(2k + 1) satisfy a polynomial

m Use coproduct A to show all coefficients are 0

m (%(3,5) is irreducible (i.e. not in Q[((n)])
= (A —A)(Y(3,5) = =5¢"(3) A ¢(5)

m (A= A%P)C(ny) - () = 0
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Motivic MZV
Infinitesimal coproduct

Definition (Derivations Dy,)

Let £ := A/(Asq - Asg), which kills products and ¢™(2). For &
odd define

Dy: H— Ly R®qH
I'w) = (r®id) o (A — 1 ®1id) I(w)

DyI"(ag; a1, - ..,an;any1) =
N—k
2
Z I (ap; Gpt1s - - Qpik; Qpikot1) © « Subsequence
p=0

I(ap; a1, ..., ap, Aptkt1,-.-,an;an +1) e~ Quoient sequence
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Motivic MZV

Derivations D;. mnemonic

Mnemonic.

Dkfm(\’w/) — Z I*(S) ® I™(w — interior S)

D S subword w,
(@w'd) % length & 42

aN
aN+1
10
> I (ap; Gptts - Otk Qptk+1) @
I(ao; a1, .-, Gp, Qptkt1,-- - aN; aN + 1)
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Motivic MZV
Transcendental Galois Theory

Theorem (Brown, 2012)

Let Doy = @D1cop11<«n Dory1. In weight N,
ker Doy = ¢"(N)Q.

~> ‘exact-numerical’ algorithm for decomposing motivic MZV's

Can show ¢™({2}") = +£1™(0;1,0,1,0,...,1,0;1) € ("(2n)Q
n times

m Integral word alternates 0 and 1
m Odd length subsequence has same boundaries, vanishes

m Therefore all Dy, vanish

Conclude (™({2}"™) € ker Do, = (™(2n)Q.
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Motivic MZV

¢"({1,3}")

More interesting: ¢("™({1,3}") = I™(0;(1100)™;1) € ("(4n)Q
m Word has period 4, so length 1 (mod 4) subsequence vanish

m For length 3 (mod 4), look at starting position
1 (mod 4) : I°(0; (1100)%1;1) ® I™((0110)°0 | 10(0110)°01)
2 (mod 4):  I%(1;1(0011)%;0) ® I"™((0110)°01 | 0(0110)°01)

m Cancel using reversal of paths in I*. Similar for position
3,4 (mod 4)

m See cancellation as ‘reversing’ segments. Involution pairs up
subsequences:

™O01[10]01]10]---[10]01]10]01)

Conclude ¢™({1,3}") € ker D4y, = (" (4n)Q

24 /38
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Block decomposition
Alternating blocks

In ¢™({1,3}") proof, points 00 and 11 in w are ‘somehow’
significant.

m Splitting here decomposes a word into alternating blocks
0101--: or 1010 - - -.

Definition (Block decomposition)

Let w be a word starting with £; € { 0,1 }. Write w as alternating
blocks, with lengths ¢1,...,¢;. The block decomposition of w is

bl(w) = (e1541,- - -, k) -

bl(

0 |01 |10 [01010| 0 | 01)=(0;1,2,2,5,1,2)
Y Y Y ¥ Y Y

26 /38



Block decomposition
Alternating blocks

Can recover w from (g1;¢1,...,4x): blocks arise from 00 — 0] 0
orll —1|1.

Notation

Write Ibl(&“l;el, R ,fk) = I(bl_l(sl;ﬁl, R ,Ek)) If 1 =0, just
write (01,...,0).

m Weight of Ibl(ffl; l,... ,fk) is —2+ Zl 4. (Bounds of
integration are counted!)

m If wt =k (mod 2) then I;,) = 0. (End points are equall!)
m [y is divergent iff £ =1 or £ = 1.

Iy(1,2,2,5,1,2) = 1(0;01100101000; 1)
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Block decomposition
Block structure of BBBL conjecture

m Write the BBBL identity as iterated integrals

> C({2rm,1,{2}%2,3,.. ., 1, {2}, 3, {2} %)

cycle a;

w2 S7 I(0(10)*1(10)%2100 - - - 01(10)722100(10)2+11)

cycle a;
m Split into ‘alternating blocks’ at 00 - 0|0 or 11 — 1|1
= + Z 1(0(10)*1 | (10)?210 | 0--- 01 | (10)®2710 | 0(10)%27+11)

cycle a;
m Record lengths of the blocks
=+ > Ii(2a1+2,2a2+2,..., 202041 +2)

cycle a;

m Right hand side is ¢({2}""/2) = 1y, (wt + 2).
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Block decomposition
Block structure of Hoffman's conjecture

m Write Hoffman's identity as iterated integrals

24(3’3’{2}71) - C(37{2}n7 172)
= C(3737 {Q}n) - C(37{2}n7172) +C({2}n’1727172)
~ 4 (1(0100100(10)™1) + 1(0100(10)"1101) + I(0(10)"1101101))

m Split into ‘alternating blocks’ at 00 - 0| 0or 11 — 1|1
= = (I(010] 010 | 0(10)™1) + I(010 | 0(10)"1 | 101)
+1(0(10)"1 | 101 | 101))

m Record lengths of the blocks
= =+ (Ibl(Sa 3,2n + 2) + Ib1(3, 2n + 2, 3) + Ib1(2n + 2,3, 3))

m Right hand side is —(({2}""3) = £, (wt + 2)
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Block decomposition

Common structure and generalisation

Both conjectures have same structure: cyclic permutations of
block lengths /;.

Conjecture (Cyclic insertion, C., 2017, arXiv 1703.03784)

For any ({1,...,0) with all ¢; > 1,

ﬂ_wt

—— t
S Iy, 8) £ Tn(wt +2) = { DL 700
cycle ¢; 0 wt odd

m Numerically tested all cases weight < 18, to 500 decimal places
m Can prove a symmetrised version, up to Q

m Can prove some special cases, up to Q
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Block decomposition
Examples

Let (41,...,0;) = (2m + 2,2,3,2,3), then we obtain

C({Q}ma 17 Sa 37 ]-’ 2) + C(37 17 25 17 {Q}m,?’) - C(]-a 2a 13 {2}m,3’ 17 2) +

7T'Wt

?

+0L,2,1,3,3,{2)") = (3 {217,183 = oy

Proposition (C., 2017, arXiv 1703.03784)
The above identity holds up to Q

Proof (Sketch).

Lift the identity to ¢™, and compute D.9,,+10- A (tedious)
calculation shows D_9,,110 vanishes.

31/38



Block decomposition
Progress and results

Theorem (Symmetric insertion, C., 2017, arXiv 1703.03784)

For any ({1, ...,0), with even weight,
> (... ) € In(wt+2)Q

permute ¢;

(Odd weight holds trivially, by duality)

Proof (Strategy).

m Lift to motivic version I™.
m Define a reflection R on non-trivial subsequences
m Use R to cancel terms in Dy

m Conclude € ("(wt)Q = I}}j(wt + 2)Q using Brown.
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Block decomposition

Progress and results

Proof (Details).

non-trivial subsequence S
T
m
R:Ib](£17"'7 es gee ey gt ,...,Ek;)
~—~

start at position « end at position 3

reflection RS

m
'_>Ibl(£17"" \6; ge ey ES ,...,lek;)
start at position 3 end at position «

Get permutation of ;.

m Both quotients are I (¢1,..., ls_1, 0+ B, bri1, ..., Uk)

Subsequences are
Igll(‘E?gS - a7£s+17 ©oo 7€t—1;£t - 5) ' and

Igll(gl;gt — By li—1,. . lsy1,ls — )
m Reverses or duals, differ by (—1)'*"eth = —1. Cancel in Dy O
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Block decomposition
Corollaries of symmetric insertion

Corollary (Generalisation of Hoffman, up to Q)
For (£1,02,03) = (2a + 3,2b+ 3,2¢c + 2), we obtain

Syma,b (C({Q}a? 3, {2}b7 3,{2}°) — C({Q}ba 3,{2}%,1,2,{2}%)
+¢({2)4,1,2,{2}%,1,2,{2}")) e 7"'Q

Duality shows cyclic insertion already holds up to Q

C({2}a7 37 {2}b7 37 {2}0) _ C({Q}b’ 3’ {Q}Ca 1? 25 {2}a)
+ C({2}C’ 1,2, {2}a7 1,2, {Q}b)) = WWtQ

In particular, a = b = 0 is Hoffman's identity up to Q.
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Block decomposition
Corollaries of symmetric insertion

Corollary (Improvement of Bowman-Bradley, up to Q)

For £; = 2a; + 2, obtain
Z C({2}%,1,{2}%2,3,...,1,{2}, 3, {2}%+1) c 7™'Q

permute a;

“Only need permutations of a single composition.”

In particular, fora; =---=a, =m
Corollary (Evaluable MZV)
The following MZV is evaluable

c({{2y™,1,{2}™, 31", {2}™) e 7™ Q

Up to Q, proves conjecture of Borwein-Bradley-Broadhurst, 1997
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Block decomposition

Further progress?

Complete motivic proof of cyclic insertion is not (yet?) possible

m Cyclic insertion has a stability under Dy

m Odd weight implies Dy (even weight) = 0

m Problem: Must fix rational multiple of (™(wt) somehow
~» analytically or numerically. ..

m D_x(odd weight) involves I* explicitly
D7Z I01(2,10,3,2) =
(14 (6, 3) +15(3,3,2,1) + I5(2,3,2,2) + I[5(1,2,2,4)) @ I[5(10)
—C¥(2)¢%(2,3) — 2¢7(2)¢¥(3,2) + 2¢*(3)¢¥(2,2) = 0
m In general only have

odd weight = > ay((2k + DCH2¥27F) | apeQ
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Block decomposition
Recent work

Using iterated integrals over P!\ { 00,0, 1,2 } gives

Theorem (Hirose-Sato, 2017, arXiv 1704.06478)

The generalisation of Hoffman's identity holds exactly

¢({23%,3,{2}%,3,{2}°) — ¢({2}*,3, {2}, 1,2, {2}")
+¢({234,1,2,{2)%,1,2,{2}°) = —¢({2}*+****9)

Theorem (Hirose-Sato, 2017/18)

A ‘block-shuffle’ identity holds, which implies the conjecture.

See HIM talk, in “Periods and Regulators Workshop”, at 15:00 on
19 January 2018. Video https: //youtu. be/b83fkeUAWuO
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https://youtu.be/b83fkeUAWu0
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Extra material

(if necessary)




Block decomposition
Full version of cyclic insertion

If some ¢; = 1, the identity involves product term corrections.

d times
—— .
,Cd :{(md+1,...7mk) | (1,...,1,md+1,...,mk) IS a
cyclic permutation of (¢y,...,0;) }

“Take all cyclic permutations of (¢1,..., /) which start with d
consecutive 1's. Then drop the initial 1's”

Conjecture (Cyclic insertion, C., 2017, arXiv 1703.03784)

For any ({1, ...,0) of weight N,

) "L 2(2mi)
S Il ) =In(N+2)— ) > Iy(m

cycle ¢; d=1 (2d + 2 meLog
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Block decomposition
Full version of cyclic insertion

With (4;) = (1,1,2,3), need only L2 = {(2,3) }. Get

Ibl(la 1,2, 3) + Ibl(la 2,3, 1) + Ibl(27 3,1, 1) + Ibl(ga 1,1, 2)
2(27i)?

?

Ini(7) —

T (2.3)

Shuffle regularisation gives

(3¢(1,1,3) +2¢(1,2,2) + ¢(2,1,2)) +
(¢(2,3) —6¢(1,1,3) —4¢(1,2,2) —2¢(2,1,2)) +

(6¢(1,1,1,2)) + (= ¢(5)) = 0+ ¢(2)¢(1,2) %
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Block decomposition

Another block decomposition conjecture

Conjecture (BBBL 1998, rewritten)

Let ay,as,as, by, by € Zzo. Then

> sen(0)¢({2}, 1, {2}, 3, {2}, 1,{2}"*, 3, {2}%®) = 0

0ES3

Generalising the block decomposition structure leads to

Conjecture (Alt-odd, C., 2017, arXiv 1703.03784)

For any ({1, ...,la;11) of even weight, with all ¢; > 1,

2

Alt{ g, i odd } Do1(€1, - - -5 lopt1) =0

“Alternating sum over odd-position blocks.”

This conjecture is included in Hirose-Sato's generalisation too.
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Block decomposition
Another block decomposition conjecture

Example

For block lengths ¢; = 2a; +2, 1 <i < 7, get
Altay s as.ar C{23%, 1, {212, 3, {2}, 1, {2}, 3,
{2)%,1,{2}%,3,{2}*") £ 0

Example

For block lengths (2a; + 3,2as + 3, 2a3 + 3,2a4 + 2,2a5 + 3), g

Alty, ay.0s ({233, {2)%2,3, {2}, 3, {2}*,1,2,{2}**) = 0
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Block decomposition

Summary

m Defined block decomposition of an iterated integral

Used block decomposition to unify/generalise BBBL and
Hoffman's conjectures

m Used motivic MZV's to prove a symmetrised version holds
m Improved Bowman-Bradley to only permutations

m Proved Hoffman up to Q,

m Proved other identities up to Q

m Recent work by Hirose-Sato proves the generalised conjecture
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