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1. Motivation/goal

Want to define/introduce class of MPL functions which satisfy so-called clean versions of the
function equations of normal MPL’s.

By this we mean the functions somehow already incorporate the product terms which will appear
in any functional equation, in some universal way.

Motivating example from polylog case

Example 1.1 (Single-valued dilog, Bloch-Wigner-Ramakrishnan/Zagier). The dilog itself satisfies

Li2(z) + Li2
(
z−1
)

= −π
2

6
− 1

2
log2(−z)︸ ︷︷ ︸

some product terms

But introduce

L2(z) = Im(Li2(z) + log(1− z) log |z|) ,

and this satisfies clean functional equation

L2(z) + L2(z−1) = 0

for all z ∈ C.
Similar for 5-term: Li2 has many product terms, whereas L2 is constant 0.

Question was asked about whether something analogous works for higher depth multiply poly-
logs, by Gangl.

In particular, hope was maybe to obtain purely linear relations between iterated integrals, for
the purpose of defining some analogues of the bloch groups but for multiple polylogarithms, via
some symbols {x1, x2, . . .}n1,n2,..., satisfying some relations.

Recall 1.2. Convention: recursively defined iterate integral

I(x0;x1, . . . , xn;xn+1) =

∫ xn+1

x0

I(x0;x1, . . . , xn−1; t)
dt

t− xn
.

And Ik1,...,kr (x1, · · · , xr) = I(0;x1, {0}k1−1, . . . , xr, {0}kr−1; 1).

Example 1.3. Following identity (Gangl) holds (on the symbol, some algebraic invariant) up to
products of lower weight terms

I3,1(1− x, 1− y)− I3,1(x, y) + I4

(
2

[
1− y
1− x

]
− 2

[y
x

]
−
[

(1− x)y

x(1− y)

]
−
[

x

x− 1

]
+

[
y

y − 1

])
= 0 (mod �)

Defining

Iclean
4 (x) = I4(x) +

1

4
I3(x) log(x)
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Iclean
3,1 (x, y) = I3,1(x, y) +

1

4
log

(
x

y

)
I2,1(x, y) +

1

4
I2(x)I2(y)

+
1

4
I1(y)

(
−3I3

(
x

y

)
+ I2(x) log(y)− I2

(
x

y

)
log

(
x

y

)
− I3(x)

)
− 1

4
I1(x)

(
−3I3

(
x

y

)
+ I2(y) log(y)− I2

(
x

y

)
log

(
x

y

)
+ 3I3(y)

)
Then one has the exact (up to constants and lower weight)

Iclean
3,1 (1− x, 1− y)− Iclean

3,1 (x, y) + 2Iclean
4

(
1− y
1− x

)
− 2Iclean

4

(y
x

)
− Iclean

4

(
(1− x)y

x(1− y)

)
− Iclean

4

(
x

x− 1

)
+ Iclean

4

(
y

y − 1

)
= 0 (mod S)

Moreover, for any other I3,1 and I4 identity, holding modulo products, these clean functions lift
the identity to an exact one. The products are deal with in a universal way.

Goal is somehow to explain the origin of these functions, and give some applications. By using
the single valued MPL’s, obtained via the single valued map one can lift these symbol identities
to numerically verifiable functional equations.

2. Algebraic setup

Our setting: let H =
⊕∞

n=0Hn be a graded, connected Hopf algebra over Q.
Meaning: H0 = Q (connected), and we have coproduct ∆ and multiplication µ, with usual

compatibility conditions. Write ∆′ = ∆− 1⊗ id− id⊗ for the reduced coproduct.
Main object:

Definition 2.1 (R operator, ,,Reinigungsmap”). Define linear map Rn:Hn → Hn in weight n by

Rn = n id−µ(id⊗R•)∆′

and R0 = id. Note: R1 = id since ∆′H1 = 0.
[To emphasis the algebra, write RH• , as necessary.]

Proposition 2.2. kerR• = H>0 ·H>0, i.e. R kills all linear combinations of non-trivial products.

Proof. Clear kerR• ⊂ H>0 ·H>0. If a ∈ Hm, then 0 = Rma = na− µ(id⊗R•)∆′a i.e.

a =
1

n
µ(id⊗R•)∆′a ∈ H>0 ·H>0 .

By direct calculation, we see x = ab ∈ H2, where a, b ∈ H1 necessarily, has

R2x = 2ab− µ(id⊗
id︷︸︸︷
R1 ) ∆′(ab)︸ ︷︷ ︸

a⊗b+b⊗a+ab⊗ 1 + 1⊗ ab

= 0

For higher weights, use induction. Let x = a · b ∈ Hna
· Hnb

. Recall Sweedler’s notation for
coproduct

∆(a) = 1⊗ a+ a⊗ 1 +
∑
a

a(1) ⊗ a(2) .

Writing out

∆′(ab) = (µ⊗ µ)(id⊗
swap tensors︷︸︸︷

τ ⊗ id)(∆(a)⊗∆(b))− 1⊗ ab− ab⊗ 1

gives

=a⊗ b+
∑
b

(b(1) ⊗ ab(2) + ab(1) ⊗ b(2))

+ b⊗ a+
∑
a

(a(1) ⊗ a(2)b+ a(1)b⊗ a(2)) +
∑
a,b

a(1)b(1) ⊗ a(2)b(2)
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Applying R• in second slot, by assumption kills lower weight products

(id⊗R•)∆′(ab) =a⊗R(b) +
∑
b

((((((((b(1) ⊗R(ab(2)) + ab(1) ⊗R(b(2)))

+ b⊗R(a) +
∑
a

((((((((a(1) ⊗R(a(2)b) + a(1)b⊗R(a(2))) +
∑
a,b

((((((((((
a(1)b(1) ⊗R(a(2)b(2))

Then applying µ gives

µ(id⊗R•)∆′(ab) = a

(
R(b) +

∑
b

b(1) ⊗R(b(2))︸ ︷︷ ︸
R(b)+µ(id⊗R)∆′(b)=nbb

)
+ b

(
R(a) +

∑
a

a(1) ⊗R(a(2))︸ ︷︷ ︸
naa

)

= (na + nb)(ab)

So R(ab) = (na + nb) id(ab)− µ(id⊗R•)∆′(ab) = 0 �

3. Symbols and integrals

Apply this to Goncharov’s Hopf A algebra of (motivic) iterated integrals, and to symbols thereof.

Recall 3.1. Hopf algebra spanned by Ia(x0;x1, . . . , xn;xn+1) some formal/combinatorial version
of I(x0;x1, . . . , xn;xn+1), satisfying the same relations.

Coproduct formula:

∆Ia(x0;x1, . . . , xn;xn+1) =
∑

0=i1<i2<···<ik+1=n

Ia(x0;xi1 , · · · , xik ; an+1)⊗
k∏
p=0

Ia(xip ;xip+1; · · · ;xip+1−1;xip+1
)

Semicircular coproduct

∆Ia(a; ~x; b) =
∑
S⊂~x

Ia(a;S; b)⊗
∏

Ia(cuff-off segments)

Symbol is obtained as maximal iteration of this coproduct. Giving algebra morphism S:A →
T c(V ), to the tensor coalgebra equipped with shuffle product � and ∆dec deconcatenation coprod-
uct.

In T c(V ), the map RT• reduces to the shuffle product projection operator ρn defined by Duhr,
Gangl, Rhodes.

ρn(a1 ⊗ · · · ⊗ an) = ρn−1(a1 ⊗ · · · ⊗ an−1)⊗ an − ρn−1(a2 ⊗ · · · ⊗ an)⊗ a1 .
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Why? Relation

n−1∑
i=1

(a1 ⊗ · · · ⊗ ai)� ρn−i(ai+1 ⊗ · · · ⊗ an) = na1 ⊗ · · · ⊗ an

gives operator identity

�(id⊗ρ•)(∆′ + 1⊗ id) = n id =⇒ ρn = n id−� (id⊗ρ•)∆′

I.e. same recursion and same initial conditions.

Remark 3.2. This operator identity form of ρ was the motivation for Duhr to make the construc-
tion in a general Hopf algebra

Applying RHn , we only need to keep the terms in ∆ which are not (non-trivial) products. These
occur only when we have a bunch of consecutive points (giving empty products), then a single long
cut-off segment, and more consecutive points, i.e. i1, . . . , il and il+n, . . . , ik are consecutive (giving
empty products on the right hand side, and a single cut-off segment xil , · · · , xil+n

).
Obtain recursion

R•I
a(x0;x1, . . . , xn;xn+1) = nIa(x0;x1, . . . , xn;xn+1)

−
∑

proper substring
S of x0, · · · , xn+1

Ia(x0 · · ·xn+1/S)RIa(S)

= nIa(x0;x1, . . . , xn;xn+1)

−
n−1∑
k=1

k+1∑
l=1

Ia(x0;x1, . . . , xl−1, xl+n−k, . . . , xn;xn+1)RIa(xl−1;xl, . . . , xln−k−1;xl+n−k)

i.e. all proper substrings of length ≥ 1 in right hand term, with quotient of the original in the left.

Definition 3.3 (Clean, symbol level). Recursive definition

Iclean(x0;x1, . . . , xn;xn+1) =
1

n
R•I

a(x0;x1, . . . , xn;xn+1)

= Ia(x0;x1, . . . , xn;xn+1)

−
n−1∑
k=1

k+1∑
l=1

n− k
n

Ia(x0;x1, . . . , xl−1, xl+n−k, . . . , xn;xn+1)Iclean(xl−1;xl, . . . , xln−k−1;xl+n−k)

Claim 3.4. These functions satisfy clean symbol level functional equations.

Lemma 3.5. The symbol map intertwines RA of iterated integrals and RT = ρ of tensor symbols.
True for n = 1 where both sides are id. Next:

ρnS = nS −�(id⊗ρ•)(∆dec)′S
= nS −�(S ⊗ ρ•S)∆′

= nS −�(S ⊗ SR•)∆′

= nS − Sµ(id⊗R•)∆′

= SRn

Corollary 3.6. ρ•SI (the symbol of something reduce under ρ) is itself always an integrable symbol:
it is the symbol of RnI

Corollary 3.7. An identity which for symbols modulo products, can be lifted to an exact identity
on symbols, even in a universal way. In particular, the kernel of ρ for integrable symbols consists
of shuffle products of integrable symbols (a priori, only known shuffle products of some symbols).

Proof. Suppose in weight n,

ρnS(
∑
i

λifi) = 0 ,
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and define f clean = 1
nRnf . Then

S(
∑

i
λi(fi)

clean) = S(
∑

i
λi

1

n
Rnfi)

=
1

n
SRn(

∑
i
λifi)

=
1

n
ρnS(

∑
i
λifi) = 0

Since f clean − f = 1
nµ(id⊗R•)∆′f is only formed from products, the identity for

∑
λif

clean
i

adds product terms make identity
∑
λifi = 0 (mod �) hold exactly. �

4. Clean single-valued MPL’s

More interesting/useful case is when we apply this to the de Rham images of motivic MPL’s, and
use the single valued map.

Recall 4.1. Motivic periods form a Hopf algebra comodule over de Rham motivic periods. The
motivic MPL’s Im(x0;x1, . . . , xn;xm+1) are mixed Tate, so form a graded comodule H over de
Rham MPL’s, whose weight 0 component is just Q. So we can define a projection to de Rham
MPL’s πdr:H → A via the projection to weight 0 components.

πdr = (π0 ⊗ id)∆

where

∆:Pm → Pdr ⊗ Pm

The de Rham MPL’s form a connected graded Hopf algebra A, with coproduct given by (suitable
version of) Goncharov’s semicircular coproduct formula. In particular, can define Rn on de Rham
MPL’s.

The single valued map generally exists in this setting. Defined to be the unique element of
GdR(Pm) such that sv ◦σ = id, where σ is some twist of the real Frobenius (complex conjugation).

Get a map s:A → H, sending a de Rham MPL to a single-valued version.

Definition 4.2. Define the clean single valued (motivic) MPL.

C(x0;x1, . . . , xn;xn+1) =
1

n
sRnπ

drIm(x0;x1, . . . , xn;xn+1)

Write also I(x0;x1, . . . , xn;xn+1) = sπdrIm(x0;x1, . . . , xn;xn+1), for the single-valued projec-
tion of motivic integral Im.

Theorem 4.3. Every functional relation among MPL’s gives a linear relation between the C-
functions
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Proof. General functional relation∑
i

λiI
m(~xi) + fn +

n−1∑
k=0

(2πi)kfk = 0

where fn ∈ H>0 · H>0, fk ∈ Hk.
Project to de Rham, and apply the single valued map:∑

i

λiI(~xi) + s(πdrfn) = 0

where s(πdrfn) ∈ Hsv>0 · Hsv>0.
Now apply Rsv, which kills product terms∑

i

λiC(~xi) = 0

�

The single valued projections J = s(πdrI), some I, form a Hopf algebra Hsv via ∆sv s(πdrI) =
(s⊗ s)∆(πdrI). In particular, get same semicircular coproduct formula, with I.

Lemma 4.4. Rsv in Hsv and RH are intertwined by s. [Same recursive proof as for RT and RA

under S.]

Corollary 4.5. Recursive formula:

C(x0;x1, . . . , xn;xn+1) =
1

n
Rsvn I(x0;x1, . . . , xn;xn+1)

= I(x0;x1, . . . , xn;xn+1)

−
n−1∑
k=1

k+1∑
l=1

n− k
n
I(x0;x1, . . . , xl−1, xl+n−k, . . . , xn;xn+1)C(xl−1;xl, . . . , xln−k−1;xl+n−k)

Proposition 4.6. The total (holomorphic) differential of C satisfies (for n >= 2):

∂C(x0;x1, . . . , xn;xn+1) =
n− 1

n

[ n∑
k=1

C(x0;x1, . . . , x̂k, . . . , xn;xn+1)dI(xk−1;xk;xk+1)

− C(x0;x1, . . . , xn−1;xn, x̂n+1)dI(x0;xn;xn+1)

− C(x̂0, x1;x2 . . . , xn;xn+1)dI(x0;x1;xn+1)

]
Compare with:

dI(x0;x1, . . . , xn;xn+1) =

n∑
k=1

I(x0;x1, . . . , x̂k, . . . , xn;xn+1)dI(xk−1;xk;xk+1)

Remark 4.7. Somehow, we expect that every such relation for C comes from linearising an MPL
relation in such a way. Should be able to prove this, if we can show that there are no relations
among products of MPL’s that are not already products of lower weight identities.

Proposition 4.8. In particular, very general set of linear relation for C:

• Shuffle product: C(a;x� y; b) = 0
• Path composition C(a, x, b) + C(b, x, c) = C(a, x, c)
• Path reversal C(a;x1, . . . , xn; b) = (−1)nC(b;xn, . . . , x1; a)
• Shuffle antipode C(a0; an, . . . , a1; an+1) = (−1)n+1C(a0; a1, . . . , an; an+1)
• Shuffle regularisation of 0′s

C(0; 0k, a1, 0
n1−1, . . . , ar, 0

nr−1; ar+1)

= (−1)k
∑

i1+···+ir=k

(
n1 + i1 − 1

i1

)
· · ·
(
nr + ir − 1

ir

)
C(0; a1, 0

n1+i1 , . . . , ar, 0
nr+ir ; ar+1)

• Rescaling (even for a1 = 0)

C(za0; za1, . . . , zan; zan+1) = C(a0; a1, . . . , an; an+1)
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Remark 4.9. Lifting of symbol mod products level identities, to numerically testable identities
among clean single valued MPL’s, by replacing I with C.

Idea: take symbol mod products identity, lift to symbol identity. Integrate to a functional
equation. Top level slice will be original combination of integrals (up to products). Cleaning the
result gives the linear combination of C functions.

Remark 4.10. Duhr has lifted various identities found by Gangl and me with the symbol to
numerically testable identities among the C functions. Passes numerical tests to high accuracy,
results are always constant.

[MZV constants can appear in pure weight n piece of above relation.]

Theorem 4.11. In the case of depth 1, can relate C(0; 1, 0, . . . , 0; z) to Zagier’s single valued
polylog:

−C(0; 1, {0}n; z) = Pn(z) +

n−1∑
k=2

1

n− k + 1

k − 1

n

logn−k(zz̄)

(n− k)!
Pk(z) ,

where

Pn(z) =

n−1∑
r=0

Br
r!

logr(zz̄)(Lin−r(z)− (−1)n Lin−r(z̄)) .

So that Pn(z) =

{
2Pn(z) n odd

2iPn(z) n even
in terms of Zagier’s single valued MPL.

5. Follow up work

• Can equip the vector space spanned by C(a0; a1, . . . , an; an+1) with a co lie bracket. Maybe
somehow reminiscent of Goncharov’s colie bracket on (generating series of) iterated inte-
grals, but somehow only worked modulo lower depth integrals.

δC(a0; a1, . . . , an; an+1) =
∑

0≤p<q≤n+1

C(a0; a1, . . . , ap; aq+1, . . . , an; an+1)∧C(ap; ap+1, . . . , aq, aq+1)

• By taking the values of these functions are 1, can obtain some kind of clean single valued
MZV. Do these satisfy any good properties? Some kind of generators for the space of
indecomposible motivic MZV’s. Unfortunately, need to go to high weight to get non-
trivial structure (weight 11, to get 2 basis elements?), and current code is not optimised
for this.
• Applications elsewhere? Elliptic case? Procedure requires two ingredients: mixed Tate to

get the splitting/projection to de Rham. Then also require graded, connected Hopf algebra
structure, to define the cleaning map.

For the case of mixed elliptic motives, the first bit is okay. For elliptic MZV’s, should
also have the second requirement.
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